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Introduction
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Introduction Compressible Flow

U.S Navy F/A-18 transonic pushing into the sound barrier [1] NASA Mercury capsule [2]

● Compressible flow occurs when  fluid density changes significantly due to pressure or temperature variations :
● High-speed aerodynamics.
● Propulsion systems.
● Gas dynamics.
● Combustion.

Ma = U
c

Mach number :

Ma > 0.3 , compressibility effects become significant.
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Introduction Pressure-Based VS Density Based Solvers

Aspect Pressure-Based Density-Based

Algorithm SIMPLE, PISO Godunov methods

Time-Stepping Scheme Implicit Explicit

Numerical Diffusion Introduce numerical diffusion, 
smearing sharp gradients

Less numerical diffusion, 
better for sharp gradients like 

shocks

High-Order Schemes More complex to implement Easier to implement in explicit 
frameworks

Applications
Steady-state problems, 

transient flows with large time 
steps

Compressible flows, shocks, 
and contact discontinuities

Challenges
Numerical diffusion, reduced 

accuracy for convection 
dominated flows

Strict time step restrictions, 
less robust for low-speed or 

transient flows
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Introduction Reacting Flow

● Reacting flow refers to fluid movement that involves chemical reactions, such as combustion, where the 
transport of species and heat release significantly influence the flow dynamics.

● Role of CFD:
● Predict performance and optimize processes in industries like aerospace, automotive, and power 

generation.
● Critical for analyzing flame stability, pollutant formation and combustion efficiency.

● The most widely used reacting flow solver in OpenFOAM is reactingFoam:  
● Employs a pressure-based approach (PIMPLE algorithm).
● No density-based reacting flow solver exists in the official OpenFOAM release.

● Density-based approach is relevant for combustion :
● Better handling of high-speed flows and large density variations, such as those encountered in 

supersonic or hypersonic combustion.
● Captures acoustic-wave dynamics crucial for capturing interactions between heat release and acoustic 

phenomena, particularly in combustion systems susceptible to thermoacoustic instabilities.
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Theoretical Background
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Theoretical Background Reacting Flow Governing Equations
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● Continuity, momentum, species transport and energy equations :

Y k =
mk

m
, ∑

k=0

N

Y k = 1

● Species k mass fraction :

● Diffusive flux, assuming Fick’s law :

J k , i = ρ Dk
∂Y k

∂ x i

● Unity Lewis and Prandtl numbers :
ρ Dk = μ

qi = λ ∂T
∂ xi

● Heat flux :
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Theoretical Background Central Schemes
● Central schemes introduced by Kurganov et al. [3], also refferred to as Kurganov-Tadmor’s scheme (KT) and 

Kurganov-Noelle-Petrova scheme (KNP).
● Discretization of the convective fluxes ∇·uΨ, taking into account the propagation of waves in any direction.

∫
V

∇⋅(uΨ )dV= ∫
S
uΨ⋅dS ≈ ∑

f
Sf⋅uf Ψ f = ∑

f
ϕ f Ψ f

● Integrated over a control volume and linearized :

∑
f
ϕ f Ψ f = ∑

f
α ϕ f +Ψ f + + (1−α )ϕ f−Ψ f− + ωf (Ψ f−−Ψ f +)

● Interpolation is carried out in both directions :

α = { 1
2
, KT

af +

af + − af−
, KNP

● The weighting factor α :

af + = max (ϕ f + + c f +|S f|, ϕ f− + c f−|S f|, 0 )

af− = min (ϕ f + − c f +|S f|, ϕ f− − c f−|S f|, 0 )

● Volumetric fuxes relative to the speed of propagation : ● Diffusive volumetric flux :

ω f = { αmax (a f + , af − ) , KT
α (1 − α ) (a f+ + a f − ) , KNP

f
TP, ρP, pP

P N

uP uN

-cN +cN+cP-cP Sf-Sf

TN, ρN, pN

xxi

f- direction f+ direction

xi+1/2 xi+1
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reactingFoam
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reactingFoam reactingFoam/createFields.H

Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiReactionThermo> 
pThermo(psiReactionThermo::New(mesh));
psiReactionThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");

basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();

● Construct the thermophysical model thermo based on the constant/thermophysicalProperties file :

● Different combination of thermoType are possible.
● Sensible enthalpy h or sensible enargy e as energy variable.
● The list of pointers to store the species mass fractions Y is initialized, the total number and names of the 

species will depend on the files constant/reactions and constant/thermo.compressibleGas.
● The temperature T, and compressibility ψ, are created as references in the createFieldRefs.H file, as well as 

the inertIndex variable read from the thermophysicalProperties file.

reactingFoam/createFields.H

thermoType
{

type hePsiThermo;
mixture reactingMixture;
transport sutherland;
thermo janaf;
energy sensibleEnthalpy;
equationOfState perfectGas;
specie specie;

}

inertSpecie N2;
chemistryReader foamChemistryReader;
foamChemistryFile "<constant>/reactions";
foamChemistryThermoFile "<constant>/thermo.compressibleGas";

constant/thermophysicalProperties

const volScalarField& psi = thermo.psi();
const volScalarField& T = thermo.T();
const label inertIndex(composition.species().find(inertSpecie));

reactingFoam/createFieldRefs.H
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reactingFoam reactingFoam/createFields.H
● Example of reactions and thermo.compressibleGas files :

elements 3(H O Ar);

species 9(H2 O2 H O OH HO2 H2O2 H2O AR);

reactions
{

un-named-reaction-0
{

type         reversibleArrheniusReaction;
reaction  "H2 + O2 = 2OH";
A             1.7e+10;
beta         0;
Ta            24042.47739;

}
...

}

O2
{

specie
{

molWeight 31.9988;
}
thermodynamics
{

Tlow 200;
Thigh 3500;
Tcommon 1000;
highCpCoeffs (...);
lowCpCoeffs (...);

}
transport
{

As 0;
Ts 0;

}
elements
{

O 2;
}
...

}

constant/reactions

constant/thermo.compressibleGas

● reactions defines the elements and species as well as the 
chemical reactions involved in the chemistry mechanism.

● thermo lists the dfferent thermophysical properties for 
each species.

reactingFoam reactingFoam/createFields.H
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reactingFoam reactingFoam/createFields.H
volScalarField rho
(

IOobject
(

"rho",
runTime.timeName(),
mesh

),
thermo.rho()

);

Info<< "Reading field U\n" << endl;
volVectorField U
(

IOobject
(

"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

volScalarField& p = thermo.p();

#include "compressibleCreatePhi.H"

● Creation of density, velocity and pressure fields as well as compressible mass fluxes.
● Pointer reaction is initialised and the species mass fractions Y[i] and energy variable are added to fields for 

interpolation.
● Finally, the heat release rate field Qdot is created.

reactingFoam/createFields.H

Info<< "Creating reaction model\n" << endl;
autoPtr<CombustionModel<psiReactionThermo>> reaction
(

CombustionModel<psiReactionThermo>::New(thermo, turbulence())
);

multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;

forAll(Y, i)
{

fields.add(Y[i]);
}
fields.add(thermo.he());

volScalarField Qdot
(

IOobject
(

"Qdot",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE

),
mesh,
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)

);

reactingFoam/createFields.H

reactingFoam reactingFoam/createFields.H
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reactingFoam reactingFoam/reactingFoam.C

#include "rhoEqn.H"

while (pimple.loop())
{

#include "UEqn.H"
#include "YEqn.H"
#include "EEqn.H"

// --- Pressure corrector loop
while (pimple.correct())
{

[…]

else
{

#include "pEqn.H"
}

}

[…]

}

rho = thermo.rho();

[...]

● The density field is calculated by solving the continuity equation 
by including the rhoEqn.H header file.

● The momentum equation is solved in order to compute the 
velocity field in the Ueqn.H header file.

● The reacting species transport equations are solved in the 
YEqn.H header file.

● The energy equation is solved in the EEqn.H header file.
● At this point, we entered the while (pimple.correct()) loop or the 

inner corrector loop, where the PISO algorithm is executed.
This is the main difference with density-based solvers. 
The pressure-velocity-density coupling is solved through the 
SIMPLE and PISO algorithms instead of calculating the pressure 
from an equation of state.

reactingFoam/reactingFoam.C, main lines
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reactingFoam reactingFoam/YEqn.H
reaction->correct();
Qdot = reaction->Qdot();
volScalarField Yt(0.0*Y[0]);

forAll(Y, i)
{

if (i != inertIndex && composition.active(i))
{

volScalarField& Yi = Y[i];

fvScalarMatrix YiEqn
(

   fvm::ddt(rho, Yi)
+ mvConvection->fvmDiv(phi, Yi)
-  fvm::laplacian(turbulence->muEff(), 
Yi)
==
reaction->R(Yi)
+ fvOptions(rho, Yi)

);

YiEqn.relax();

fvOptions.constrain(YiEqn);

YiEqn.solve("Yi");

fvOptions.correct(Yi);

Yi.clamp_min(0);
Yt += Yi;

}
}

Y[inertIndex] = scalar(1) - Yt;
Y[inertIndex].clamp_min(0);

reactingFoam/YEqn.H

● The lines reaction->correct(); and Qdot = reaction->Qdot(); compute all 
species reaction rates, and retrieves the updated heat release rate per unit 
volume, Qdot, from the turbulence-chemistry interaction model.

● One transport equation for each reacting species is solved (forAll(Y, i) loop).
● We find all the terms presented in slide 7:

● Temporal derivative: fvm::ddt(rho, Yi).
● Advection term: mvConvection→fvmDiv(phi, Yi).
● Diffusion term: fvm::laplacian(turbulence->muEff(), Yi), the diffusion 

coefficient is the effective kinematic viscosity muEff, which is the sum of 
the turbulent and laminar kinematic viscosity and depends on the chosen 
turbulence and thermophysical models.

● The term reaction->R(Yi) is the species production rate and corresponds to ω̇k.
● Negative mass fractions avoided with Yi.clamp min(0); and added to sum Yt 

+= Yi;.
● Mass fraction of the inert species computed Y[inertIndex] = scalar(1) - Yt;.
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rhoCentralFoam
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rhoCentralFoam rhoCentralFoam/createFields.H

volScalarField& p = thermo.p();
const volScalarField& T = thermo.T();
const volScalarField& psi = thermo.psi();

bool inviscid(true);
if (max(thermo.mu().cref().primitiveField()) > 0.0)
{

inviscid = false;
}

rhoCentralFoam/createFieldRefs.H

Info<< "Reading thermophysical properties\n" << endl;

autoPtr<psiThermo> pThermo
(

psiThermo::New(mesh)
);
psiThermo& thermo = pThermo();

volScalarField& e = thermo.he();

rhoCentralFoam/createField.H

● Similarly, a createFieldRefs.H and a createField.H files are present :

● A boolean variable, inviscid, is created as true and then 
determined based on the viscosity mu.

● Like in reactingFoam, the thermo reference is created from 
the constant/thermophysicalProperties file to access and 
update the thermophysical properties.

● Also based on compressibility psi but the thermodynamic 
class is psiThermo and not psiReactionThermo.

● The energy variable here is called e instead of he, in 
rhoCentralFoam we should only choose the sensible internal 
energy as energy variable.
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rhoCentralFoam rhoCentralFoam/createFields.H

rhoCentralFoam/createFields.H

● The solver solves the conservative variables or density weighted fields, ρ (rho), û = ρu (rhoU), Ê = ρE (rhoE) :

● Created using the rho, U, e fields and the formula for the 
total energy E = e + 0.5∥u2∥.

volVectorField rhoU
(
    IOobject
    (
        "rhoU",
        runTime.timeName(),
        mesh,
        IOobject::NO_READ,
        IOobject::NO_WRITE
    ),
    rho*U
);

volScalarField rhoE
(
    IOobject
    (
        "rhoE",
        runTime.timeName(),
        mesh,
        IOobject::NO_READ,
        IOobject::NO_WRITE
    ),
    rho*(e + 0.5*magSqr(U))
);

rhoCentralFoam/createFields.H
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rhoCentralFoam rhoCentralFoam/createFields.H

surfaceScalarField pos
(
    IOobject
    (
        "pos",
        runTime.timeName(),
        mesh
    ),
    mesh,
    dimensionedScalar("pos", dimless, 1.0)
);

surfaceScalarField neg
(
    IOobject
    (
        "neg",
        runTime.timeName(),
        mesh
    ),
    mesh,
    dimensionedScalar("neg", dimless, -1.0)
);

rhoCentralFoam/createFields.H

● Creation of fields pos and neg, as surfaceScalarField variables :

● Used in the solver as part of the central discretization 
process  to take into account the propagation of waves in 
any direction, previously introduced as f+ and f−.

rhoCentralFoam/createFields.H
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rhoCentralFoam rhoCentralFoam/rhoCentralFoam.C

surfaceScalarField rho_pos(interpolate(rho, pos));
surfaceScalarField rho_neg(interpolate(rho, neg));

surfaceVectorField rhoU_pos(interpolate(rhoU, pos, U.name()));
surfaceVectorField rhoU_neg(interpolate(rhoU, neg, U.name()));

volScalarField rPsi("rPsi", 1.0/psi);
surfaceScalarField rPsi_pos(interpolate(rPsi, pos, T.name()));
surfaceScalarField rPsi_neg(interpolate(rPsi, neg, T.name()));

surfaceScalarField e_pos(interpolate(e, pos, T.name()));
surfaceScalarField e_neg(interpolate(e, neg, T.name()));

surfaceVectorField U_pos("U_pos", rhoU_pos/rho_pos);
surfaceVectorField U_neg("U_neg", rhoU_neg/rho_neg);

surfaceScalarField p_pos("p_pos", rho_pos*rPsi_pos);
surfaceScalarField p_neg("p_neg", rho_neg*rPsi_neg);

surfaceScalarField phiv_pos("phiv_pos", U_pos & mesh.Sf());
// Note: extracted out the orientation so becomes unoriented
phiv_pos.setOriented(false);
surfaceScalarField phiv_neg("phiv_neg", U_neg & mesh.Sf());
phiv_neg.setOriented(false);

● Central flux scheme implementation in rhoCentralFoam.C :
● At the beginning of the time loop, the code interpolates 

primitive variables Ψf± (e.g., density, velocity, and energy) 
from cell centers to face centers in the positive (pos) and 
negative (neg) directions and the outward and inward fluxes 
at the face φf±. 

● The interpolation is performed using the interpolate function 
delcared in the rhoCentralFoam/directionInterpolate.H 
header file.

● The interpolation is performed using the discretization 
scheme specified in the fvSchemes dictionary, for example :

rhoCentralFoam/rhoCentralFoam.C

interpolationSchemes
{
    default         linear;

    reconstruct(rho) vanLeer;
    reconstruct(U)  vanLeerV;
    reconstruct(T)  vanLeer;
}

fvSchemes



January 19, 2025 CFD with Open Source Software 20

rhoCentralFoam rhoCentralFoam/rhoCentralFoam.C

volScalarField c("c", sqrt(thermo.Cp()/thermo.Cv()*rPsi));
surfaceScalarField cSf_pos
(
    "cSf_pos",
    interpolate(c, pos, T.name())*mesh.magSf()
);

surfaceScalarField cSf_neg
(
    "cSf_neg",
    interpolate(c, neg, T.name())*mesh.magSf()
);

surfaceScalarField ap
(
    "ap",
    max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), 
v_zero)
);

surfaceScalarField am
(
    "am",
    min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero)
);

● Central flux scheme implementation in rhoCentralFoam.C :

● The local speed of sound is first calculated with :

● Then interpolated in the positive and negative direction and 
multiplied by the surface area of the cell face to obtain the 
associated volumetric fluxes cSf_pos and cSf_neg.

● ap and am correspond to af+ and af- defined previously as :

af + = max (ϕ f + + c f +|S f|, ϕ f− + c f−|S f|, 0 )

af− = min (ϕ f + − c f +|S f|, ϕ f− − c f−|S f|, 0 )

c = √ γ
ψ

rhoCentralFoam/rhoCentralFoam.C

rhoCentralFoam/rhoCentralFoam.C
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rhoCentralFoam rhoCentralFoam/rhoCentralFoam.C

surfaceScalarField a_pos("a_pos", ap/(ap - am));

surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));

surfaceScalarField aSf("aSf", am*a_pos);

if (fluxScheme == "Tadmor")
{
    aSf = -0.5*amaxSf;
    a_pos = 0.5;
}

surfaceScalarField a_neg("a_neg", 1.0 - a_pos);

phiv_pos *= a_pos;
phiv_neg *= a_neg;

surfaceScalarField aphiv_pos("aphiv_pos", phiv_pos - aSf);
surfaceScalarField aphiv_neg("aphiv_neg", phiv_neg + aSf);

// Reuse amaxSf for the maximum positive and negative fluxes
// estimated by the central scheme
amaxSf = max(mag(aphiv_pos), mag(aphiv_neg));

#include "centralCourantNo.H"

● Central flux scheme implementation in rhoCentralFoam.C :

● The weigting factors a_pos and a_neg for α and 1-α are 
calculated.

● The diffusive volumetric flux aSf for ωf is then computed.
● They are updated according to the chosen scheme (Kurganov 

for KNP, and Tadmor for KT).
● Finally  aphiv_pos and aphiv_neg are calculated as:

● We can now  compute the different convective terms of the 
governing equations ∇·uΨ, for example ∇·(u(ρu)):

∑
f
ϕ f Ψ f = ∑

f
α ϕ f +Ψ f + + (1−α )ϕ f−Ψ f− + ωf (Ψ f−−Ψ f +)

∑
f
ϕ f Ψ f = ∑

f
(α ϕ f + − ωf )Ψ f + + ((1−α )ϕ f− + ωf )Ψ f−

α = { 1
2
, KT

a f +

a f + − a f −
, KNP

surfaceVectorField phiU(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)rhoCentralFoam/rhoCentralFoam.C

rhoCentralFoam/rhoCentralFoam.C
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rhoCentralFoam rhoCentralFoam/rhoCentralFoam.C

// --- Solve density
solve(fvm::ddt(rho) + fvc::div(phi));

// --- Solve momentum
solve(fvm::ddt(rhoU) + fvc::div(phiUp));

U.ref() =
    rhoU()
   /rho();
U.correctBoundaryConditions();
rhoU.boundaryFieldRef() == 
rho.boundaryField()*U.boundaryField();

if (!inviscid)
{
    solve
    (
        fvm::ddt(rho, U) - fvc::ddt(rho, U)
      - fvm::laplacian(muEff, U)
      - fvc::div(tauMC)
    );
    rhoU = rho*U;
}

● Solve the governing equations :

● The continuity equation is solved explicitly to update the density.
● Momentum equation to compute the velocity field is solved in two steps :

● The inviscid equation for rhoU is first solved explicitely without viscous 
contribution.

● After updating the velocity field U, the diffusiveterms are applied as 
implicit corrections to the inviscid equation if the viscosity is non-zero.

● A similar procedure is applied for the energy equation.
● Finally the pressure is computed from the ideal gas law :

rhoCentralFoam/rhoCentralFoam.C

p.ref() =
    rho()
   /psi();
p.correctBoundaryConditions();
rho.boundaryFieldRef() == 
psi.boundaryField()*p.boundaryField();

ρ = W
RT

p = ψ p

rhoCentralFoam/rhoCentralFoam.C

rhoCentralFoam/rhoCentralFoam.C
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Implementation of reactingRhoCentralFoam
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Implementation reactingRhoCentralFoam/createFields.H

Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));
psiReactionThermo& thermo = pThermo();
volScalarField& e = thermo.he();

basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
PtrList<volScalarField> rhoY(Y.size());

const word inertSpecie(thermo.get<word>("inertSpecie"));
if (!composition.species().found(inertSpecie))
{
    FatalIOErrorIn(args.executable().c_str(), thermo)
        << "Inert specie " << inertSpecie << " not found in available species "
        << composition.species() << exit(FatalIOError);
}

● thermo Object and species mass fraction:
● First modification, we change the thermophysical 

model from psiThermo to psiReactionThermo to take 
into account chemical reactions and the species mass 
fractions fields.

● Identical as reactingFoam, with the exception of the 
new line PtrList<volScalarField> rhoY(Y.size()); which 
declares the list of pointers to the density weighted 
species mass fractions

needed for the implementation of central convective 
fluxes in the species mass fractions equations.

reactingRhoCentralFoam/createFields.H

Ŷ k = ρY k
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Implementation reactingRhoCentralFoam/
createFields.H

multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;

forAll(Y, i)
{
    volScalarField& Yi = Y[i];
    fields.add(Yi);

    const word Yiname = Yi.name();
    rhoY.set
    (
        i,
        new volScalarField
        (
            IOobject
            (
                "rho"+Yiname,
                runTime.timeName(),
                mesh,
                IOobject::NO_READ,
                IOobject::NO_WRITE
            ),
            rho*Yi
        )
    );
}
fields.add(thermo.he());

● thermo Object and species mass fraction:

● The block rhoY.set(i, new volScalarField(...)) creates a new 
field for the density-weighted species mass fraction rhoY[i] 
and assigns it to the rhoY field list.

● The value of rhoY[i] is computed as the product of the density 
field rho and the corresponding species mass fraction field Yi. 

● Similarly as in reactingFoam, the variables Yi and he are 
added to the fields table for interpolation.

● The IOobject::NO READ and IOobject::NO WRITE flags ensure 
that the field is not read from or written to disk automatically.

reactingRhoCentralFoam/createFields.H

reactingRhoCentralFoam/createFields.H
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Implementation reactingRhoCentralFoam/rhoYEqn.H

// --- Solve species
#include "rhoYEqn.H"

● Species transport equation:

● We create a new header file rhoYEqn.H, that we include 
after solving the momemtum equation.

● Modified version of the YEqn.H of reactingFoam to include 
the central scheme discretization of the advective fluxes 
∇·(u(ρYk)) using aphiv_pos and aphiv_neg.

● Inviscid transport equation is solved without the chemical 
source term. The species mass fraction Yi is updated and 
its boundary conditions corrected.

reactingRhoCentralFoam/rhoYEqn.H, part 1

forAll(Y, i)
{
    if (i != inertIndex && composition.active(i))
    {
        volScalarField& rhoYi = rhoY[i];
        volScalarField& Yi = Y[i];

        surfaceScalarField rhoYi_pos(interpolate(rhoYi, pos, "Yi"));
        surfaceScalarField rhoYi_neg(interpolate(rhoYi, neg, "Yi"));

        surfaceScalarField phiYi(aphiv_pos*rhoYi_pos + aphiv_neg*rhoYi_neg);

        // --- Solve Yi
        solve(fvm::ddt(rhoYi) + fvc::div(phiYi));
        rhoYi.clamp_min(0);
        Yi.ref() = rhoYi()/rho();
        Yi.correctBoundaryConditions();
        rhoYi.boundaryFieldRef() == rho.boundaryField()*Yi.boundaryField();

        ...
    }
}
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Implementation reactingRhoCentralFoam/rhoYEqn.H

// --- Solve species
#include "rhoYEqn.H"

● Species transport equation:

● We create a new header file rhoYEqn.H, that we include 
after solving the momemtum equation.

● Modified version of the YEqn.H of reactingFoam to include 
the central scheme discretization of the advective fluxes 
∇·(u(ρYk)) using aphiv_pos and aphiv_neg.

● Inviscid transport equation is solved without the chemical 
source term. The species mass fraction Yi is updated and 
its boundary conditions corrected.

● The diffusive term is applied as implicit correction to the 
inviscid equation if the viscosity is non-zero. 

● Like in reactingFoam, we add the species production rate 
reaction->R(Yi) to the transport equation in both inviscid 
and viscous formulations.

reactingRhoCentralFoam/rhoYEqn.H, part 2

forAll(Y, i)
{
    if (i != inertIndex && composition.active(i))
    {
        …

        if (!inviscid)
        {
            fvScalarMatrix YiEqn
            (
                fvm::ddt(rho, Yi) - fvc::ddt(rho, Yi) 
              - fvm::laplacian(muEff, Yi)
                == 
                reaction->R(Yi)
            );
            YiEqn.solve("Yi");
        }

        ….

    }
}

reactingRhoCentralFoam/rhoYEqn.H
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Implementation reactingRhoCentralFoam/rhoYEqn.H

// --- Solve species
#include "rhoYEqn.H"

● Species transport equation:

reactingRhoCentralFoam/rhoYEqn.H, part 3

forAll(Y, i)
{
    if (i != inertIndex && composition.active(i))
    {
        …

        else
        {
            fvScalarMatrix YiEqn
            (
                fvm::ddt(rho, Yi) - fvc::ddt(rho, Yi) 
                == 
                reaction->R(Yi)
            );
            YiEqn.solve("Yi");
        }

        Yi.clamp_min(0);
        rhoYi = rho*Yi;
        Yt += Yi;
    }
}

reactingRhoCentralFoam/rhoYEqn.H

● We create a new header file rhoYEqn.H, that we include 
after solving the momemtum equation.

● Modified version of the YEqn.H of reactingFoam to include 
the central scheme discretization of the advective fluxes 
∇·(u(ρYk)) using aphiv_pos and aphiv_neg.

● Inviscid transport equation is solved without the chemical 
source term. The species mass fraction Yi is updated and 
its boundary conditions corrected.

● The diffusive term is applied as implicit correction to the 
inviscid equation if the viscosity is non-zero. 

● Like in reactingFoam, we add the species production rate 
reaction->R(Yi) to the transport equation in both inviscid 
and viscous formulations.

● The rest of the code is similar to reactingFoam, with the 
mass fractions minimum limited to zero and the inert 
species solved as Y[inertIndex] = scalar(1) – Yt;.
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Test Cases and Results
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Test Cases and Results forwardStep
● Non-reacting case, adapted from $FOAM_TUTORIALS/compressible/rhoCentralFoam/forwardStep :
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Case setup

● Uniform Mach 3 flow in a wind tunnel containing a 
forward-facing step introduced as a test for 
numerical schemes.

● The properties are set such that this is an inviscid 
gas for which the speed of sound is 1 m/s at a 
temperature of 1 K.

● Structured uniform mesh with the cell length 
equal to 1.25 cm, and we ran the simulation at a 
CFL number of 0.2 for a duration of 4 s.

● This is a first check of the implementation without 
reacting species and check if it gives the same 
results as rhoCentralFoam.
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Test Cases and Results forwardStep
● Non-reacting case, adapted from $FOAM_TUTORIALS/compressible/rhoCentralFoam/forwardStep :

thermoType
{
    type                hePsiThermo;
    mixture         reactingMixture;
    transport       const;
    thermo          eConst;
    equationOfState perfectGas;
    specie            specie;
    energy          sensibleInternalEnergy;
}

inertSpecie         N2;

chemistryReader     foamChemistryReader;

foamChemistryFile   "<constant>/reactions";

foamChemistryThermoFile "<constant>/thermo.compressibleGas";

N2
{
    specie
    {
        molWeight       11640.3;
    }
    elements
    {
        N       2;
    }
    thermodynamics
    {
        Cv              1.7857;
        Hf              0;
    }
    transport
    {
        mu            0;
        Pr              1;
    }
}

thermophysicalProperties

thermo.compressibleGas
c = √ γ

ψ
, ψ = 1

RT

γ =
C p

C v
, C p = C v + R

W
⇒ c = 1m / s

forwardStep
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Test Cases and Results forwardStep
● Non-reacting case, adapted from $FOAM_TUTORIALS/compressible/rhoCentralFoam/forwardStep :

0

1
y

[m
]

0 1 2 3

x [m]

1

0

0

2

4

6

8

10

12

p [Pa]

rhoCentralFoam
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forwardStep case results comparison between rhoCentralFoam (Top) and mirrored reactingRhoCentralFoam (Bottom).

forwardStep
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Test Cases and Results One-Dimensional Reacting Shock Tube
● Reacting case, One-Dimensional Reacting Shock Tube :
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● We validate the implementation of the transport equation of the reacting species.
● It involves an inviscid reactive mixture in a closed tube, where a shock reflects off a solid boundary, triggering a 

reaction wave that grows and merges with the shock structure.
● The mixture consists of a 2:1:7 molar ratio of H2 : O2 : Ar.
● The domain is discretized with 2400 uniform grid points and the convective CFL number is set to 0.1.

Case setup
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Test Cases and Results One-Dimensional Reacting Shock Tube
● Reacting case, One-Dimensional Reacting Shock Tube :

thermoType
{
    type                      hePsiThermo;
    mixture               reactingMixture;
    transport             sutherland;
    thermo                 janaf;
    energy                  sensibleInternalEnergy;
    equationOfState perfectGas;
    specie                   specie;
}

inertSpecie         AR;

chemistryReader     foamChemistryReader;

foamChemistryFile   "<constant>/reactions";

foamChemistryThermoFile "<constant>/thermo";

thermophysicalProperties

● Unlike the previous non-reacting case, this 
simulation involves chemical reactions of 
combustion, requiring a proper chemistry 
mechanism for hydrogen combustion.

● We obtained the CHEMKIN files from Li et al. [3] and 
converted them using the chemkinToFoam utility to 
make them readable for the OpenFOAM-native 
chemistry reader.

● Those files are created as reactions and thermo in 
the constant folder.

One-Dimensional Reacting Shock Tube



January 19, 2025 CFD with Open Source Software 35

Test Cases and Results One-Dimensional Reacting Shock Tube
● Reacting case, One-Dimensional Reacting Shock Tube :
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Ref. reactingRhoCentralFoam reactingFoam

One-Dimensional Reacting Shock Tube

● reactingRhoCentralFoam demonstrates superior agreement with the reference solution across all three fields.
● reactingFoam schemes introduce higher numerical diffusion, which smears gradients and limits its ability to 

accurately resolve shocks.
● More outer and inner loops improved accuracy but increased computational time.
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Conclusion and Future Work
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Conclusion and Future Work Conclusion and Future Work

● Developed reactingRhoCentralFoam, an extension of the density-based solver rhoCentralFoam to include 
reacting flow capabilities.

● Validated the solver against well-established test cases, including both non-reacting and reacting flows, 
demonstrating excellent agreement with reference solutions.

● Outperformed reactingFoam in the supersonic reacting case by accurately capturing sharp gradients and 
shocks.

● Provides a robust tool for simulating high-speed compressible flows with chemical reactions.
● Future Work:

● Optimize the solver for low-speed flows.
● Explicit nature facilitates the implementation of advanced spatial and temporal schemes.
● Integrate more complex transport and turbulence-chemistry interaction models for more precise 

results.
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Thank You!
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