Implementation of Solidification Phase Change in a Multiphase Solver

Paria Khosravifar

Department of Engineering Sciences and Mathematics Luleå University of Technology Luleå, Sweden

January 23, 2025

Contents

Introduction

Theory

OpenFOAM implementation

Test Cases

Conclusion and future work

Paria Khosravifar

OSCFD course

Introduction

Modeling phase change phenomena, such as solidification or melting is important for understanding various natural and industrial systems.

- Ice formation
- Freezing of food
- Solidification of metal casting
- Thermal energy storage
- Crystal growth

Different cases

Two-phase (liquid and solid)

Three-phase (gas, liquid, and solid)

Freezing of an impinging droplet [1]

[1] Fagerström, E. and Ljung, A.L., 2023. Shape and temperature dependence on the directional velocity change in a freezing water droplet. *International Journal of Thermofluids*, 20, p.100519.

Main challenge

Tracking the interface between phases

- Interface between liquid and gas _____ VOF
- Interface between solid and liquid Enthalpy-porosity method

Contents

Introduction

Theory

OpenFOAM implementation

Test Cases

Conclusion and future work

Paria Khosravifar

OSCFD course

Volume of Fraction (VOF)

The VOF model is a numerical technique for capturing the interface between two phases

$$\alpha = \begin{cases} 0 & fluid \ 2 \\ 0 < \alpha < 1 & interface \\ 1 & fluid \ 1 \end{cases}$$

Transport equation of the volume fraction:

$$\frac{\partial \alpha}{\partial t} + \nabla . \left(\alpha U \right) + \nabla . \left[U_r \alpha (1 - \alpha) \right] = 0$$

Material properties:

$$y = \alpha y_1 + (1 - \alpha) y_2$$

Enthalpy-porosity solidification model (1/3)

 This method, presented by Voller and Prakash [2], utilizes the enthalpy method to account for both sensible and latent heat, along with the porosity concept to represent the transition between the solid and liquid phases.

Energy equation:

$$\frac{\partial \rho H}{\partial t} + \nabla \cdot (\rho U H) = \nabla \cdot (k \nabla T)$$

$$H = h + \Delta H$$

$$h = h_{ref} + \int_{T_{ref}}^{T} C_p dT$$

$$\Delta H = \gamma L$$

$$\gamma = \begin{cases} 0 & T < T_{sol} \\ T = T_{sol} \\ T = T_{liq} \end{cases}$$

$$\gamma = \begin{cases} 0 & T < T_{sol} \\ T = T_{liq} \\ T = T_{liq} \end{cases}$$
How to take account the existence of two fluids
$$\Delta H = \alpha_{l} \gamma L$$

[2] Voller, V.R. and Prakash, C., 1987. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International journal of heat and mass transfer

Enthalpy-porosity solidification model (2/3)

$$\frac{\partial \left(\rho C_{p} T\right)}{\partial t} + \nabla \cdot \left(U\rho C_{p} T\right) + \alpha_{l} L \left[\frac{\partial \rho \gamma}{\partial t} + \nabla \cdot \left(U\rho \gamma\right)\right] = \nabla \cdot \left(k \nabla T\right)$$

Liquid fraction approximation with linear function and error function [3]

$$\gamma = 0.5 \operatorname{erf}\left(\frac{4(T - T_{\text{melt}})}{T_{\text{liq}} - T_{\text{sol}}}\right) + 0.5$$

$$\frac{\partial (\rho C_{p} T)}{\partial t} + \nabla \cdot (U \rho C_{p} T) + S_{h} = \nabla \cdot (k \nabla T)$$

$$S_{\rm h} = \alpha_{\rm l} \rho L \frac{4 \left(\frac{4 \left(T - T_{\rm melt} \right)}{T_{\rm liq} - T_{\rm sol}} \right)^2 \right)}{\left(T_{\rm liq} - T_{\rm sol} \right) \sqrt{\pi}} \left(\frac{\partial T}{\partial t} + U \cdot \nabla T \right)$$

[3] Rösler, F. and Brüggemann, D., 2011. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments. Heat and mass transfer

Enthalpy-porosity solidification model (3/3)

Momentum equation:

$$\frac{\partial(\rho U)}{\partial t} + \nabla \cdot (\rho U U) = -\nabla p + \nabla \mu \left[\nabla U + \nabla U^{\mathrm{T}}\right] + \rho g + S_{\mathrm{st}} + S_{\mathrm{u}}$$
$$S_{\mathrm{u}} = -\frac{(1 - \gamma)^{2}}{\gamma^{3} + q} A_{\mathrm{mushy}} U$$

Material properties:

 $y = \alpha_{l} \left(\gamma \overline{y_{l}} + (1 - \gamma) y_{S} \right) + \left(\overline{1 - \alpha_{l}} \right) y_{g}$

OSCFD course

Contents

Introduction

Theory

OpenFOAM implementation

Test Cases

Conclusion and future work

Paria Khosravifar

OSCFD course

OpenFOAM implementation (1/8)

interFoam solver

Solver for two incompressible, isothermal immiscible fluids using a VOF (volume of fluid) phase-fraction based interface capturing approach, with optional mesh motion and mesh topology changes including adaptive re-meshing.

To read and calculate transport properties:

#include "immiscibleIncompressibleTwoPhaseMixture.H"

class immiscibleIncompressibleTwoPhaseMixture

•

public incompressibleTwoPhaseMixture, public interfaceProperties

To have access to functions and properties in the class:

Info<< "Reading transportProperties\n" << endl; immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

OpenFOAM implementation (2/8)

solidificationInterFoam solver

A solver for two incompressible, immiscible fluids using a Volume of Fluid (VOF) phase-fraction-based interface capturing approach, with solidification phase change in one of the fluids.

```
class myThermoIncompressibleTwoPhaseMixture
:
    public incompressibleTwoPhaseMixture
{
    protected:
        dimensionedScalar kappa1_; //Thermal conductivity
        dimensionedScalar kappa2_;
        dimensionedScalar Cp1_; //Specific heat capacity
        dimensionedScalar Cp2 ;
```

OpenFOAM implementation (3/8)

myImmiscibleIncompressibleTwoPhaseMixture inheritance:

class myImmiscibleIncompressibleTwoPhaseMixture

// public incompressibleTwoPhaseMixture,
public myThermoIncompressibleTwoPhaseMixture,
public interfaceProperties

Mixture object in createFields:

Info<< "Reading transportProperties\n" << endl; myImmiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

Mention lmyThermoIncompressibleTwoPhaseMixture and myImmiscibleIncompressibleTwoPhaseMixture in Make/options

-L\$(FOAM_USER_LIBBIN) \

-lmyImmiscibleIncompressibleTwoPhaseMixture \

-lmyThermoIncompressibleTwoPhaseMixture

OpenFOAM implementation (4/8)

Define the properties related to phase change:

```
Info<< "Reading phaseChangeProperties" << endl; //Add</pre>
IOdictionary phaseChangeProperties
    IOobject
        "phaseChangeProperties",
        runTime.constant(),
        mesh,
        IOobject::MUST READ,
        IOobject::NO_WRITE
);
dimensionedScalar L //latent heat
(
    "L".
   dimensionSet(0, 2, -2, 0, 0, 0, 0),
    phaseChangeProperties
);
```

OpenFOAM implementation (5/8)

```
// Update gamma using the erf function
gamma = 0.5 * Foam::erf(4.0 * (T - Tmelt) / (Tliq - Tsol)) + 0.5;
```

OpenFOAM implementation (6/8)

```
volScalarField rho
    IOobject
        "rho",
        runTime.timeName(),
        mesh,
        IOobject::READ IF PRESENT
   ),
alpha1* (gamma*rho1+(1-gamma)*rhoS) + alpha2*rho2
);
volScalarField Cp //Add
    IOobject
        "Cp",
        runTime.timeName(),
        mesh,
        IOobject::READ_IF_PRESENT
    ),
    alpha1* (gamma*Cp1+(1-gamma)*CpS) + alpha2*Cp2
);
```

OpenFOAM implementation (7/8)

Energy equation:

```
volScalarField expArg = sqr(4.0 * (T - Tmelt) / (Tliq - Tsol));
volScalarField Sh_erf = -rho * L * ((4.0 * exp(-expArg) / ((Tliq - Tsol) *
::sqrt(Foam::constant::mathematical::pi))) * (fvc::ddt(T) + (U & fvc::grad(T))));
fvScalarMatrix TEqn
(
    fvm::ddt(rhoCp, T)
    + fvm::div(rhoCpPhi, T)
    + alpha1*Sh_erf
    - fvm::Sp(fvc::ddt(rhoCp) + fvc::div(rhoCpPhi), T)
    - fvm::laplacian(kappaEff, T)
);
```

OpenFOAM implementation (8/8)

Momentum equation:

```
volScalarField prosityFunc = A_mushy *sqr(1.0 - gamma)/(pow3(gamma) + q);
fvVectorMatrix UEqn
    fvm::ddt(rho, U) + fvm::div(rhoPhi, U)
  + alpha1 * fvm::Sp(prosityFunc, U) //Add
  + MRF.DDt(rho, U)
  + turbulence->divDevRhoReff(rho, U)
    fvOptions(rho, U)
);
UEqn.relax();
fvOptions.constrain(UEqn);
if (pimple.momentumPredictor())
    solve
        UEqn
     ==
        fvc::reconstruct
                mixture.surfaceTensionForce()
              - ghf*fvc::snGrad(alpha1*rho1+alpha2*rho2)
              - fvc::snGrad(p_rgh)
            ) * mesh.magSf()
    );
```

fvOptions.correct(U);

Contents

Introduction

Theory

OpenFOAM implementation

Test Cases

Conclusion and future work

Paria Khosravifar

OSCFD course

Stefan problem

One-dimensional solidification problem

Geometry and coordinates for one-dimensional solidification problems [4]

Analytical solution (Neumann's solution):

$$x(t) = 2\lambda \sqrt{\frac{tk_s}{C_s \rho}}$$
$$\lambda e^{\lambda^2} = \frac{Ste}{\sqrt{\pi}}$$
$$Ste = \frac{C_s (T_{melt} - T_0)}{L}$$

[4] D. W. Hahn and M. N. "Ozisik, Heat conduction. John Wiley & Sons, 2012.

OSCFD course

Test case 1

Two-phase Stefan problem

```
defaultFieldValues
(
    volScalarFieldValue alpha.water 0
);
regions
(
    boxToCell
    {
        box (0 -0.001 0) (0.025 0.001 0.1);
        fieldValues
        (
            volScalarFieldValue alpha.water 1
        );
    }
);
```


Properties	Solid	Liquid	Gas	Interface
Heat capacity $(J/kg \cdot K)$	2050	2590	1	
Thermal conductivity $(W/m \cdot K)$	4.02	2.89	0.025	
Density (kg/m^3)	1000	1000	1	
Melting temperature (K)				273.15
Latent heat of fusion (J/kg)				80332
Tmel+		273 15	,	
Tlia		273.35		
Tsol		272.95	/ >	

OSCFD course

Result

freezingFront

type libs writeControl	<pre>surfaces; (sampling); writeTime;</pre>

surfaceFormat raw; fields

(T);

interpolationScheme cellPoint;

 $x(t) = 2\lambda \sqrt{\frac{tk_s}{C_s\rho}}$

Paria Khosravifar

OSCFD course

Test case 2

Three-phase Stefan problem

```
defaultFieldValues
(
    volScalarFieldValue alpha.water 0
);
regions
(
    boxToCell
    {
        box (0 -0.001 0) (0.025 0.001 0.050);
        fieldValues
        (
        volScalarFieldValue alpha.water 1
        );
    }
);
```


OSCFD course

Contents

Introduction

Theory

OpenFOAM implementation

Test Cases

Conclusion and future work

Paria Khosravifar

OSCFD course

Conclusion and future works

Conclusion:

- Energy equation and enthalpy-porosity phase change model implemented in the interFoam solver to simulate the solidification phenomenon.
- The implemented solver was validated using the analytical solution of the Stefan problem.

Future Work:

- Consider the density change during phase change to better detect flow currents during phase change.
- Account for volume expansion due to phase change.

