Implementing the SP₃-Approximation for Radiation Heat Transfer in OpenFOAM

Andrea Correa

Luleå University of Technology, Luleå, Sweden

January 21, 2025

- 2 Spherical Harmonic Approximation P_N Models
- (3) P_1 and SP_3 Approximations
- Implementation
- 5 Case Study: smallPoolFire2D
- 6 Conclusions and future works

Radiation

- Thermal radiation is the emission of electromagnetic waves by matter due to its temperature.
- Energy transfer without a medium.
- Spectral characteristics: Covers infrared, visible, and ultraviolet wavelengths.
- Radiation interacts with surfaces and materials in three ways: absorption, reflection, and transmission.

Radiation - electromagnetic spectrum

Applications in fire safety

- Radiation transfers heat from flames to nearby objects.
- Firefighter protective equipment minimizes risks from thermal radiation.
- Radiation accelerates fire spread in enclosed spaces.
- Hydrogen flames emit less visible radiation, posing unique detection and safety challenges.

Applications in fire safety

- Is radiation dangerous?
- How much intensity?
- Is it possible to measure?

Applications in fire safety

Radiative Transfer Equation (RTE)

• Radiative intensity, denoted as I_{η} , is the amount of radiant energy traveling in a specific direction.

$$\frac{dI_{\eta}}{ds} = \hat{s} \cdot \nabla I_{\eta} = \kappa_{\eta} I_{\eta b} - \beta_{\eta} I_{\eta} + \frac{\sigma_{s\eta}}{4\pi} \int_{4\pi} I_{\eta}(\hat{s}_{i}) \Phi_{\eta}(\hat{s}_{i}, \hat{s}) d\Omega_{i},$$

• It can be determined experimentally using radiometers or spectroradiometers and computationally by solving RTE through methods such as Discrete Ordinates (DOM), Monte Carlo, or Spherical Harmonics.

Radiative Transfer Equation (RTE)

$$\frac{dI_{\eta}}{ds} = \hat{s} \cdot \nabla I_{\eta} = \kappa_{\eta} I_{\eta b} - \beta_{\eta} I_{\eta} + \frac{\sigma_{s\eta}}{4\pi} \int_{4\pi} I_{\eta}(\hat{s}_{i}) \Phi_{\eta}(\hat{s}_{i}, \hat{s}) d\Omega_{i},$$

Numerical Solutions

- Discrete Ordinates Method (DOM): Discretizes the angular domain into finite directions.
- Spherical Harmonics Approximations (*P_N* Models): Expands radiative intensity into spherical harmonics for approximate solutions.
- Monte Carlo Method: Uses stochastic techniques to simulate photon paths and interactions.
- Finite Volume Method (FVM): Solves the RTE numerically by dividing the domain into finite volumes.
- Ray Tracing: Tracks individual rays to compute radiative intensity along paths.
- **Rosseland Mean Approximation:** Uses average properties weighted by the temperature gradient for optically thick media.

Radiative Transfer Equation (RTE)

$$\frac{dI_{\eta}}{ds} = \hat{s} \cdot \nabla I_{\eta} = \kappa_{\eta} I_{\eta b} - \beta_{\eta} I_{\eta} + \frac{\sigma_{s\eta}}{4\pi} \int_{4\pi} I_{\eta}(\hat{s}_{i}) \Phi_{\eta}(\hat{s}_{i}, \hat{s}) d\Omega_{i},$$

Radiation models in OpenFOAM

- fvDOM
- noRadiation
- opaqueSolid
- P1
- solarLoad
- viewFactor
- laserDTRM

The method of spherical harmonics

- Simplifies radiative transfer equations into solvable partial differential equations.
- Higher-order approximations improve accuracy in anisotropic or optically thin media.

Source: Magula, A., Models of Nuclear Orbitals.

Radiation model in OpenFOAM

P1-Model: is the simplest form of the spherical harmonics method, where the radiative intensity is expanded up to the first term in the spherical harmonics series.

Implementation

SP3-Model: extends the P1 method by including higher-order terms, specifically the third-order term, which improves accuracy in capturing angular variations.

The radiative intensity $I(\mathbf{r}, \hat{s})$ at position \mathbf{r} in the direction \hat{s} can be expanded in terms of spherical harmonics $Y_l^m(\hat{s})$ as follows

$$J(\mathbf{r},\hat{s}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} I_l^m(\mathbf{r}) Y_l^m(\hat{s}),$$

Source: Thini," Photo-ionization of polarized lithium atoms out of an all-optical atom trap: A complete experiment."

The radiative intensity $I(\mathbf{r}, \hat{s})$ at position \mathbf{r} in the direction \hat{s} can be expanded in terms of spherical harmonics $Y_l^m(\hat{s})$ as follows

$$I(\mathbf{r},\hat{s}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} I_l^m(\mathbf{r}) Y_l^m(\hat{s}),$$

where

$$Y_l^m(\hat{s}) = \begin{cases} \cos(m\psi)P_l^m(\cos\theta), & \text{for } m \ge 0, \\ \sin(m\psi)P_l^m(\cos\theta), & \text{for } m < 0, \end{cases}$$

and P_l^m are the associated Legendre polynomials

$$P_{l}^{m}(\mu) = (-1)^{l} \frac{(1-\mu^{2})^{|l|/2}}{2^{l}l!} \frac{d^{l+|l|}}{d\mu^{l+|l|}} \left(\mu^{2}-1\right)^{l}$$

l degree of angular momentum, *m*describes the azimuthal orientation, -l < m < l.

Source: Thini," Photo-ionization of polarized lithium atoms out of an all-optical atom trap: A complete experiment."

Radiative Transfer Equation

$$\frac{dI_{\eta}}{ds} = \kappa_{\eta}I_{\eta b} - \beta_{\eta}I_{\eta} + \frac{\sigma_{s\eta}}{4\pi}\int_{4\pi}I_{\eta}(\hat{s}_{i})\Phi_{\eta}(\hat{s}_{i},\hat{s})d\Omega_{i},$$

Key Parameters of the RTE

- I_{η} : Spectral radiative intensity.
- κ_{η} : Spectral absorption coefficient.
- β_{η} : Extinction coefficient, defined as $\beta_{\eta} = \kappa_{\eta} + \sigma_{s\eta}.$
- $\sigma_{s\eta}$: Spectral scattering coefficient.

Source: Modest M., Radiative heat transfer

Radiative Transfer Equation

$$rac{dI_\eta}{ds} = \kappa_\eta I_{\eta b} - eta_\eta I_\eta + rac{\sigma_{s\eta}}{4\pi} \int_{4\pi} I_\eta(\hat{s}_i) \Phi_\eta(\hat{s}_i, \hat{s}) d\Omega_i,$$

Key Parameters of the RTE

- $d\Omega$: Solid angle
- \hat{s} : Unit vector in a given direction.
- $\Phi_{\eta}(\hat{s}_i, \hat{s})$: Scattering phase function
- θ : Polar angle
- ψ : Azimuthal angle

Inspired in the book "Radiative Heat Transfer" by Modest

$\boldsymbol{\mathsf{P}}_1$ and $\boldsymbol{\mathsf{SP}}_3$ - Approximations

P_1 - Approximations

The $I(\mathbf{r}, \hat{s})$ is truncated beyond I = 1 with $m = \pm 1, 0$

$$I(\mathbf{r}, \hat{s}) = I_0^0 + I_1^0 \cos heta - I_1^1 \sin heta \cos \psi + I_1^{-1} \sin heta \sin \psi$$

The $I(\mathbf{r}, \hat{s})$ is truncated beyond l = 1 with $m = \pm 1, 0$, and the direction vector $\hat{\mathbf{s}} = \sin \theta \cos \psi \hat{i} + \sin \theta \sin \psi \hat{j} + \cos \theta \hat{k}$

The $I(\mathbf{r}, \hat{s})$ is truncated beyond l = 1 with $m = \pm 1, 0$, and the direction vector $\hat{\mathbf{s}} = \sin \theta \cos \psi \hat{i} + \sin \theta \sin \psi \hat{j} + \cos \theta \hat{k}$

The incident radiation G_{η} and radiative heat flux ${\bf q}$ are defined as

$$G_{\eta}(\mathbf{r}) = \int_{4\pi} I(\mathbf{r}, \mathbf{\hat{s}}) \, d\Omega, \quad \mathbf{q} = \int_{4\pi} I(\mathbf{r}, \mathbf{\hat{s}}) \mathbf{\hat{s}} \, d\Omega,$$

The intensity can be expressed

$$I(\mathbf{r}, \mathbf{\hat{s}}) = \frac{1}{4\pi} \left[G(\mathbf{r}) + 3\mathbf{q}(\mathbf{r}) \cdot \mathbf{\hat{s}} \right].$$

The equations that constitute the P_1 -approximation are given by

$$abla_{ au} G = -(3 - A_1 \omega) \mathbf{q}, \qquad \qquad \nabla_{ au} \cdot \mathbf{q} = (1 - \omega)(4\pi I_b - G)$$

or as a single elliptic second-order PDE for the incident radiation

$$\frac{1}{3\kappa}\nabla\cdot\left(\frac{1}{\beta-A_{1}\sigma_{s}/3}\nabla G\right)-G=-4\pi I_{\eta b},$$

expressed in terms of $\omega \equiv \sigma_{\eta}/\beta_{\eta}$, the absorption, scattering, and extinction coefficients.

The equations that constitute the P₁-approximation are given by

$$abla_{ au}G = -(3 - A_1\omega)\mathbf{q}, \qquad \qquad
abla_{ au} \cdot \mathbf{q} = (1 - \omega)(4\pi I_b - G)$$

or as a single elliptic second-order PDE for the incident radiation

$$\frac{1}{3\kappa}\nabla\cdot\left(\frac{1}{\beta-A_{1}\sigma_{s}/3}\nabla G\right)-G=-4\pi I_{\eta b},$$

expressed in terms of $\omega \equiv \sigma_{\eta}/\beta_{\eta}$, the absorption, scattering, and extinction coefficients.

The radiative heat flux can be expressed as

$$\mathbf{q} = -\frac{1}{3 - A_1 \omega} \nabla_\tau G.$$

and the Marshak boundary conditions for the P_1 -approximation

$$\frac{2-\epsilon}{\epsilon}G-\frac{1}{\epsilon}\nabla\cdot\mathbf{q}=4\pi I_{bw}.$$

Source: Modest M., Radiative heat transfer

January 21, 2025

20 / 53

SP_3 - Approximations

The $I(\mathbf{r}, \hat{s})$ is truncated beyond I = 3 with $m = \pm 3, \pm 2, \pm 1, 0$

$$I(\mathbf{r}, \hat{s}) = J_o(\mathbf{r}) + J_2(\mathbf{r}) \cdot P_2(\hat{s}),$$

where $J_0(\mathbf{r})$ is the zeroth moment, $J_2(\mathbf{r})$ the second moment, and $P_2(\mathbf{\hat{s}}) = 1/2 (3 \cos^2 \theta - 1)$

SP₃ - Approximations

The $I(\mathbf{r}, \hat{s})$ is truncated beyond I = 3 with $m = \pm 3, \pm 2, \pm 1, 0$

$$I(\mathbf{r},\hat{s}) = J_o(\mathbf{r}) + J_2(\mathbf{r}) \cdot P_2(\hat{s}),$$

where $J_0(\mathbf{r})$ is the zeroth moment, $J_2(\mathbf{r})$ the second moment, and $P_2(\mathbf{\hat{s}}) = 1/2 (3 \cos^2 \theta - 1)$

SP₃ - Approximations

- The Simplified P_N (SP_N) approximation reduces the complexity of P_N equations.
- Odd-order terms are treated as vectors with divergence operators, and even-order terms remain scalar with gradients.

SP_N - Approximations

- The Simplified P_N (SP_N) approximation reduces the complexity of P_N equations.
- Odd-order terms are treated as vectors with divergence operators, and even-order terms remain scalar with gradients.

$$I(au_\eta,\mu) pprox \sum_{l=0}^N I_l(au_\eta) P_l(\mu),$$

where $I_l(\tau_\eta)$ represents coefficients that depend only on the optical thickness τ_η . By substituting this expression into the RTE and applying the orthogonality properties of Legendre polynomials, a system of coupled differential equations for the coefficients $I_l(\tau_\eta)$ is obtained.

$$rac{k+1}{2k+1}I'_{k-1}(au_\eta)+rac{k}{2k-1}I'_{k-1}(au_\eta)+\left(1-rac{\omega A_k}{2k+1}
ight)I_k(au_\eta)=(1-\omega)I_b(au_\eta)\delta_{0k},$$

where k = 0, 1, ..., N, and ω is the scattering albedo of the medium.

P₃ - Approximations

- Odd-order terms vanish due to the dependence of $P_n^m(\cos\theta)$ on odd powers of $\cos\theta$, resulting in $I_n^m = 0$.
- Symmetry constraints eliminate terms with m > n and z-derivatives in 2D problems.
- Higher-order terms like I_4^m are excluded in P_3 , simplifying to four key equations.

P₃ - Approximations

- Odd-order terms vanish due to the dependence of $P_n^m(\cos\theta)$ on odd powers of $\cos\theta$, resulting in $I_n^m = 0$.
- Symmetry constraints eliminate terms with m > n and z-derivatives in 2D problems.
- Higher-order terms like I_4^m are excluded in P_3 , simplifying to four key equations.

SP₃ - Approximations

- SP₃ removes cross-terms and complex derivatives present in P₃, resulting in a more efficient and practical formulation.
- Unlike *P*₃, *SP*₃ captures second-order anisotropies while maintaining simplicity, making it ideal for multidimensional systems and optically thick media.

$$\sum_{k \text{ even}} p_{k,2i-1}^0 I_k - \sum_{k \text{ odd}} \frac{p_{k,2i-1}^0}{\alpha_k} \left[\frac{k}{2k-1} \, \hat{n} \cdot \nabla_\tau I_{k-1} + \frac{k+1}{2k+3} \, \hat{n} \cdot \nabla_\tau I_{k+1} \right] = \frac{p_{0,2i-1}^0}{\pi} J_w,$$

$$i = 1, 2, \dots, \frac{1}{2} (N+1).$$

The SP₃ model results in a system of two coupled equations

$$\frac{1}{3}\nabla\cdot\left(\frac{1}{\kappa}\nabla J_{0}\right)-\kappa\left(J_{0}-\frac{2}{3}J_{2}-I_{b}\right)=0,\\ \frac{3}{7}\nabla\cdot\left(\frac{1}{\kappa}\nabla J_{2}\right)+\frac{2}{3}\nabla\cdot\left(\frac{1}{\kappa}\nabla J_{0}\right)-\kappa J_{2}=0.$$

The incident radiation G and the radiative flux \mathbf{q}

$$G = 4\pi \left(J_0 - \frac{2}{3}J_2\right),$$
 $\mathbf{q} = -\frac{1}{3\kappa} \nabla J_0,$

where the $-\frac{2}{3}J_2$ factor arises from the contribution of the quadratic term $P_2^0(\hat{s})$. The Marshak Boundary Conditions

$$i = 1: \qquad \frac{1}{3\alpha_1} \hat{\mathbf{n}} \cdot \nabla_\eta J_0 = \frac{1}{2} \left(J_0 - \frac{J_w}{\pi} \right) + \frac{1}{8} J_2,$$

$$i = 2: \qquad \frac{1}{7\alpha_3} \hat{\mathbf{n}} \cdot \nabla_\eta J_2 = -\frac{1}{8} \left(J_0 - \frac{J_w}{\pi} \right) + \frac{7}{24} J_2.$$

The structure of this directory.

The radiation functionality in OpenFOAM is found under the thermophysicalModels directory.

```
thermophysicalModels
   radiation
      Make
      derivedFvPatchFields
        MarshakRadiation
         SP3MarshakRadiation
           SP3MarshakRadiationFvPatchScalarField.C
           SP3MarshakRadiationFvPatchScalarField.H
        MarshakRadiationFixedTemperature
      radiationModels
         P<sub>1</sub>
        SP3
           SP3.C
           SP3.H
```

```
Foam::radiation::SP3::SP3(const volScalarField& T):
  J2_(IOobject(
       "J2".
 3
      mesh_.time().timeName(),
      mesh_,
      IOobject::NO_READ,
       IOobject::NO_WRITE
       ), mesh_),
8
  a1_(IOobject(
9
       "a1".
10
       mesh_.time().timeName(),
11
      mesh .
12
      IOobject::NO_READ,
13
      IOobject::AUTO_WRITE
14
       ),mesh_,dimensionedScalar(dimless/dimLength, Zero)),
15
  a2_(IOobject(
16
       "a2".
17
      mesh_.time().timeName(),
18
      mesh_,
19
      IOobject::NO_READ,
20
      IOobject::AUTO_WRITE
21
       ),mesh_,dimensionedScalar(dimless/dimLength, Zero)),
22
  // . . .
23
```

SP3.C - Constructor

Foam::radiation::SP3::SP3

- Initializes the diffusivity and absorption coefficients
 a, a₁, a₂, a₃, the second moment J₂, and the radiative flux q_r across domain boundaries.
- This ensures proper boundary treatment and overall energy conservation.

SP3.C - calculate()

The code initializes coefficients and emission terms while introducing a small stabilization constant a_0 to ensure numerical stability in the radiative transfer calculations.

```
1 a_ = dimensionedScalar("alpha0", coeffs_); // Absorption coefficient for J0
2 a1_ = dimensionedScalar("alpha1", coeffs_); // Diffusivity for J0
3 a2_ = dimensionedScalar("alpha2", coeffs_); // Absorption coefficient for J2
4 a3_ = dimensionedScalar("alpha3", coeffs_); // Diffusivity for J2
5 e_ = absorptionEmission_->e();
6 E_ = absorptionEmission_->E();
```

SP3.C - calculate()

The code initializes coefficients and emission terms while introducing a small stabilization constant a_0 to ensure numerical stability in the radiative transfer calculations.

```
1 a_ = dimensionedScalar("alpha0", coeffs_); // Absorption coefficient for J0
2 a1_ = dimensionedScalar("alpha1", coeffs_); // Diffusivity for J0
3 a2_ = dimensionedScalar("alpha2", coeffs_); // Absorption coefficient for J2
4 a3_ = dimensionedScalar("alpha3", coeffs_); // Diffusivity for J2
5 e_ = absorptionEmission_->e();
6 E_ = absorptionEmission_->E();
```

```
1 const volScalarField gamma0(
     IOobject("gammaORad", G_.mesh().time().timeName(), G_
2
      .mesh().
               IOobject::NO_READ, IOobject::NO_WRITE),
3
     1.0/(3.0*a1_ + sigmaEff + a0));
4
5 const volScalarField gamma2(
     IOobject("gamma2Rad", G_.mesh().time().timeName(), G_
6
      .mesh().
               IOobject::NO_READ, IOobject::NO_WRITE),
7
     3.0/(7.0*a3_ + sigmaEff + a0));
8
```

The diffusion coefficients are defined as

$$\gamma_0 = rac{1}{3(a_1 + \sigma_{ ext{eff}} + a_0)},$$

 $\gamma_2 = rac{3}{7(a_3 + \sigma_{ ext{eff}} + a_0)},$

where a_1 and a_3 are the diffusivity terms associated with J_0 and J_2

Coupled equations

The SP_3 model is based on two coupled equations to solve the RTE, which will be implemented in the calculate() function.

The code corresponds at the equation G,

$$\frac{1}{3}\nabla\cdot\left(\frac{1}{\kappa}\nabla J_0\right)-\kappa\left(J_0-\frac{2}{3}J_2-I_b\right)=0$$

The equation for the second moment J_2 is

$$\frac{1}{3}\nabla\cdot\left(\frac{1}{\kappa}\nabla J_{2}\right)+\frac{2}{3}\nabla\cdot\left(\frac{1}{\kappa}\nabla J_{0}\right)-\kappa J_{2}=0$$

```
1 solve
2 (
3  fvm::laplacian(gamma2, J2_)
4  - fvm::Sp(a2_, J2_)
5  == (2.0 / 3.0) * couplingTerm
6 );
```

// Diffusion term
// Absorption term
// Coupling with G

```
volScalarField couplingTerm(
1
      IOobject
2
3
           "couplingTerm",
           G .mesh().timeName().
          G_.mesh(),
6
           IOobject::NO_READ,
           IOobject::NO_WRITE
8
      ),
9
      fvc::div(fvc::grad(G) / a1_));
10
```

The coupling term $\frac{2}{3}\nabla \cdot \left(\frac{1}{\kappa}\nabla J_0\right)$ explicitly connects G with J_2

Radiative Heat Flux on Boundaries

The boundary fields in the code are qrBf for the radiative flux q_r , GBf for the zeroth moment G, J2Bf for the second moment J_2 , gammaOBf and gamma2Bf for diffusivities γ_0 and γ_2 .

```
volScalarField::Boundary& grBf = gr_.boundaryFieldRef();
const volScalarField::Boundary& GBf = G_.boundaryField();
const volScalarField::Boundary& J2Bf = J2_.boundaryField();
const volScalarField::Boundary& gammaOBf = gammaO.boundaryField();
const volScalarField::Boundary& gamma2Bf = gamma2.boundaryField();
// Iterate through all boundary patches
forAll(G_.mesh().boundary(), patchI)
ſ
    const fvPatch& patch = G_.mesh().boundary()[patchI];
    if (!GBf[patchI].coupled())
    ſ
       // Compute radiative flux using gradient terms from J0 (G_) and J2
        qrBf[patchI] =
            -gammaOBf[patchI] * GBf[patchI].snGrad()
            -gamma2Bf[patchI] * J2Bf[patchI].snGrad();
    ł
    11 . . .
```

2

4

5 6

SP3MarshakRadiationFvPatchScalarField.C - Boundary conditions

The boundary field for J_2 (J2Boundary) is initialized from the file system during the simulation setup.

```
// Diffusivity - created by radiation model's ::updateCoeffs()
const auto& gamma0 = patch().lookupPatchField<volScalarField>("gamma0Rad");
const auto& gamma2 = patch().lookupPatchField<volScalarField>("gamma2Rad");
const auto& J2Boundary = patch().lookupPatchField<volScalarField>("J2");
```

SP3MarshakRadiationFvPatchScalarField.C - Boundary conditions

The boundary field for J_2 (J2Boundary) is initialized from the file system during the simulation setup.

<pre>// Diffusivity - created by radiation model's ::updateCoeffs()</pre>
<pre>const auto& gamma0 = patch().lookupPatchField<volscalarfield>("gamma0Rad");</volscalarfield></pre>
<pre>const auto& gamma2 = patch().lookupPatchField<volscalarfield>("gamma2Rad");</volscalarfield></pre>
<pre>const auto& J2Boundary = patch().lookupPatchField<volscalarfield>("J2");</volscalarfield></pre>

The valueFraction() is calculated to incorporate both γ_0 and γ_2 , and The factor of 0.5 is used due to the normalization and orthogonality of the Legendre polynomial $P_2(\cos \theta)$.

```
// Effective emissivity factor for SP3
const scalarField Ep = emissivity / (2.0 * (scalar(2) - emissivity));
// Calculate value fraction for SP3 (depends on gamma0 and gamma2 contributions)
valueFraction() = 1.0 / (1.0 + (gamma0 + gamma2) * patch().deltaCoeffs() / Ep);
// Update boundary values for J2 using the read boundary field
const scalar reflectionFactor = 0.5; // Reflection factor for SP3
patchInternalField() =
    reflectionFactor * J2Boundary; // Use the boundary field directly
```

2 3

5

7

8

9

Case Study: smallPoolFire2D

smallPoleFire2D

cp -r \$FOAM_TUTORIALS/combustion/fireFoam/smallPoleFire2D \$FOAM_RUN
run
cd smallPoleFire2D

- It is used to compare P_1 and SP_3 -approximations to predict radiative heat transfer and temperature distributions.
- In this case, methane (*CH*₄) is used as a gaseous fuel to simulate the radiative effects.
- Critical parameters, such as the Heat Release Rate (HRR) and incident radiative flux, are calculated.

smallPoleFire2D

cp -r \$FOAM_TUTORIALS/combustion/fireFoam/smallPoleFire2D \$FOAM_RUN run

cd smallPoleFire2D

- It is used to compare P_1 and SP_3 -approximations to predict radiative heat transfer and temperature distributions.
- In this case, methane (CH_4) is used as a gaseous fuel to simulate the radiative effects.
- Critical parameters, such as the Heat Release Rate (HRR) and incident radiative flux, are calculated.

Physical and Numerical Models for the PoolFire2D Case

Model	Choice
Turbulence	LES (Large Eddy Simulation)
Combustion	EDM (Eddy Dissipation Model)
Radiative Heat Transfer	P_1 and SP_3 radiation models
Emission and Absorption	constantAbsorptionEmission with case-dependent coefficients
Soot Formation	None

Andrea Correa

Implementing the SP₃-Approximation for Radiation Heat Transfer in OpenFOAM

constant directory: radiationProperties

The file radiationProperties specifies the general settings for the radiation model. Here, the SP_3 model is activated with the following entries

```
1
2 radiation on;
3
4 radiationModel SP3;
5
6 SP3Coeffs
7 {
8 alpha0 [0 -1 0 0 0 0 0] 1.0; // [1/m]
9 alpha1 [0 -1 0 0 0 0 0] 0.8; // [1/m]
10 alpha2 [0 -1 0 0 0 0 0] 0.8; // [1/m]
11 alpha3 [0 -1 0 0 0 0 0] 0.9; // [1/m]
12 }
13 solverFreq 10;
14 \...
```

Case Study: smallPoolFire2D

system directory: fvSolution

- Solver configurations for G and J_2 .
- The GAMG solver ensures efficient convergence with the DICGaussSeidel smoother for both moments.

```
(G|J2)"
 1
  ſ
 2
       solver
                          GAMG:
 3
       tolerance
                         1e-06;
       relTol
                          0.1;
 5
       smoother
                          DICGaussSeidel;
6
7
  };
8
  "(G|J2)Final"
9
  ſ
10
                          GAMG:
       solver
11
       tolerance
                         1e-08;
12
       relTol
                          0:
13
14 };
15
```

Case Study: smallPoolFire2D

system directory: fvSchemes

Gradient and divergence schemes for G and J_2 :

```
1 divSchemes{
      default none;
2
      div(phi,U) Gauss LUST grad(U);
3
      div(U) Gauss linear;
      div(phi,K) Gauss linear;
5
      div(phi,k) Gauss limitedLinear 1;
6
      div(phi,FSDomega) Gauss limitedLinear 1;
7
      div(phi,Yi_h) Gauss multivariateSelection
8
      ſ
9
          02 limitedLinear01 1;
10
          CH4 limitedLinear01 1:
11
          N2 limitedLinear01 1:
12
          H2O limitedLinearO1 1;
13
          CO2 limitedLinearO1 1:
14
          h limitedLinear 1;
15
      }:
16
      div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
17
      div(Ji,Ii_h) Gauss upwind; //moment - J
18
      div((grad(G)|a1)) Gauss linear;} //moment - G
19
```

$0/: J_2$ Initialization

The Initialization of J_2 has the SP3MarshakRadiation boundary condition and manages radiative flux interactions with the domain boundaries.

```
dimensions
                     [1 0 -3 0 0 0 0];
2
  internalField uniform 0.000001;
 3
4
  boundaryField
5
  {
6
       ".*"
8
                              SP3MarshakRadiation;
           type
9
           value
                              uniform 0;
10
       }
11
12
       frontAndBack
13
       ſ
14
15
            type
                              empty;
       }
16
17 }
18
```

controlDict - Heat Release Rate (HRR)

The volFieldValue calculates the Heat Release Rate (HRR) by integrating the radiative heat flux (Qdot) over the entire computational domain.

1	HRR		
2	{		
3		type	volFieldValue;
4		libs	("libfieldFunctionObjects.so");
5		log	true;
6		writeControl	<pre>timeStep;</pre>
7		writeInterval	1;
8		writeFields	false;
9		regionType	all;
10		operation	volIntegrate;
11		enabled	true;
12		fields	
13		(
14		Qdot	
15);	
16	}		

controlDict - Thermocouple measurements

The thermoCoupleProbes function simulates thermocouples to measure temperature at selected positions within the plume.

1	thermoCouple		
2	{ type	thermoCoupleProbes;	
3	libs	<pre>(utilityFunctionObjects);</pre>	
4	writeControl	<pre>timeStep;</pre>	
5	writeInterval	1;	
6			
7	solver	Euler;	
8	absTol	1e-4;	
9	relTol	1e-1;	
10			
11	interpolationScheme cell;		
12			
13	rho	8908;	
14	Ср	440;	
15	d	1e-3;	
16	epsilon	0.9;	
17	\		

controlDict - Thermocouple measurements

The thermoCoupleProbes function simulates thermocouples to measure temperature at selected positions within the plume.

```
. . .
 1
 2
        radiationField G:
 3
 4
        probeLocations
 5
6
                 0.00\ 0.5\ 0.0)
 7
                 0.25 \ 0.5 \ 0.0)
8
                 0.50 \ 0.5 \ 0.0)
9
        );
10
        fields
11
12
             т
13
        );
14
15 }
```

controlDict - Incident radiation

The surfaces function samples the incident radiation (G) along a vertical line from (0.1, 0.0, 0.0) to (0.1, 5.0, 0.0), with 100 evenly distributed points.

1	surfaces				
2	{ type sets;				
3	libs (sampling);				
4	<pre>writeControl writeTime;</pre>				
5	setFormat raw;				
6	interpolationScheme cellPoint;				
7	fields (G);				
8	sets				
9	(line				
10	{				
11	type uniform;				
12	axis xyz;				
13	start (0.1 0.0 0.0);				
14	end (0.1 5.0 0.0);				
15	nPoints 100;				
16	}				
17);				
18	}				

Case Study: smallPoolFire2D

Results

The temperature variation over time for P_1 and SP_3 models.

Andrea Correa

Results

Incident radiance measured in Position 1: (0.25, 0.50, 0.0) and Position 2: (0.50, 0.50, 0.0) using P_1 and SP_3 model

Implementing the SP₃-Approximation for Radiation Heat Transfer in OpenFOAM

Conclusions and Future Works

Conclusions

- SP₃ better predicts radiative diffusion and angular dependencies, reducing P₁'s overestimation of intensity near the plume core.
- SP₃ captures gradual intensity decreases farther from the plume center, matching physical flux attenuation.
- SP₃ is more computationally demanding but offers superior accuracy for detailed fire safety and combustion simulations.

Future Works

- Angular Validation: Add measurements at various angles/distances to validate SP₃, focusing on regions dominated by radiative transfer.
- Advanced Boundary Conditions: Incorporate reflective, semi-transparent, or mixed boundary conditions to enhance SP₃ accuracy.
- **Turbulence Models:** Compare LES-SP₃ for transient dynamics and RANS-SP₃ for steady-state cases to optimize efficiency and accuracy.

