
Cite as: Kandel P.: Combining Density-Based Compressible Solver rhoCentralFoam with Reacting Flow

Solver reactingFoam. In Proceedings of CFD with OpenSource Software, 2024, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS CFD#YEAR 2024

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Combining Density-Based Compressible
Solver rhoCentralFoam with Reacting Flow

Solver reactingFoam

Developed for OpenFOAM-v2406

Author:
Pablo Kandel
Technische Universität Berlin
pablo.kandel@tu-berlin.de

Peer reviewed by:
Mahdi Lavari
Abdulla Ghani
Saeed Salehi

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like to learn some

details similar to the ones presented in the report and in the accompanying files. The material has
gone through a review process. The role of the reviewer is to go through the tutorial and make
sure that it works, that it is possible to follow, and to some extent correct the writing. The

reviewer has no responsibility for the contents.

January 19, 2025

http://dx.doi.org/10.17196/OS_CFD#YEAR_2024

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• The main differences between pressure-based solvers and density-based solvers will be dis-
cussed, their respective range of application, the different space and time discretization tech-
niques, and the important variables of interest.

• The forwardStep test case will be used for comparison.

The theory of it:

• The reacting flow governing equations for combustion.

• The theory of a pressure-based reacting flow solver reactingFoam.

• The theory of a density-based compressible solver rhoCentralFoam.

How it is implemented:

• There is one density-based solvers available in the OpenFOAM-ESI branch, rhoCentralFoam.
It uses the central scheme discretization technique of Kurganov et al. [1] to discretize the
advective fluxes.

How to modify it:

• The transport equations for reacting flow will be added in rhoCentralFoam. The procedure to
add the reacting transport equations within a density-based framework will be described step
by step.

• The fluxes discretization in density-based solvers is different than in the standard PISO/SIM-
PLE solvers and special care will be taken for this aspect.

• The implementation will be validated on the one-dimensional reacting shock tube case.

1

Prerequisites

• How to run standard document tutorials like forwardStep and counterFlowFlame2D tutorials.

• Fundamentals of Computational Methods for Fluid Dynamics, Book by J.H.Ferziger and
M.Peric [2] and The Finite Volume Method in Computational Fluid Dynamics, Book by
F.Moukalled, L.Mangani and M.Darwish [3].

• Basic knowledge of numerical combustion theory: Poinsot, T. (2005). Theoretical and Numer-
ical Combustion. RT Edwards. [4].

• Have a basic awareness of the structure of OpenFOAM and how it utilises applications and
libraries.

• How to customize a solver and do top-level application programming.

2

Contents

1 Introduction 7

2 Theoretical Background 9
2.1 Reacting Flow Governing Equations . 9
2.2 Central Scheme Theory . 10

3 Compressible Solvers in OpenFOAM 12
3.1 Thermophysical Models . 12
3.2 reactingFoam . 13

3.2.1 Introduction . 13
3.2.2 createFields.H . 13
3.2.3 reactingFoam.C . 17

3.2.3.1 rhoEqn.H . 17
3.2.3.2 UEqn.H . 18
3.2.3.3 YEqn.H . 18
3.2.3.4 EEqn.H . 19
3.2.3.5 pEqn.H . 20

3.3 rhoCentralFoam . 22
3.3.1 createFields.H . 22
3.3.2 rhoCentralFoam.C . 25

3.3.2.1 Central Flux Scheme Implementation 25
3.3.2.2 Solve Governing Equations . 27

4 Implementation of reactingRhoCentralFoam 30
4.1 createFields.H . 30

4.1.1 thermo Object and Species Mass Fractions 30
4.2 reactingRhoCentralFoam.C . 31

4.2.1 Header Files . 31
4.2.2 rhoYEqn.H . 32

4.3 Make/files and Make/options . 33

5 Test Cases 35
5.1 Cold Flow: forwardStep case . 35

5.1.1 Setup . 35
5.1.2 Thermophysical Files . 36
5.1.3 Initial T, U Files . 38
5.1.4 Results . 38

5.2 Reacting Flow: One-Dimensional Reacting Shock Tube 39
5.2.1 Setup . 39
5.2.2 Thermophysical Files . 40
5.2.3 Initial Files . 40
5.2.4 Results . 41

3

Contents Contents

6 Conclusion 43

A reactingShockTube Additional Files 47
A.1 Allpre . 47
A.2 thermo . 47
A.3 reactions . 51

4

Nomenclature

Acronyms
CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy
KNP Kurganov, Noelle and Petrova
KT Kurganov and Tadmor
TVD Total Variation Diminishing

English symbols
R̃ Specific gas constant . J/(kg ·K)
Cp Specific heat capacity at constant pressure . J/(kg ·K)
Cv Specific heat capacity at constant volume . J/(kg ·K)
Dk Mass diffusivity of species k . m2/s
es Sensible internal energy. .J
hs Sensible enthalpy . J
J Mass diffusive flux. .kg/s
m Mass of gas mixture . kg
mk Mass of species k . kg
Ma Mach number .
p Pressure . Pa
qi i-component of heat flux . J/(m

2
s)

R Ideal gas constant . J/(mol ·K)
T Temperature of gas mixture . K
ui i-component of velocity vector . m/s
W Mean molecular weight of gas mixture . kg/mol
xi i-component of space vector .m
Yk Mass fraction of species k .

Greek symbols
ω̇k Reaction rate of species k . kg/(m3 · s)
ω̇T Heat release due to combustion . J/(m3 · s)
γ Heat capacity ratio .
λ Heat conductivity of gas mixture . W/(K ·m)
µ Fluid dynamic viscosity .Pa · s
ν Fluid kinematic viscosity . m2/s
ϕ Volumetric flux due to fluid flow. .m3/s
Ψ Tensor field of any rank .
ψ Compressibility . s2/m2

ρ Fluid density . kg/m3

τ Viscous stress tensor . Pa
a Volumetric fluxes relative to the local speed of sound .m3/s

5

Nomenclature Nomenclature

Subscripts
f Value interpolated on the cell face
f± Direction of interpolation
i i-direction in the Cartesian frame
k Species k

6

Chapter 1

Introduction

Compressible flows occur when the fluid density changes significantly due to pressure or temperature
variations. The Mach number Ma, is the ratio of the flow velocity U to the speed of sound c in the
medium given by

Ma =
U

c
. (1.1)

It is used to determine whether compressible effects should be considered. A value of Ma > 0.3 is
often taken as a threshold at which compressibility becomes important.

These flows are often encountered in high-speed aerodynamics, propulsion systems, and gas
dynamics. In such flows, the behavior of the fluid can be governed by the compressibility of the
fluid, which affects the speed of sound, shock waves, and other phenomena like expansion fans and
rarefaction waves. For analyzing compressible flows, different numerical methods can be employed,
which can broadly be categorized into pressure-based and density-based solvers.

Pressure-based solvers such as SIMPLE [5] (Semi-Implicit Method for Pressure Linked Equa-
tions) and PISO [6] (Pressure-Implicit with Splitting of Operators) algorithms, focus on solving
the pressure-velocity coupling by iteratively updating the pressure and velocity fields. They use a
pressure correction Poisson equation derived from the continuity and momentum equations. These
methods are known for their stability and robustness across a wide range of Courant–Friedrichs–Lewy
(CFL) numbers, making them highly effective for solving steady-state problems and transient flows
with large time steps. The implicit time-stepping schemes used in these algorithms, enable stable
simulations and flexible CFL condition. This stability makes pressure-based solvers highly attractive
for simulations where accurate resolution of small-scale time-dependent features is not critical. How-
ever, the implicit time-stepping scheme, while enabling large time steps, can introduce numerical
diffusion, which tends to smear sharp gradients in transient or convection-dominated flows. Fur-
thermore, the use of upwind numerical schemes for the advective terms in the governing equations
to ensure stability contributes to this diffusive behavior, reducing the accuracy of the solution in
problems with strong convection.

Density-based solvers, directly solve the governing equations for mass, momentum, and energy,
often employing explicit time-stepping. This approach offers several advantages, particularly for
compressible flows. In this context, density-based solvers are more precise due to the absence of
numerical diffusion inherent in implicit time-stepping schemes. Therefore, explicit time-stepping
makes these solvers well-suited for problems with sharp gradients, such as shocks and contact dis-
continuities. Additionally, implementing higher-order spatial and temporal schemes is generally more
straightforward in the explicit framework, enhancing solution accuracy in complex flow fields. How-
ever, density-based solvers come with notable challenges. Explicit time-stepping imposes a stringent
restriction on the time step size for stability, especially in highly transient flows where flow variables
change significantly over very short timescales. Moreover, density-based solvers can be less robust
in low-speed or highly transient flows, where convergence is harder to achieve. Special treatment for
acoustic boundary conditions is also typically required, adding complexity to simulations with open

7

Chapter 1. Introduction

or reflective boundaries [7].
Historically, OpenFOAM has been primarily based on pressure-based algorithms. In OpenFOAM

version 1.5, Greenshields et al. [8] introduced rhoCentralFoam, a density-based compressible flow
solver. This solver implements central-upwind schemes of Kurganov et al. [1] to efficiently handle
high-speed compressible flows, offering an alternative to the traditionally pressure-based solvers in
OpenFOAM.

The most widely used reacting flow solver in OpenFOAM, namely reactingFoam, employs a
pressure-based approach. However, there is currently no density-based reacting flow solver available
in the official OpenFOAM release. This is particularly relevant in the context of turbulent reacting
flows in combustion chambers, where there is a strong coupling between acoustic waves and other
flow mechanisms, such as heat release and turbulent mixing [4]. This coupling can significantly
influence the overall dynamics of the system, making density-based solvers, which naturally account
for such wave phenomena, an interesting choice for accurately capturing these interactions.

In this work, we aim to bridge this gap by extending the density-based framework of rhoCentral-
Foam to incorporate reacting flow capabilities, enabling it to solve combustion problems.

8

Chapter 2

Theoretical Background

2.1 Reacting Flow Governing Equations

The governing equations for a reacting mixture withN species are the continuity, momentum, species
and energy equations given by [4]

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xj
+
∂τij
∂xj

, (2.2)

∂ρYk
∂t

+
∂ρuiYk
∂xi

= −∂Jk,i
∂xi

+ ω̇k. (2.3)

In OpenFOAM, conservation of energy can be solved in terms of the sensible internal energy es or
the sensible enthalpy hs = es + p/ρ defined by

∂ρ
(
es +

1
2ujuj

)
∂t

+
∂

∂xi

(
ρui

(
es +

1

2
ujuj

))
= −∂uip

∂xi
− ∂qi
∂xi

+ ω̇T , (2.4)

∂ρ
(
hs +

1
2ujuj

)
∂t

+
∂

∂xi

(
ρui

(
hs +

1

2
ujuj

))
=
∂p

∂t
− ∂qi
∂xi

+ ω̇T . (2.5)

In the above equations, ρ is the gas density and u is the fluid velocity, p is the pressure and τ is the
viscous stress tensor

τij = −2

3
µ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.6)

µ is the dynamic viscosity and δij is the Kronecker symbol: δij = 1 if i = j, 0 otherwise. Yk is the
mass fraction of species defined by

Yk =
mk

m
. (2.7)

Here mk is the mass of species k in a given volume V and m the total mass of gas in this volume.
Jk,i is the i-component of the species k diffusive flux assuming Fick’s law

Jk,i = ρDk
∂Yk
∂xi

. (2.8)

There are different models to compute the mass diffusivities Dk. This discussion is out of the scope
of this project, and we assume Lewis and Prandtl number are equal to one as it is done in the
OpenFOAM-v2406 version

Jk,i = µ
∂Yk
∂xi

. (2.9)

9

2.2. Central Scheme Theory Chapter 2. Theoretical Background

ω̇k is the reaction rate of species k, which is dependent on the chemical reactions present in the
chemistry mechanism used. We don’t intend to give an in-depth description of this term here. ω̇T

is the heat release rate due to combustion and qi is the i-component of the energy flux

qi = −λ ∂T
∂xi

. (2.10)

Eq. (2.10) is the heat diffusion from Fourier’s Law with λ and T the heat conductivity and temper-
ature of the mixture.

2.2 Central Scheme Theory

In this section, we present the theory behind the central schemes introduced by Kurganov et al. [1]
also referred to as Kurganov-Tadmor’s scheme (KT) and Kurganov-Noelle-Petrova scheme (KNP).
This was implemented in OpenFOAM by Greenshields et al. in the solver rhoCentralFoam [8] and
also described in the work of Kraposhin et al. [9].

In Fig. 2.1, we use the finite volume method and represent in one dimension two control volumes,
or cells where P indicates the center of the cell with coordinate xi in which balances of mass,
momentum and energy are considered. Point N is the center of the neighboring cell with coordinate
xi+1. The face area vector Sf is a vector normal to the face surface pointing out of the P cell, whose
magnitude is that of the area of the face. In this collocated system, all dependent variables and
material properties are stored at each cell centroid, P and N . We describe the discretization of a
general dependent tensor field Ψ by interpolation of values ΨP at cell centers to values Ψf at cell
faces.

P N
uP uN

-cN +cN+cP-cP

f

Sf-Sf

af+

cf+-cf+

-cf- cf-
af-

φf- φf+

TP, ρP, pP TN, ρN, pN

x
xi xi+1/2 xi+1

(f-) direction (f+) direction

Figure 2.1: Finite volume discretization highlighting volumetric fluxes ϕ and a interpolated at the
face f with respect to f− and f+ directions and local speed of sound c.

In particular, the advective fluxes include not only the macroscopic velocity of the medium u,
but also the acoustic disturbance that propagates at the speed of sound c in every direction. As
part of the central discretization process and to take into account the propagation of waves in any
direction, the discretization of the convective fluxes ∇ · (uρ), ∇ · (u(ρu)), ∇ · (u(ρE)) and ∇ · (up)
in Eqs. (2.1)–(2.5) is critical. They are integrated over a control volume and linearized as follows∫

V

∇ · (uΨ)dV =

∫
S

uΨ · dS ≈
∑
f

Sf · ufΨf =
∑
f

ϕfΨf . (2.11)

Here,
∑

f denotes a summation over cell faces and ϕf = Sf ·uf is the volumetric flux, i.e., the volume
of fluid flowing through the face per second. Often in incompressible flow, uf is linearly interpolated
using a central differencing method and Ψf is interpolated according to a selected scheme that
usually incorporates upwinding to some degree to stabilize. In incompressible flow, the velocity

10

2.2. Central Scheme Theory Chapter 2. Theoretical Background

and therefore the sign of ϕf determines the upwinding direction. However, in compressible flow,
propagation of waves at the local speed of sound also impacts the transport of fluid properties. This
means stabilization must take into account that transport can occur in any direction. Interpolation
is therefore carried out in both directions for each face, in the f+ and f− directions∑

f

ϕfΨf =
∑
f

αϕf+Ψf+ + (1− α)ϕf−Ψf− + ωf (Ψf− −Ψf+) . (2.12)

Here, the subscript f± indicates the cell, which value is used for interpolation on the face f , if
f+ then the cell P is used, with respect to which the normal is external (Sf), if f− then the cell
N is used, with respect to which the normal is internal (−Sf). To calculate α, we introduce the
volumetric fluxes relative to the local speed of propagation, noting that they are both defined here
as positive in their respective directions f+ and f−:

af+ = max(cf+|Sf |+ ϕf+, cf−|Sf |+ ϕf−, 0),

af− = −min(−cf+|Sf |+ ϕf+, −cf−|Sf |+ ϕf−, 0).
(2.13)

cf± are the speeds of sound at the face, outward and inward of the owner cell

cf± =

√
γR̃Tf±. (2.14)

Here, R̃ is the specific gas constant and γ = Cp/Cv is the ratio of specific heats at constant pressure
and volume, Cp and Cv, respectively. The purpose of af− and af+ is to combine the convective and
acoustic contributions to represent the outward and inward propagation fluxes, ensuring stability in
the compressible flow calculations. The weighting factor α is

α =

1
2 , for the KT method,

af+

af++af−
, for the KNP method.

(2.15)

And finally the diffusive volumetric flux

ωf =

αmax(af+, af−), for the KT method,

α (1− α) (af+ + af−) , for the KNP method.

(2.16)

The method involves f+ and f− face interpolations of a number of variables (T , ρ, p, u) from
values at neighboring cell centers. We don’t intend to describe in detail the schemes used here. As
explained in [8], we use symmetric Total Variation Diminishing (TVD) schemes such as Minmod
[10] and van Leer [11] for linear interpolations.

11

Chapter 3

Compressible Solvers in
OpenFOAM

3.1 Thermophysical Models

As explained by Choquet [12], thermophysical models are used to describe cases where the thermal
energy, compressibility, or mass transfer is important. This is the case for compressible flow.

OpenFOAM allows thermophysical properties to be constant, or functions of temperature, pres-
sure and composition. Thermal energy can be described in form of enthalpy or internal energy. The
p − v − T relation can be described with various equations of state or as an isobaric system. The
thermophysicalProperties dictionary is the file where the user can specify the entry values for
any solver that uses the thermophysicalModels library. In a simulation case, this file can be found
in the constant folder. The structure of this file begins with the chosen thermophysical model,
formed by a combination of each of the thermophysical properties submodels.

The following example from combustion/reactingFoam/laminar/counterFlowFlame2D tuto-
rial of a thermophysicalProperties dictionary gives a brief explanation of how this dictionary
is constituted. There are many combinations possible for the thermophysical model and we don’t
intend to give a full description of the thermophysical library here. The reader should refer to
Choquet [12] for a more complete description.

Example of thermophysicalProperties file

// * //

thermoType

{

type hePsiThermo;

mixture reactingMixture;

transport sutherland;

thermo janaf;

energy sensibleEnthalpy;

equationOfState perfectGas;

specie specie;

}

inertSpecie N2;

chemistryReader foamChemistryReader;

foamChemistryFile "<constant>/reactions";

foamChemistryThermoFile "<constant>/thermo.compressibleGas";

// *** //

12

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

3.2 reactingFoam

3.2.1 Introduction

reactingFoam is a pressure-based solver designed for transient simulations of compressible, reacting
flows. It handles laminar and turbulent, multispecies flows with temperature and density variations.
This solver is well-suited for the simulation of combustion processes and chemical reactions within
fluids, accommodating a variety of reaction kinetics and species transport mechanisms. In Fig. 3.1,
we show an example of a methane flame obtained with reactingFoam.

0 5 10 15

y [mm]

−2.5

2.5

x
[m

m
]

0

1

Figure 3.1: Normalized heat release of the laminar slit flame of [13].

Descriptions of reactingFoam were given in previous reports [14, 15, 16, 17, 18]. For this reason
we don’t intend to give an in-depth description of the reactingFoam solver but rather describe the
points and parts of the code that we consider the most relevant for this study.

3.2.2 createFields.H

The createFields.H file is a header file included with all solvers, it initializes the variables and
fields, as well as the turbulence and thermophysical models if needed. reactingFoam, as most of
compressible flow solver, has two such files, createFields.H and createFieldRefs.H. We describe
both files in this section.

$FOAM SOLVERS/combustion/reactingFoam/createFields.H

Info<< "Reading thermophysical properties\n" << endl;

autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));

psiReactionThermo& thermo = pThermo();

thermo.validate(args.executable(), "h", "e");

basicSpecieMixture& composition = thermo.composition();

PtrList<volScalarField>& Y = composition.Y();

The thermophysical pointer pThermo is constructed using the selector New from the psiReaction-
Thermo class. It reads the thermoType entry in the thermophysicalProperties dictionary which
specifies the complete thermophysical model. A reference called thermo of the thermophysical model
is created, this reference can be used to access and update all the thermophysical properties according
to the chosen model. The line thermo.validate(args.executable(), "h", "e"); ensures that
the thermodynamics package is consistent with energy forms supported by the application. As
mentioned in Section 2.1, the user can choose to solve the energy conservation in term of sensible
internal energy or sensible enthalpy, here noted as e and h.

Next, the mass fraction fields are constructed. The line basicSpecieMixture& composition

= thermo.composition(); creates an object composition from the basicSpecieMixture class
by calling the composition() function on the thermo reference. From the newly constructed
composition object we can create the list of pointers to store the species mass fractions Y with

13

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

the following line: PtrList<volScalarField>& Y = composition.Y();. The total number and
names of the species will depend on the files constant/reactions and constant/thermo.

$FOAM SOLVERS/combustion/reactingFoam/createFields.H

const word inertSpecie(thermo.get<word>("inertSpecie"));

if (!composition.species().found(inertSpecie))

{

FatalIOErrorIn(args.executable().c_str(), thermo)

<< "Inert specie " << inertSpecie << " not found in available species "

<< composition.species() << exit(FatalIOError);

}

The block of code above ensures that the inert species indicated in the thermophysicalProperties
file, for example inertSpecie N2;, is found in the list of species of the composition object.

$FOAM SOLVERS/combustion/reactingFoam/createFieldRefs.H

const volScalarField& psi = thermo.psi();

const volScalarField& T = thermo.T();

const label inertIndex(composition.species().find(inertSpecie));

The temperature T , and compressibility ψ, are set up as references in the createFieldRefs.H file
as seen above. The compressibility is defined as

ψ =
W

RT
, (3.1)

and can be found in

$FOAM SRC/thermophysicalModels/equationOfState/perfectGas/perfectGasI.H

template<class Specie>

inline Foam::scalar Foam::perfectGas<Specie>::psi(scalar p, scalar T) const

{

return 1.0/(this->R()*T);

}

With this->R() returning the specific gas constant of the mixture defined in

$FOAM SRC/thermophysicalModels/specie/specie/specieI.H

inline Foam::scalar Foam::specie::R() const

{

return RR/molWeight_;

}

RR being the ideal gas constant and molWeight the molecular weight of the mixture noted as
R and W in Eq. (3.1). A label variable, inertIndex, is created and determined based on the
termophysicalProperties file of Section 3.1 (N2 in this case) and on the composition object.

14

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

$FOAM SOLVERS/combustion/reactingFoam/createFields.H

volScalarField rho

(

IOobject

(

"rho",

runTime.timeName(),

mesh

),

thermo.rho()

);

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

volScalarField& p = thermo.p();

#include "compressibleCreatePhi.H"

The pressure, density and velocity fields are then created (note the differences in how those fields
are declared). Pressure field is created as a reference from the p() member function of thermo which
returns the volScalarField member data p of the thermo object. This volScalarField p was
created when the selector New from the psiReactionThermo class was called, this is done in the line
p (lookupOrConstruct(mesh, "p", pOwner)) of basicThermo.C file.

Density field ρ is then created using the constructor of the volScalarField class, which we can
find in the DimenssionedField.C file of the templated class dimenssionedField which takes an
IOobject and a volScalarField as argument. In this case the volScalarField rho is initialized
with the function thermo.rho() field. This function has different implementations depending on
the thermophysical model chosen. We consider here that the hePsiThermo type was chosen with
the perfectGas option as in Section 3.1 so the density is calculated according to the ideal gas law

ρ =
Wp

RT
= ψp. (3.2)

The velocity field U is then created similarly as in most OpenFOAM solvers, it will check
in the time folder if a U file is present and create a volVectorField from it. The #include

"compressibleCreatePhi.H" will create the flux phi interpolated on the cell faces. It differs from
the usual #include "createPhi.H" line for incompressible flow since it includes the density in its
calculation in the line linearInterpolate(rho*U) & mesh.Sf()

ϕf = ρf (uf · Sf) . (3.3)

With the subscript f indicating the value of a variable interpolated on the cell face.

15

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

$FOAM SOLVERS/combustion/reactingFoam/createFields.H

pressureControl pressureControl(p, rho, pimple.dict(), false);

mesh.setFluxRequired(p.name());

Info << "Creating turbulence model.\n" << nl;

autoPtr<compressible::turbulenceModel> turbulence

(

compressible::turbulenceModel::New

(

rho,

U,

phi,

thermo

)

);

Info<< "Creating reaction model\n" << endl;

autoPtr<CombustionModel<psiReactionThermo>> reaction

(

CombustionModel<psiReactionThermo>::New(thermo, turbulence())

);

multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;

forAll(Y, i)

{

fields.add(Y[i]);

}

fields.add(thermo.he());

volScalarField Qdot

(

IOobject

(

"Qdot",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh,

dimensionedScalar(dimEnergy/dimVolume/dimTime, Zero)

);

#include "createDpdt.H"

#include "createK.H"

Following, control parameters regarding pressure and density are read from the fvSolution file
through the pressureControl(p, rho, pimple.dict(), false); line. The next block creates a
pointer called reaction, which points to the CombustionModel<psiReactionThermo> class (an in-
stantiation of CombustionModel using psiReactionThermo). The turbulence-chemistry interaction
models are described in more detail by A.Äkerblom [16]. The pointer reaction is used during the
solver loop when the species equations Eq. (2.9) are solved. Next, a fields variable is created to
store scalar fields for multivariate surface interpolation. Using a loop (forAll(Y, i)), all species
mass fraction fields (Y[i]) are added to fields. The specific enthalpy or energy field (thermo.he())
is also added to fields, ensuring all relevant properties are prepared for interpolation during the
simulation. The heat release rate field Qdot is then created followed by #include "createDpdt.H"

and #include "createK.H" for the time derivative of the pressure field p and the kinetic energy
field K with the line volScalarField K("K", 0.5*magSqr(U)); as

K =
1

2
|u2|. (3.4)

16

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

3.2.3 reactingFoam.C

In this section, we describe how the density, velocity, energy and pressure are solved in the pressure-
based compressible solver reactingFoam. Below, we show the the main lines of the reactingFoam.C
file including the important header files to solve the governing equation presented in Section 2.1.

$FOAM APP/solvers/combustion/reactingFoam/reactingFoam.C Main lines

#include "rhoEqn.H"

while (pimple.loop())

{

#include "UEqn.H"

#include "YEqn.H"

#include "EEqn.H"

// --- Pressure corrector loop

while (pimple.correct())

{

[...]

else

{

#include "pEqn.H"

}

}

[...]

}

rho = thermo.rho();

[...]

We will provide an explanation of the header files: rhoEqn.H for continuity, UEqn.H for momem-
tum, YEqn.H for species transport, EEqn.H for energy conservation and pEqn.H for pressure-velocity-
density coupling.

3.2.3.1 rhoEqn.H

First, the density field is calculated by solving the continuity equation Eq. (2.1) by including the
rhoEqn.H header file.

$FOAM SRC/finiteVolume/cfdTools/compressible/rhoEqn.H

{

fvScalarMatrix rhoEqn

(

fvm::ddt(rho)

+ fvc::div(phi)

==

fvOptions(rho)

);

fvOptions.constrain(rhoEqn);

rhoEqn.solve();

fvOptions.correct(rho);

}

The linear matrix system is created as fvScalarMatrix rhoEqn, with all the terms in the conti-
nuity equation. The system is solved and the density field computed through the line rhoEqn.solve();.

17

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

3.2.3.2 UEqn.H

The momentum equation Eq. (2.2) is solved in order to compute the velocity field u in the UEqn.H

header file.

$FOAM SOLVERS/combustion/reactingFoam/UEqn.H

// Solve the Momentum equation

MRF.correctBoundaryVelocity(U);

tmp<fvVectorMatrix> tUEqn

(

fvm::ddt(rho, U) + fvm::div(phi, U)

+ MRF.DDt(rho, U)

+ turbulence->divDevRhoReff(U)

==

fvOptions(rho, U)

);

fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();

fvOptions.constrain(UEqn);

if (pimple.momentumPredictor())

{

solve(UEqn == -fvc::grad(p));

fvOptions.correct(U);

K = 0.5*magSqr(U);

}

A reference UEqn to the tmp<fvVectorMatrix> object is constructed, which builds the matrix
system to solve the momentum equation. The momentum equation is then solved by adding the
pressure source term explicitly with the line solve(UEqn == -fvc::grad(p));.

3.2.3.3 YEqn.H

The reacting species transport equations Eq. 2.9 are solved in the YEqn.H header file.

$FOAM SOLVERS/combustion/reactingFoam/YEqn.H

tmp<fv::convectionScheme<scalar>> mvConvection

(

fv::convectionScheme<scalar>::New

(

mesh,

fields,

phi,

mesh.divScheme("div(phi,Yi_h)")

)

);

First, the mvConvection object is created. This is done in order to have the same convection
scheme for every species as a convective flux scheme called here div(phi,Yi h) and selected in the
fvScheme file.

$FOAM SOLVERS/combustion/reactingFoam/YEqn.H

reaction->correct();

Qdot = reaction->Qdot();

volScalarField Yt(0.0*Y[0]);

Before the species equation is defined and solved for each species, we find the lines reaction->co-
rrect(); and Qdot = reaction->Qdot();. The first line tells the turbulence-chemistry interaction

18

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

model to correct all species reaction rates, and the second retrieves the updated heat release rate per
unit volume, Qdot, from the turbulence-chemistry interaction model. In the next block is declared
and solved one transport equation for each reacting species (note the forAll(Y, i) loop).

$FOAM SOLVERS/combustion/reactingFoam/YEqn.H

forAll(Y, i)

{

if (i != inertIndex && composition.active(i))

{

volScalarField& Yi = Y[i];

fvScalarMatrix YiEqn

(

fvm::ddt(rho, Yi)

+ mvConvection->fvmDiv(phi, Yi)

- fvm::laplacian(turbulence->muEff(), Yi)

==

reaction->R(Yi)

+ fvOptions(rho, Yi)

);

YiEqn.relax();

fvOptions.constrain(YiEqn);

YiEqn.solve("Yi");

fvOptions.correct(Yi);

Yi.clamp_min(0);

Yt += Yi;

}

}

Y[inertIndex] = scalar(1) - Yt;

Y[inertIndex].clamp_min(0);

We find the temporal derivative fvm::ddt(rho, Yi), the advection term mvConvection->fvmDiv-

(phi, Yi) and the diffusion term fvm::laplacian(turbulence->muEff(), Yi). We note that
according to the unity Lewis and Prandtl number assumption, already discussed in Section 2.1, the
diffusion coefficient is the effective kinematic viscosity muEff, which is the sum of the turbulent and
laminar kinematic viscosity and depends on the chosen turbulence and thermophysical models.

The term reaction->R(Yi) is the species production rate and corresponds to the term ω̇k in
Eq. (2.9). To avoid negative nonphysical mass fractions values their minimum is set to 0 with
Yi.clamp min(0); and mass fractions are added to the sum Yt += Yi;. This allow to compute
the mass fraction of the inert species without solving an extra transport equation with the line
Y[inertIndex] = scalar(1) - Yt;.

3.2.3.4 EEqn.H

The energy equation Eq. (2.4) or Eq. (2.5) is solved in the EEqn.H header file.

$FOAM SOLVERS/combustion/reactingFoam/EEqn.H

volScalarField& he = thermo.he();

First, a reference volScalarField& he is constructed by calling the he() function on the thermo
object. Depending on the model chosen in the thermophysicalProperties file, this will be the
sensible enthalpy h or the sensible internal energy e.

19

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

$FOAM SOLVERS/combustion/reactingFoam/EEqn.H

fvScalarMatrix EEqn

(

fvm::ddt(rho, he) + mvConvection->fvmDiv(phi, he)

+ fvc::ddt(rho, K) + fvc::div(phi, K)

+ (

he.name() == "e"

? fvc::div

(

fvc::absolute(phi/fvc::interpolate(rho), U),

p,

"div(phiv,p)"

)

: -dpdt

)

- fvm::laplacian(turbulence->alphaEff(), he)

==

Qdot

+ fvOptions(rho, he)

);

Similar to rhoEqn.H, the fvScalarMatrix EEqn object is created to solve the matrix system for
the chosen energy variable. The only difference between the equations Eq. (2.4) and Eq. (2.5) is in
the pressure term in the right hand side of the equations. This is taken into account in C++ syntax
in the line 5 to 14 of the above code. If the variable he is the sensible internal energy e then the
term ∂uip

∂xi
is added to the left hand side of the equation. If it’s the sensible enthalpy, then the time

derivative of the pressure field is subtracted to the left hand side.
The fvm::laplacian(turbulence->alphaEff(), he) term corresponds to the energy flux in

Eq. (2.4) with turbulence->alphaEff() the effective thermal conductivity being the sum of the tur-
bulent and laminar thermal conductivity which also depends on the turbulence and thermophysical
models chosen.

The Qdot term calculated at the beginning of YEqn.H and corresponding to the heat release rate
due to combustion ω̇T is added to the right hand side of the equation.

$FOAM SOLVERS/combustion/reactingFoam/EEqn.H

EEqn.relax();

fvOptions.constrain(EEqn);

EEqn.solve();

fvOptions.correct(he);

thermo.correct();

Info<< "min/max(T) = "

<< min(T).value() << ", " << max(T).value() << endl;

Finally, the energy equation is solved in the block above, and the temperature is calculated
thanks to the thermo.correct() line, the minimum and maximum temperature are printed out
with Info<< "min/max(T) = " << min(T).value() << ", " << max(T).value() << endl;

3.2.3.5 pEqn.H

In this file, the pressure field is computed by solving the pressure equation. This is the main
difference with density-based solvers. The pressure-velocity-density coupling is solved through the
SIMPLE and PISO algorithms instead of calculating the pressure from an equation of state. At this
point, we entered the while (pimple.correct()) loop or the inner corrector loop, where the PISO
algorithm is executed.

20

3.2. reactingFoam Chapter 3. Compressible Solvers in OpenFOAM

$FOAM SOLVERS/combustion/reactingFoam/pEqn.H

rho = thermo.rho();

volScalarField rAU(1.0/UEqn.A());

surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));

volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));

First the density rho is updated according to the new temperature field since T was updated at
the end of EEqn.H. thermo.rho() calls the ideal gas law Eq. (3.2) to compute the new density field.

The next three lines declare new variables needed to solve the pressure equation. The inverse rAU
of the Amatrix of the momentum linear system is computed as volScalarField rAU(1.0/UEqn.A());.
The compressible flux of rAU on the cell faces is then computed on the next line by interpolating
rho*rAU on the cell faces with surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate-

(rho*rAU));. The last line calculates the velocity field without pressure gradient, HbyA with cor-
rected boundary conditions (contrainHbyA).

$FOAM SOLVERS/combustion/reactingFoam/pEqn.H

{

surfaceScalarField phiHbyA

(

"phiHbyA",

(

fvc::flux(rho*HbyA)

+ MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, phi))

)

);

MRF.makeRelative(fvc::interpolate(rho), phiHbyA);

// Update the pressure BCs to ensure flux consistency

constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);

while (pimple.correctNonOrthogonal())

{

fvScalarMatrix pEqn

(

fvm::ddt(psi, p)

+ fvc::div(phiHbyA)

- fvm::laplacian(rhorAUf, p)

==

fvOptions(psi, p, rho.name())

);

pEqn.solve(p.select(pimple.finalInnerIter()));

if (pimple.finalNonOrthogonalIter())

{

phi = phiHbyA + pEqn.flux();

}

}

}

In the code above the pressure equation is built and solved. First the face flux of HbyA,
surfaceScalarField phiHbyA is created using fvc::flux(rho*HbyA) and an additional transient
correction term for moving meshes (MRF for Multiple Reference Frame) that we neglect here. The
line constrainPressure(p, rho, U, phiHbyA, rhorAUf, MRF);, as indicated in the comment en-
forces global conservation of phiHbyA and coherent pressure boundary conditions. Next, we enter the
while (pimple.correctNonOrthogonal()) loop which can be specified in the fvSolution file as
nNonOrthogonalCorrectors 0;. The fvScalarMatrix pEqn is created to solve the pressure equa-
tion for compressible flow. Despite similarity to the pressure-correction equation for incompressible
flows, this compressible formulation is different and is described in details in [2, 3].

The linear solver is read from fvSolution in p.select(pimple.finalInnerIter()) that returns

21

3.3. rhoCentralFoam Chapter 3. Compressible Solvers in OpenFOAM

a word type which is either p or pFinal. In the final non-orthogonal correction loop, the conservative
face fluxes are corrected with phi = phiHbyA + pEqn.flux();.

$FOAM SOLVERS/combustion/reactingFoam/pEqn.H

#include "rhoEqn.H"

#include "compressibleContinuityErrs.H"

// Explicitly relax pressure for momentum corrector

p.relax();

U = HbyA - rAU*fvc::grad(p);

U.correctBoundaryConditions();

fvOptions.correct(U);

K = 0.5*magSqr(U);

if (pressureControl.limit(p))

{

p.correctBoundaryConditions();

}

rho = thermo.rho();

if (thermo.dpdt())

{

dpdt = fvc::ddt(p);

}

In the last lines of the file, the density is recalculated by solving the continuity equation with the
freshly updated fluxes phi and the continuity errors are calculated and printed out with #include

"compressibleContinuityErrs.H". Following, the pressure field is explicitly relaxed, the velocity
field is corrected as well as its boundary conditions and the kinetic energy field K is recalculated
with the new velocity field. If pressure bounds are specified in the fvSolution file the pressure is
limited and its boundary conditions corrected as well. Finally, the density is computed again from
the equation of state to be consistent with the pressure and the time derivative of the pressure field
is updated for use in the energy equation.

3.3 rhoCentralFoam

We present a description of the implementation of the solver rhoCentralFoam, summarizing that
given in full by Greenshields et al. [8]. In-depth details regarding the solver rhoCentralFoam have
been provided in a previous report by Harvey, E. [19]. For a more comprehensive understanding of
the solver’s formulation and implementation, the reader is referred to this work. Here, we will only
go through the major differences between the implementation of rhoCentralFoam with regard to
reactingFoam and make the link between the equations introduced in Section 2.2 and the code.

3.3.1 createFields.H

Similarly as in reactingFoam we have createFields.H and createFieldRefs.H files.

$FOAM SOLVERS/compressible/rhoCentralFoam/createFieldRefs.H

volScalarField& p = thermo.p();

const volScalarField& T = thermo.T();

const volScalarField& psi = thermo.psi();

bool inviscid(true);

if (max(thermo.mu().cref().primitiveField()) > 0.0)

{

inviscid = false;

}

22

3.3. rhoCentralFoam Chapter 3. Compressible Solvers in OpenFOAM

The temperature T, pressure p, compressibility psi, and viscosity mu, are set up as references as
seen above. A further boolean variable, inviscid, is created as true and then determined based
on the viscosity. If the viscosity is read as zero from the thermophysicalProperties file, then this
boolean remains true and a simplified set of the Navier-Stokes equations is solved. If mu is greater
than 0, then the simulation is run with the inviscid variable set to false.

$FOAM SOLVERS/compressible/rhoCentralFoam/createFields.H

#include "createRDeltaT.H"

Info<< "Reading thermophysical properties\n" << endl;

autoPtr<psiThermo> pThermo

(

psiThermo::New(mesh)

);

psiThermo& thermo = pThermo();

volScalarField& e = thermo.he();

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Like in reactingFoam, the thermo reference is created to access and update the thermophysical
properties. It is also based on compressibility psi but since we are not dealing with reacting flow
here, the thermodynamic class is psiThermo and not psiReactionThermo. We note that the energy
variable here is called e instead of he, for rhoCentralFoam we should only choose the internal energy
as energy variable.

$FOAM SOLVERS/compressible/rhoCentralFoam/createFields.H

volVectorField rhoU

(

IOobject

(

"rhoU",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

rho*U

);

volScalarField rhoE

(

IOobject

(

"rhoE",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

rho*(e + 0.5*magSqr(U))

);

23

3.3. rhoCentralFoam Chapter 3. Compressible Solvers in OpenFOAM

The solver solves the conservative variables or density weighted fields, ρ (rho), û = ρu (rhoU),
Ê = ρE (rhoE). These fields are setup in the createFields.H file using the rho, U, e fields and formula

for the total energy E = e+ ∥u2∥
2 as seen above.

$FOAM SOLVERS/compressible/rhoCentralFoam/createFields.H

surfaceScalarField pos

(

IOobject

(

"pos",

runTime.timeName(),

mesh

),

mesh,

dimensionedScalar("pos", dimless, 1.0)

);

surfaceScalarField neg

(

IOobject

(

"neg",

runTime.timeName(),

mesh

),

mesh,

dimensionedScalar("neg", dimless, -1.0)

);

Also included in the header file are the creation of fields pos and neg, as surfaceScalarField
variables which are used in the solver as part of the central discretization process and to take
into account the propagation of waves in any direction (previously introduced as f+ and f− in
Section 2.2). The discretization of the convective fluxes ∇ · (uρ), ∇ · (u(ρu)), ∇ · (u(ρE)), ∇ · (up)
and the implementation of the central scheme is discussed further in Section 3.3.2.

$FOAM SOLVERS/compressible/rhoCentralFoam/createFields.H

surfaceScalarField phi("phi", fvc::flux(rhoU));

Info<< "Creating turbulence model\n" << endl;

autoPtr<compressible::turbulenceModel> turbulence

(

compressible::turbulenceModel::New

(

rho,

U,

phi,

thermo

)

);

The face flux phi is created, this implementation is equivalent to the one in reactingFoam but
uses the fvc::flux() function on the rhoU field.

24

3.3. rhoCentralFoam Chapter 3. Compressible Solvers in OpenFOAM

3.3.2 rhoCentralFoam.C

3.3.2.1 Central Flux Scheme Implementation

$FOAM SOLVERS/compressible/rhoCentralFoam/createFields.H

// --- Directed interpolation of primitive fields onto faces

surfaceScalarField rho_pos(interpolate(rho, pos));

surfaceScalarField rho_neg(interpolate(rho, neg));

surfaceVectorField rhoU_pos(interpolate(rhoU, pos, U.name()));

surfaceVectorField rhoU_neg(interpolate(rhoU, neg, U.name()));

volScalarField rPsi("rPsi", 1.0/psi);

surfaceScalarField rPsi_pos(interpolate(rPsi, pos, T.name()));

surfaceScalarField rPsi_neg(interpolate(rPsi, neg, T.name()));

surfaceScalarField e_pos(interpolate(e, pos, T.name()));

surfaceScalarField e_neg(interpolate(e, neg, T.name()));

surfaceVectorField U_pos("U_pos", rhoU_pos/rho_pos);

surfaceVectorField U_neg("U_neg", rhoU_neg/rho_neg);

surfaceScalarField p_pos("p_pos", rho_pos*rPsi_pos);

surfaceScalarField p_neg("p_neg", rho_neg*rPsi_neg);

surfaceScalarField phiv_pos("phiv_pos", U_pos & mesh.Sf());

// Note: extracted out the orientation so becomes unoriented

phiv_pos.setOriented(false);

surfaceScalarField phiv_neg("phiv_neg", U_neg & mesh.Sf());

phiv_neg.setOriented(false);

At the beginning of the time loop, the above code interpolates primitive variables (e.g., density,
velocity, and energy) from cell centers to face centers in the positive (pos) and negative (neg)
directions, which correspond to outward and inward fluxes at the face. The interpolation is performed
using the discretization scheme specified in the fvSchemes dictionary, for example:

$FOAM TUTORIALS/compressible/rhoCentralFoam/forwardStep/controlDict/fvSchemes

interpolationSchemes

{

default linear;

reconstruct(rho) vanLeer;

reconstruct(U) vanLeerV;

reconstruct(T) vanLeer;

}

The fluxes ϕ associated with the fluid velocity through the face are calculated as:

• ϕf+ = uf+ · Sf (U pos & mesh.Sf(), flux outward of the owner cell)

• ϕf− = uf− · Sf (U neg & mesh.Sf(), flux inward of the neighbor cell)

The fluxes are then adjusted:

• phiv pos.setOriented(false) ensures that phiv pos is an unoriented scalar.

• phiv neg.setOriented(false) ensures that phiv neg is an unoriented scalar.

These interpolated fluxes are essential for the central scheme, which computes fluxes using informa-
tion from both sides of the face.

25

3.3. rhoCentralFoam Chapter 3. Compressible Solvers in OpenFOAM

$FOAM SOLVERS/compressible/rhoCentralFoam/createFields.H

volScalarField c("c", sqrt(thermo.Cp()/thermo.Cv()*rPsi));

surfaceScalarField cSf_pos

(

"cSf_pos",

interpolate(c, pos, T.name())*mesh.magSf()

);

surfaceScalarField cSf_neg

(

"cSf_neg",

interpolate(c, neg, T.name())*mesh.magSf()

);

surfaceScalarField ap

(

"ap",

max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero)

);

surfaceScalarField am

(

"am",

min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero)

);

surfaceScalarField a_pos("a_pos", ap/(ap - am));

surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));

surfaceScalarField aSf("aSf", am*a_pos);

if (fluxScheme == "Tadmor")

{

aSf = -0.5*amaxSf;

a_pos = 0.5;

}

surfaceScalarField a_neg("a_neg", 1.0 - a_pos);

phiv_pos *= a_pos;

phiv_neg *= a_neg;

surfaceScalarField aphiv_pos("aphiv_pos", phiv_pos - aSf);

surfaceScalarField aphiv_neg("aphiv_neg", phiv_neg + aSf);

// Reuse amaxSf for the maximum positive and negative fluxes

// estimated by the central scheme

amaxSf = max(mag(aphiv_pos), mag(aphiv_neg));

#include "centralCourantNo.H"

Similarly as in Eq. (2.14), the local speed of sound is calculated as

c =

√
γ

ψ
. (3.5)

This represents the local speed at which pressure disturbances propagate in the medium. Similarly
as with the previous primitive variables, the local speed of sound is interpolated in the positive and
negative sides of the face and multiplied by the surface area of the cell face to obtain the associated
volumetric fluxes cSf pos and cSf neg. The volumetric fluxes a+ and a− defined in Eq. (2.13)
are defined as a p and a m in the code. The diffusive volumetric flux ωf is then calculated under
the variable name aSf and updated together with α (a pos), in case the Tadmor scheme is chosen.
To recover the formulation of Eq. (2.12), the fluxes phiv pos and phiv pos (ϕf+ and ϕf−) are
multiplied by a pos and a neg (α and 1−α) and aSf is added and subtracted respectively to obtain
aphiv pos and aphiv neg.

26

3.3. rhoCentralFoam Chapter 3. Compressible Solvers in OpenFOAM

We can then calculate the different convective terms ∇ · (uΨ) of Eq. (2.11):

• ∇ · (uρ):

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

phi = aphiv_pos*rho_pos + aphiv_neg*rho_neg;

• ∇ · (u(ρu)):

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

surfaceVectorField phiU(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg);

The pressure gradient is then integrated:

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

surfaceVectorField phiUp(phiU + (a_pos*p_pos + a_neg*p_neg)*mesh.Sf());

• ∇ · (u(ρE)):

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

surfaceScalarField phiEp

(

"phiEp",

aphiv_pos*(rho_pos*(e_pos + 0.5*magSqr(U_pos)) + p_pos)

+ aphiv_neg*(rho_neg*(e_neg + 0.5*magSqr(U_neg)) + p_neg)

+ aSf*p_pos - aSf*p_neg

);

This is also corrected with + aSf*p pos and - aSf*p neg to counteract the aSf (ωf) terms
applied through the aphiv fields for the pressure term. This modification is used since the
additional diffusive flux terms with aSf (ωf) are only needed when the convective term is
applied as part of a substantive derivative, D

Dt . This has been true for all other fields but must
be corrected for p.

Last step before solving the governing equations is to declare the fields related to viscosity:

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

volScalarField muEff("muEff", turbulence->muEff());

volTensorField tauMC("tauMC", muEff*dev2(Foam::T(fvc::grad(U))));

3.3.2.2 Solve Governing Equations

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

// --- Solve density

solve(fvm::ddt(rho) + fvc::div(phi));

First, the continuity equation is solved explicitly to update the density.

27

3.3. rhoCentralFoam Chapter 3. Compressible Solvers in OpenFOAM

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

// --- Solve momentum

solve(fvm::ddt(rhoU) + fvc::div(phiUp));

U.ref() =

rhoU()

/rho();

U.correctBoundaryConditions();

rhoU.boundaryFieldRef() == rho.boundaryField()*U.boundaryField();

if (!inviscid)

{

solve

(

fvm::ddt(rho, U) - fvc::ddt(rho, U)

- fvm::laplacian(muEff, U)

- fvc::div(tauMC)

);

rhoU = rho*U;

}

The momentum equation is solved in two steps. The diffusive terms, which are functions of u
and T , cannot be evaluated implicitly with the other terms due to the variables, rhoU, rhoE being
density weighted. To include them explicitly would mean a fully explicit solution which was found
by C.Greenshields et al. [8] to suffer a severe time-step limit. Instead, the diffusive terms are applied
as implicit corrections to the inviscid equation if the viscosity is non-zero.

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

// --- Solve energy

surfaceScalarField sigmaDotU

(

"sigmaDotU",

(

fvc::interpolate(muEff)*mesh.magSf()*fvc::snGrad(U)

+ fvc::dotInterpolate(mesh.Sf(), tauMC)

)

& (a_pos*U_pos + a_neg*U_neg)

);

solve

(

fvm::ddt(rhoE)

+ fvc::div(phiEp)

- fvc::div(sigmaDotU)

);

e = rhoE/rho - 0.5*magSqr(U);

e.correctBoundaryConditions();

thermo.correct();

rhoE.boundaryFieldRef() ==

rho.boundaryField()*

(

e.boundaryField() + 0.5*magSqr(U.boundaryField())

);

if (!inviscid)

{

solve

(

fvm::ddt(rho, e) - fvc::ddt(rho, e)

- fvm::laplacian(turbulence->alphaEff(), e)

);

thermo.correct();

rhoE = rho*(e + 0.5*magSqr(U));

}

28

3.3. rhoCentralFoam Chapter 3. Compressible Solvers in OpenFOAM

The solution of the energy equation follows a largely similar method with the variable sigmaDotU
corresponding to the viscous heating term. The inviscid equation is first solved and the energy e

updated. The boundary conditions are corrected as well as the thermophysical properties and
temperature. Finally, the non-inviscid element is added implicitly and the new equation is solved.

$FOAM SOLVERS/compressible/rhoCentralFoam/rhoCentralFoam.C

p.ref() =

rho()

/psi();

p.correctBoundaryConditions();

rho.boundaryFieldRef() == psi.boundaryField()*p.boundaryField();

turbulence->correct();

runTime.write();

runTime.printExecutionTime(Info);

}

Info<< "End\n" << endl;

return 0;

}

After solving all the governing equations, the pressure field is updated using the ideal gas law.
The pressure boundary conditions are then corrected in order to update the boundary conditions
for rho again. The time loop ends with the correction of the turbulence properties and the writing
of relevant variables.

29

Chapter 4

Implementation of
reactingRhoCentralFoam

In this chapter, we describe the implementation of the reacting species transport equations in the
solver rhoCentralFoam.

4.1 createFields.H

The first step is to modify the createFields.H header file since this is where the fields are con-
structed and the pointers are created.

4.1.1 thermo Object and Species Mass Fractions

The first modification is to change the thermophysical model from psiThermo to psiReactionThermo
since it takes into account chemical reactions and to declare the species mass fractions fields. We
replace the lines 5 to 11 with the following block:

reactingRhoCentralFoam/createFields.H

Info<< "Reading thermophysical properties\n" << endl;

autoPtr<psiReactionThermo> pThermo(psiReactionThermo::New(mesh));

psiReactionThermo& thermo = pThermo();

volScalarField& e = thermo.he();

basicSpecieMixture& composition = thermo.composition();

PtrList<volScalarField>& Y = composition.Y();

PtrList<volScalarField> rhoY(Y.size());

const word inertSpecie(thermo.get<word>("inertSpecie"));

if (!composition.species().found(inertSpecie))

{

FatalIOErrorIn(args.executable().c_str(), thermo)

<< "Inert specie " << inertSpecie << " not found in available species "

<< composition.species() << exit(FatalIOError);

}

This block is identical to that in reactingFoam, with the exception of the new line PtrList<vol-
ScalarField> rhoY(Y.size()); which declares the list of pointers to the density weighted species
mass fractions

Ŷk = ρYk, (4.1)

which are needed for the implementation of central convective fluxes in the species mass fractions
equations.

30

4.2. reactingRhoCentralFoam.C Chapter 4. Implementation of reactingRhoCentralFoam

reactingRhoCentralFoam/createFields.H

multivariateSurfaceInterpolationScheme<scalar>::fieldTable fields;

forAll(Y, i)

{

volScalarField& Yi = Y[i];

fields.add(Yi);

const word Yiname = Yi.name();

rhoY.set

(

i,

new volScalarField

(

IOobject

(

"rho"+Yiname,

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

rho*Yi

)

);

}

fields.add(thermo.he());

The last difference with the original file can be seen in the code above. The block rhoY.set(i,

new volScalarField(...)) creates a new field for the density-weighted species mass fraction
rhoY[i] and assigns it to the rhoY field list. The volScalarField is initialized with an IOobject

that specifies its name "rho"+Yiname, the current simulation time runTime.timeName(), and the
computational mesh. The IOobject::NO READ and IOobject::NO WRITE flags ensure that the field
is not read from or written to disk automatically. The value of rhoY[i] is computed as the product
of the density field rho and the corresponding species mass fraction field Yi. This step ensures that
the density-weighted species fields are properly initialized for use in the simulation.

4.2 reactingRhoCentralFoam.C

Here we go through the modification of the main file reactingRhoCentralFoam.C.

4.2.1 Header Files

reactingRhoCentralFoam/reactingRhoCentralFoam.C

#include "fvCFD.H"

#include "turbulentFluidThermoModel.H"

#include "psiReactionThermo.H" //added

#include "CombustionModel.H" //added

#include "dynamicFvMesh.H"

#include "fixedRhoFvPatchScalarField.H"

#include "directionInterpolate.H"

#include "localEulerDdtScheme.H"

#include "fvcSmooth.H"

We replace the #include "psiThermo.H" with #include "psiReactionThermo.H" and add #include
"CombustionModel.H" for combustion modeling.

31

4.2. reactingRhoCentralFoam.C Chapter 4. Implementation of reactingRhoCentralFoam

4.2.2 rhoYEqn.H

reactingRhoCentralFoam/reactingRhoCentralFoam.C

// --- Solve species

#include "rhoYEqn.H"

We solve the species equations after solving the momentum equation in reactingRhoCentralFoam.C

by including a new rhoYEqn.H header file.

reactingRhoCentralFoam/rhoYEqn.H

reaction->correct();

Qdot = reaction->Qdot();

volScalarField Yt(0.0*Y[0]);

forAll(Y, i)

{

if (i != inertIndex && composition.active(i))

{

volScalarField& rhoYi = rhoY[i];

volScalarField& Yi = Y[i];

surfaceScalarField rhoYi_pos(interpolate(rhoYi, pos, T.name()));

surfaceScalarField rhoYi_neg(interpolate(rhoYi, neg, T.name()));

surfaceScalarField phiYi(aphiv_pos*rhoYi_pos + aphiv_neg*rhoYi_neg);

// --- Solve Yi

solve(fvm::ddt(rhoYi) + fvc::div(phiYi));

rhoYi.clamp_min(0);

Yi.ref() = rhoYi()/rho();

Yi.correctBoundaryConditions();

rhoYi.boundaryFieldRef() == rho.boundaryField()*Yi.boundaryField();

if (!inviscid)

{

fvScalarMatrix YiEqn

(

fvm::ddt(rho, Yi) - fvc::ddt(rho, Yi)

- fvm::laplacian(muEff, Yi)

==

reaction->R(Yi)

);

YiEqn.solve("Yi");

}

else

{

fvScalarMatrix YiEqn

(

fvm::ddt(rho, Yi) - fvc::ddt(rho, Yi)

==

reaction->R(Yi)

);

YiEqn.solve("Yi");

}

Yi.clamp_min(0);

rhoYi = rho*Yi;

Yt += Yi;

}

}

Y[inertIndex] = scalar(1) - Yt;

Y[inertIndex].clamp_min(0);

rhoY[inertIndex] = rho*Y[inertIndex];

32

4.3. Make/files and Make/options Chapter 4. Implementation of reactingRhoCentralFoam

This is a modified version of the YEqn.H from the reactingFoam solver to include the central
scheme discretization of the advective fluxes ∇· (u(ρYk)). We already described the implementation
of the advective fluxes ∇ · (uρ), ∇ · (u(ρu)) and ∇ · (u(ρE)) in rhoCentralFoam in Section 3.3.2.1
and we will follow a similar procedure here:

• Interpolation of rhoYi in both pos and neg directions:

– surfaceScalarField rhoYi pos(interpolate(rhoYi, pos, T.name()));

– surfaceScalarField rhoYi neg(interpolate(rhoYi, neg, T.name()));

• ∇·(u(ρYk)) is calculated with the volumetric fluxes a+, a− and the diffusive term ωf integrated
in aphiv pos and aphiv neg computed previously in reactingRhoCentralFoam.C:

– surfaceScalarField phiYi(aphiv pos*rhoYi pos + aphiv neg*rhoYi neg);

• The inviscid transport equation is first solved without the chemical source term. The species
mass fraction Yi is updated and its boundary conditions corrected.

• The diffusive term is then applied as implicit corrections to the inviscid equation if the viscosity
is non-zero. Like in reactingFoam, we add the species production rate reaction->R(Yi) to
the transport equation in both inviscid and viscous formulations.

• The rest of the code is similar to reactingFoam, with the mass fractions minimum limited to
zero and the inert species solved as Y[inertIndex] = scalar(1) - Yt;.

4.3 Make/files and Make/options

We modify the Make/files file accordingly to the new solver name reactingRhoCentralFoam.

reactingRhoCentralFoam/Make/files

reactingRhoCentralFoam.C

EXE = $(FOAM_USER_APPBIN)/reactingRhoCentralFoam

We modify the Make/options file to link the necessary libraries for combustion simulations.

reactingRhoCentralFoam/Make/options Part 1

EXE_INC = \

-I$(FOAM_SOLVERS)/compressible/rhoCentralFoam/BCs/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \

-I$(LIB_SRC)/transportModels/compressible/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/chemistryModel/lnInclude \

-I$(LIB_SRC)/dynamicFvMesh/lnInclude \

-I$(LIB_SRC)/ODE/lnInclude \

-I$(LIB_SRC)/combustionModels/lnInclude

We first show the included libraries for compilation. The first line was modified to link the special
boundary conditions used in rhoCentralFoam. Since we don’t want to recompile this library, we
link our new solver with the already compiled library located in the BCs folder in the original
rhoCentralFoam directory. This allows us to delete the BCs folder in the reactingRhoCentralFoam
directory. Additionally, the following libraries are linked to the solver: reactionThermo, chemistry-
Model, ODE and combustionModels.

33

4.3. Make/files and Make/options Chapter 4. Implementation of reactingRhoCentralFoam

reactingRhoCentralFoam/Make/options Part 1

EXE_LIBS = \

-lfiniteVolume \

-lfvOptions \

-lmeshTools \

-lcompressibleTransportModels \

-lfluidThermophysicalModels \

-lspecie \

-lrhoCentralFoam \

-lturbulenceModels \

-lcompressibleTurbulenceModels \

-lthermoTools \

-lreactionThermophysicalModels \

-lchemistryModel \

-lODE \

-lcombustionModels \

-ldynamicFvMesh \

-ltopoChangerFvMesh

Here, we specify the compiled libraries that the executable needs to link with during the building
process. The added libraries are lreactionThermophysicalModels, lchemistryModels, lODE and
lcombustionModels. We can finally compile the new solver by executing wmake in the terminal
from the reactingRhoCentralFoam directory.

34

Chapter 5

Test Cases

5.1 Cold Flow: forwardStep case

5.1.1 Setup

The flow is moving at Mach 3 in a wind tunnel containing a forward-facing step was originally
introduced by Emery [20] as a test for numerical schemes. It uses a gas initialized with an inlet
velocity Uin = 3m/s, pressure p = 1Pa and temperature T = 1K. The properties are set such that
this is an inviscid gas for which the speed of sound is 1m/s at a temperature of 1K and γ = 7/5.
This is described in more detail in the following section. We have a structured uniform mesh with
the cell length in the x and y direction equal to 1.25 cm, and we ran the simulation at a CFL number
of 0.2 for a duration of 4 s.

In
le

t

O
ut

le
t

Symmetry

Symmetry

Slip

Uin = 3 m.s⁻¹

p = 1 Pa
T = 1 K

0.2 m

0.8 m

3 m

Figure 5.1: Numerical domain of the forwardStep tutorial, with initial conditions in red and bound-
ary conditions in black.

This case is originally located in $FOAM TUTORIALS/compressible/rhoCentralFoam/forward-

Step. We adapt and run the case with reactingRhoCentralFoam and compare the results with the
original rhoCentralFoam solver. This is done in order to have a first check of the implementation
without reacting species. In the next section, we describe the modified input files to run the case
with reactingRhoCentralFoam.

35

5.1. Cold Flow: forwardStep case Chapter 5. Test Cases

5.1.2 Thermophysical Files

reactingRhoCentralFoam/run/forwardStep/constant/thermophysicalProperties

thermoType

{

type hePsiThermo;

mixture reactingMixture;

transport const;

thermo eConst;

equationOfState perfectGas;

specie specie;

energy sensibleInternalEnergy;

}

inertSpecie N2;

chemistryReader foamChemistryReader;

foamChemistryFile "<constant>/reactions";

foamChemistryThermoFile "<constant>/thermo.compressibleGas";

The thermophysicalProperties file defines the thermodynamic, transport, and chemistry models
used in the simulation. The thermoType block first specifies type hePsiThermo, a thermodynamic
model for compressible flows where the pressure is treated as a primary thermodynamic variable.
The mixture reactingMixture defines a chemically reactive mixture. transport const sets a
constant transport model for properties like viscosity and thermal conductivity. thermo eConst

uses a constant heat capacity model where specific heat capacities (Cp and Cv) are independent of
temperature. equationOfState perfectGas assumes the gas obeys the ideal gas law Eq. (3.2).
specie specie indicates the use of a specie object for molecular weights and gas constants.
Finally, energy sensibleInternalEnergy specifies that the solved energy variable is the sensi-
ble internal energy e. The inertSpecie N2 defines nitrogen N2 as the inert species, which does
not participate in chemical reactions. For chemistry and thermodynamic data, chemistryReader
foamChemistryReader specifies the OpenFOAM-native chemistry file reader. Reaction definitions
are located in <constant>/reactions, while species thermophysical properties, such as heat capac-
ities and molecular weights, are provided in <constant>/thermo.compressibleGas.

reactingRhoCentralFoam/run/forwardStep/constant/thermo.compressibleGas

// Note: these are the properties for a "normalised" inviscid gas

// for which the speed of sound is 1 m/s at a temperature of 1K

// and gamma = 7/5

N2

{

specie

{

molWeight 11640.3;

}

elements

{

N 2;

}

thermodynamics

{

Cv 1.7857;

Hf 0;

}

transport

{

mu 0;

Pr 1;

}

}

36

5.1. Cold Flow: forwardStep case Chapter 5. Test Cases

As we see in the note at the beginning of the file above, the thermodynamic and transport properties
are set for nitrogen N2 under a ”normalized” inviscid gas assumption, such that the speed of sound
is equal to 1m/s at a temperature of 1K. Thus, those are not realistic properties of nitrogen. The
molecular weight is set equal to 11.640 kg/mol. The specific heat at constant volume Cv is set to
1.7857 J ·K/kg, while the formation enthalpy Hf is set to zero as a reference. Transport properties
reflect the inviscid assumption, with viscosity mu set to 0Pa · s. The Prandtl number Pr is defined
as 1, so the thermal conductivity is equal to the viscosity. We justify the choice of those values in
the next derivation.

Assuming ideal gas assumption, the speed of sound c is computed as

c =

√
γ
R

W
T. (5.1)

Here, γ is the ratio of specific heats

γ =
Cp

Cv
. (5.2)

To calculate Cp, we can use Mayer’s relation

Cp = Cv +
R

W
= 1.7857 +

8.314

11.64
= 2.5, (5.3)

and then calculate γ

γ =
2.5

1.786
= 1.4, (5.4)

and finally the speed of sound in such mixture at 1K

c =

√
1.4× 8.314

11.64
× 1 = 1m/s. (5.5)

reactingRhoCentralFoam/run/forwardStep/constant/reactions

elements

(

N

);

species

(

N2

);

reactions

{

}

The reactions file defines the chemical elements, species, and reactions. In this case, the elements
section specifies the chemical elements involved in the reactions, with nitrogen N being the only
element listed. The species section defines the chemical species, which is the normalized N2 in
this case. The reactions section would typically list the chemical reactions, but it is empty here,
indicating that no specific reactions are defined for this system.

37

5.1. Cold Flow: forwardStep case Chapter 5. Test Cases

5.1.3 Initial T, U Files

reactingRhoCentralFoam/run/forwardStep/0/T

dimensions [0 0 0 1 0 0 0];

internalField uniform 1;

boundaryField

{

inlet

{

type fixedValue;

value uniform 1;

}

outlet

{

type inletOutlet;

inletValue uniform 1;

value uniform 1;

}

reactingRhoCentralFoam/run/forwardStep/0/U

dimensions [0 1 -1 0 0 0 0];

internalField uniform (3 0 0);

boundaryField

{

inlet

{

type fixedValue;

value uniform (3 0 0);

}

outlet

{

type inletOutlet;

inletValue uniform (3 0 0);

value uniform (3 0 0);

}

In the above files, we show the important parts of the 0/T and 0/U files. As mentioned previously,
the temperature is set to 1K so the speed of sound in the gas is equal to 1m/s. The initial velocity
is set to 3m/s in the whole domain in order to have a supersonic configuration with Ma = 3.

The inletOutlet boundary condition is chosen for the outlet for both T and U. This is an
usual boundary condition when the flow can be either entering or exiting the domain. It behaves
as a fixedValue boundary condition if the flow is entering the domain and as a zeroGradient

boundary condition if the flow is leaving the domain. The inletValue keyword specifies the value
of the variable on the boundary in case the flow is entering the domain. Since both inletValue and
value are set to (3,0,0), the flow is initialized to have a constant velocity of 3m/s in the positive
x-direction at the outlet and since there is no domain beyond the outlet, the flow is simply forced
to exit at the specified rate. The same treatment is applied for T. We don’t present the other initial
files 0/p and 0/N2 here since their setup is trivial.

5.1.4 Results

Figure 5.2 shows the state after 4 s of the forwardStep with rhoCentralFoam and, for comparison,
mirrored along the x-axis, with the new solver reactingRhoCentralFoam. Initially, the shock curves
toward the step’s upper surface, then flattens, strikes the upper boundary, reflects downward, and
hits the step. As it continues to flatten, a Mach reflection forms, and the intersection of the waves

38

5.2. Reacting Flow: One-Dimensional Reacting Shock Tube Chapter 5. Test Cases

moves upstream, creating a horizontal slip surface. A weak shock also forms where the overexpanded
flow hits the step’s upper surface. The results match perfectly, with identical pressure fields observed
throughout the domain for both solvers.

0

1

y
[m

]

0 1 2 3

x [m]

1

0

0

2

4

6

8

10

12

p [Pa]

rhoCentralFoam

reactingRhoCentralFoam

Figure 5.2: forwardStep case results comparison between rhoCentralFoam (Top) and mirrored
reactingRhoCentralFoam (Bottom).

This provides an initial validation of the implementation of the rhoCentralFoam framework
within the reacting thermodynamic package, demonstrating its applicability to non-reacting cases.

5.2 Reacting Flow: One-Dimensional Reacting Shock Tube

5.2.1 Setup

Here we validate the implementation of the transport equation of the reacting species. We use the
one-dimensional reacting shock tube case from Ferrer et al. [21]. It involves a reactive mixture in a
closed tube, where a shock reflects off a solid boundary, triggering a reaction wave that grows and
merges with the shock structure.

dx = 50 μm

12 cm

w
al

l

in
le

tpR = 35594 Pa
TR = 748.472 K
UR = -487.34 m.s⁻¹

pL = 7173 Pa
TL = 378.656 K
UL = 0 m.s⁻¹

Uin, Tin, pin

x

y

Figure 5.3: Numerical domain of the one-dimensional reacting shock tube case, with initial conditions
in red, boundaries in black and schematic grid discretization.

The mixture consists of a 2:1:7 molar ratio of H2 : O2 : Ar. Initial conditions are (ρL, uL, pL) =
(0.072 kg/m3, 0m/s, 7173Pa) and (ρR, uR, pR) = (0.18075 kg/m3, −487.34m/s, 35594Pa), with
the left and right states initially separated at the midpoint of a 12 cm domain. The domain is dis-
cretized with 2400 uniform grid points, with wall boundary conditions at x = 0 cm and fixedValue

39

5.2. Reacting Flow: One-Dimensional Reacting Shock Tube Chapter 5. Test Cases

boundary conditions at the inlet at x = 12 cm. The convective CFL number is set to 0.1 in order to
minimize the numerical diffusion.

5.2.2 Thermophysical Files

reactingRhoCentralFoam/run/reactingShockTube/thermophysicalProperties

thermoType

{

type hePsiThermo;

mixture reactingMixture;

transport sutherland;

thermo janaf;

energy sensibleInternalEnergy;

equationOfState perfectGas;

specie specie;

}

inertSpecie AR;

chemistryReader foamChemistryReader;

foamChemistryFile "<constant>/reactions";

foamChemistryThermoFile "<constant>/thermo";

The thermoType dictionary is similar to the file from the previous case, with two differences: the
transport keyword is set to sutherland, which calculates viscosity and thermal conductivity based
on Sutherland’s law [22], suitable for temperature-dependent gas properties, and the thermo keyword
is set to janaf, which uses JANAF polynomials [23] for temperature-dependent thermodynamic
property calculations, ideal for detailed chemical reactions.

Unlike the previous non-reacting case, this simulation involves chemical reactions of combustion,
requiring a proper chemistry mechanism. The mechanism of Li et al. [24] for hydrogen combus-
tion is provided in CHEMKIN format and will be used by the solver and associated libraries to
compute chemical reaction rates. To use this CHEMKIN mechanism with the OpenFOAM-native
chemistry file reader, the chemkinToFoam utility is employed to convert the CHEMKIN files into the
OpenFOAM format. This involves the following steps:

• Prepare the CHEMKIN input files, including the reaction mechanism (chem.inp) and ther-
modynamic properties (therm.dat).

• Run chemkinToFoam in the desired OpenFOAM case directory, providing the CHEMKIN files
as input.

• The utility generates two output files: reaction (defining chemical reactions) and thermo

(containing species thermophysical properties), which are then stored in the constant folder
of the case.

The commands to generate the reactions and thermo files as well as the thermo and reactions

are not shown here, but the reader can refer to them in the appendix A.

5.2.3 Initial Files

The initial fields for pressure p, temperature T, velocity U, and species mass fractions are not de-
scribed here, as their setup is relatively straightforward. The setFields utility is used to assign the
appropriate values to the left and right halves of the domain.

40

5.2. Reacting Flow: One-Dimensional Reacting Shock Tube Chapter 5. Test Cases

5.2.4 Results

500

1000

1500

2000

2500

3000

T
[K

]

170 µs 190 µs 230 µs

−600

−400

−200

0

200

400

600

u
[m

/s
]

170 µs 190 µs
230 µs

0 2 4 6 8 10 12

x [cm]

0.00

0.05

0.10

0.15

0.20

0.25

Y
H

[-
]

170 µs 190 µs 230 µs

Ferrer et al. reactingRhoCentralFoam reactingFoam

Figure 5.4: Multi-species reacting shock tube of H2/O2/Ar mixture with a discontinuity initially
placed at 6 cm. Profiles of Temperature (Top), velocity (Middle) and mass fraction of hydrogen
(Bottom).

41

5.2. Reacting Flow: One-Dimensional Reacting Shock Tube Chapter 5. Test Cases

In Fig 5.4, we show results for temperature, velocity and hydrogen mass fraction obtained at three
different times, 170 µs, 190µs and 230 µs. We compare our simulation with a reference solution from
Ferrer et al. [21] and with reactingFoam. The reactingRhoCentralFoam solver shows excellent
agreement with the reference solution across all analyzed fields. In contrast, the second order
linear spatial schemes and implicit time-stepping employed by reactingFoam introduce significant
numerical diffusion, leading to smeared gradients and reduced accuracy in resolving shock waves.
While increasing the number of outer and inner iterations in reactingFoam enhances accuracy
by mitigating some of the numerical diffusion, it comes at the cost of a substantial increase in
computational time.

42

Chapter 6

Conclusion

In this work, we successfully extended the density-based solver rhoCentralFoam to include reacting
flow capabilities, resulting in the development of the reactingRhoCentralFoam solver. Through a
detailed theoretical formulation and implementation, the solver was validated against well-established
test cases, including non-reacting and reacting flows. The results demonstrated excellent agreement
with reference solutions, confirming the accuracy and reliability of the implemented framework.

The developed solver provides a robust tool for simulating high-speed compressible flows with
chemical reactions, offering improved capabilities for addressing challenges such as shock interactions,
wave dynamics, and combustion phenomena. Compared to reactingFoam, the new solver showed
superior performance in the supersonic reacting case, accurately capturing sharp gradients and
shocks that reactingFoam could not resolve effectively due to its numerical schemes, which are not
specifically designed for handling such features. While the explicit nature of the solver imposes
certain stability constraints, it also enables precise capturing of sharp gradients and facilitates the
incorporation of advanced spatial and temporal schemes.

Future work could explore the optimization of the solver for low-speed flows, as well as the inte-
gration of more complex turbulence-chemistry interaction models to further enhance its versatility.
The implementation and supporting materials for this work will also be available at the following
Git address: https://git.tu-berlin.de/pkandel/reactingRhoCentralFoam/-/tree/main.

43

https://git.tu-berlin.de/pkandel/reactingRhoCentralFoam/-/tree/main

Bibliography

[1] A. Kurganov, S. Noelle, and G. Petrova, “Semidiscrete central-upwind schemes for hyperbolic
conservation laws and hamilton–jacobi equations,” SIAM Journal on Scientific Computing,
vol. 23, no. 3, pp. 707–740, 2001.

[2] J. H. Ferziger and M. Perić, Computational methods for fluid dynamics. Springer, 2002.

[3] F. Moukalled, L. Mangani, M. Darwish, F. Moukalled, L. Mangani, and M. Darwish, The finite
volume method. Springer, 2016.

[4] T. Poinsot, “Theoretical and numerical combustion,” RT Edwards, 2005.

[5] L. Caretto, A. Gosman, S. Patankar, and D. Spalding, “Two calculation procedures for steady,
three-dimensional flows with recirculation,” in Proceedings of the Third International Confer-
ence on Numerical Methods in Fluid Mechanics: Vol. II Problems of Fluid Mechanics. Springer,
1973, pp. 60–68.

[6] R. I. Issa, A. Gosman, and A. Watkins, “The computation of compressible and incompress-
ible recirculating flows by a non-iterative implicit scheme,” Journal of Computational Physics,
vol. 62, no. 1, pp. 66–82, 1986.

[7] T. J. Poinsot and S. Lelef, “Boundary conditions for direct simulations of compressible viscous
flows,” Journal of computational physics, vol. 101, no. 1, pp. 104–129, 1992.

[8] C. J. Greenshields, H. G. Weller, L. Gasparini, and J. M. Reese, “Implementation of semi-
discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for
high-speed viscous flows,” International journal for numerical methods in fluids, vol. 63, no. 1,
pp. 1–21, 2010.

[9] M. Kraposhin, A. Bovtrikova, and S. Strijhak, “Adaptation of kurganov-tadmor numerical
scheme for applying in combination with the piso method in numerical simulation of flows in a
wide range of mach numbers,” Procedia Computer Science, vol. 66, pp. 43–52, 2015.

[10] P. L. Roe, “Characteristic-based schemes for the euler equations,” Annual review of fluid me-
chanics, vol. 18, no. 1, pp. 337–365, 1986.

[11] B. Van Leer, “Towards the ultimate conservative difference scheme. ii. monotonicity and con-
servation combined in a second-order scheme,” Journal of computational physics, vol. 14, no. 4,
pp. 361–370, 1974.

[12] Choquet, “Thermophysicalmodels library in openfoam-2.3.x (or 2.4.x),” http://www.tfd.
chalmers.se/∼hani/kurser/OS CFD/.

[13] V. Kornilov, R. Rook, J. ten Thije Boonkkamp, and L. De Goey, “Experimental and numerical
investigation of the acoustic response of multi-slit bunsen burners,” Combustion and Flame,
vol. 156, no. 10, pp. 1957–1970, 2009.

[14] C. Andersen, “Numerical investigation of a bfr using openfoam,” https://projekter.aau.dk/
projekter/files/14411784/Report.pdf.

44

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
https://projekter.aau.dk/projekter/files/14411784/Report.pdf
https://projekter.aau.dk/projekter/files/14411784/Report.pdf

Bibliography Bibliography

[15] S. M. Mousavi, “Combination of reactingfoam and chtmultiregionfoam as a first
step toward creating a multiregionreactingfoam, suitable for solid/gas phase,”
https://www.tfd.chalmers.se/∼hani/kurser/OS CFD 2019/Seyed Morteza Mousavi/
FinalReport S M Mousavi CFDWithOSS.pdf, 2019.

[16] A. Äkerblom, “Turbulence-chemistry interaction in openfoam and how to implement a dynamic
pasr model for les of turbulent combustion,” https://www.tfd.chalmers.se/∼hani/kurser/OS
CFD 2022/ArvidAkerblom/OF Report Arvid Final.pdf, 2022.

[17] M. Bertsch, “Description of the reacting flow solver fgmfoam,” https://www.tfd.chalmers.se/
∼hani/kurser/OS CFD 2019/Michael Bertsch/report FGMFoam.pdf, 2019.

[18] A. Lundström, “Simple gas phase reaction,” https://www.tfd.chalmers.se/∼hani/kurser/OS
CFD 2007/AndreasLundstrom/reactingFoam.pdf, 2007.

[19] H. E., “Combining a density-based compressible solver with a multiphase model,” https://www.
tfd.chalmers.se/∼hani/kurser/OS CFD 2020/EleanorHarvey/Project Report.pdf, 2020.

[20] A. F. Emery, “An evaluation of several differencing methods for inviscid fluid flow problems,”
Journal of Computational Physics, vol. 2, no. 3, pp. 306–331, 1968.

[21] P. J. M. Ferrer, R. Buttay, G. Lehnasch, and A. Mura, “A detailed verification procedure for
compressible reactive multicomponent navier–stokes solvers,” Computers & Fluids, vol. 89, pp.
88–110, 2014.

[22] W. Sutherland, “Lii. the viscosity of gases and molecular force,” The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, vol. 36, no. 223, pp. 507–531, 1893.

[23] D. R. Stull, JANAF Thermochemical Tables. Clearinghouse, 1965, vol. 1.

[24] J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of
hydrogen combustion,” International journal of chemical kinetics, vol. 36, no. 10, pp. 566–575,
2004.

45

https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2019/Seyed_Morteza_Mousavi/FinalReport_S_M_Mousavi_CFDWithOSS.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2019/Seyed_Morteza_Mousavi/FinalReport_S_M_Mousavi_CFDWithOSS.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2022/ArvidAkerblom/OF_Report_Arvid_Final.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2022/ArvidAkerblom/OF_Report_Arvid_Final.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2019/Michael_Bertsch/report_FGMFoam.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2019/Michael_Bertsch/report_FGMFoam.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/AndreasLundstrom/reactingFoam.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/AndreasLundstrom/reactingFoam.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2020/EleanorHarvey/Project_Report.pdf
https://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2020/EleanorHarvey/Project_Report.pdf

Study questions

1. What are the key differences between pressure-based and density-based solvers?

2. What are the key differences between reactingFoam, and rhoCentralFoam?

3. How are the advective fluxes calculated in rhoCentralFoam?

4. How to add reacting species transport equations to rhoCentralFoam in OpenFOAM?

46

Appendix A

reactingShockTube Additional Files

A.1 Allpre

reactingRhoCentralFoam/run/Allpre

#!/bin/sh

cd "${0%/*}" || exit # Run from this directory

. ${WM_PROJECT_DIR:?}/bin/tools/RunFunctions # Tutorial run functions

#--

runApplication chemkinToFoam \

chemkin/chem.inp chemkin/therm.dat chemkin/transportProperties \

constant/reactions constant/thermo

cp -r 0.orig/ 0/

runApplication blockMesh

runApplication setFields

runApplication decomposePar

#--

A.2 thermo

reactingRhoCentralFoam/run/constant/thermo

OH

{

specie

{

molWeight 17.00737;

}

thermodynamics

{

Tlow 200;

Thigh 6000;

Tcommon 1000;

highCpCoeffs (2.86472886 0.00105650448 -2.59082758e-07 3.05218674e-11 -1.33195876e-15

3718.85774 5.70164073);

lowCpCoeffs (4.12530561 -0.00322544939 6.52764691e-06 -5.79853643e-09 2.06237379e-12

3381.53812 -0.69043296);

}

transport

{

As 0;

Ts 0;

}

47

A.2. thermo Appendix A. reactingShockTube Additional Files

elements

{

H 1;

O 1;

}

}

H2O2

{

specie

{

molWeight 34.01474;

}

thermodynamics

{

Tlow 200;

Thigh 3500;

Tcommon 1000;

highCpCoeffs (4.16500285 0.00490831694 -1.90139225e-06 3.71185986e-10 -2.87908305e-14

-17861.7877 2.91615662);

lowCpCoeffs (4.27611269 -0.000542822417 1.67335701e-05 -2.15770813e-08 8.62454363e-12

-17702.5821 3.43505074);

}

transport

{

As 0;

Ts 0;

}

elements

{

H 2;

O 2;

}

}

O2

{

specie

{

molWeight 31.9988;

}

thermodynamics

{

Tlow 200;

Thigh 3500;

Tcommon 1000;

highCpCoeffs (3.28253784 0.00148308754 -7.57966669e-07 2.09470555e-10 -2.16717794e-14

-1088.45772 5.45323129);

lowCpCoeffs (3.78245636 -0.00299673416 9.84730201e-06 -9.68129509e-09 3.24372837e-12

-1063.94356 3.65767573);

}

transport

{

As 0;

Ts 0;

}

elements

{

O 2;

}

}

H2

{

specie

{

molWeight 2.01594;

}

48

A.2. thermo Appendix A. reactingShockTube Additional Files

thermodynamics

{

Tlow 200;

Thigh 3500;

Tcommon 1000;

highCpCoeffs (3.3372792 -4.94024731e-05 4.99456778e-07 -1.79566394e-10 2.00255376e-14

-950.158922 -3.20502331);

lowCpCoeffs (2.34433112 0.00798052075 -1.9478151e-05 2.01572094e-08 -7.37611761e-12

-917.935173 0.683010238);

}

transport

{

As 0;

Ts 0;

}

elements

{

H 2;

}

}

HO2

{

specie

{

molWeight 33.00677;

}

thermodynamics

{

Tlow 200;

Thigh 3500;

Tcommon 1000;

highCpCoeffs (4.0172109 0.00223982013 -6.3365815e-07 1.1424637e-10 -1.07908535e-14

111.856713 3.78510215);

lowCpCoeffs (4.30179801 -0.00474912051 2.11582891e-05 -2.42763894e-08 9.29225124e-12

294.80804 3.71666245);

}

transport

{

As 0;

Ts 0;

}

elements

{

H 1;

O 2;

}

}

O

{

specie

{

molWeight 15.9994;

}

thermodynamics

{

Tlow 200;

Thigh 3500;

Tcommon 1000;

highCpCoeffs (2.56942078 -8.59741137e-05 4.19484589e-08 -1.00177799e-11 1.22833691e-15

29217.5791 4.78433864);

lowCpCoeffs (3.1682671 -0.00327931884 6.64306396e-06 -6.12806624e-09 2.11265971e-12

29122.2592 2.05193346);

}

transport

{

As 0;

49

A.2. thermo Appendix A. reactingShockTube Additional Files

Ts 0;

}

elements

{

O 1;

}

}

H2O

{

specie

{

molWeight 18.01534;

}

thermodynamics

{

Tlow 200;

Thigh 3500;

Tcommon 1000;

highCpCoeffs (3.03399249 0.00217691804 -1.64072518e-07 -9.7041987e-11 1.68200992e-14

-30004.2971 4.9667701);

lowCpCoeffs (4.19864056 -0.0020364341 6.52040211e-06 -5.48797062e-09 1.77197817e-12

-30293.7267 -0.849032208);

}

transport

{

As 0;

Ts 0;

}

elements

{

H 2;

O 1;

}

}

H

{

specie

{

molWeight 1.00797;

}

thermodynamics

{

Tlow 200;

Thigh 3500;

Tcommon 1000;

highCpCoeffs (2.50000001 -2.30842973e-11 1.61561948e-14 -4.73515235e-18 4.98197357e-22

25473.6599 -0.446682914);

lowCpCoeffs (2.5 7.05332819e-13 -1.99591964e-15 2.30081632e-18 -9.27732332e-22 25473.6599

-0.446682853);

}

transport

{

As 0;

Ts 0;

}

elements

{

H 1;

}

}

AR

{

specie

{

molWeight 39.948;

50

A.3. reactions Appendix A. reactingShockTube Additional Files

}

thermodynamics

{

Tlow 200;

Thigh 5000;

Tcommon 1000;

highCpCoeffs (2.5 0 0 0 0 -745.375 4.366);

lowCpCoeffs (2.5 0 0 0 0 -745.375 4.366);

}

transport

{

As 0;

Ts 0;

}

elements

{

Ar 1;

}

}

A.3 reactions

reactingRhoCentralFoam/run/constant/thermo

elements 3(H O Ar);

species 9(H2 O2 H O OH HO2 H2O2 H2O AR);

reactions

{

un-named-reaction-0

{

type reversibleArrheniusReaction;

reaction "H2 + O2 = 2OH";

A 1.7e+10;

beta 0;

Ta 24042.47739;

}

un-named-reaction-1

{

type reversibleArrheniusReaction;

reaction "H2 + OH = H + H2O";

A 1170000;

beta 1.3;

Ta 1824.571432;

}

un-named-reaction-2

{

type reversibleArrheniusReaction;

reaction "H + O2 = O + OH";

A 5.13e+13;

beta -0.816;

Ta 8306.177779;

}

un-named-reaction-3

{

type reversibleArrheniusReaction;

reaction "H2 + O = H + OH";

A 18000000;

beta 1;

Ta 4441.165874;

}

un-named-reaction-4

{

type reversiblethirdBodyArrheniusReaction;

51

A.3. reactions Appendix A. reactingShockTube Additional Files

reaction "H + O2 = HO2";

A 2.1e+12;

beta -1;

Ta 0;

coeffs

9

(

(H2 3.3)

(O2 0)

(H 1)

(O 1)

(OH 1)

(HO2 1)

(H2O2 1)

(H2O 21)

(AR 1)

)

;

}

un-named-reaction-5

{

type reversibleArrheniusReaction;

reaction "H + O2 + O2 = HO2 + O2";

A 6.7e+13;

beta -1.42;

Ta 0;

}

un-named-reaction-6

{

type reversibleArrheniusReaction;

reaction "HO2 + OH = H2O + O2";

A 5e+10;

beta 0;

Ta 503.1912388;

}

un-named-reaction-7

{

type reversibleArrheniusReaction;

reaction "H + HO2 = 2OH";

A 2.5e+11;

beta 0;

Ta 956.0633538;

}

un-named-reaction-8

{

type reversibleArrheniusReaction;

reaction "HO2 + O = O2 + OH";

A 4.8e+10;

beta 0;

Ta 503.1912388;

}

un-named-reaction-9

{

type reversibleArrheniusReaction;

reaction "2OH = H2O + O";

A 600000;

beta 1.3;

Ta 0;

}

un-named-reaction-10

{

type reversiblethirdBodyArrheniusReaction;

reaction "H2 = 2H";

A 2230000000;

beta 0.5;

Ta 46595.50872;

coeffs

9

52

A.3. reactions Appendix A. reactingShockTube Additional Files

(

(H2 3)

(O2 1)

(H 2)

(O 1)

(OH 1)

(HO2 1)

(H2O2 1)

(H2O 6)

(AR 1)

)

;

}

un-named-reaction-11

{

type reversiblethirdBodyArrheniusReaction;

reaction "O2 = 2O";

A 185000000;

beta 0.5;

Ta 48084.95478;

coeffs

9

(

(H2 1)

(O2 1)

(H 1)

(O 1)

(OH 1)

(HO2 1)

(H2O2 1)

(H2O 1)

(AR 1)

)

;

}

un-named-reaction-12

{

type reversiblethirdBodyArrheniusReaction;

reaction "H + OH = H2O";

A 7.5e+17;

beta -2.6;

Ta 0;

coeffs

9

(

(H2 1)

(O2 1)

(H 1)

(O 1)

(OH 1)

(HO2 1)

(H2O2 1)

(H2O 20)

(AR 1)

)

;

}

un-named-reaction-13

{

type reversibleArrheniusReaction;

reaction "H + HO2 = H2 + O2";

A 2.5e+10;

beta 0;

Ta 352.2338672;

}

un-named-reaction-14

{

type reversibleArrheniusReaction;

53

A.3. reactions Appendix A. reactingShockTube Additional Files

reaction "2HO2 = H2O2 + O2";

A 2000000000;

beta 0;

Ta 0;

}

un-named-reaction-15

{

type reversiblethirdBodyArrheniusReaction;

reaction "H2O2 = 2OH";

A 1.3e+14;

beta 0;

Ta 22895.20137;

coeffs

9

(

(H2 1)

(O2 1)

(H 1)

(O 1)

(OH 1)

(HO2 1)

(H2O2 1)

(H2O 1)

(AR 1)

)

;

}

un-named-reaction-16

{

type reversibleArrheniusReaction;

reaction "H + H2O2 = H2 + HO2";

A 1600000000;

beta 0;

Ta 1912.126708;

}

un-named-reaction-17

{

type reversibleArrheniusReaction;

reaction "H2O2 + OH = H2O + HO2";

A 1e+10;

beta 0;

Ta 905.7442299;

}

}

54

	Introduction
	Theoretical Background
	Reacting Flow Governing Equations
	Central Scheme Theory

	Compressible Solvers in OpenFOAM
	Thermophysical Models
	reactingFoam
	Introduction
	createFields.H
	reactingFoam.C
	rhoEqn.H
	UEqn.H
	YEqn.H
	EEqn.H
	pEqn.H

	rhoCentralFoam
	createFields.H
	rhoCentralFoam.C
	Central Flux Scheme Implementation
	Solve Governing Equations

	Implementation of reactingRhoCentralFoam
	createFields.H
	thermo Object and Species Mass Fractions

	reactingRhoCentralFoam.C
	Header Files
	rhoYEqn.H

	Make/files and Make/options

	Test Cases
	Cold Flow: forwardStep case
	Setup
	Thermophysical Files
	Initial T, U Files
	Results

	Reacting Flow: One-Dimensional Reacting Shock Tube
	Setup
	Thermophysical Files
	Initial Files
	Results

	Conclusion
	reactingShockTube Additional Files
	Allpre
	thermo
	reactions

