
January 19, 2025 CFD with Open Source Software 1

Pablo Kandel

Data Analysis and Modeling of Turbulent Flows,
Technische Universität,

Berlin, Germany

January 20, 2025

Combining the Density-Based Compressible Solver
rhoCentralFoam with the Reacting Flow Solver

reactingFoam

January 19, 2025 CFD with Open Source Software 2

Introduction

January 19, 2025 CFD with Open Source Software 3

Introduction Compressible Flow

U.S Navy F/A-18 transonic pushing into the sound barrier [1] NASA Mercury capsule [2]

● Compressible flow occurs when fluid density changes significantly due to pressure or temperature variations :
● High-speed aerodynamics.
● Propulsion systems.
● Gas dynamics.
● Combustion.

Ma = U
c

Mach number :

Ma > 0.3 , compressibility effects become significant.

January 19, 2025 CFD with Open Source Software 4

Introduction Pressure-Based VS Density Based Solvers

Aspect Pressure-Based Density-Based

Algorithm SIMPLE, PISO Godunov methods

Time-Stepping Scheme Implicit Explicit

Numerical Diffusion Introduce numerical diffusion,
smearing sharp gradients

Less numerical diffusion,
better for sharp gradients like

shocks

High-Order Schemes More complex to implement Easier to implement in explicit
frameworks

Applications
Steady-state problems,

transient flows with large time
steps

Compressible flows, shocks,
and contact discontinuities

Challenges
Numerical diffusion, reduced

accuracy for convection
dominated flows

Strict time step restrictions,
less robust for low-speed or

transient flows

January 19, 2025 CFD with Open Source Software 5

Introduction Reacting Flow

● Reacting flow refers to fluid movement that involves chemical reactions, such as combustion, where the
transport of species and heat release significantly influence the flow dynamics.

● Role of CFD:
● Predict performance and optimize processes in industries like aerospace, automotive, and power

generation.
● Critical for analyzing flame stability, pollutant formation and combustion efficiency.

● The most widely used reacting flow solver in OpenFOAM is reactingFoam:
● Employs a pressure-based approach (PIMPLE algorithm).
● No density-based reacting flow solver exists in the official OpenFOAM release.

● Density-based approach is relevant for combustion :
● Better handling of high-speed flows and large density variations, such as those encountered in

supersonic or hypersonic combustion.
● Captures acoustic-wave dynamics crucial for capturing interactions between heat release and acoustic

phenomena, particularly in combustion systems susceptible to thermoacoustic instabilities.

January 19, 2025 CFD with Open Source Software 6

Theoretical Background

January 19, 2025 CFD with Open Source Software 7

Theoretical Background Reacting Flow Governing Equations

∂ ρ
∂ t

+
∂ ρu j

∂ x j
= 0

∂ (ρui)
∂ t

+
∂ (ρuiu j)

∂ x j
= − ∂ p

∂ x j
+

∂ τ ij
∂ x j

∂ (ρY k)
∂ t

+
∂ (ρuiY k)

∂ xi
= −

∂ J k , i

∂ xi
+ ω̇k

∂ ρ(es + 1
2
u ju j)

∂ t
+ ∂

∂ xi (ρui(es + 1
2
u ju j)) = −

∂ (ui p)
∂ xi

−
∂qi

∂ xi
+ ω̇T

∂ ρ(hs + 1
2
u ju j)

∂ t
+ ∂

∂ xi (ρui(hs + 1
2
u ju j)) = ∂ p

∂ t
−

∂qi

∂ xi
+ ω̇T

ρ = W
RT

p = ψ p

● Continuity, momentum, species transport and energy equations :

Y k =
mk

m
, ∑

k=0

N

Y k = 1

● Species k mass fraction :

● Diffusive flux, assuming Fick’s law :

J k , i = ρ Dk
∂Y k

∂ x i

● Unity Lewis and Prandtl numbers :
ρ Dk = μ

qi = λ ∂T
∂ xi

● Heat flux :

January 19, 2025 CFD with Open Source Software 8

Theoretical Background Central Schemes
● Central schemes introduced by Kurganov et al. [3], also refferred to as Kurganov-Tadmor’s scheme (KT) and

Kurganov-Noelle-Petrova scheme (KNP).
● Discretization of the convective fluxes ∇·uΨ, taking into account the propagation of waves in any direction.

∫
V

∇⋅(uΨ)dV= ∫
S
uΨ⋅dS ≈ ∑

f
Sf⋅uf Ψ f = ∑

f
ϕ f Ψ f

● Integrated over a control volume and linearized :

∑
f
ϕ f Ψ f = ∑

f
α ϕ f +Ψ f + + (1−α)ϕ f−Ψ f− + ωf (Ψ f−−Ψ f +)

● Interpolation is carried out in both directions :

α = { 1
2
, KT

af +

af + − af−
, KNP

● The weighting factor α :

af + = max (ϕ f + + c f +|S f|, ϕ f− + c f−|S f|, 0)

af− = min (ϕ f + − c f +|S f|, ϕ f− − c f−|S f|, 0)

● Volumetric fuxes relative to the speed of propagation : ● Diffusive volumetric flux :

ω f = { αmax (a f + , af −) , KT
α (1 − α) (a f+ + a f −) , KNP

f
TP, ρP, pP

P N

uP uN

-cN +cN+cP-cP Sf-Sf

TN, ρN, pN

xxi

f- direction f+ direction

xi+1/2 xi+1

January 19, 2025 CFD with Open Source Software 9

reactingFoam

January 19, 2025 CFD with Open Source Software 10

reactingFoam reactingFoam/createFields.H

Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiReactionThermo>
pThermo(psiReactionThermo::New(mesh));
psiReactionThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");

basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();

● Construct the thermophysical model thermo based on the constant/thermophysicalProperties file :

● Different combination of thermoType are possible.
● Sensible enthalpy h or sensible enargy e as energy variable.
● The list of pointers to store the species mass fractions Y is initialized, the total number and names of the

species will depend on the files constant/reactions and constant/thermo.compressibleGas.
● The temperature T, and compressibility ψ, are created as references in the createFieldRefs.H file, as well as

the inertIndex variable read from the thermophysicalProperties file.

reactingFoam/createFields.H

thermoType
{

type hePsiThermo;
mixture reactingMixture;
transport sutherland;
thermo janaf;
energy sensibleEnthalpy;
equationOfState perfectGas;
specie specie;

}

inertSpecie N2;
chemistryReader foamChemistryReader;
foamChemistryFile "<constant>/reactions";
foamChemistryThermoFile "<constant>/thermo.compressibleGas";

constant/thermophysicalProperties

const volScalarField& psi = thermo.psi();
const volScalarField& T = thermo.T();
const label inertIndex(composition.species().find(inertSpecie));

reactingFoam/createFieldRefs.H

January 19, 2025 CFD with Open Source Software 11

reactingFoam reactingFoam/createFields.H
● Example of reactions and thermo.compressibleGas files :

elements 3(H O Ar);

species 9(H2 O2 H O OH HO2 H2O2 H2O AR);

reactions
{

un-named-reaction-0
{

type reversibleArrheniusReaction;
reaction "H2 + O2 = 2OH";
A 1.7e+10;
beta 0;
Ta 24042.47739;

}
...

}

O2
{

specie
{

molWeight 31.9988;
}
thermodynamics
{

Tlow 200;
Thigh 3500;
Tcommon 1000;
highCpCoeffs (...);
lowCpCoeffs (...);

}
transport
{

As 0;
Ts 0;

}
elements
{

O 2;
}
...

}

constant/reactions

constant/thermo.compressibleGas

● reactions defines the elements and species as well as the
chemical reactions involved in the chemistry mechanism.

● thermo lists the dfferent thermophysical properties for
each species.

reactingFoam reactingFoam/createFields.H

January 19, 2025 CFD with Open Source Software 12

reactingFoam reactingFoam/createFields.H
volScalarField rho
(

IOobject
(

"rho",
runTime.timeName(),
mesh

),
thermo.rho()

);

Info<< "Reading field U\n" << endl;
volVectorField U
(

IOobject
(

"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

volScalarField& p = thermo.p();

#include "compressibleCreatePhi.H"

● Creation of density, velocity and pressure fields as well as compressible mass fluxes.
● Pointer reaction is initialised and the species mass fractions Y[i] and energy variable are added to fields for

interpolation.
● Finally, the heat release rate field Qdot is created.

reactingFoam/createFields.H

Info<< "Creating reaction model\n" << endl;
autoPtr<CombustionModel<psiReactionThermo>> reaction
(

CombustionModel<psiReactionThermo>::New(thermo, turbulence())
);

multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;

forAll(Y, i)
{

fields.add(Y[i]);
}
fields.add(thermo.he());

volScalarField Qdot
(

IOobject
(

"Qdot",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE

),
mesh,
dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)

);

reactingFoam/createFields.H

reactingFoam reactingFoam/createFields.H

January 19, 2025 CFD with Open Source Software 13

reactingFoam reactingFoam/reactingFoam.C

#include "rhoEqn.H"

while (pimple.loop())
{

#include "UEqn.H"
#include "YEqn.H"
#include "EEqn.H"

// --- Pressure corrector loop
while (pimple.correct())
{

[…]

else
{

#include "pEqn.H"
}

}

[…]

}

rho = thermo.rho();

[...]

● The density field is calculated by solving the continuity equation
by including the rhoEqn.H header file.

● The momentum equation is solved in order to compute the
velocity field in the Ueqn.H header file.

● The reacting species transport equations are solved in the
YEqn.H header file.

● The energy equation is solved in the EEqn.H header file.
● At this point, we entered the while (pimple.correct()) loop or the

inner corrector loop, where the PISO algorithm is executed.
This is the main difference with density-based solvers.
The pressure-velocity-density coupling is solved through the
SIMPLE and PISO algorithms instead of calculating the pressure
from an equation of state.

reactingFoam/reactingFoam.C, main lines

January 19, 2025 CFD with Open Source Software 14

reactingFoam reactingFoam/YEqn.H
reaction->correct();
Qdot = reaction->Qdot();
volScalarField Yt(0.0*Y[0]);

forAll(Y, i)
{

if (i != inertIndex && composition.active(i))
{

volScalarField& Yi = Y[i];

fvScalarMatrix YiEqn
(

 fvm::ddt(rho, Yi)
+ mvConvection->fvmDiv(phi, Yi)
- fvm::laplacian(turbulence->muEff(),
Yi)
==
reaction->R(Yi)
+ fvOptions(rho, Yi)

);

YiEqn.relax();

fvOptions.constrain(YiEqn);

YiEqn.solve("Yi");

fvOptions.correct(Yi);

Yi.clamp_min(0);
Yt += Yi;

}
}

Y[inertIndex] = scalar(1) - Yt;
Y[inertIndex].clamp_min(0);

reactingFoam/YEqn.H

● The lines reaction->correct(); and Qdot = reaction->Qdot(); compute all
species reaction rates, and retrieves the updated heat release rate per unit
volume, Qdot, from the turbulence-chemistry interaction model.

● One transport equation for each reacting species is solved (forAll(Y, i) loop).
● We find all the terms presented in slide 7:

● Temporal derivative: fvm::ddt(rho, Yi).
● Advection term: mvConvection→fvmDiv(phi, Yi).
● Diffusion term: fvm::laplacian(turbulence->muEff(), Yi), the diffusion

coefficient is the effective kinematic viscosity muEff, which is the sum of
the turbulent and laminar kinematic viscosity and depends on the chosen
turbulence and thermophysical models.

● The term reaction->R(Yi) is the species production rate and corresponds to ω̇k.
● Negative mass fractions avoided with Yi.clamp min(0); and added to sum Yt

+= Yi;.
● Mass fraction of the inert species computed Y[inertIndex] = scalar(1) - Yt;.

January 19, 2025 CFD with Open Source Software 15

rhoCentralFoam

January 19, 2025 CFD with Open Source Software 16

rhoCentralFoam rhoCentralFoam/createFields.H

volScalarField& p = thermo.p();
const volScalarField& T = thermo.T();
const volScalarField& psi = thermo.psi();

bool inviscid(true);
if (max(thermo.mu().cref().primitiveField()) > 0.0)
{

inviscid = false;
}

rhoCentralFoam/createFieldRefs.H

Info<< "Reading thermophysical properties\n" << endl;

autoPtr<psiThermo> pThermo
(

psiThermo::New(mesh)
);
psiThermo& thermo = pThermo();

volScalarField& e = thermo.he();

rhoCentralFoam/createField.H

● Similarly, a createFieldRefs.H and a createField.H files are present :

● A boolean variable, inviscid, is created as true and then
determined based on the viscosity mu.

● Like in reactingFoam, the thermo reference is created from
the constant/thermophysicalProperties file to access and
update the thermophysical properties.

● Also based on compressibility psi but the thermodynamic
class is psiThermo and not psiReactionThermo.

● The energy variable here is called e instead of he, in
rhoCentralFoam we should only choose the sensible internal
energy as energy variable.

January 19, 2025 CFD with Open Source Software 17

rhoCentralFoam rhoCentralFoam/createFields.H

rhoCentralFoam/createFields.H

● The solver solves the conservative variables or density weighted fields, ρ (rho), û = ρu (rhoU), Ê = ρE (rhoE) :

● Created using the rho, U, e fields and the formula for the
total energy E = e + 0.5∥u2∥.

volVectorField rhoU
(
 IOobject
 (
 "rhoU",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 rho*U
);

volScalarField rhoE
(
 IOobject
 (
 "rhoE",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 rho*(e + 0.5*magSqr(U))
);

rhoCentralFoam/createFields.H

January 19, 2025 CFD with Open Source Software 18

rhoCentralFoam rhoCentralFoam/createFields.H

surfaceScalarField pos
(
 IOobject
 (
 "pos",
 runTime.timeName(),
 mesh
),
 mesh,
 dimensionedScalar("pos", dimless, 1.0)
);

surfaceScalarField neg
(
 IOobject
 (
 "neg",
 runTime.timeName(),
 mesh
),
 mesh,
 dimensionedScalar("neg", dimless, -1.0)
);

rhoCentralFoam/createFields.H

● Creation of fields pos and neg, as surfaceScalarField variables :

● Used in the solver as part of the central discretization
process to take into account the propagation of waves in
any direction, previously introduced as f+ and f−.

rhoCentralFoam/createFields.H

January 19, 2025 CFD with Open Source Software 19

rhoCentralFoam rhoCentralFoam/rhoCentralFoam.C

surfaceScalarField rho_pos(interpolate(rho, pos));
surfaceScalarField rho_neg(interpolate(rho, neg));

surfaceVectorField rhoU_pos(interpolate(rhoU, pos, U.name()));
surfaceVectorField rhoU_neg(interpolate(rhoU, neg, U.name()));

volScalarField rPsi("rPsi", 1.0/psi);
surfaceScalarField rPsi_pos(interpolate(rPsi, pos, T.name()));
surfaceScalarField rPsi_neg(interpolate(rPsi, neg, T.name()));

surfaceScalarField e_pos(interpolate(e, pos, T.name()));
surfaceScalarField e_neg(interpolate(e, neg, T.name()));

surfaceVectorField U_pos("U_pos", rhoU_pos/rho_pos);
surfaceVectorField U_neg("U_neg", rhoU_neg/rho_neg);

surfaceScalarField p_pos("p_pos", rho_pos*rPsi_pos);
surfaceScalarField p_neg("p_neg", rho_neg*rPsi_neg);

surfaceScalarField phiv_pos("phiv_pos", U_pos & mesh.Sf());
// Note: extracted out the orientation so becomes unoriented
phiv_pos.setOriented(false);
surfaceScalarField phiv_neg("phiv_neg", U_neg & mesh.Sf());
phiv_neg.setOriented(false);

● Central flux scheme implementation in rhoCentralFoam.C :
● At the beginning of the time loop, the code interpolates

primitive variables Ψf± (e.g., density, velocity, and energy)
from cell centers to face centers in the positive (pos) and
negative (neg) directions and the outward and inward fluxes
at the face φf±.

● The interpolation is performed using the interpolate function
delcared in the rhoCentralFoam/directionInterpolate.H
header file.

● The interpolation is performed using the discretization
scheme specified in the fvSchemes dictionary, for example :

rhoCentralFoam/rhoCentralFoam.C

interpolationSchemes
{
 default linear;

 reconstruct(rho) vanLeer;
 reconstruct(U) vanLeerV;
 reconstruct(T) vanLeer;
}

fvSchemes

January 19, 2025 CFD with Open Source Software 20

rhoCentralFoam rhoCentralFoam/rhoCentralFoam.C

volScalarField c("c", sqrt(thermo.Cp()/thermo.Cv()*rPsi));
surfaceScalarField cSf_pos
(
 "cSf_pos",
 interpolate(c, pos, T.name())*mesh.magSf()
);

surfaceScalarField cSf_neg
(
 "cSf_neg",
 interpolate(c, neg, T.name())*mesh.magSf()
);

surfaceScalarField ap
(
 "ap",
 max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg),
v_zero)
);

surfaceScalarField am
(
 "am",
 min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero)
);

● Central flux scheme implementation in rhoCentralFoam.C :

● The local speed of sound is first calculated with :

● Then interpolated in the positive and negative direction and
multiplied by the surface area of the cell face to obtain the
associated volumetric fluxes cSf_pos and cSf_neg.

● ap and am correspond to af+ and af- defined previously as :

af + = max (ϕ f + + c f +|S f|, ϕ f− + c f−|S f|, 0)

af− = min (ϕ f + − c f +|S f|, ϕ f− − c f−|S f|, 0)

c = √ γ
ψ

rhoCentralFoam/rhoCentralFoam.C

rhoCentralFoam/rhoCentralFoam.C

January 19, 2025 CFD with Open Source Software 21

rhoCentralFoam rhoCentralFoam/rhoCentralFoam.C

surfaceScalarField a_pos("a_pos", ap/(ap - am));

surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));

surfaceScalarField aSf("aSf", am*a_pos);

if (fluxScheme == "Tadmor")
{
 aSf = -0.5*amaxSf;
 a_pos = 0.5;
}

surfaceScalarField a_neg("a_neg", 1.0 - a_pos);

phiv_pos *= a_pos;
phiv_neg *= a_neg;

surfaceScalarField aphiv_pos("aphiv_pos", phiv_pos - aSf);
surfaceScalarField aphiv_neg("aphiv_neg", phiv_neg + aSf);

// Reuse amaxSf for the maximum positive and negative fluxes
// estimated by the central scheme
amaxSf = max(mag(aphiv_pos), mag(aphiv_neg));

#include "centralCourantNo.H"

● Central flux scheme implementation in rhoCentralFoam.C :

● The weigting factors a_pos and a_neg for α and 1-α are
calculated.

● The diffusive volumetric flux aSf for ωf is then computed.
● They are updated according to the chosen scheme (Kurganov

for KNP, and Tadmor for KT).
● Finally aphiv_pos and aphiv_neg are calculated as:

● We can now compute the different convective terms of the
governing equations ∇·uΨ, for example ∇·(u(ρu)):

∑
f
ϕ f Ψ f = ∑

f
α ϕ f +Ψ f + + (1−α)ϕ f−Ψ f− + ωf (Ψ f−−Ψ f +)

∑
f
ϕ f Ψ f = ∑

f
(α ϕ f + − ωf)Ψ f + + ((1−α)ϕ f− + ωf)Ψ f−

α = { 1
2
, KT

a f +

a f + − a f −
, KNP

surfaceVectorField phiU(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)rhoCentralFoam/rhoCentralFoam.C

rhoCentralFoam/rhoCentralFoam.C

January 19, 2025 CFD with Open Source Software 22

rhoCentralFoam rhoCentralFoam/rhoCentralFoam.C

// --- Solve density
solve(fvm::ddt(rho) + fvc::div(phi));

// --- Solve momentum
solve(fvm::ddt(rhoU) + fvc::div(phiUp));

U.ref() =
 rhoU()
 /rho();
U.correctBoundaryConditions();
rhoU.boundaryFieldRef() ==
rho.boundaryField()*U.boundaryField();

if (!inviscid)
{
 solve
 (
 fvm::ddt(rho, U) - fvc::ddt(rho, U)
 - fvm::laplacian(muEff, U)
 - fvc::div(tauMC)
);
 rhoU = rho*U;
}

● Solve the governing equations :

● The continuity equation is solved explicitly to update the density.
● Momentum equation to compute the velocity field is solved in two steps :

● The inviscid equation for rhoU is first solved explicitely without viscous
contribution.

● After updating the velocity field U, the diffusiveterms are applied as
implicit corrections to the inviscid equation if the viscosity is non-zero.

● A similar procedure is applied for the energy equation.
● Finally the pressure is computed from the ideal gas law :

rhoCentralFoam/rhoCentralFoam.C

p.ref() =
 rho()
 /psi();
p.correctBoundaryConditions();
rho.boundaryFieldRef() ==
psi.boundaryField()*p.boundaryField();

ρ = W
RT

p = ψ p

rhoCentralFoam/rhoCentralFoam.C

rhoCentralFoam/rhoCentralFoam.C

January 19, 2025 CFD with Open Source Software 23

Implementation of reactingRhoCentralFoam

January 19, 2025 CFD with Open Source Software 24

Implementation reactingRhoCentralFoam/createFields.H

Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));
psiReactionThermo& thermo = pThermo();
volScalarField& e = thermo.he();

basicSpecieMixture& composition = thermo.composition();
PtrList<volScalarField>& Y = composition.Y();
PtrList<volScalarField> rhoY(Y.size());

const word inertSpecie(thermo.get<word>("inertSpecie"));
if (!composition.species().found(inertSpecie))
{
 FatalIOErrorIn(args.executable().c_str(), thermo)
 << "Inert specie " << inertSpecie << " not found in available species "
 << composition.species() << exit(FatalIOError);
}

● thermo Object and species mass fraction:
● First modification, we change the thermophysical

model from psiThermo to psiReactionThermo to take
into account chemical reactions and the species mass
fractions fields.

● Identical as reactingFoam, with the exception of the
new line PtrList<volScalarField> rhoY(Y.size()); which
declares the list of pointers to the density weighted
species mass fractions

needed for the implementation of central convective
fluxes in the species mass fractions equations.

reactingRhoCentralFoam/createFields.H

Ŷ k = ρY k

January 19, 2025 CFD with Open Source Software 25

Implementation reactingRhoCentralFoam/
createFields.H

multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;

forAll(Y, i)
{
 volScalarField& Yi = Y[i];
 fields.add(Yi);

 const word Yiname = Yi.name();
 rhoY.set
 (
 i,
 new volScalarField
 (
 IOobject
 (
 "rho"+Yiname,
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 rho*Yi
)
);
}
fields.add(thermo.he());

● thermo Object and species mass fraction:

● The block rhoY.set(i, new volScalarField(...)) creates a new
field for the density-weighted species mass fraction rhoY[i]
and assigns it to the rhoY field list.

● The value of rhoY[i] is computed as the product of the density
field rho and the corresponding species mass fraction field Yi.

● Similarly as in reactingFoam, the variables Yi and he are
added to the fields table for interpolation.

● The IOobject::NO READ and IOobject::NO WRITE flags ensure
that the field is not read from or written to disk automatically.

reactingRhoCentralFoam/createFields.H

reactingRhoCentralFoam/createFields.H

January 19, 2025 CFD with Open Source Software 26

Implementation reactingRhoCentralFoam/rhoYEqn.H

// --- Solve species
#include "rhoYEqn.H"

● Species transport equation:

● We create a new header file rhoYEqn.H, that we include
after solving the momemtum equation.

● Modified version of the YEqn.H of reactingFoam to include
the central scheme discretization of the advective fluxes
∇·(u(ρYk)) using aphiv_pos and aphiv_neg.

● Inviscid transport equation is solved without the chemical
source term. The species mass fraction Yi is updated and
its boundary conditions corrected.

reactingRhoCentralFoam/rhoYEqn.H, part 1

forAll(Y, i)
{
 if (i != inertIndex && composition.active(i))
 {
 volScalarField& rhoYi = rhoY[i];
 volScalarField& Yi = Y[i];

 surfaceScalarField rhoYi_pos(interpolate(rhoYi, pos, "Yi"));
 surfaceScalarField rhoYi_neg(interpolate(rhoYi, neg, "Yi"));

 surfaceScalarField phiYi(aphiv_pos*rhoYi_pos + aphiv_neg*rhoYi_neg);

 // --- Solve Yi
 solve(fvm::ddt(rhoYi) + fvc::div(phiYi));
 rhoYi.clamp_min(0);
 Yi.ref() = rhoYi()/rho();
 Yi.correctBoundaryConditions();
 rhoYi.boundaryFieldRef() == rho.boundaryField()*Yi.boundaryField();

 ...
 }
}

January 19, 2025 CFD with Open Source Software 27

Implementation reactingRhoCentralFoam/rhoYEqn.H

// --- Solve species
#include "rhoYEqn.H"

● Species transport equation:

● We create a new header file rhoYEqn.H, that we include
after solving the momemtum equation.

● Modified version of the YEqn.H of reactingFoam to include
the central scheme discretization of the advective fluxes
∇·(u(ρYk)) using aphiv_pos and aphiv_neg.

● Inviscid transport equation is solved without the chemical
source term. The species mass fraction Yi is updated and
its boundary conditions corrected.

● The diffusive term is applied as implicit correction to the
inviscid equation if the viscosity is non-zero.

● Like in reactingFoam, we add the species production rate
reaction->R(Yi) to the transport equation in both inviscid
and viscous formulations.

reactingRhoCentralFoam/rhoYEqn.H, part 2

forAll(Y, i)
{
 if (i != inertIndex && composition.active(i))
 {
 …

 if (!inviscid)
 {
 fvScalarMatrix YiEqn
 (
 fvm::ddt(rho, Yi) - fvc::ddt(rho, Yi)
 - fvm::laplacian(muEff, Yi)
 ==
 reaction->R(Yi)
);
 YiEqn.solve("Yi");
 }

 ….

 }
}

reactingRhoCentralFoam/rhoYEqn.H

January 19, 2025 CFD with Open Source Software 28

Implementation reactingRhoCentralFoam/rhoYEqn.H

// --- Solve species
#include "rhoYEqn.H"

● Species transport equation:

reactingRhoCentralFoam/rhoYEqn.H, part 3

forAll(Y, i)
{
 if (i != inertIndex && composition.active(i))
 {
 …

 else
 {
 fvScalarMatrix YiEqn
 (
 fvm::ddt(rho, Yi) - fvc::ddt(rho, Yi)
 ==
 reaction->R(Yi)
);
 YiEqn.solve("Yi");
 }

 Yi.clamp_min(0);
 rhoYi = rho*Yi;
 Yt += Yi;
 }
}

reactingRhoCentralFoam/rhoYEqn.H

● We create a new header file rhoYEqn.H, that we include
after solving the momemtum equation.

● Modified version of the YEqn.H of reactingFoam to include
the central scheme discretization of the advective fluxes
∇·(u(ρYk)) using aphiv_pos and aphiv_neg.

● Inviscid transport equation is solved without the chemical
source term. The species mass fraction Yi is updated and
its boundary conditions corrected.

● The diffusive term is applied as implicit correction to the
inviscid equation if the viscosity is non-zero.

● Like in reactingFoam, we add the species production rate
reaction->R(Yi) to the transport equation in both inviscid
and viscous formulations.

● The rest of the code is similar to reactingFoam, with the
mass fractions minimum limited to zero and the inert
species solved as Y[inertIndex] = scalar(1) – Yt;.

January 19, 2025 CFD with Open Source Software 29

Test Cases and Results

January 19, 2025 CFD with Open Source Software 30

Test Cases and Results forwardStep
● Non-reacting case, adapted from $FOAM_TUTORIALS/compressible/rhoCentralFoam/forwardStep :

In
le

t

O
ut

le
t

Symmetry

Symmetry

Slip

Uin = 3 m.s⁻¹

p = 1 Pa
T = 1 K

0.2 m

0.8 m

3 m
Case setup

● Uniform Mach 3 flow in a wind tunnel containing a
forward-facing step introduced as a test for
numerical schemes.

● The properties are set such that this is an inviscid
gas for which the speed of sound is 1 m/s at a
temperature of 1 K.

● Structured uniform mesh with the cell length
equal to 1.25 cm, and we ran the simulation at a
CFL number of 0.2 for a duration of 4 s.

● This is a first check of the implementation without
reacting species and check if it gives the same
results as rhoCentralFoam.

January 19, 2025 CFD with Open Source Software 31

Test Cases and Results forwardStep
● Non-reacting case, adapted from $FOAM_TUTORIALS/compressible/rhoCentralFoam/forwardStep :

thermoType
{
 type hePsiThermo;
 mixture reactingMixture;
 transport const;
 thermo eConst;
 equationOfState perfectGas;
 specie specie;
 energy sensibleInternalEnergy;
}

inertSpecie N2;

chemistryReader foamChemistryReader;

foamChemistryFile "<constant>/reactions";

foamChemistryThermoFile "<constant>/thermo.compressibleGas";

N2
{
 specie
 {
 molWeight 11640.3;
 }
 elements
 {
 N 2;
 }
 thermodynamics
 {
 Cv 1.7857;
 Hf 0;
 }
 transport
 {
 mu 0;
 Pr 1;
 }
}

thermophysicalProperties

thermo.compressibleGas
c = √ γ

ψ
, ψ = 1

RT

γ =
C p

C v
, C p = C v + R

W
⇒ c = 1m / s

forwardStep

January 19, 2025 CFD with Open Source Software 32

Test Cases and Results forwardStep
● Non-reacting case, adapted from $FOAM_TUTORIALS/compressible/rhoCentralFoam/forwardStep :

0

1
y

[m
]

0 1 2 3

x [m]

1

0

0

2

4

6

8

10

12

p [Pa]

rhoCentralFoam

reactingRhoCentralFoam

forwardStep case results comparison between rhoCentralFoam (Top) and mirrored reactingRhoCentralFoam (Bottom).

forwardStep

January 19, 2025 CFD with Open Source Software 33

Test Cases and Results One-Dimensional Reacting Shock Tube
● Reacting case, One-Dimensional Reacting Shock Tube :

dx = 50 μm

12 cm

w
al

l

in
le

tpR = 35594 Pa
TR = 748.472 K
UR = -487.34 m.s⁻¹

pL = 7173 Pa
TL = 378.656 K
UL = 0 m.s⁻¹

Uin, Tin, pin

x

y

● We validate the implementation of the transport equation of the reacting species.
● It involves an inviscid reactive mixture in a closed tube, where a shock reflects off a solid boundary, triggering a

reaction wave that grows and merges with the shock structure.
● The mixture consists of a 2:1:7 molar ratio of H2 : O2 : Ar.
● The domain is discretized with 2400 uniform grid points and the convective CFL number is set to 0.1.

Case setup

January 19, 2025 CFD with Open Source Software 34

Test Cases and Results One-Dimensional Reacting Shock Tube
● Reacting case, One-Dimensional Reacting Shock Tube :

thermoType
{
 type hePsiThermo;
 mixture reactingMixture;
 transport sutherland;
 thermo janaf;
 energy sensibleInternalEnergy;
 equationOfState perfectGas;
 specie specie;
}

inertSpecie AR;

chemistryReader foamChemistryReader;

foamChemistryFile "<constant>/reactions";

foamChemistryThermoFile "<constant>/thermo";

thermophysicalProperties

● Unlike the previous non-reacting case, this
simulation involves chemical reactions of
combustion, requiring a proper chemistry
mechanism for hydrogen combustion.

● We obtained the CHEMKIN files from Li et al. [3] and
converted them using the chemkinToFoam utility to
make them readable for the OpenFOAM-native
chemistry reader.

● Those files are created as reactions and thermo in
the constant folder.

One-Dimensional Reacting Shock Tube

January 19, 2025 CFD with Open Source Software 35

Test Cases and Results One-Dimensional Reacting Shock Tube
● Reacting case, One-Dimensional Reacting Shock Tube :

0 2 4 6 8 10 12

x [cm]

500

1000

1500

2000

2500

3000

T
[K

]

170 µs 190 µs 230 µs

0 2 4 6 8 10 12

x [cm]

−600

−400

−200

0

200

400

600

u
[m

/s
]

170 µs 190 µs
230 µs

0 2 4 6 8 10 12

x [cm]

0.00

0.05

0.10

0.15

0.20

0.25

Y
H

[-
]

170 µs 190 µs 230 µs

Ref. reactingRhoCentralFoam reactingFoam

One-Dimensional Reacting Shock Tube

● reactingRhoCentralFoam demonstrates superior agreement with the reference solution across all three fields.
● reactingFoam schemes introduce higher numerical diffusion, which smears gradients and limits its ability to

accurately resolve shocks.
● More outer and inner loops improved accuracy but increased computational time.

January 19, 2025 CFD with Open Source Software 36

Conclusion and Future Work

January 19, 2025 CFD with Open Source Software 37

Conclusion and Future Work Conclusion and Future Work

● Developed reactingRhoCentralFoam, an extension of the density-based solver rhoCentralFoam to include
reacting flow capabilities.

● Validated the solver against well-established test cases, including both non-reacting and reacting flows,
demonstrating excellent agreement with reference solutions.

● Outperformed reactingFoam in the supersonic reacting case by accurately capturing sharp gradients and
shocks.

● Provides a robust tool for simulating high-speed compressible flows with chemical reactions.
● Future Work:

● Optimize the solver for low-speed flows.
● Explicit nature facilitates the implementation of advanced spatial and temporal schemes.
● Integrate more complex transport and turbulence-chemistry interaction models for more precise

results.

January 19, 2025 CFD with Open Source Software 38

Thank You!

January 19, 2025 CFD with Open Source Software 39

References

January 19, 2025 CFD with Open Source Software 40

References References
● [1]: Nemiroff, R., & Bonnell, J. (1995). Astronomy picture of the day. Exploration of the Universe

Division (EUD), Goddard Space Flight Center (GSFC), NASA.
● [2]: A model of a Mercury capsule captured by high-speed cameras, showing the forward pressure

shockwave and the wake. (Image is taken from NASA's web site: http://www.nasa.gov.)
● A. Kurganov, S. Noelle, and G. Petrova, “Semidiscrete central-upwind schemes for hyperbolic

conservation laws and hamilton–jacobi equations,” SIAM Journal on Scientific Computing, vol. 23,
no. 3, pp. 707–740, 2001.

● [4]:J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of
hydrogen combustion,” International journal of chemical kinetics, vol. 36, no. 10, pp. 566–575,
2004.

http://www.nasa.gov/

	- Multi-Scale Modeling of Flow in Porous Media – Supporting th
	Presentation Outline
	Context: Mitte GmbH Company
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

