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Taught by Håkan Nilsson

interPhaseChangeBubbleFoam: A hybrid
Eulerian-Lagrangian solver to capture

nuclei effects on hydrodynamic cavitation

Developed for OpenFOAM-v2406

Author:
Mahdi Lavari
Worcester Polytechnic Institute
mlavari@wpi.edu

Peer reviewed by:
Prof. Aswin Gnanaskandan

Dr. Saeed Salehi
Muhammad Ahmad Raza

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like to learn some

details similar to the ones presented in the report and in the accompanying files. The material has
gone through a review process. The role of the reviewer is to go through the tutorial and make
sure that it works, that it is possible to follow, and to some extent correct the writing. The

reviewer has no responsibility for the contents.

January 23, 2025

http://dx.doi.org/10.17196/OS_CFD#YEAR_2024


Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to use interPhaseChangeFoam.

• How to use the Lagrangian library in OpenFOAM.

• How to use the Rayleigh-Plesset equation from Chen’s work [1].

The theory of it:

• The theory of the Homogeneous Mixture Model or Volume of Fluid method implemented in
interPhaseChangeFoam.

• The theory of Lagrangian particle tracking.

How it is implemented:

• How the alpha (liquid volume fraction) transport equation is implemented in the code.

How to modify it:

• How to couple interPhaseChangeFoam with the Lagrangian library.

• How to couple the Lagrangian library with Rayleigh-Plesset equation.

• How to switch the vapor structures between the Eulerian and Lagrangian frameworks.
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Prerequisites

The reader is expected to be familiar with the following topics to gain maximum benefit from this
report:

• Fundamentals of multiphase flows, more specifically hydrodynamic cavitation.

• Fundamentals of the Homogeneous Mixture Model or Volume of Fluid with Finite Mass Trans-
fer.

• PhD dissertations by Ghahramani [2] and Vallier [3] on coupling Lagrangian and Eulerian
frameworks.

• Fundamentals of bubble dynamics and the solution to the Rayleigh-Plesset equation.
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Nomenclature

Acronyms
FMT Finite Mass Transfer
L-E Lagrangian-Eulerian
RPE Rayleigh-Plesset Equation
VOF Volume of Fluid

English symbols
ṁ Source term for phase interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/s
ṁc Mass transfer rate for condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/s
ṁv Mass transfer rate for vaporization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/s
Ṙ Bubble growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
V̇ Volume transfer factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3/kg
V̇c Volume transfer factor for condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m3/kg
V̇v Volume transfer factor for vaporization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3/kg
U Velocity vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
τij Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Fd Forces acting on the bubble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
g Gravitational acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

p Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pa
pv Vapor pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
R Bubble radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
R0 Initial bubble radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m
ui Velocity components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

Greek symbols
αc
N Volume fraction of bubble nuclei in the liquid

αl Liquid volume fraction
αv Vapor volume fraction
β Lagrangian liquid volume fraction
δij Kronecker delta
µl Liquid viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg · s/m
µm Mixture viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg · s/m
µv Vapor viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg · s/m
ρl Liquid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ρm Mixture density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ρv Vapor density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg/m3

Superscripts
i counter
j counter
k counter
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Nomenclature Nomenclature

b bubble
l liquid
m mixture
v vapor

Subscripts
Eulerian A frame of reference fixed in space
Lagrangian A frame of reference moving with particles
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Chapter 1

Introduction

Cavitation is the formation of vapor in a liquid that occurs when the pressure drops below the
vapor pressure. Studying this phenomenon has been the subject of research across a wide range of
applications, from medical devices to industrial equipment.

Numerous numerical approaches have been developed to study cavitation. The Homogeneous
Mixture Model or Volume of Fluid(VOF) approach with Finite Mass Transfer(FMT) models have
been proven to successfully capture large scale vapor cavities in a variety of cavitating flows [4]. How-
ever, one of the main challenges is understanding the inception process. In this regard, considering
bubble dynamics and the presence of nuclei in the liquid is essential.

It is well-known that when the nuclei pass through a low-pressure region, the pressure inside the
bubble, being much higher than the outside pressure, causes rapid bubble growth and, consequently,
results in the formation of cavitating bubbles. Since the size of nuclei is typically in the micron-
to-millimeter range, it is computationally expensive to apply the traditional Eulerian approaches
to resolve the nuclei. A more efficient alternative is to track nuclei in the Lagrangian framework.
Ghahramani et al. [5] tried to explore a similar concept to some extent. In this approach, nuclei are
tracked in the Lagrangian framework until they reach a size that can be resolved using macroscale
methods like VOF. A transition algorithm would then be required to switch between the Eulerian
and Lagrangian frameworks.

This project aims to establish a foundation for accounting for the presence of nuclei, bubble
dynamics, and the transition between the Lagrangian framework and the Eulerian framework. This
goal can be achieved by coupling Eulerian and Lagrangian frameworks using OpenFOAM facilities.
Therefore, the primary objective is to develop a comprehensive simulation approach that incorpo-
rates the Rayleigh-Plesset equation for bubble dynamics, integrates the Lagrangian library with the
interPhaseChangeFoam solver, and enhances the solver to account for source terms in the continuity
and momentum rate equations. The project is structured into the following main steps:

1. Integrate the Rayleigh-Plesset equation to account for changes in bubble diameter in La-
grangian library.

2. Couple the modified Lagrangian library with the interPhaseChangeFoam.

3. Modify interPhaseChangeFoam to include source terms.

4. Develop a transition mechanism between the Eulerian and Lagrangian frameworks.

Readers can visit link1 to make comments or get the latest updates on the solver.

1The link to solver is https://github.com/mlavari/interPhaseChangeBubbleFoam.
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Chapter 2

Theoretical Framework

The author will delve into each component of OpenFOAM used in this study. To streamline this
work, all parameters and their units referenced in the following equations are listed in the Nomen-
clature section.

2.1 interPhaseChangeFoam

There are many useful explanations of interPhaseChangeFoam in the proceedings of this PhD
course such as by Ghasemi [6], Asnagi [7], and Lu [8]. Additionally, Andersen [9] has provided an
insightful guide on how to use the interPhaseChangeFoam solver. While the author reviews the
theory behind interPhaseChangeFoam based on these works, explaining the solver’s tutorial case
would be redundant.

interPhaseChangeFoam is an isothermal VOF solver that uses three FMTmodels—namely Kunz,
Merkel, and Schnerr-Sauer—to simulate cavitation when the pressure falls below the vapor pressure.
The core concept of this method is to treat the entire domain as a single fluid with varying percentages
of volume fraction of liquid and vapor. As a result, the mass and momentum conservation equations
are solved for a single fluid which is a mixture of liquid and vapor. Therefore, the key distinction
lies in the viscosity and density used in these equations, which are functions of fractions of liquid
and vapor volumes. These fractions are governed by Reynolds transport equation for the volume
fraction, augmented with a source term that accounts for condensation and vaporization in FMT
models.

An effective approach to studying the Homogeneous Mixture Model, or the Volume of Fluid(VOF)
method combined with Finite Mass Transfer(FMT), is to structure the analysis into two key com-
ponents: VOF and FMT.

2.1.1 Volume of Fluid(VOF)

As mentioned earlier, the main concept in VOF is to consider a mixture of vapor and liquid. As a
result, flow parameters such as density and viscosity must be defined in their mixture form. This
mixture is constructed using the volume fraction of one of the two phases. Here, we use the liquid
volume fraction, which represents the volume of liquid divided by the volume of the computational
cell. Consequently, the vapor volume fraction is given by

αv = 1− αl, αl ∈ [0, 1], αv ∈ [0, 1]. (2.1)

The conservation of mass and momentum for VOF, assuming a Newtonian fluid, are expressed as

∂ρm
∂t

+∇ · (ρmU) = 0, (2.2)
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2.1. interPhaseChangeFoam Chapter 2. Theoretical Framework

∂

∂t
(ρmuj)+

∂

∂xj
(ρmuiuj) = − ∂p

∂xi
+

∂

∂xj

[
(µm + µlaminar)

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)]
+ ρmg. (2.3)

Here,

ρm = αlρl + (1− αl)ρv, (2.4)

µm = αlµl + (1− αl)µv. (2.5)

The transport equation for volume fractions of liquid and vapor are given by

∂αl

∂t
+∇ · (αlU) =

ṁ

ρl
, (2.6)

∂αv

∂t
+∇ · (αvU) = − ṁ

ρv
. (2.7)

Here, ṁ is the source term representing phase interactions, such as evaporation or condensation,
where FMT plays a role, which will be discussed in Section 2.1.2.

In OpenFOAM, interPhaseChangeFoam utilizes the PIMPLE algorithm, and the continuity
equation acts as a constraint on the conservation of momentum rate equation. In an incompressible
solver, the divergence of velocity is zero. However, in a cavitating flow, since there is generation and
destruction of liquid and vapor, the divergence of velocity is no longer zero. By adding Eq. (2.6)
and Eq. (2.7), we arrive at

∇ ·U =

(
1

ρl
− 1

ρv

)
ṁ. (2.8)

Eq. (2.6) and Eq. (2.8) are implemented in alphaEqn.H and pEqn.H, respectively. From a numerical
perspective, to make the solver more diagonally dominant, more stable, and to improve the interface
capturing efficiency, minor modifications are made to these equations.

Regarding Eq. (2.6), by adding and subtracting αl∇ · U (with the help of Eq. (2.8)) from the
right-hand side of Eq. (2.6), we arrive at

∂αl

∂t
+∇ · (αlU) =

ṁ

ρl
+ αl∇ ·U− αl

(
1

ρl
− 1

ρv

)
ṁ. (2.9)

Rearranging Eq. (2.9), we get

∂αl

∂t
+∇ · (αlU) =

(
1

ρl
− αl

(
1

ρl
− 1

ρv

))
ṁ+ αl∇ ·U. (2.10)

By defining V̇ =
(

1
ρl

− αl

(
1
ρl

− 1
ρv

))
, and given that ṁ = (αlṁv + (1− αl)ṁc) represents the mass

transfer rate for condensation and vaporization, Eq. (2.10) transforms to

∂αl

∂t
+∇ · (αlU)− αl∇ ·U = V̇ (αlṁv + (1− αl)ṁc) . (2.11)

By defining V̇v = V̇ ṁv and V̇c = V̇ ṁc, and reorganizing Eq.(2.11), we arrive at

∂αl

∂t
+∇ · (αlU)− αl∇ ·U = αlV̇v − αlV̇c + V̇c. (2.12)

Eq. (2.12) shows how the liquid volume fraction interface tracking is implemented in alphaEqn.H as
shown in Listing 2.1.
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2.1. interPhaseChangeFoam Chapter 2. Theoretical Framework

Listing 2.1: Liquid volume fraction equation in alphaEqn.H

1 fvScalarMatrix alpha1Eqn

2 (

3 fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)

4 + fv::gaussConvectionScheme<scalar>

5 (

6 mesh,

7 phi,

8 upwind<scalar>(mesh, phi)

9 ).fvmDiv(phi, alpha1)

10 - fvm::Sp(divU, alpha1)

11 ==

12 fvm::Sp(vDotvmcAlphal, alpha1)

13 + vDotcAlphal

14 );

Regarding the continuity equation implemented in interPhaseChangeFoam, from this present
course material, the discretized linearized momentum equation, with the pressure gradient retained,
can be given by

auPuP +
∑
N

auNuN = r −∇p. (2.13)

Here, auP and auN are the diagonal and non-diagonal parts of the coefficient matrix, respectively. r
is the source term, and p is the pressure. In OpenFOAM, the operator H(u) is introduced, which
includes the source terms in addition to the non-diagonal terms of the coefficient matrix, and defined
as

H(u) = r −
∑
N

auNuN . (2.14)

Substituting Eq. (2.14) into Eq. (2.13) yields

auPuP = H(u)−∇p (2.15)

or
uP = (auP )

−1 (H(u)−∇p) . (2.16)

Regarding the divergence of velocity, Eq. (2.8), substituting Eq. (2.16) into the divergence of velocity
equation, Eq. (2.8), yields the pressure equation for incompressible flow given by

∇ ·
[
(auP )

−1∇p
]
−∇ ·

[
(auP )

−1H(u)
]
−
(

1

ρl
− 1

ρv

)
ṁ = 0. (2.17)

Eq. (2.17) is implemented within pEqn.H, as shown in Listing 2.2.

Listing 2.2: Continuity equation in pEqn.H

1 fvScalarMatrix p_rghEqn

2 (

3 fvc::div(phiHbyA) - fvm::laplacian(rAUf, p_rgh)

4 - (vDotvP - vDotcP)*(mixture->pSat() - rho*gh)

5 + fvm::Sp(vDotvP - vDotcP, p_rgh)

6 );

2.1.2 Finite Mass Transfer(FMT)

In the above set of equations, the main component to close the equations, modeling finite mass
transfer ṁ, needs to be addressed. In OpenFOAM, three main mass transfer models—namely Kunz,
Merkel, and Schnerr-Sauer—are implemented in classes with the same name, all of which inherit
from the incompressibleTwoPhaseMixture class. Since the subject of interest for this research is
the Schnerr-Sauer model, the other two models will not be covered here.

10



2.2. Lagrangian library Chapter 2. Theoretical Framework

2.1.2.1 Schnerr-Sauer

As Lavari et al. [10] investigated, this model employs a simplified Rayleigh-Plesset equation, and
cavitation is initiated in regions where the pressure drops below the saturation vapor pressure,
through the mass transfer source term which is given by

ṁc = Ccαl(1− αl)
3ρlρv
ρmRB

(
2

3ρl
|p− psat|

)1/2

, p ≥ psat, (2.18)

ṁv = Cvαl (1 + αNc − αl)
3ρlρv
ρmRB

(
2

3ρl
|p− psat|

)1/2

, p < psat. (2.19)

Here, ṁc and ṁv represent the rates of condensation and vaporization, respectively. RB and αNc de-
note the radius and volume fraction of bubble nuclei in the liquid. These parameters are determined
as

αNc =
πn0d

3
Nc

6

(
1 +

πn0d
3
Nc

6

)1/2

, (2.20)

RB =

(
3

4πn0

1 + αNc − α

α

)1/3

. (2.21)

Here, n0 and dNc are pre-defined parameters, signifying the number of nuclei per liquid cubic meter
and the diameter of nucleation sites, respectively.

2.2 Lagrangian library

Since the goal of this project is to track nuclei as Lagrangian entities, it is necessary to address the
movement of bubbles in the fluid by using Lagrangian tracking. Within the context of Lagrangian
tracking, there are different types of tracking based on the ratio of the total volume fraction of
Lagrangian bubbles to the volume of the entire domain. Therefore, the nature of coupling between
the Eulerian field and the Lagrangian field is determined by this ratio. According to a classification
map proposed by Elghobashi [11], shown in Figure 2.1, a one-way coupling can be used for highly
diluted flows with a volume fraction less than 10−6. Within this range, the flow of the Eulerian fluid
influences the bubble trajectories, but the bubbles have a negligible effect on the background flow.
On the other hand, for volume fractions greater than 10−6 and less than 10−3, the bubbles affect
the background flow. At this point, a two-way coupling must be used to account for the additional
feedback force exerted on the flow by the bubbles. Based on this concept, two-way coupling is
essential within the context of cavitation and this project.

Moreover, for volume fractions exceeding the value 10−3, the interactions between the bubbles
themselves become significant. In such cases, four-way coupling is required, where the dynamics of
the system are influenced by both bubble-bubble interactions and the feedback effects between the
bubbles and the surrounding fluid. As a result, collision, breakup, and coalescence of the Lagrangian
vapor structures should be considered, and this would be a subject of interest for future investigation.

In OpenFOAM, the Lagrangian directory, as shown in Listing 2.3, contains basic directory
containing core classes that handle particle reading, writing, and storage. In addition, there is
the cloud class concept in basic directory, which manages and manipulates a list of particles. In
addition to basic directory, which is used by all other parts of Lagrangian library, two main concepts
are pre-existing for tracking non-evaporating and isothermal particles in Lagrangian library. These
are solidParticle class and KinematicParcel class within the intermediate directory. Lopez [12]
examined the differences between solidParticle class and KinematicParcel class. The primary
difference can be summarized in the number of particles that can be tracked. The solidParticle

class has a preliminary design and track each particle individually, while KinematicParcel class can
track parcels of particles that share the same size, velocity and trajectory within each parcel.
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2.2. Lagrangian library Chapter 2. Theoretical Framework

Figure 2.1: Classification of coupling schemes and interaction between particles and turbulence
according to Elghobashi [11] for (1) one-way coupling, (2) two-way coupling where bubbles
enhance turbulence production, (3) two-way coupling where bubbles enhance turbulence

dissipation, and (4) four-way coupling

Listing 2.3: Lagrangian library directory

1 Lagrangian

2 |-- DSMC

3 |-- basic

4 |-- coalCombustion

5 |-- distributionModels

6 |-- intermediate

7 |-- molecularDynamics

8 |-- solidParticle

9 |-- spray

10 '-- turbulence

There are many useful examples of using solidParticle tracking in the proceedings of this
course. For instance, Andric [13] used the solidParticle library and introduced drag for non-
spherical solid particles. However, due to the greater flexibility of tracking parcels of particles and
the additional features of the KinematicCloud class, such as the inclusion of various injection models,
pre-defined forces, patch interactions, and particle collision models, the KinematicCloud class has
drawn more attention and, in turn, has been more developed. On the other hand, the simplicity
of solidParticle class makes it easier to work with and modify from a programming perspective.
Considering all of the above, studying and developing KinematicCloud class is of greater interest
to this project.

2.2.1 KinematicCloud

The KinematicCloud directory resides in the intermediate/clouds directory alongside other cloud
types, as shown in Table 2.1. All the cloud classes listed in the table are derived from the first item,
KinematicCloud class. Items 2 and 3 deal with different collision methods, while the remaining items
are reaction- or thermal-enabled KinematicCloud class. This project focuses only on Kinematic-

Cloud class, however, many other projects related to item 4-7 from the previous proceedings of
this course can also be useful. Fjällborg [14] and Kampili [15] explored the heat transfer equation
in other derivatives of KinematicCloud class and proposed various thermal equations for them.
In addition to focusing on derivatives of KinematicCloud class, their work also offers valuable
insights into KinematicCloud class itself, particularly Kampili’s [15] study, which elaborates on the
Eulerian and analytical calculations of ∆T , which is similar to ∆U used in KinematicParcel class
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for applying force source terms. Regarding the forces acting on KinematicParcel class, Xu [16]
provided sufficient information. For injection mechanisms in KinematicCloud class, reader can get
valuable insights from the work of Nobile [17], although it focuses on sprayFoam.

Table 2.1: Cloud Types

Example Cloud Name
1 KinematicCloud
2 CollidingCloud
3 MPPICCloud
4 ReactingCloud
5 ReactingHeterogeneousCloud
6 ReactingMultiphaseCloud
7 ThermoCloud

Within intermediate/clouds directory mentioned above, KinematicCloud class structure can
be further divided into derived classes and Templates classes. In the derived directory, there is
a file named basicKinematicCloud.H, which is solely the type definition of KinematicCloud class
(with a capital K), showing the template class in OpenFOAM. The basicKinematicCloud.H file,
as shown in Listing 2.4, reveals that KinematicCloud class is templated with Cloud class, which
is further templated with KinematicParcel class. Therefore, KinematicCloud class inherits all
features of Cloud class and KinematicParcel class.

Listing 2.4: A part of basicKinematicCloud.H

1 namespace Foam

2 {

3 typedef KinematicCloud

4 <

5 Cloud

6 <

7 basicKinematicParcel

8 >

9 > basicKinematicCloud;

10 }

In practice, the KinematicCloud class has several member functions, such as evolve() and
motion(), which call other member functions like inject() in the injectionModel class and more
importantly, motion() which calls move() function in the Cloud class. The move() function iterates
over the Lagrangian entities. Within this loop, another move() function of the KinematicParcel

class is called for each parcel. All calculations related to forces, new velocities, and new positions of
the Lagrangian parcels are performed within this member function of KinematicParcel class. It is
noteworthy that a similar concept is also applicable, to some extent, in solidCloud class, though
with much simpler structure. In the KinematicParcel class, the Lagrangian equations for tracking
the trajectory of bubbles account for the effect of forces on the bubbles, and would be defined as

dxb

dt
= ub, (2.22)

mb
dub

dt
= Fd. (2.23)

2.3 Bubble Dynamics

To track nuclei and their diameter evolution, considering bubble dynamics is essential. Since
KinematicParcel class only tracks parcels of particles, not parcels of bubbles, the change in di-
ameter must be defined in KinematicParcel class, so nuclei size can evolve and, if required, sub-
sequently transfer to the Eulerian field. The most well-known bubble dynamics equation, ignoring
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compressibility effects, is the Rayleigh-Plesset equation. Here, the author focuses on implementing
this equation.

2.3.1 Rayleigh Plesset Equation

The bubble growth is modeled using a localized form of the Rayleigh-Plesset equation given as [10]

ρl

(
1

2
RR̈+

1

2
Ṙ2

)
= pv + pg0

(
R0

R

)3k

− pxR − 4µl
Ṙ

R
− 2σ

R
. (2.24)

Here, R, Ṙ, and R̈ represent the radius of the bubble and its first and second temporal derivatives,
respectively. The right-hand side of Eq. (2.24) includes the vapor pressure, pv, and the dissolved
gas pressure, pg0, terms. Here, pg0 and R0 denote the initial equilibrium gas pressure and radius,
respectively. The exponent k is set to 1 for isothermal behavior and to γ (the gas polytropic
constant) for adiabatic variations in the bubble’s radius. Additionally, pxR represents the surface-
average pressure of the mixture over a concentric sphere with radius xR, where x is a user-defined
factor and later would be called averagingDistance in solver, providing a representation of the
local pressure around the bubble.

The implementation of the Rayleigh-Plesset equation was explored in the proceedings of this
course. Ghahramani [18] implemented a Rayleigh-Plesset solver within move() member function
of solidParticle class, while Chen [1] coded the Rayleigh-Plesset solver within KinematicParcel

class, utilizing ODE solver provided by OpenFOAM. In this work, author adopted the same concept
from Chen’s work [1], with modifications to accommodate OpenFOAM-v2406, include localized
Rayleigh-Plesset equation, adjust where Rayleigh-Plesset solver is located in the code, and modify
the number of inputs as well as how they are read by the solver. As opposed to Chen’s work, the
author does not use radius; instead, only the diameter of the bubble is tracked. The dictionary
containing bubble dynamics inputs is transferred to KinematicParcel class constructor, and each
parcel has access to all the information from the bubbleProperties dictionary. Since the code
and report from Chen [1] are available, the implementation of the Rayleigh-Plesset equation is
not discussed here, instead, only the modifications are outlined. Here, the author names modified
KinematicCloud, and KinematicParcel by incorporating localized Rayleigh-Plesset equation as
KinematicBubbleCloud and KinematicBubbleParcel, respectively.
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Chapter 3

Implementation of
interPhaseChangeBubbleFoam

Although nuclei are being tracked in the Lagrangian framework to reduce computational cost, the
Eulerian framework remains the primary platform for tracking both Eulerian bubbles (resolved
structures/vapors) and Lagrangian bubbles (unresolved structures/vapors). In other words, while
Lagrangian bubbles are not explicitly tracked in the Eulerian framework, they still exist and affect
the conservation of mass and momentum within the Eulerian field. This oversight in previous hybrid
Lagrangian-Eulerian models leads to violations of these conservation laws. Consequently, coupling
both frameworks must involve a reliable and mathematically proven exchange of source terms. To
address this, the author proposes a rigorous set of coupled equations to track both Lagrangian and
Eulerian vapor structures.

In the proceedings of this course, many projects have focused on coupling the Eulerian and
Lagrangian frameworks. For example, Vallier [19] initially attempted to couple Lagrangian particle
tracking with icoFoam, and later, in their Ph.D. work [3], introduced algorithms for transitioning
between the Eulerian and Lagrangian frameworks. However, their approach allowed Lagrangian
and Eulerian vapor structures to coexist within the same cell, leading to unphysical results. Later,
Ghahramani [2] identified this non-conservation of mass and introduced βl, a Lagrangian liquid
volume fraction, as a switch in the code to prevent the coexistence of Lagrangian and Eulerian
vapors within the same cell. However, without adequately modifying the source terms, the model
would fail to provide accurate source term values to the Eulerian field, making the proper tracking
of nuclei unachievable. This work would bridge the gap by mathematically calculating and proving
these source terms and implementing them in a code.

3.1 Theory

To make the multiscale Lagrangian-Eulerian cavitation approach more consistent and understand-
able, it can be viewed as resolved and unresolved flow: one continuous liquid phase (resolved liquid)
and two dispersed vapor phases (i.e., vapor in the Eulerian framework (resolved structure/vapor)
and vapor in the Lagrangian framework (unresolved structure/vapor)). However, some assumptions
must be considered:

• The two dispersed vapors (resolved and unresolved vapors) share the same physical properties,
such as density and viscosity.

• The two dispersed vapors (resolved and unresolved vapors) cannot coexist in the same location.
In other words, there is no mixture of resolved and unresolved vapor at any point in the entire
domain. However, the resolved liquid can form a mixture with both resolved and unresolved
vapors.
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• There is no slip velocity between the resolved liquid and resolved vapor, whereas slip conditions
are considered between unresolved vapor and resolved liquid.

Therefore, the inherent concept is that when a structure is transferred to the Lagrangian framework,
it should not be considered as being removed from the Eulerian field. It remains in the Eulerian
field, but its position, mass, and momentum equations are solved within the Lagrangian framework.

Now, we take advantage of βl for the unresolved liquid volume fraction as introduced by Ghahra-
mani [2]. In each cell, where there is unresolved vapor in the Lagrangian framework, βl takes values
from 0 to less than 1, while α, which represents the resolved liquid fraction, remains 1. As a result,
it can be given by

βl ∈ [0, 1), where αl = 1. (3.1)

On the other hand, αl would be given by

αl ∈ [0, 1], where βl = 1. (3.2)

Using αl and βl based on the above assumptions, the definitions of density, viscosity, and momentum
are reduced to

ρm = (αl + βl − 1)ρl + (1− αl)ρv + (1− βl)ρv, (3.3)

µm = (αl + βl − 1)µl + (1− αl)µv + (1− βl)µv, (3.4)

ρmui = (αl + βl − 1)ρlui + (1− αl)ρvui + (1− βl)ρvuLi. (3.5)

Here, uLi is the unresolved velocity in the Lagrangian framework, which differs from ui in the
Eulerian field based on the slip assumption. By setting βl = 1, the well-known VOF equations are
derived. By substituting Eq. (3.3) and Eq. (3.5) into Eq. (2.2), the mass conservation would be
formed as

[
∂ (αlρl + (1− αl)ρv)

∂t
+

∂ (αlρlui + (1− αl)ρvui)

∂xi

]
+

[
∂ (βlρl + (1− βl)ρv)

∂t
+

∂ (βlρlui + (1− βl)ρvuLi)

∂xi

]
− ρl

[
∂ui

∂xi

]
= 0. (3.6)

Where αl = 1, the cell has unresolved vapor, and the divergence of velocity can be given as

∇ ·U = − 1

βlρl

[
∂(1− βl)ρv

∂t
+

∂ ((1− βl)ρvuLi)

∂xi

]
− 1

βl

[
∂βl

∂t
+ ui

∂βl

∂xi

]
. (3.7)

Where βl = 1, the cell has resolved vapor, and the divergence of velocity can be given as

∇ ·U =
ρv − ρl

ρv

[
∂αl

∂t
+

∂(αlui)

∂xi

]
. (3.8)

It should be noted that Eq. (3.8) is the same as Eq. (2.8). As a result, the divergence of velocity for
this hybrid model can be given as

∇ ·U =
ρv − ρl

ρv

[
∂αl

∂t
+

∂(αlui)

∂xi

]
− 1

βlρl

[
∂(1− βl)ρv

∂t
+

∂ ((1− βl)ρvuLi)

∂xi

]
− 1

βl

[
∂βl

∂t
+ ui

∂βl

∂xi

]
.

(3.9)
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Regarding the conservation of momentum, by substituting Eq.(3.3) and Eq. (3.5) into Eq. (2.3), we
arrive at

[
∂ (αρl + (1− α)ρv)ui

∂t
+

∂ (αρl + (1− α)ρv)uiuj

∂xj

]
−
[
∂ ((1− βl)ρlui)

∂t
+

∂ ((1− βl)ρluiuj)

∂xj

]
= −

[
∂ ((1− βl)ρvuLi)

∂t
+

∂ ((1− βl)ρvuLiuj)

∂xj

]
− ∂p

∂xi
+

∂τij
∂xj

+ ρmgi. (3.10)

In previous works, Eq. (2.23) has been identified as the Lagrangian coupling source term. How-
ever, due to the change in volume of unresolved vapor and the assumption of the same density for
both resolved and unresolved vapors, there is a rate of change of mass in the Lagrangian framework
that has been neglected in those works. As a result, Eq. (2.23) no longer reflects the true behavior.
Consequently, Eq. (2.23) from the Lagrangian framework should be modified, and its relation with
the Eulerian framework should be explored.

To relate the Eulerian and Lagrangian frameworks, we use the definition of the total derivative
to connect them. The total derivative of mass (for a cell volume) can be given as

ṁbubble =
1

V

m2 −m1

t2 − t1
=

1

V

Dmbubble

Dt
(3.11)

In the Eulerian framework, and by using the equation of mass conservation for vapor 1
V

DV
Dt = ∇·u =

∂uLi

∂xi
, we end up with

1

V

Dmbubble

Dt
=

1

V

D(ρv(1− βl)V )

Dt

= ρv
1

V

[
(1− βl)

DV

Dt
+ V

D(1− βl)

Dt

]
= ρv(1− βl)

1

V

DV

Dt
+ ρv

[
∂(1− βl)

∂t
+ uLi

∂(1− βl)

∂xi

]
=

[
(1− βl)

∂(ρvuLi
)

∂xi
+

∂(1− βl)ρv
∂t

+ uLi

∂(1− βl)ρv
∂xi

]
=

[
∂(1− βl)ρv

∂t
+

∂(1− βl)ρvuLi

∂xi

]
.

(3.12)

Regarding the rate of change of momentum by taking the same approach, the total force (for a cell
volume) acting over unresolved vapors is given by

F

V
=

1

V

D(mbubbleuLi
)

Dt
=

1

V

m2uL2
−m1uL1

t2 − t1
=

1

V

DV (1− βl)ρvuLi

Dt
. (3.13)

Again, in the Eulerian framework, we end up with
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1

V

DV (1− βl)ρvuLi

Dt
=

1

V

[
∂(V (1− βl)ρvuLi)

∂t
+ uj

∂(V (1− βl)ρvuLi)

∂xj

]
=

ρv
V

[
(1− βl)uLi

∂V

∂t
+ V

∂((1− βl)uLi
)

∂t
+ (1− βl)uLiuj

∂V

∂xj
+ V uj

∂((1− βl)uLi
)

∂xj

]
=

ρv
V

(1− βl)uLi

[
∂V

∂t
+ uj

∂V

∂xj

]
+ ρv

[
∂((1− βl)uLi

)

∂t
+ uj

∂((1− βl)uLi
)

∂xj

]
= (1− βl)ρvuLi

1

V

DV

Dt
+ ρv

[
∂((1− βl)uLi

)

∂t
+ uj

∂((1− βl)uLi
)

∂xj

]
= (1− βl)ρvuLi

∂uj

∂xj
+ ρv

∂((1− βl)uLi)

∂t
+ ρvuj

∂((1− βl)uLi)

∂xj

=
∂(1− βl)ρvuLi

∂t
+

∂ ((1− βl)ρvuLiuj)

∂xj
.

(3.14)
Note that when βl = 1, both Eq. (3.14) and Eq. (3.12) become zero, and the equations automatically
reduce to VOF set of equations. By substituting Eq. (3.14), Eq. (3.12), and Eq. (2.6) into Eq. (3.9)
and Eq. (3.10), we end up with

∇ ·U =

(
1

ρl
− 1

ρv

)
ṁ− 1

βlρl
[ṁbubble]−

1

βl

[
Dβl

Dt

]
, (3.15)

[
∂ (αρl + (1− α)ρv)ui

∂t
+

∂ (αρl + (1− α)ρv)uiuj

∂xj

]
−
[
∂ ((1− βl)ρlui)

∂t
+

∂ ((1− βl)ρluiuj)

∂xj

]
= −

[
F

V

]
− ∂p

∂xi
+

∂τij
∂xj

+ ρmgi. (3.16)

The above equations demonstrate consistency between both frameworks. Consequently, Eq. (3.15)
is implemented in this work. However, to simplify the process of implementation within a code, the
author defines γ as the product of αl and βl, γ = αlβl, such that density and viscosity are given by

ρm = γρl + (1− γ)ρv, (3.17)

µm = γµl + (1− γ)µv, (3.18)

ρmui = γρlui + (1− αl)ρvui + (1− βl)ρvuLi
. (3.19)

Now, Eq. (3.16) can be expressed in a compact form–hence, simplifying the implementation within
a code–given as

[
∂ (γρl + (1− α)ρv)ui

∂t
+

∂ (γρl + (1− α)ρv)uiuj

∂xj

]
= −

[
F

V

]
− ∂p

∂xi
+

∂τij
∂xj

+ ρmgi. (3.20)

3.2 Implementing KinematicBubbleCloud

It was emphasized that the KinematicCloud class is being used. However, to make this class
suitable for tracking bubbles, Rayleigh-Plesset equation should be included. The author has utilized
concepts from Chen’s work [1], enabling the reader to follow the steps in that study and implement
a Rayleigh-Plesset solver in their own work. Here, the author only explains the differences.
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Listing 3.1: Rayleigh-Plesset Class Directory

1 RPEqu/

2 |-- RPEqu.H

3 |-- RPEquI.H

4 `-- bubbleDynamics.H

The Rayleigh-Plesset class is structured as shown in Listing 3.1. The RPEqu.H file contains
the declarations of variables and functions to solve the Rayleigh-Plesset equation, while RPEquI.H

includes definitions of inline functions. Readers are encouraged to refer to Chen’s work [1] for
further details. The bubbleDynamics.H file, as shown in Listing 3.2, acts as a coupling agent,
gathering inputs from KinematicParcel class, solving, and sending data to the Rayleigh-Plesset
class (RPEqu.H) through the member function setValues() of the RPEqu class. This structure
facilitates modular and efficient integration of the Rayleigh-Plesset model into KinematicParcel

class.

Listing 3.2: bubbleDynamics.H file

1 //-ML: Set tracking values from cells

2 this->setCellValues(cloud, td, this->averagingDistance());

3 //-ML: Create the selected ODE system solver

4 RPEqu_.setValues(

5 td.pc(),

6 td.rhoc(),

7 td.muc(),

8 this->bubbleSigma(),

9 this->p0(),

10 this->R0(),

11 this->pv(),

12 this->bubbleKappa()

13 );

14

15

16 dictionary solverType;

17 solverType.add("solver", this->ODESolverType());

18

19 autoPtr<ODESolver> RPEquSolver = ODESolver::New(RPEqu_, solverType);

20 scalar xStart = this->age();

21 const scalar dx = this->RPdT();

22

23 //-ML: Initial radius and radiusGrowthRate

24 scalarField yStart(RPEqu_.nEqns());

25 yStart[0] = (this->d()/2);

26 yStart[1] = this->R_dot_;

27

28 //-ML: Integration initial step

29 scalar dxEst = 1e-10;

30 scalar xEnd = 0;

31

32 //-ML: Required to store dydx

33 scalarField dyStart(RPEqu_.nEqns());

34 const label n = dt/dx;

35

36 //-ML: Integration loop

37 for (label i=0; i<n; i++)

38 {

39 xEnd = xStart + dx;

40 RPEqu_.derivatives(xStart, yStart, dyStart);

41 RPEquSolver->relTol() = 1e-5; //-ML:For runge kuta

42 RPEquSolver->solve(xStart, xEnd, yStart, dxEst);

43 xStart = xEnd;

44 }

45

46 this->d_ = (yStart[0]*2);

47 this->R_dot_ = yStart[1];

48

49 this->setCellValues(cloud, td);
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The code shown in Listing 3.2 begins by initializing cell values from the field mesh using
setCellValues, which extracts properties like pressure, density, and viscosity for use in calcula-
tions. The Rayleigh-Plesset class is configured with fluid properties (td.rhoc, td.muc) and bubble-
specific parameters such as surface tension (this->bubbleSigma), vapor pressure (this->pv), and
initial bubble radius (this->R0). These parameters are passed to Rayleigh-Plesset class using
RPEqu .setValues. An ODE solver is created based on the user-defined solver type (this->-
ODESolverType), which is used to integrate Rayleigh-Plesset equation. After initial conditions for
the integration are set, the simulation start time (xStart) is derived from the bubble’s age, and the
ODE solver time step (dx) is defined by this->RPdT(). The initial bubble radius and growth rate
are initialized using the current diameter (this->d()) and growth rate (this->R dot ), respectively.
Then, the main integration loop iteratively solves ODE system over a defined time interval (dt/dx).
At each iteration, the code computes Rayleigh-Plesset derivatives, updates the state variables, and
integrates the system forward using the configured ODE solver (RPEquSolver). The results are
stored in yStart, which contains the updated bubble radius and growth rate. After completing
the integration, the updated bubble diameter (this->d ) and growth rate (this->R dot ) are cal-
culated from the solution. Finally, the setCellValues function is called again to update the field
values. This process tracks the bubble’s evolution over time while maintaining consistency with the
surrounding fluid dynamics.

3.2.1 Coupling the Rayleigh-Plesset class with KinematicCloud

To start with, user may copy and paste KinematicCloud directories, shown in Listing 3.3, from
the directory src/lagrangian/intermediate and add the term Bubble after Kinematic to create
new classes. The KinematicCloud class is renamed to KinematicBubbleCloud class to emphasize
bubble-specific simulations. These name modifications should be performed in both the directory
and file names, as well as within the contents of these files.

Listing 3.3: kinematicCloud/Parcel Directories

1 intermediate/

2 |-- clouds

3 | |-- Templates

4 | | |-- CollidingCloud

5 | | |-- KinematicBubbleCloud

6 | | `-- MPPICCloud

7 | |-- baseClasses

8 | | `-- kinematicBubbleCloud

9 | `-- derived

10 | |-- basicKinematicBubbleCloud

11 | |-- basicKinematicBubbleCollidingCloud

12 | `-- basicKinematicBubbleMPPICCloud

13 |-- lnInclude

14 `-- parcels

15 |-- Templates

16 | |-- CollidingParcel

17 | | `-- CollisionRecordList

18 | | |-- PairCollisionRecord

19 | | `-- WallCollisionRecord

20 | |-- KinematicBubbleParcel

21 | `-- MPPICParcel

22 `-- derived

23 |-- basicKinematicBubbleCollidingParcel

24 |-- basicKinematicBubbleMPPICParcel

25 `-- basicKinematicBubbleParcel

Now, the clouds directory includes templates such as CollidingCloud, KinematicBubbleCloud,
and MPPICCloud, along with base classes. Derived implementations, such as basicKinematic-

BubbleCloud and its Colliding and MPPIC variants, enhance flexibility for different use cases.
Similarly, parcels directory mirrors this structure, featuring templates and derived classes like
basicKinematicBubbleParcel, which accommodates kinematic bubble behaviors with additional
collision and MPPIC functionality. Notably, in make directory, the linking between these new cloud
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classes and Lagrangian library in OpenFOAM source directory should be established, as they rely
on functionalities from the Lagrangian library, including submodels such as injection.

The next step is to incorporate the Rayleigh-Plesset class into these new KinematicBubble-

Cloud/Parcel classes. The author introduces new variables as shown in Listing 3.4 for the Kinematic-
Parcel class and modifies the constructors of KinematicParcel class to read these values from the
KinematicBubbleCloudProperties located in the constant directory. Regarding the pressure of
the carrier phase, the constructor of KinematicBubbleCloud class has been modified to accept
pressure as input and pass it to KinematicBubbleParcel class. Therefore, constant/kinematic-
BubbleCloudProperties accommodates the additional dictionary bubbleProperties, as shown in
Listing 3.5.

Listing 3.4: New inputs to kinematicBubbleParcel

1 //- ML: Declarition of Class RPEqu

2 #include "RPEqu.H"

3

4 //- ML: Adding Pressure [Pa] for Rayleigh Plesset Eqaution

5 scalar pc_;

6

7 //- ML: instantiation of class RPEqu

8 RPEqu RPEqu_;

9

10 //- ML: Growth rate of radius [m/s]

11 scalar R_dot_;

12

13 //- ML: Dictionary of cloud properties

14 dictionary cloudProperties_;

15

16 //- ML: Dictionary of bubble properties

17 dictionary bubbleProperties_;

18

19 //- ML: flag for activation of bubble dynamics

20 label bubble_activation_;

21

22 //- ML: surface tension for bubble dynamics

23 scalar bubbleSigma_;

24

25 //- ML: initial pressure for bubble dynamics

26 scalar p0_;

27

28 //- ML: initial radius for bubble dynamics

29 scalar R0_;

30

31 //- ML: vapour pressure for bubble dynamics

32 scalar pv_;

33

34 //- ML: time step for each loop of RP solver

35 scalar RPdT_;

36

37 //- ML: kappa isotropic value for bubble dynamics

38 scalar bubbleKappa_;

39

40 //- ML: Averaging distance for bubble dynamics

41 scalar averagingDistance_;

42

43 //- ML: ODE solver type for bubble dynamics

44 word ODESolverType_;
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Listing 3.5: kinematicBubbleCloudProperties

1 bubbleProperties

2 {

3 //- ML: flag for activation of bubble dynamics

4 bubble_activation true;

5 //- ML: surface tension for bubble dynamics

6 bubbleSigma 0.07;

7 //- ML: initial pressure for bubble dynamics

8 p0 101325;

9 //- ML: initial radius for bubble dynamics

10 R0 1e-06;

11 //- ML: vapour pressure for bubble dynamics

12 pv 2300;

13 //- ML: time step for each loop of RP solver-important

14 RPdT 5.0e-6;

15 //- ML: kappa isotropic value for bubble dynamics

16 bubbleKappa 1.4;

17 //- ML: Averaging distance for bubble dynamics

18 averagingDistance 5;

19 //- ML: ODE solver type for bubble dynamics

20 ODESolverType RKF45;

21 }

Next step would be finding the correct location to add bubbleDynamics.H to KinematicBubble-
Cloud class. Therefore, understanding the main workflow in KinematicBubbleCloud class is crucial.
The main member of function in KinematicBubbleCloud class is evolve() member function. When
the evolve() function is called, it calls the solve() function in which a call to evolveCloud() is
initiated. The evolveCloud() member function triggers a call to the motion() member function.
This, in turn, calls the move() function of the Cloud class, which contains a loop. Inside this
loop, there is a call to the move() member function of KinematicBubbleParcel class. In the latter
move() function, the calc() function is called to determine the new velocity of the bubble, where the
calcVelocity function is invoked, and then new source terms for the Eulerian field are calculated.
Since the source terms need to be updated based on Eq. (3.11) and Eq. (3.13), which should be
calculated after the bubble radius change from the Rayleigh-Plesset equation, the integration of
bubbleDynamics.H is placed right before the calculation of the new source terms and inside the
calcVelocity member function of KinematicBubbleParcel class.

The integration of bubbleDynamics.H and the modification of dUTrans based on Eq. (3.13) can
be seen in Listing 3.6. The calcVelocity function is a member function of the KinematicBubble-
Parcel class, responsible for calculating the velocity of a bubble parcel based on various forces acting
on it. It first extracts the forces from the surrounding using the calcCoupled and calcNonCoupled

methods, which compute the coupled and non-coupled forces, respectively. The effective mass of
the bubble is then calculated, accounting for potential added virtual mass. The function computes
the velocity update by integrating the velocity components over the time step dt, and the new
velocity is determined by combining these forces. As shown in Listing 3.6, if bubble activation is
enabled, additional bubble dynamics are included through the bubbleDynamics.H file, allowing for
modifications to the radius and mass. Consequently, the source term dUTrans is adjusted to reflect
the changes in momentum transfer. Finally, the function returns the updated velocity to the calc

member function of the KinematicBubbleParcel class, where other modifications to the source
terms are handled.

Listing 3.6: A part of calcVelocity in KinematicBubbleParcel

1 // Calculate the new velocity and the momentum transfer terms

2 vector Unew = U_ + deltaU;

3

4 //- ML: Include bubble dynamics

5 if(this->bubble_activation())

6 {

7 #include "bubbleDynamics.H"

8 }

9
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10 //dUTrans -= massEff*deltaUcp;

11 vector Unew2 = U_ + deltaUcp;

12 scalar mass2 = this->mass();

13 const scalar massEff2 = forces.massEff(p, ttd, mass2);//-ML: In case virtual mass transfer is

added

14 dUTrans -= ((massEff2*Unew2)-(massEff*U_)); //-ML: Modify the source term to make it according to

the equations

As shown in Listing 3.7, calc function in the KinematicBubbleParcel class is responsible for
calculating the velocity and mass-related properties of a bubble parcel at each time step. It begins
by defining local properties such as the initial number of particles, mass, and Reynolds number.
The momentum source terms are initialized, and the particle velocity is computed using the calc-

Velocity function. After calculating the new velocity, as part of the modification based on the mass
generation term or Eq. (3.11), the change in bubble mass is computed.

In Listing 3.7, the author defines an approach to distribute source terms among the cells the
bubble is in. If the bubble size is smaller than the size of a single cell, the cell takes all mass
and momentum source terms. Otherwise, the terms are distributed among the cells the bubble
covers. The step-by-step explanation in the function involves accumulating source terms for the
carrier phase, starting with the bubble’s position and radius. It explores neighboring cells within
the bubble’s radius, accumulating information about each cell’s distance from the bubble’s center.
The Gaussian weight is calculated for each cell based on its distance from the bubble, and the total
weight within the radius is summed. The bubble’s volume is distributed among neighboring cells
based on the normalized Gaussian weight. Finally, the momentum transfer rate and the rate change
of mass for each neighboring cell are updated, reflecting the bubble’s interaction with the carrier
phase. At the top level, to send the source terms to the Eulerian solver, new functions should be
defined inside KinematicBubbleCloud class.

Listing 3.7: A part of calc in KinematicBubbleParcel

1 // Calculate new particle velocity

2 this->U_ =

3 calcVelocity(cloud, td, dt, Re, td.muc(), mass0, Su, dUTrans, Spu);

4

5 this->U_ += this->UCorrect_;

6

7 //-ML: Mass generation in cell due to RP equation

8 scalar mDotB = (mass() - mass0);

9

10 // Accumulate carrier phase source terms

11 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

12 if (cloud.solution().coupled())

13 {

14

15 //-ML: Find position and radius of bubble

16 vector posB = this->position();

17 scalar radB = this->d() / 2;

18 label startCell = this->cell();

19

20 //-ML: DynamicList to store cells and their distances

21 DynamicList<std::pair<label, scalar>> cellsWithDistances;

22

23 //-ML: Add the start cell to the list

24 vector cellCenter = this->mesh().cellCentres()[startCell];

25 cellsWithDistances.append(std::make_pair(startCell, mag(cellCenter - posB))); //-ML: Add the

first cell with distance

26

27 //-ML: Create a set to avoid re-visiting cells

28 labelHashSet visitedCells;

29 visitedCells.insert(startCell);

30

31 //-ML: Dynamic list to store all neighbors for further exploration

32 DynamicList<label> cells(0);

33 cells.append(this->mesh().cellCells()[startCell]);

34
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35

36 //-ML: Start outer loop to explore neighbors

37 while (cells.size() > 0)

38 {

39 //-ML: New dynamic list to store newly found neighbors within the radius

40 DynamicList<label> newNeighbours;

41

42 //-ML: Loop over all current neighbors in the cells list

43 forAll(cells, i)

44 {

45 label cellI = cells[i];

46 if (!visitedCells.found(cellI)) //-ML: Check if cellI is already visited

47 {

48 cellCenter = this->mesh().cellCentres()[cellI];

49

50 //-ML: Check if this neighbor cell's center is within the radius

51 scalar distance = mag(cellCenter - posB); //-ML: Calculate distance to posB

52

53 if (distance <= (radB))

54 {

55 cellsWithDistances.append(std::make_pair(cellI, distance)); //-ML: Store the cell

and its distance

56 newNeighbours.append(this->mesh().cellCells()[cellI]); //-ML: Add neighbors to

the list

57 }

58

59 visitedCells.insert(cellI); //-ML: Mark cell as visited

60 }

61 }

62

63 //-ML: Sort the cells based on their distance to posB

64 std::sort(cellsWithDistances.begin(), cellsWithDistances.end(),

65 [](const std::pair<label, scalar>& a, const std::pair<label, scalar>& b)

66 {

67 return a.second < b.second; //-ML: Compare distances

68 });

69

70 //-ML: Continue to the next iteration with newNeighbours

71 cells.clear();

72 cells.transfer(newNeighbours);

73 }

74

75 scalar sigma = radB / this->LE_deviation(); //-ML: Gaussian standard deviation

76 scalar totalWeightWithinRadius = 0.0;

77

78 //-ML: Calculate the Gaussian weight for each cell and accumulate total weight within radius

79 List<scalar> gaussianWeights(cellsWithDistances.size());

80

81 forAll(cellsWithDistances, j)

82 {

83

84 scalar gaussFactor;

85

86 if (cellsWithDistances.size() == 1) {

87 gaussFactor = 1.0; //-ML: Set gaussFactor to 1 if there is only one cell

88 } else {

89 scalar distance = cellsWithDistances[j].second; //-ML: Get distance from pair

90 //-ML: Calculate Gaussian weight for this cell

91 gaussFactor = exp(-0.5 * pow(distance / sigma, 2.0));

92 }

93 gaussianWeights[j] = gaussFactor;

94

95 //-ML: Accumulate total weight

96 totalWeightWithinRadius += gaussFactor;

97 }

98

99 //-ML: Distribute the bubble volume using normalized Gaussian weights

100 forAll(cellsWithDistances, j) {
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101

102 label cellJ = cellsWithDistances[j].first;

103

104 //-ML: Normalize the Gaussian weight and compute `vi_j` for this cell

105 scalar normalizedWeight = gaussianWeights[j] / totalWeightWithinRadius;

106 //-ML: Update momentum transfer

107 cloud.UTrans()[cellJ] += normalizedWeight*np0*dUTrans;

108

109 //-ML: Update momentum transfer coefficient

110 cloud.UCoeff()[cellJ] += normalizedWeight*np0*Spu;

111

112 //-ML: Update Return rate of change of mass

113 cloud.mDotBubble()[cellJ] += normalizedWeight*np0*mDotB;

114

115 }

116 }

3.2.2 Source terms in KinematicBubbleCloud

The variables mDotBubble and Dbetal , according to Eq. (3.15), and their respective call functions
are implemented inside the KinematicBubbleCloud class. The way these terms are defined and
initialized in KinematicBubbleCloud class can be seen in the accompanying files, and readers are
referred to these files. The use of the member function mDotBubble() can be seen in line 113 of
Listing 3.7. The use of the member function Dbetal() can be seen in the evolveCloud member
function of KinematicBubbleCloud class, as shown in Listing 3.8. In the latter, in line 31 of
Listing 3.8, the calculation of Dbetal() according to Eq. (3.15) is presented. This line incorporates
updates related to Dbetal() for the divergence of velocity equation, calculated as (βl − βl, old)/∆t,
where ∆t is the simulation time step. It is noteworthy that this update occurs after calling motion,
which eventually leads to the move function of KinematicBubbleParcel class.

Listing 3.8: A part of evolveCloud in KinematicBubbleCloud

1 if (solution_.transient())

2 {

3 label preInjectionSize = this->size();

4

5 this->surfaceFilm().inject(cloud);

6

7 // Update the cellOccupancy if the size of the cloud has changed

8 // during the injection.

9 if (preInjectionSize != this->size())

10 {

11 updateCellOccupancy();

12 preInjectionSize = this->size();

13 }

14

15 //-ML = Store betal before resetting it

16 betal_old() = betal();

17 //-ML = Reset the beta

18 betal() = 1.0;

19

20 injectors_.inject(cloud, td);

21

22 //-ML = Reset the beta; should be reset after injection

23 // since in injection, we have move funciton triggered

24 betal() = 1.0;

25

26 // Assume that motion will update the cellOccupancy as necessary

27 // before it is required.

28 cloud.motion(cloud, td);

29

30 //-ML = DBeta for non-free-divergence equations

31 Dbetal() = (betal() - betal_old()) / (this->db().time().deltaT());

32
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33 stochasticCollision().update(td, solution_.trackTime());

34 }

3.2.3 Modifying setCellValues function in KinematicBubbleParcel

In the original KinematicParcel class in Lagrangian library, to move the bubble, forces must be
calculated. To do so, pressure, velocity, density, and viscosity from the Eulerian cell are used. The
KinematicCloud class employs the trackingData class and the setCellValues member function
of KinematicParcel class to set these values. However, since the original KinematicParcel class
was designed to track particles, these values were interpolated from the cell center to the particle’s
center. On the other hand, to track bubble dynamics and movement, an average of these properties
over the bubble’s surface is required.

As a result, a significant modification to the setCellValues function in the KinematicBubble-
Parcel class, shown in Listing 3.9, involves enhancing its approach to determining Eulerian param-
eters such as density, pressure, velocity, and viscosity from the carrier phase. This is achieved by
calculating averaged physical properties over a spherical surface at a user-defined distance from the
bubble’s position. The updated implementation evaluates these properties across the entire bub-
ble surface. By sampling values on the bubble’s surface and averaging them, the method provides
a more realistic and practical representation of the carrier phase’s influence on the bubble. The
setCellValues function calculates these averaged properties by defining the bubble’s position and
radius and, sampling points uniformly on the bubble’s spherical surface using azimuthal (θ) and
polar (ϕ) angles. At each sampled position, the function interpolates velocity, density, viscosity, and
pressure from the mesh cells and accumulates valid data. The use of setCellValues can be seen in
lines 2 and 49 of Listing 3.2.

Listing 3.9: setCellValues in KinematicBubbleParcel

1 template<class ParcelType>

2 template<class TrackCloudType>

3 void Foam::KinematicBubbleParcel<ParcelType>::setCellValues

4 (

5 TrackCloudType& cloud,

6 trackingData& td,

7 const scalar distance

8 )

9 {

10 //-ML: Initialise finding fields

11 vector posB= this->position();

12 scalar R_sphere = distance * (this->d()/2); // Define the radius of the sphere

13 //-ML: Number of divisions in theta (azimuthal angle) and phi (polar angle)

14 label numTheta = 10;

15 label numPhi = 10;

16 vector USum(0, 0, 0);

17 scalar rhoSum = 0.0;

18 scalar muSum = 0.0;

19 scalar pLSum = 0.0;

20 label validSamples = 0; //-ML: Counter for valid samples

21

22 //-ML: Loop over the spherical surface with uniform sampling

23 for (label i = 0; i < numTheta; i++)

24 {

25 scalar thetaBubble = (2 * constant::mathematical::pi * i) / numTheta; //-ML: Azimuthal angle

26

27 for (label j = 0; j < numPhi; j++)

28 {

29 scalar phiBubble = (constant::mathematical::pi * j) / (numPhi - 1); //-ML: Polar angle

30

31 //-ML: Compute the unit vector components explicitly

32 scalar x = sin(phiBubble) * cos(thetaBubble);

33 scalar y = sin(phiBubble) * sin(thetaBubble);

34 scalar z = cos(phiBubble);

35
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36 //-ML: Create the vector using the computed components

37 vector unitVec(x, y, z);

38

39 //-ML: Scale by the sphere radius and shift by the center

40 vector samplePos = posB + R_sphere * unitVec;

41

42 //-ML: Find the cell that contains this position

43 label cellSample = cloud.mesh().findCell(samplePos);

44

45 //-ML: Check if a valid cell was found

46 if (cellSample != -1)

47 {

48 //-ML: Interpolate values at the sample position

49 vector USample = td.UInterp().interpolate(samplePos, cellSample);

50 scalar rhoSample = td.rhoInterp().interpolate(samplePos, cellSample);

51 scalar muSample = td.muInterp().interpolate(samplePos, cellSample);

52 scalar pLSample = td.pInterp().interpolate(samplePos, cellSample);

53

54 //-ML: Accumulate the values

55 USum += USample;

56 rhoSum += rhoSample;

57 muSum += muSample;

58 pLSum += pLSample;

59

60 //-ML: Increment valid sample counter

61 validSamples++;

62 }

63 }

64 }

65

66 //-ML: Calculate the average values over the surface

67 scalar avgRho = (validSamples > 0) ? (rhoSum / validSamples) : 0.0;

68 vector avgU = (validSamples > 0) ? (USum / validSamples) : Foam::Vector<double>::zero;

69 scalar avgMu = (validSamples > 0) ? (muSum / validSamples) : 0.0;

70 scalar avgPL = (validSamples > 0) ? (pLSum / validSamples) : 0.0;

71

72 td.rhoc() = avgRho;

73 if (td.rhoc() < cloud.constProps().rhoMin())

74 {

75 if (debug)

76 {

77 WarningInFunction

78 << "Limiting observed density in cell " << this->cell()

79 << " to " << cloud.constProps().rhoMin() << nl << endl;

80 }

81

82 td.rhoc() = cloud.constProps().rhoMin();

83 }

84 td.Uc() = avgU;

85 td.muc() = avgMu;

86 td.pc() = avgPL;

87 }

3.3 Modification of interPhaseChangeBubbleFoam

After modifying KinematicBubbleCloud class and KinematicBubbleParcel class, the interPhase-
ChangeFoam solver also needs to be updated. The reader may copy and paste the interPhase-

Change directory from the multiphase directories within the solvers directory in OpenFOAM. It is
recommended to rename the file, directory, and content of interPhaseChangeFoam to interPhase-

ChangeBubbleFoam. Moreover, ensuring the correct compilation of the new solver before proceeding
with further changes is advisable.

Within interPhaseChangeBubbleFoam, a directory named bubbleDynamics can be created to
include the KinematicBubbleCloud class and to host the Rayleigh-Plesset equation class files, RPEqu.
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In addition to these changes, the name and content of phaseChangeTwoPhaseMixtures are updated
to hybridPhaseChangeTwoPhaseMixtures. Additionally, within the bubbleDynamics directory, a
subdirectory named transitionAlgorithm is reserved for future use. An example of the file struc-
ture is shown in Listing 3.10.

Listing 3.10: interPhaseChangeFoam proposed directory

1 interPhaseChangeBubbleFoam

2 |-- Make

3 |-- bubbleDynamics

4 | |-- Make

5 | |-- RPEqu

6 | |-- clouds

7 | | |-- Templates

8 | | | |-- CollidingCloud

9 | | | |-- KinematicBubbleCloud

10 | | | `-- MPPICCloud

11 | | |-- baseClasses

12 | | | `-- kinematicBubbleCloud

13 | | `-- derived

14 | | |-- basicKinematicBubbleCloud

15 | | |-- basicKinematicBubbleCollidingCloud

16 | | `-- basicKinematicBubbleMPPICCloud

17 | |-- lnInclude

18 | |-- parcels

19 | | |-- Templates

20 | | | |-- CollidingParcel

21 | | | | `-- CollisionRecordList

22 | | | | |-- PairCollisionRecord

23 | | | | `-- WallCollisionRecord

24 | | | |-- KinematicBubbleParcel

25 | | | `-- MPPICParcel

26 | | `-- derived

27 | | |-- basicKinematicBubbleCollidingParcel

28 | | |-- basicKinematicBubbleMPPICParcel

29 | | `-- basicKinematicBubbleParcel

30 | `-- transitionAlgorithm

31 `-- hybridPhaseChangeTwoPhaseMixtures

32 |-- Kunz

33 |-- Make

34 |-- Merkle

35 |-- SchnerrSauer

36 |-- hybridPhaseChangeTwoPhaseMixture

37 `-- lnInclude

3.3.1 Implementing Beta and Gamma

The first change to interPhaseChangeBubbleFoam is to introduce βl and γ into the solver according
to Eq. (3.1). It is more useful to introduce these two variables in the same place where αl is
defined. In the createField.H file, we can see that αl is defined as a member function of the
phaseChangeTwoPhaseMixture class. As we delve deeper into this class, we observe that it inherits
from incompressibleTwoPhaseMixture class, which, in turn, inherits from the twoPhaseMixture

class. Inside the twoPhaseMixture class, we find that αl is being read from the dictionary located
in the time directories.

As a result, we copied and pasted the incompressibleTwoPhaseMixture, twoPhaseMixture,
and phaseChangeTwoPhaseMixture classes into the interPhaseChangeBubbleFoam directory and re-
named them to HybridIncompressibleTwoPhaseMixture, HybridTwoPhaseMixture, and Hybrid-

PhaseChangeTwoPhaseMixture, respectively. In Listing 3.11, two new variables and their functions
are defined and declared, and one function is defined to update the value of γ.
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Listing 3.11: Variables are added in HybridTwoPhaseMixture class

1 //-ML: The Lagrangian phase-fraction

2 volScalarField beta1_;

3 volScalarField beta2_;

4 //-ML: The Hybrid phase-fraction

5 volScalarField gamma1_;

6 volScalarField gamma2_;

7

8

9 //-ML: Return Hybrid phase-fraction of phase 2

10 void update_gamma()

11 {

12 gamma1_ = alpha1_ * beta1_;

13 gamma2_ = 1.0 - gamma1_;

14 }

Another modification is in the HybridIncompressibleTwoPhaseMixture class, as it is where the
laminar mixture viscosity, µlaminar in Eq. (2.3), is defined and returned to the momentum equation
in UEqn.H. In this class, all instances where αl is used are replaced with γ to align it with Eq. (3.18).
Readers may refer to the accompanying files to see these changes.

Now, the changes in the interPhaseChangeBubbleFoam solver should be made. Inside the
createField.H file, the definition of rho is updated to use gamma (γ) instead of alphal (αl). The
changes use variables, beta and gamma, to handle phase fractions and mixing properties. Specifically,
beta1, beta2, gamma1, and gamma2 are initialized as references to fields in the mixture object. The
code ensures that the phase fractions are consistent by enforcing relationships such as α2 = 1− α1

and β2 = 1 − β1. The mixture density rho is redefined using gamma values as ρ = γ1ρ1 + γ2ρ2,
where rho1 and rho2 represent the densities of the two phases. Additionally, whenever there is a
calculation affecting density, the updateGamma() function should be called to ensure consistency in
viscosity and density calculations.

Listing 3.12: Modifications in createField.H

1 //- ML: Adding the beta and gamma

2 volScalarField& beta1(mixture->beta1());

3 volScalarField& beta2(mixture->beta2());

4 volScalarField& gamma1(mixture->gamma1());

5 volScalarField& gamma2(mixture->gamma2());

6

7 //- ML: Double check values

8 alpha2 = 1.0 - alpha1;

9 beta2 = 1.0 - beta1;

10

11 const dimensionedScalar& rho1 = mixture->rho1();

12 const dimensionedScalar& rho2 = mixture->rho2();

13

14 // Need to store rho for ddt(rho, U)

15 volScalarField rho

16 (

17 IOobject

18 (

19 "rho",

20 runTime.timeName(),

21 mesh,

22 IOobject::READ_IF_PRESENT

23 ),

24 gamma1*rho1 + gamma2*rho2

25 );

26 rho.oldTime();
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3.4 Coupling of interPhaseChangeBubbleFoam with Kine-
maticBubbleCloud

Prior to compiling and using the code, the KinematicBubbleCloud class and interPhaseChange-

BubbleFoam should be coupled. There are works such as by Vallier [19, 20] that demonstrated
how to couple interFoam with the solidParticle class, and later, a more improved coupling with
the solidParticle class was also presented by Ghahramani [21]. However, Ghahramani [5], in
their Ph.D. thesis, demonstrated the coupling of KinematicCloud class with interPhaseChange-

Foam. In this study, the author will show how to link these two classes, KinematicBubbleCloud
and interPhaseChangeBubbleFoam. In order to couple them, the first step would be including
the declaration of the class basicKinematicBubbleCloud.H in interPhaseChangeBubbleFoam, as
shown in Listing 3.13.

Listing 3.13: Modifications in interPhaseChangeBubbleFoam

1 #include "fvOptions.H"

2

3 #include "basicKinematicBubbleCloud.H" //-ML : declarition of basicKinematicBubbleCloud

4

5 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Another modification is in createField.H, as shown in Listing 3.14. The code begins with
defining a scalar field, muc, representing the dynamic viscosity of the fluid, which is calculated as the
product of the kinematic viscosity (turbulence->nu()) and mixture density (rho). Then, it creates
a cloud of bubbles, with the name specified either through an argument or defaulting to Kinematic-
BubbleCloud. Finally, the basicKinematicBubbleCloud object, namely parcels, is constructed
by supplying parameters such as density (rho), velocity (U), dynamic viscosity (muc), pressure (p),
and gravitational acceleration (g) to the constructor of the KinematicBubbleCloud class.

Listing 3.14: Modifications in createField.H

1 //-ML: Creating elements important for lagrangian bubbles

2 volScalarField muc

3 (

4 IOobject

5 (

6 "muc",

7 runTime.timeName(),

8 mesh,

9 IOobject::NO_READ,

10 IOobject::AUTO_WRITE

11 ),

12 turbulence->nu()*rho

13 );

14

15 //- ML: Creating clouds

16 const word kinematicBubbleCloudName

17 (

18 args.getOrDefault<word>("cloud", "kinematicBubbleCloud")

19 );

20

21 Info<< "Constructing Cloud: " << kinematicBubbleCloudName << endl;

22

23 basicKinematicBubbleCloud parcels

24 (

25 kinematicBubbleCloudName,

26 rho,

27 U,

28 muc,

29 p,//-ML: It is added for bubble Dynamics-Rayleigh Plesset Equation

30 g

31 );
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Another major change is including the source terms from the Lagrangian framework into the
Eulerian framework. According to Eq. (3.20), the inclusion of parcels.SU(U) should be added to
the momentum equation in UEqn.H, as shown in Listing 3.15. In addition, source terms parcels-
.SU mDotBubble() and parcels.Dbetal() according to Eq. (3.15) are included in pEqn.H, as shown
in Listing 3.16.

Listing 3.15: Modifications in UEqn.H

1 fvVectorMatrix UEqn

2 (

3 fvm::ddt(rho, U)

4 + fvm::div(rhoPhi, U)

5 - fvm::Sp(fvc::ddt(rho) + fvc::div(rhoPhi), U)

6 - fvm::ddt(rho2Beta2, U) //-ML: subtract effects of 1-beta1

7 - fvm::div(rho2PhiBeta2, U) //-ML: subtract effects of 1-beta1

8 + turbulence->divDevRhoReff(rho, U)

9 + parcels.SU(U) //-ML: Return the momentum source from the lagrangian framework

10 );

Listing 3.16: Modifications in pEqn.H

1 fvScalarMatrix p_rghEqn

2 (

3 fvc::div(phiHbyA) - fvm::laplacian(rAUf, p_rgh)

4 - (EuvDotcvP)*(mixture->pSat() - rho*gh) //-ML: p_rgh + rho*gh

5 + fvm::Sp(EuvDotcvP, p_rgh)

6 + invRho1Beta*parcels.SU_mDotBubble() //-ML: Rate of change of bubble mass

7 + invBeta*parcels.Dbetal() //-ML: Total derivative of betal

8 );

Finally, the last step involves adding the evolve member function of basicKinematicBubble-
Cloud in interPhaseChangeBubbleFoam to manipulate the parcels, such as moving, injecting, and
updating source terms, as shown in line 4 of Listing 3.17. There are other minor modifications in
pEqn.H, UEqn.H, and alphaEqn.H, which readers can find by referring to the accompanying files.

Listing 3.17: interPhaseChangeBubbleFoam.H

1 //-ML: Adding evolution of cloud

2 Info<< "Evolution of Cloud: "<< parcels.name() << endl;

3

4 parcels.evolve();

5 //-ML: update the gamma value from multiplication of alpha1_*beta1_

6 mixture->update_gamma();

7

8 runTime.write();

3.5 Lagrangian to Eulerian framework transition

The main aim of the project is to inject nuclei as unresolved vapor and then track their size and
movement. However, the nuclei’s size may reach a point where it is less computationally expensive
to track them within the Eulerian framework than to keep them in the Lagrangian framework,
moreover, unresolved vapors may get close to the interface of resolved vapor. In this regard, the
author implemented an algorithm to transfer Lagrangian bubbles when they meet certain criteria,
as can be seen in Lavari et al. [10]. The algorithm includes:

1. Transition from the Lagrangian to Eulerian framework due to the expansion of the vapor
structure beyond a size threshold, as depicted in Figure 3.1a.

2. Coalescence of microscale vapor structures with macroscale structures, as depicted in Fig-
ure 3.1b.
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(a) Transition from Lagrangian to
Eulerian due to expansion [10]

(b) Transition from Lagrangian to
Eulerian due to Coalescence [10]

Figure 3.1: Lagrangian to Eulerian framework transition

In interPhaseChangeBubbleFoam/bubbleDynamics directory, the author created a directory
dedicated to transition algorithms with the same name as the directory. Inside this directory, there
are two files. One of them is LagrangianToEulerian.H, and its content is shown in Listing A.1. This
code traces the Lagrangian bubbles within a computational mesh, identifies the bubble’s location and
its neighboring cells, redistributes bubble volume using Gaussian weights, and deactivates bubble
tracing under above-mentioned criteria.

The code begins by determining the bubble’s position (posB) and radius (radB). The initial
computational cell containing the bubble is identified, and its distance from the bubble center is
computed. A DynamicList is used to store pairs of cell labels and their distances that the bubble
covers. The algorithm loops over all cells while ensuring no cells are revisited by tracking visited
cells. Neighboring cells are explored iteratively, adding cells within 2 × radB to the list, sorted by
distance. This factor of 2 is chosen to ensure that 100 percent of the vapor is distributed.

The volume distribution uses Gaussian weights based on the bubble’s center and the distances
of neighboring cells. For a given cell j, the Gaussian weight is computed as

wj = exp

(
−1

2

(
dj
σ

)2
)
. (3.21)

Here, dj is the distance between the center of cell j and the bubble’s position, and σ = rB
deviation is

the Gaussian standard deviation, with rB as the bubble radius. To ensure volume conservation and
smooth distribution, which are critical for accurately modeling physical interactions, the normalized
weight is used to compute the fraction of the bubble volume assigned to each cell. This is given by

w̃j =
wj

W
. (3.22)

Here, W is the total weight within the radius, defined as
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W =
∑
j

wj . (3.23)

Finally, the normalized weight is used to compute the fraction of the bubble volume assigned to each
cell, defined as

vi,j = w̃j ·
VB

Vj
. (3.24)

Here, vi,j is the volume fraction of the bubble assigned to cell j. VB is the total volume of the
bubble, and Vj is the volume of cell j.

In addition, the code checks proximity to the interface by evaluating αl in nearby cells. If even
one cell within the bubble’s radius contains αl below a set threshold, the bubble is considered to
be close to Eulerian structures, potentially triggering deactivation. Another feature that has been
added is the ability to check the Lagrangian bubbles in a certain area of interest, the limits of which
are defined by a box. When the user enables the box limits, tracking of Lagrangian bubbles would
be restricted out of the box boundaries, reducing the computational cost of the simulation.

In order to couple LagrangianToEulerian.H with kinematicBubbleParcel class, the author
defined some controllers/variables and their calling functions, as well as initialized them in the
constructor of kinematicBubbleParcel class. All of this happens inside the kinematicBubble-

Parcel class, as shown in Listing 3.18.

Listing 3.18: New inputs in kineamticBubbleParcel.H

1 //- ML: Dictionary of Transition_Algorithm

2 dictionary Transition_Algorithm_;

3

4 //- ML: flag for activation of EulerianToLagrangian

5 label EulerianToLagrangian_activation_;

6

7 //- ML: flag for activation of LagrangianToEulerian

8 label LagrangianToEulerian_activation_;

9

10 //- ML:sigma = bubbleRadius / deviation

11 scalar LE_deviation_;

12

13 //- ML:Minimum liquid volume fraction value that lagrangian cell can occupy

14 scalar LE_minCellOccupancy_;

15

16 //- ML:Number of cells that trigger the transtion from Lagrangian to Eulerian

17 scalar LE_cellThreshold_;

18

19 //- ML: Set threshold for interface proximity that trigger the transtion from Lagrangian

to Eulerian

20 scalar LE_alphaThreshold_;

21

22 //- ML: Minimum bubble radius threshold that will be tracked

23 scalar LE_bubbleSizeThreshold_;

24

25 //- ML: Define the box boundaries for tracking- Only lagrangian inside this box will be

tracked

26 label LE_boxCheckEnabled_;

27

28 //- ML: the top-left corner coordinates

29 vector LE_boxTopLeftCorner_;

30

31 //- ML: the bottom-right corner coordinates

32 vector LE_boxBottomRightCorner_;

Prior to including LagrangianToEulerian.H, it is important to note that βl should be filled
and updated with the Lagrangian vapor volume fraction over cells that unresolved vapor covers.
Moreover, βl should be transferred to the Eulerian framework by correcting αl in case the Lagrangian
bubble is deactivated. Thus, αl and βl should exchange values inside the KinematicBubbleParcel
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class, meaning that the constructor of KinematicBubbleCloud class should be modified to accept
the αl and βl references from interPhaseChangeBubbleFoam. Listing 3.19 shows how to use the new
constructor of basicKinematicBubbleCloud class in the createField.H. Readers are referred to
the accompanying files to see all details of the changes in the constructor of KinematicBubbleCloud
class.

Listing 3.19: Modifications in createField.H

1 basicKinematicBubbleCloud parcels

2 (

3 kinematicBubbleCloudName,

4 rho,

5 U,

6 muc,

7 p,//-ML: It is added for bubble Dynamics-Rayleigh Plesset Equation

8 alpha1,//-ML: It is added to modify liquid volume fraction

9 beta1,//-ML: It is added to modify liquid volume fraction

10 g

11 );

3.5.1 Coupling LagrangianToEulerian.H with KinematicBubbleParcel

As emphasized earlier, the main member function inside the KinematicBubbleParcel is the move()
member function, thus LagrangianToEulerian.H is added at the end of the move() function. The
final lines of the move() function is changed with the addition of LagrangianToEulerian.H, as
shown in line 19 of Listing 3.20.

Listing 3.20: Modifications in KineamticBubbleParcel.H

1 p.age() += dt;

2

3 if (p.active() && p.onFace())

4 {

5 ttd.keepParticle = cloud.functions().postFace(p, ttd);

6 }

7

8 ttd.keepParticle = cloud.functions().postMove(p, dt, start, ttd);

9

10 if (p.active() && p.onFace() && ttd.keepParticle)

11 {

12 p.hitFace(s, cloud, ttd);

13 }

14 }

15

16 //- ML: add transition from lagrangian to eulerian

17 if(this->LagrangianToEulerian_activation())

18 {

19 #include "LagrangianToEulerian.H"

20 }

21

22 return ttd.keepParticle;

23 }

The final change involves defining a dictionary named Transition Algorithm inside the constant-
/kinematicBubbleCloudProperties. This dictionary is populated as shown in Listing 3.21.

Listing 3.21: Modifications in kinematicBubbleCloudProperties.H

1 Transition_Algorithm

2 {

3 //- ML: flag for activation of EulerianToLagrangian

4 EulerianToLagrangian_activation true;

5

6 //- ML: flag for activation of EulerianToLagrangian

7 LagrangianToEulerian_activation true;
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8

9 //- ML:sigma = bubbleRadius / deviation-> Gaussian standard deviation (for 99% volume within

radius)

10 LE_deviation 3.0;

11

12 //- ML:Minimum liquid volume fraction value that lagrangian cell can occupy

13 LE_minCellOccupancy 0.3;

14

15 //- ML:Number of cells that trigger the transtion from Lagrangian to Eulerian

16 LE_cellThreshold 20000;

17

18 //- ML: Set threshold for interface proximity that trigger the transtion from Lagrangian to

Eulerian

19 LE_alphaThreshold 0.5;

20

21 //- ML: Minimum bubble radius threshold that will be tracked

22 LE_bubbleSizeThreshold 5e-07;

23

24 //- ML: Define the box boundaries for tracking- Only lagrangian inside this box will be tracked

25 LE_boxCheckEnabled false;

26

27 LE_boxTopLeftCorner (0.0 0.0 0.0); // the top-left corner coordinates at the back

face

28

29 LE_boxBottomRightCorner (1.0 1.0 1.0); // the bottom-right corner coordinates at the

front face

30 }

3.6 Eulerain to Lagrangian framework transition

The Eulerian-resolved vapors may shrink to small sizes that cannot be tracked with the cell size, as
shown in Figure 3.2. One good practice is to transfer them into the Lagrangian framework instead
of ignoring them, as they may collapse and generate re-entering jets, ultimately influencing the
pressure and velocity fields. Vallier [3] introduced an algorithm to detect Eulerian structures, check
their size, and, if needed, transfer them to the Lagrangian framework. However, the author found
this algorithm challenging to parallelize. In contrast, for the type of problems under consideration,
the domain could be divided between different processors, making parallelization necessary.

Heinrich et al. [22] used Connected Component Labeling(CCL) for nozzle atomization, where
small Eulerian elements are converted to Lagrangian parcels to reduce computational cost, and the
code is fully parallelized. This conversion from the Eulerian framework to the Lagrangian framework
resides within the phaseCoupling class inside the /src/libAtomization directory1. Since the
original phaseCoupling class is designed for finding liquid structures, and in this project, vapor
structures are the focus of interest, some modifications were made. Specifically, only the update()

member function of the phaseCoupling class was extracted and modified to accept Eulerian vapor
instead of Eulerian liquid. Additionally, the injection part was completely redesigned to follow the
criteria shown in Figure 3.2 for injecting Lagrangian vapor into the Lagrangian cloud. The modified
code is written in EulerianToLagrangian.H, which resides in the bubbleDynamics directory.

By examining EulerianToLagrangian.H, as shown in Listing A.2, the process begins with the
definition of two thresholds. The first is alpha1Lim, which acts as a cutoff for αl to distinguish
between vapor and liquid. The second is minCells, which specifies the minimum number of cells
required to consider a structure as significant. Additionally, a scalar field vofID is initialized to
store the volume ID of each computational cell. This field is set to zero values initially and employs
corrected boundary conditions.

A globalIndex object is utilized to map local cell indices to global indices, enabling the iden-
tification of cells across processors in parallel simulations. The algorithm iterates through all cells,
assigning a unique volume ID to connected regions that satisfy the phase fraction threshold. Starting
from an unmarked cell with αl below the threshold, it identifies neighboring cells recursively using

1The link to the original code is https://github.com/ElsevierSoftwareX/SOFTX_2020_30.
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Figure 3.2: Transition from the Eulerian to Lagrangian framework due to an
insufficient number of grids to resolve the vapor structure [10]

dynamic lists to explore and mark all connected cells meeting the same condition. These identified
cells are assigned the same volume ID, and the process continues until all relevant cells are processed.

To support the parallel processing, the code ensures consistency of the vofID field across coupled
patches such as processor boundaries. This involves verifying the volume IDs on both sides of a
patch and merging differing IDs when necessary. The merging process is repeated a number of times
proportional to the logarithm of the number of processors to achieve complete consistency.

Once the volume IDs are finalized, the code renumbers them into a compact sequential order.
It calculates various properties for each identified structure, including the number of cells, total
volume, centroid position, and average velocity. These properties are determined by iterating over
all cells and aggregating the relevant data based on the volume ID of each cell. The results are then
reduced across all processors to account for parallel computation.

The code outputs details about each identified structure, such as the number of cells, volume,
position, and velocity. For small structures below the minCells threshold, the code adjusts αl and
computes additional properties like the center position and average velocity. These properties are
subsequently injected into a Lagrangian cloud to represent the bubbles in a discrete Lagrangian
framework. Finally, corrections are applied to ensure the proper placement of the injected particles
within the computational mesh.

3.6.1 Coupling EulerianToLagrangian.H with interPhaseChangeBubble

The EulerianToLagrangian.H file should be coupled within interPhaseChangeBubble class, as it
is responsible for updating resolved vapors. Since EulerianToLagrangian.H injects bubbles into the
Lagrangian framework, it needs to be added prior to the evolve function in interPhaseChange-

Bubble. Listing 3.22 illustrates the location of this implementation in interPhaseChangeBubble.

Listing 3.22: Modifications in interPhaseChangeBubbleFoam.H

1 //-ML: Transition from Eulerian to Lagrangian

2 if(EulerToLagrang_activation)

3 {

4 #include "EulerianToLagrangian.H"

5 }
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6 mixture->update_gamma();

7

8 //-ML: Adding evolution of cloud

9 Info<< "Evolution of Cloud: "<< parcels.name() << endl;

10

11 parcels.evolve();

12 //-ML: update the gamma value from multiplication of alpha1_*beta1_

13 mixture->update_gamma();

14

15 runTime.write();

To enable control over the Eulerian-to-Lagrangian transition, additional controllers and variables
are introduced within Transition Algorithm in the constant/kinematicBubbleCloudProperties
file. These modifications are presented in Listing 3.23. The initialization of these variables is included
in the createFields.H file, as shown in Listing 3.24.

Listing 3.23: Modifications in constant/kinematicBubbleCloudProperties

1 Transition_Algorithm

2 {

3 //- ML: flag for activation of EulerianToLagrangian

4 EulerianToLagrangian_activation true;

5

6 //- ML:Number of cells that trigger the transtion from Eulerian to Lagrangian

7 EL_cellThreshold 4;

8

9 //- ML: Set threshold for tracking structures with alpha below this Threshold

10 EL_alphaThreshold 0.999;

11

12 //- ML: flag for activation of EulerianToLagrangian

13 LagrangianToEulerian_activation false;

14 ...

Listing 3.24: Modifications in createFields.H

1 //-ML: Set the Euler to Lagrang controllers

2 Info<< "Set Eulerian-to-Lagrangian Controllers " << endl;

3 IOdictionary EulerToLagrang

4 (

5 IOobject

6 (

7 "kinematicBubbleCloudProperties",

8 mesh.time().constant(),

9 mesh,

10 IOobject::MUST_READ,

11 IOobject::NO_WRITE

12 )

13 );

14

15 dictionary readEulerToLagrang(EulerToLagrang.subDict("Transition_Algorithm"));

16

17 //- ML: Flag for activation of EulerianToLagrangian

18 label EulerToLagrang_activation(readEulerToLagrang.lookupOrDefault<bool>("

EulerianToLagrangian_activation", 0));

19 Info << "Set the EulerToLagrang_activation: " << EulerToLagrang_activation << endl;

20

21 //- ML: Number of cells that trigger the transtion from Eulerian to Lagrangian

22 scalar EL_cellThreshold(readEulerToLagrang.lookupOrDefault<scalar>("EL_cellThreshold", 0));

23 Info << "Set the EL_cellThreshold: " << EL_cellThreshold << endl;

24

25 //- ML: Set threshold for tracking structures with alpha below this Threshold

26 scalar EL_alphaThreshold(readEulerToLagrang.lookupOrDefault<scalar>("EL_alphaThreshold", 0));

27 Info << "Set the EL_alphaThreshold: " << EL_alphaThreshold << endl;
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Test cases and results

In order to evaluate the different features of the new solver interPhaseChangeBubbleFoam, four test
cases have been designed. Careful consideration is made to design the cases in such a way that they
can be run in a short time, making it impractical to use in a real engineering application. However,
readers can modify these cases to make the tutorials suitable for their problem of interest. Four
different abilities tested in present cases are as follows:

1. Case 1 verifies the interface tracking between unresolved and resolved vapors and merges the
unresolved with the resolved vapors if the interface is tracked, as shown in Figure 3.1b.

2. Case 2 transfers unresolved vapor to resolved vapor when its size goes beyond a user-defined
threshold as depicted in Figure 3.1a.

3. Case 3 transfers resolved vapor to unresolved vapor when its size goes below a user-defined
threshold as depicted in Figure 3.2.

4. Case 4 checks the deletion of Lagrangian bubbles out of the region of interest, or user-defined
box.

Readers can use the accompanying files to run all the cases. The step-by-step process is to first
source OpenFOAM-v2406 and then run the Allrun script to compile the solver and execute all the
cases. In each case study directory, there is a ParaView state file that can be used to import the
pipelines used to visualize the results in this work.

4.1 Case study 1: checkingInterFace

Case 1 consists of a 3D box in which the bottom half is filled with water and the upper half with air.
The size of the box is 0.1 m in the x -direction, 0.2 m in the y-direction, and 0.1 m in the z -direction,
as shown in Figure 4.1. The number of cells in the x -direction is 50, in the y-direction is 100 and
in the z -direction is 50. The cells have a uniform length of 0.002 m everywhere, resulting in a total
number of 250,000 cells. Boundary conditions are defined as leftWall, rightWall, lowerWall,
backWall, and frontWall, with an atmosphere patch at the top of the box.
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Figure 4.1: z -plane at z= 0.05 of the mesh

The setFields utility is used to fill the lower half of the box with water as shown in Figure 4.2.
The simulation was run for 0.1 s with a time step of 0.001 s and a write interval of 0.005 s. At time
0 s, a bubble is injected using the manualInjection model at position the (0.05, 0.085, 0.05), which
then rises due to the buoyancy force.

Figure 4.2: z -plane at z= 0.05 of domain; red represents water and blue
represents air

The configuration for bubbleProperties and Transition Algorithm dictionaries can be seen
in Listing 4.1. The flag for activation of bubble dynamics was disabled, so the Rayleigh-Plesset
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equation did not perform, and the change in bubble diameter was deactivated. All files related to
this case can be found in the accompanying files.

Listing 4.1: Configuration of bubbleProperties and Transition Algorithm in kinematicBubble-

CloudProperties

1 bubbleProperties

2 {

3 //- ML: flag for activation of bubble dynamics

4 bubble_activation false;

5 //- ML: surface tension for bubble dynamics

6 bubbleSigma 0.07;

7 //- ML: initial pressure for bubble dynamics

8 p0 101325;

9 //- ML: initial radius for bubble dynamics

10 R0 1e-06;

11 //- ML: vapour pressure for bubble dynamics

12 pv 2300;

13 //- ML: time step for each loop of RP solver-important

14 RPdT 5.0e-6; //1.0e-7 ;

15 //- ML: kappa isotropic value for bubble dynamics

16 bubbleKappa 1.4;

17 //- ML: Averaging distance for bubble dynamics

18 averagingDistance 2;//5;

19 //- ML: ODE solver type for bubble dynamics

20 ODESolverType RKF45;

21 }

22

23 Transition_Algorithm

24 {

25 //- ML: flag for activation of EulerianToLagrangian

26 EulerianToLagrangian_activation true;

27

28 //- ML:Number of cells that trigger the transtion from Eulerian to Lagrangian

29 EL_cellThreshold 0;

30

31 //- ML: Set threshold for tracking structures with alpha below this Threshold

32 EL_alphaThreshold 0.9;

33

34 //- ML: flag for activation of LagrangianToEulerian

35 LagrangianToEulerian_activation true;

36

37 //- ML:sigma = bubbleRadius / deviation-> Gaussian standard deviation (for 99% volume within

radius)

38 LE_deviation 3.0;

39

40 //- ML:Minimum liquid volume fraction value that lagrangian cell can occupy

41 LE_minCellOccupancy 0.3;

42

43 //- ML:Number of cells that trigger the transtion from Lagrangian to Eulerian

44 LE_cellThreshold 20000;

45

46 //- ML: Set threshold for interface proximity that trigger the transtion from Lagrangian to

Eulerian

47 LE_alphaThreshold 0.5;

48

49 //- ML: Minimum bubble radius threshold that will be tracked

50 LE_bubbleSizeThreshold 5e-07;

51

52 //- ML: Define the box boundaries for tracking- Only lagrangian inside this box will be tracked

53 LE_boxCheckEnabled false;

54

55 LE_boxTopLeftCorner (0.0 0.0 0.0); // the top-left corner coordinates at the back

face

56

57 LE_boxBottomRightCorner (1.0 1.0 1.0); // the bottom-right corner coordinates at the

front face

58 }
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4.1.1 Results

As can be seen in Figure 4.3, the bubble rises and at time 0.065 s, where it touches the interface of
air and water, it is removed from the Lagrangian framework, and its effects remain as the Eulerian
volume fraction, αl.

(a) Time 0.005 s (b) Time 0.03 s

(c) Time 0.05 s (d) Time 0.065 s

(e) Time 0.07 s

Figure 4.3: z -planes at z= 0.05 of the mesh at different time steps; the figures
show the volume fraction contours with the spherical Lagrangian bubble
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4.2 Case study 2: checkingLagrangianCellThreshold

In case study 2, one nucleus is injected inside a box. Since the pressure inside the box is less than
the vapor pressure (2300 Pa), as the Lagrangian bubble moves, its radius increases. A threshold
value of 44 is set, above which this unresolved vapor transfers to the Eulerian framework. In this
regard, this case is the main case study in this project as it covers the primary goal of the project.
This case consists of a 3D box with dimensions of 0.3 m in the x -direction, 0.1 m in the y-direction,
and 0.1 m in the z -direction, as shown in Figure 4.4. The number of cells in the x -direction is 60,
in the y-direction is 20, and in the z -direction is 20. The cells have a uniform length of 0.005 m
everywhere, resulting in a total of 24,000 cells. Boundary conditions are defined as inlet at the left
face of the domain, outlet at the right face, lowerWall, backWall, frontWall, and topWall at the
top of the box.

Figure 4.4: z -plane of the mesh

A pressure gradient is set in the domain from 2000 Pa at the inlet to 1000 Pa at the outlet,
as shown in Figure 4.5. The simulation was run for 0.25 s with a time step of 0.0005 s and a write
interval of 0.001 s. At time 0.02 s, a bubble was injected using manualInjection model at the
position (0.0 0.05 0.05) with an initial diameter and velocity of 0.001 m and 2 m/s, receptively. All
forces on the nucleus are disabled, thus it moves with a prescribed motion.

Figure 4.5: z -plane of domain; pressure distribution inside the domain

The configuration for bubbleProperties and Transition Algorithm dictionaries can be seen
in Listing 4.2. Bubble dynamics is activated in this case, along with the transition from Lagrangian
to Eulerian with an LE cellThreshold value of 44. All files related to this case can be found in the
accompanying files.
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Listing 4.2: Configuration of bubbleProperties and Transition Algorithm in kinematicBubble-

CloudProperties

1 bubbleProperties

2 {

3 //- ML: flag for activation of bubble dynamics

4 bubble_activation true;

5 //- ML: surface tension for bubble dynamics

6 bubbleSigma 0.07;

7 //- ML: initial pressure for bubble dynamics

8 p0 101325;

9 //- ML: initial radius for bubble dynamics

10 R0 1e-06;

11 //- ML: vapour pressure for bubble dynamics

12 pv 2300;

13 //- ML: time step for each loop of RP solver-important

14 RPdT 5.0e-6;

15 //- ML: kappa isotropic value for bubble dynamics

16 bubbleKappa 1.4;

17 //- ML: Averaging distance for bubble dynamics

18 averagingDistance 5;//5;

19 //- ML: ODE solver type for bubble dynamics

20 ODESolverType RKF45;

21 }

22

23 Transition_Algorithm

24 {

25 //- ML: flag for activation of EulerianToLagrangian

26 EulerianToLagrangian_activation true;

27

28 //- ML:Number of cells that trigger the transtion from Eulerian to Lagrangian

29 EL_cellThreshold 0;

30

31 //- ML: Set threshold for tracking structures with alpha below this Threshold

32 EL_alphaThreshold 0.999;

33

34 //- ML: flag for activation of LagrangianToEulerian

35 LagrangianToEulerian_activation true;

36

37 //- ML:sigma = bubbleRadius / deviation-> Gaussian standard deviation (for 99% volume within

radius)

38 LE_deviation 3.0;

39

40 //- ML:Minimum liquid volume fraction value that lagrangian cell can occupy

41 LE_minCellOccupancy 0.3;

42

43 //- ML:Number of cells that trigger the transtion from Lagrangian to Eulerian

44 LE_cellThreshold 44;

45

46 //- ML: Set threshold for interface proximity that trigger the transtion from Lagrangian to

Eulerian

47 LE_alphaThreshold 0.5;

48

49 //- ML: Minimum bubble radius threshold that will be tracked

50 LE_bubbleSizeThreshold 5e-07;

51

52 //- ML: Define the box boundaries for tracking- Only lagrangian inside this box will be tracked

53 LE_boxCheckEnabled false;

54

55 LE_boxTopLeftCorner (0.0 0.0 0.0); // the top-left corner coordinates at the back

face

56

57 LE_boxBottomRightCorner (1.0 1.0 1.0); // the bottom-right corner coordinates at the

front face

58 }
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4.2.1 Results

As shown in Figure 4.6, the nucleus with a diameter of 0.001 m is injected at time 0.2 s and moves
from left to right. At time 0.124 s, the number of cells that the unresolved vapor covers exceeds the
threshold value of 44, and at time 0.125 s, it transfers to the Eulerian framework. The Lagrangian
vapor is then removed from the domain, however, its αl remains in the domain and flows with the
mainstream, driven by the pressure difference between the inlet and outlet.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Evolution of nucleus at different times for case 2
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4.3 Case study 3: checkingEulerianCellThreshold

Case 3 consists of a tank filled with water with an opening or a nozzle at the bottom, and air is
injected from bottom, as shown in Figure 4.7. The cells have a uniform length of 0.01 m everywhere,
resulting in a total number of 126000 cells. Boundary conditions are defined as inlet, outlet,
nozzleWall, lowerWall, leftWall, rightWall, backWall, and frontWall.

Figure 4.7: Tank with opening from bottom

The setFields utility has been used to fill a small part of the nozzle with air as shown in
Figure 4.8. The simulation was run for 0.025 s with a time step of 0.0005 s and a write interval of
0.001 s.

Figure 4.8: Red represents water and blue represents air

The configuration for bubbleProperties and Transition Algorithm dictionaries is shown in
Listing 4.3. The flag for the activation of bubble dynamics was disabled, so the Rayleigh-Plesset
model did not operate, and changes in bubble diameter were deactivated. Additionally, the flag
for the activation of LagrangianToEulerian was disabled, hence there was no transition from the
Lagrangian to the Eulerian framework. The threshold for Eulerian-to-Lagrangian transition was set
to 4. Therefore, whenever a resolved structure size dropped below 4 cells, an unresolved structure
with the same size and velocity at the center of the previous resolved structure was injected. All
files related to this case can be found in the accompanying files.
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Listing 4.3: Configuration of bubbleProperties and Transition Algorithm in kinematicBubble-

CloudProperties

1 bubbleProperties

2 {

3 //- ML: flag for activation of bubble dynamics

4 bubble_activation false;

5 //- ML: surface tension for bubble dynamics

6 bubbleSigma 0.07;

7 //- ML: initial pressure for bubble dynamics

8 p0 101325;

9 //- ML: initial radius for bubble dynamics

10 R0 1e-06;

11 //- ML: vapour pressure for bubble dynamics

12 pv 2300;

13 //- ML: time step for each loop of RP solver-important

14 RPdT 5.0e-6; //1.0e-7 ;

15 //- ML: kappa isotropic value for bubble dynamics

16 bubbleKappa 1.4;

17 //- ML: Averaging distance for bubble dynamics

18 averagingDistance 5;//5;

19 //- ML: ODE solver type for bubble dynamics

20 ODESolverType RKF45;

21 }

22

23 Transition_Algorithm

24 {

25 //- ML: flag for activation of EulerianToLagrangian

26 EulerianToLagrangian_activation true;

27

28 //- ML:Number of cells that trigger the transtion from Eulerian to Lagrangian

29 EL_cellThreshold 4;

30

31 //- ML: Set threshold for tracking structures with alpha below this Threshold

32 EL_alphaThreshold 0.999;

33

34 //- ML: flag for activation of LagrangianToEulerian

35 LagrangianToEulerian_activation false;

36

37 //- ML:sigma = bubbleRadius / deviation-> Gaussian standard deviation (for 99% volume within

radius)

38 LE_deviation 3.0;

39

40 //- ML:Minimum liquid volume fraction value that lagrangian cell can occupy

41 LE_minCellOccupancy 0.3;

42

43 //- ML:Number of cells that trigger the transtion from Lagrangian to Eulerian

44 LE_cellThreshold 44;

45

46 //- ML: Set threshold for interface proximity that trigger the transtion from Lagrangian to

Eulerian

47 LE_alphaThreshold 0.5;

48

49 //- ML: Minimum bubble radius threshold that will be tracked

50 LE_bubbleSizeThreshold 5e-07;

51

52 //- ML: Define the box boundaries for tracking- Only lagrangian inside this box will be tracked

53 LE_boxCheckEnabled false;

54

55 LE_boxTopLeftCorner (0.0 0.0 0.0); // the top-left corner coordinates at the back

face

56

57 LE_boxBottomRightCorner (1.0 1.0 1.0); // the bottom-right corner coordinates at the

front face

58 }
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4.3.1 Results

As shown in Figure 4.9, the airflow enters the tank through the nozzle. When the fluid expands
into the water above the opening, it introduces small vapor structures smaller than the predefined
threshold of 4 cells. At time 0.016 s, the first resolved vapors are introduced, and as the simulation
progresses, the number of unresolved vapors increases.

(a) (b)

(c) (d)

Figure 4.9: Injection of air into the water from bottom of the tank. The Eularian structures are
represented in cyan, while the Lagrangian structures are represented in red.
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4.4 Case study 4: checkingLEBox

Since the number of unresolved bubbles can reach thousands, tracking them may become compu-
tationally expensive. In such cases, defining a zone of interest to track the Lagrangian bubbles
within that region can be a practical approach. Here, we use the same mesh and configuration as
in case study 2, with one difference: around 200 bubbles were injected into the domain using the
patchInjection model. A limitation zone was defined by introducing a box with top left corner at
(0.0, 0.1, 0.0) and bottom right corner at (0.2, 0.0, 0.1).

The configuration for the bubbleProperties and Transition Algorithm dictionaries is shown
in Listing 4.4. The flag for the activation of bubble dynamics was disabled, so the Rayleigh-Plesset
model did not get activated and hence the changes in the bubble diameter are zero. All files related
to this case can be found in the accompanying files.

Listing 4.4: Configuration of bubbleProperties and Transition Algorithm in kinematicBubble-

CloudProperties

1 bubbleProperties

2 {

3 //- ML: flag for activation of bubble dynamics

4 bubble_activation false;

5 //- ML: surface tension for bubble dynamics

6 bubbleSigma 0.07;

7 //- ML: initial pressure for bubble dynamics

8 p0 101325;

9 //- ML: initial radius for bubble dynamics

10 R0 1e-06;

11 //- ML: vapour pressure for bubble dynamics

12 pv 2300;

13 //- ML: time step for each loop of RP solver-important

14 RPdT 5.0e-6; //1.0e-7 ;

15 //- ML: kappa isotropic value for bubble dynamics

16 bubbleKappa 1.4;

17 //- ML: Averaging distance for bubble dynamics

18 averagingDistance 5;//5;

19 //- ML: ODE solver type for bubble dynamics

20 ODESolverType RKF45;

21 }

22

23 Transition_Algorithm

24 {

25 //- ML: flag for activation of EulerianToLagrangian

26 EulerianToLagrangian_activation true;

27

28 //- ML:Number of cells that trigger the transtion from Eulerian to Lagrangian

29 EL_cellThreshold 0;

30

31 //- ML: Set threshold for tracking structures with alpha below this Threshold

32 EL_alphaThreshold 0.999;

33

34 //- ML: flag for activation of LagrangianToEulerian

35 LagrangianToEulerian_activation true;

36

37 //- ML:sigma = bubbleRadius / deviation-> Gaussian standard deviation (for 99% volume within

radius)

38 LE_deviation 3.0;

39

40 //- ML:Minimum liquid volume fraction value that lagrangian cell can occupy

41 LE_minCellOccupancy 0.3;

42

43 //- ML:Number of cells that trigger the transtion from Lagrangian to Eulerian

44 LE_cellThreshold 20000;

45

46 //- ML: Set threshold for interface proximity that trigger the transtion from Lagrangian to

Eulerian

47 LE_alphaThreshold 0.5;

48
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49 //- ML: Minimum bubble radius threshold that will be tracked

50 LE_bubbleSizeThreshold 5e-07;

51

52 //- ML: Define the box boundaries for tracking- Only lagrangian inside this box will be tracked

53 LE_boxCheckEnabled true;

54

55 LE_boxTopLeftCorner (0.0 0.1 0.0); // the top-left corner coordinates at the back

face

56

57 LE_boxBottomRightCorner (0.2 0.0 0.1); // the bottom-right corner coordinates at the

front face

58 }

4.4.1 Results

As shown in Figure 4.10, a front of approximately 200 bubbles is injected from the patch inlet.
As the bubbles move outside the pink box, they are removed from the domain before reaching the
outlet.

(a) Time 0.0 (b) Time 0.03

(c) Time 0.06 (d) Time 0.09

(e) Time 0.14 (f) Time 0.19

Figure 4.10: The area of interest is represented by pink box, while the gray box represents the
entire domain.
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Study questions

• How is the Reynolds transport equation for liquid volume fraction defined in interPhase-

ChangeFoam?

• How do Lagrangian forces affect the velocity of parcels in OpenFOAM?

• How is the effective viscosity calculated for the momentum equation in OpenFOAM?

• What is the rate of mass change when the bubble transitions from the Lagrangian framework?

• How is a parcel injected into the parcel cloud?

• What criterion is utilized to model mass transfer in the Schnerr-Sauer model?
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Appendix A

Implemented Transition
Algorithms

A.1 Lagrangian to Eulerian Algorithm

Algorithm for transition from the Lagrangian framework to the Eulerian framework.

Listing A.1: LagrangianToEulerian.H

//-ML: Set data from bubble

vector posB = this->position();

scalar radB = this->d() / 2;

label startCell = p.cell();

scalar totalBubbleVolume = (p.nParticle()*p.volume());

//-ML: DynamicList to store cells and their distances

DynamicList<std::pair<label, scalar>> cellsWithDistances;

//-ML: Add the start cell to the list

vector cellCenter = this->mesh().cellCentres()[startCell];

cellsWithDistances.append(std::make_pair(startCell, mag(cellCenter - posB))); //-ML: Add the first

cell with distance

//-ML: Create a set to avoid re-visiting cells

labelHashSet visitedCells;

visitedCells.insert(startCell);

//-ML: Dynamic list to store all neighbors for further exploration

DynamicList<label> cells(0);

cells.append(this->mesh().cellCells()[startCell]);

//-ML: Start outer loop to explore neighbors

while (cells.size() > 0)

{

//-ML: New dynamic list to store newly found neighbors within the radius

DynamicList<label> newNeighbours;

//-ML: Loop over all current neighbors in the cells list

forAll(cells, i)

{

label cellI = cells[i];

if (!visitedCells.found(cellI)) //-ML: Check if cellI is already visited

{

cellCenter = this->mesh().cellCentres()[cellI];

//-ML: Check if this neighbor cell's center is within the radius

scalar distance = mag(cellCenter - posB); //-ML: Calculate distance to posB

if (distance <= (2.0 * radB))
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{

cellsWithDistances.append(std::make_pair(cellI, distance)); //-ML: Store the cell and

its distance

newNeighbours.append(this->mesh().cellCells()[cellI]); //-ML: Add neighbors to the

list

}

visitedCells.insert(cellI); //-ML: Mark cell as visited

}

}

//-ML: Sort the cells based on their distance to posB

std::sort(cellsWithDistances.begin(), cellsWithDistances.end(),

[](const std::pair<label, scalar>& a, const std::pair<label, scalar>& b)

{

return a.second < b.second; //-ML: Compare distances

});

//-ML: Continue to the next iteration with new Neighbours

cells.clear();

cells.transfer(newNeighbours);

}

//-ML: Initialize the boolean flag for proximity to the interface

bool nearInterface = false;

scalar alphaThreshold = this->LE_alphaThreshold(); //-ML: Set threshold for interface proximity

//-ML: Check if cellsWithDistances contains only one cell

if (cellsWithDistances.size() == 1)

{

//-ML: Initialize a new DynamicList to hold the single cell and its neighbors

DynamicList<label> singleCellAndNeighbors;

//-ML: Get the single cell and add it to the new list

label onlyCell = cellsWithDistances[0].first;

singleCellAndNeighbors.append(onlyCell);

//-ML: Add the neighbors of this single cell to the list

singleCellAndNeighbors.append(this->mesh().cellCells()[onlyCell]);

//-ML: Loop over the single cell and its neighbors to check alpha values

forAll(singleCellAndNeighbors, j)

{

label cellJ = singleCellAndNeighbors[j];

scalar alphaValue = cloud.alphal()[cellJ]; //-ML: Retrieve the alpha value for cellJ

//-ML: Check if alpha value exceeds the threshold

if (alphaValue < alphaThreshold)

{

nearInterface = true;

break; //-ML: Exit loop early if the condition is met

}

}

}

else

{

//-ML: loop over cellsWithDistances and check alpha values

forAll(cellsWithDistances, j)

{

label cellI = cellsWithDistances[j].first; //-ML: Extract cell label

scalar alphaValue = cloud.alphal()[cellI]; //-ML: Retrieve the alpha value for cellI

//-ML: Check if alpha value exceeds threshold

if (alphaValue < alphaThreshold)

{

nearInterface = true;
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break; //-ML: Exit loop early if the condition is met

}

}

}

//-ML: Gaussian standard deviation

scalar sigma = radB / this->LE_deviation();

scalar totalWeightWithinRadius = 0.0;

scalar minCellOccupancy = this->LE_minCellOccupancy();

//-ML: Maximum fraction of volume for any single cell

scalar maxFraction = 0.0;

//-ML: Accumulate excess volume to redistribute

scalar excessVolume = 0.0;

//-ML: Set a threshold for the number of cells within the radius

label cellThreshold = this->LE_cellThreshold();

//-ML: Minimum bubble radius threshold

scalar bubbleSizeThreshold = this->LE_bubbleSizeThreshold();

//-ML: Calculate the Gaussian weight for each cell and accumulate total weight within radius

List<scalar> gaussianWeights(cellsWithDistances.size());

forAll(cellsWithDistances, j) {

scalar gaussFactor;

if (cellsWithDistances.size() == 1) {

gaussFactor = 1.0; //-ML: Set gaussFactor to 1 if there is only one cell

} else {

scalar distance = cellsWithDistances[j].second; //-ML: Get distance from pair

//-ML: Calculate Gaussian weight for this cell

gaussFactor = exp(-0.5 * pow(distance / sigma, 2.0));

}

gaussianWeights[j] = gaussFactor;

//-ML: Accumulate total weight

totalWeightWithinRadius += gaussFactor;

}

//-ML: Create a list to store cell IDs and distances with excess volume

DynamicList<label> excessVolumeCells;

//-ML: Distribute the bubble volume using normalized Gaussian weights

forAll(cellsWithDistances, j) {

label cellJ = cellsWithDistances[j].first;

//-ML:scalar distance = cellsWithDistances[j].second; //-ML: Get distance from pair

scalar cellVolume = this->mesh().cellVolumes()[cellJ];

//-ML: Normalize the Gaussian weight and compute `vi_j` for this cell

scalar normalizedWeight = gaussianWeights[j] / totalWeightWithinRadius;

//-ML:Info << "normalizedWeight" << normalizedWeight << endl;

scalar vi_j = normalizedWeight * totalBubbleVolume / cellVolume;

maxFraction = (cloud.betal()[cellJ] - minCellOccupancy);

//-ML: Apply the limit on maximum fraction of volume

scalar cappedVi_j = min(vi_j, maxFraction);

//-ML: Calculate any excess volume that needs redistribution

if (vi_j > maxFraction) {

excessVolume += (vi_j - maxFraction) * cellVolume;

} else if (vi_j < maxFraction) {
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excessVolumeCells.append(cellJ); //-ML: Store the cell

}

//-ML: Update beta value with limit check

cloud.betal()[cellJ] -= cappedVi_j;

//-ML: Check if the updated beta value goes below 1; if so, set alpha to 1

if (cloud.betal()[cellJ] < 1 && !nearInterface)

{

cloud.alphal()[cellJ] = 1.0;

}

}

//-ML: Check if cellsWithDistances has only one cell and

// there is still excessVolume, so there is no excessVolumeCells

if (cellsWithDistances.size() == 1 && excessVolume > 0) {

label cellJ = cellsWithDistances[0].first;

//-ML: Add the neighbors of this single cell to the list

excessVolumeCells.append(this->mesh().cellCells()[cellJ]);

}

//-ML: Redistribute any excess volume among cells that still have available capacity

forAll(excessVolumeCells, j) {

label cellJ = excessVolumeCells[j]; //-ML: Get the cell ID

scalar cellVolume = this->mesh().cellVolumes()[cellJ];

//-ML: Log the initial beta value before redistribution

scalar initialBeta = cloud.betal()[cellJ];

//-ML: Determine remaining capacity for this cell

scalar remainingCapacity = initialBeta - minCellOccupancy;

//-ML: Only distribute to cells that still have capacity available

if (remainingCapacity > 0 && excessVolume > 0) {

//-ML: Calculate the portion of excess volume this cell can take

scalar additionalVolume = min(excessVolume, remainingCapacity * cellVolume);

//-ML: Apply additional volume to beta

cloud.betal()[cellJ] -= additionalVolume / cellVolume;

//-ML: Reduce excess volume by the amount distributed

excessVolume -= additionalVolume;

if (cloud.betal()[cellJ] < 1 && !nearInterface)

{

cloud.alphal()[cellJ] = 1.0;

}

}

}

//-ML: Log the information

Info << "This bubble with ID: " << p.origId()

<< "\n with the processor ID: " << p.origProc()

<< "\n in position: " << posB

<< "\n with radius: " << radB

<< "\n within center cellID: " << startCell

<< "\n with bubble volume: " << totalBubbleVolume

<< "\n final excessVolume: " << excessVolume

<< "\n the number of cells within 2xdiameter: " << cellsWithDistances.size() << endl;

//-ML: Apply the condition for number of cells within the radius or proximity to interface

if ((cellsWithDistances.size() > cellThreshold || nearInterface) && radB >= bubbleSizeThreshold)

{
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forAll(cellsWithDistances, j) {

label cellJ = cellsWithDistances[j].first; //-ML: Get the cell ID

//-ML: Decrease alphal by betal, ensuring alphal doesn't go below zero

cloud.alphal()[cellJ] = max(cloud.alphal()[cellJ] - (1.0 - cloud.betal()[cellJ]), 0.0);

//-ML: Set betal to 1

cloud.betal()[cellJ] = 1.0;

}

//-ML: Stop tracing the bubble by setting it as inactive

td.keepParticle = false;

Info << "This bubble tracing deactivated for particle at position: " << posB << endl;

//-ML: Log the reason for deactivating bubble tracing

if (cellsWithDistances.size() > cellThreshold) {

Info << "\n Reason: Number of cells within the radius exceeded the threshold." << endl;

}

else if (nearInterface) {

Info << "\n Reason: Proximity to interface detected." << endl;

}

}

else if (radB < bubbleSizeThreshold)

{

//-ML: If bubble size is below the threshold, deactivate tracking

td.keepParticle = false;

Info << "This bubble tracing deactivated for particle at position: " << posB << endl;

Info << "\n Reason: Bubble radius (" << radB << ") is below the size threshold (" <<

bubbleSizeThreshold << ")." << endl;

}

//-ML: Activation control for box boundary check

bool boxCheckEnabled = this->LE_boxCheckEnabled();

//-ML: Define the box boundaries

vector boxTopLeftCorner = this->LE_boxTopLeftCorner(); //-ML: the top-left corner coordinates

vector boxBottomRightCorner = this->LE_boxBottomRightCorner(); //-ML: the bottom-right corner

coordinates

//-ML: Check if the bubble parcel is within the box boundaries

bool withinBox = (posB.x() >= boxTopLeftCorner.x() && posB.x() <= boxBottomRightCorner.x() &&

posB.y() <= boxTopLeftCorner.y() && posB.y() >= boxBottomRightCorner.y() &&

posB.z() >= boxTopLeftCorner.z() && posB.z() <= boxBottomRightCorner.z());

//-ML: If bubble parcel is outside the box and box check is enabled, deactivate it

if (!withinBox && boxCheckEnabled) {

td.keepParticle = false;

Info << "This bubble at position " << posB << " is outside the box and removed." << endl;

}

A.2 Eulerian to Lagrangian Algorithm

Algorithm for transition from the Eulerian framework to the Lagrangian framework.

Listing A.2: EulerianToLagrangian.H

//-ML: Threshold for alpha1

scalar alpha1Lim = EL_alphaThreshold;

//-ML: Minimum number of cells to consider as a structure

label minCells = EL_cellThreshold;

//-ML: Reset volumeID

volScalarField vofID_

(

IOobject

(

"vofID",
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mesh.time().timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("vofID", dimless, scalar(0.0)),

zeroGradientFvPatchScalarField::typeName

);

//-ML: Local-to-global cell reference

globalIndex globalNumbering (mesh.nCells());

//-ML: Create the volumeID field

forAll(mesh.cells(), cellI)

{

//-ML: Convert local processor cellIDs to global cellIDs

label globalCellID = globalNumbering.toGlobal(cellI);

//-ML: Cell is considered vapor and not yet marked

if (alpha1[cellI] < alpha1Lim && mag(vofID_[cellI]) < 0.1)

{

label currentID = globalCellID+1;

label startCell = cellI;

//-ML: Set volume ID

vofID_[startCell] = currentID;

//-ML: Create dynamic list to store all neighbours

DynamicList<label> cells(0);

//-ML: Get neighbours of startCell

cells.append(mesh.cellCells()[startCell]);

//-ML: Start outer loop

while (cells.size() > 0)

{

//-ML: Create new dynamic list to store all new neighbours

DynamicList<label> neighbours(0);

//-ML: Loop over all current neighbours

forAll(cells, i)

{

label cellJ = cells[i];

//-ML: Check if neighbour cell is liquid and has no ID yet

if (alpha1[cellJ] < alpha1Lim && mag(vofID_[cellJ] - currentID) > 0.1)

{

//-ML: Set volume ID

vofID_[cellJ] = currentID;

//-ML: add neighbours to neighboursNeighbours list

neighbours.append(mesh.cellCells()[cellJ]);

}

}

cells.clear();

cells.transfer(neighbours);

}

}

}

vofID_.correctBoundaryConditions();

//-ML: Correct for parallel processing

//-ML: Number of corrections

label corr = Foam::log(scalar(Pstream::nProcs())) / Foam::log(2.0) + 1;

for(int i=0; i<=corr; i++)

{

forAll(mesh.boundary(), patchI)
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{

//-ML: Current patch

const fvPatch& pPatch = mesh.boundary()[patchI];

//-ML: check if patch is coupled, e.g. processor patch

if (pPatch.coupled())

{

//-ML: loop over all faces of processor patch

forAll(pPatch, faceI)

{

//-ML: get cell values

const scalar ID_own = vofID_.boundaryField()[patchI].patchInternalField()()[faceI];

const scalar ID_nei = vofID_.boundaryField()[patchI].patchNeighbourField()()[faceI];

//-ML: check, if volumeIDs on both sides are fluid

if ( (ID_nei > 0.1) && (ID_own > 0.1) )

{

//-ML: check, if volumeIDs on both sides are different

if ( mag(ID_nei - ID_own) > 0.1 )

{

scalar minID = Foam::min(ID_own, ID_nei);

scalar maxID = Foam::max(ID_own, ID_nei);

scalar diff(maxID - minID);

volScalarField filtered = diff

* pos( vofID_ - maxID + 0.1)

* pos(-vofID_ + maxID + 0.1);

vofID_ -= filtered;

}

}

}

}

}

vofID_.correctBoundaryConditions();

}

//-ML: Count number of continua and renumber vofID

{

volScalarField tmp(vofID_);

vofID_ = 0.0;

scalar maxID = gMax(tmp);

int iter = 1;

while (maxID > 0.1)

{

volScalarField curVolID = pos(tmp - maxID + 0.1);

vofID_ += iter*curVolID;

tmp -= maxID*curVolID;

maxID = gMax(tmp);

iter++;

}

}

//-ML: Calculate droplet volume, velocity, and position

//-ML: Create lists to store data

label maxID = floor(gMax(vofID_) + 0.5);

labelList noCells(maxID+1, label(0));

scalarList cellVolume(maxID+1, scalar(0));

scalarList volume(maxID+1, scalar(0));

vectorList position(maxID+1, vector(0,0,0));

vectorList velocity(maxID+1, vector(0,0,0));

//-ML: Loop over all cells and store corresponding data

forAll(mesh.cells(), cellI)

{

if (vofID_[cellI] > 0.1)

{

//-ML: Get volume ID

label volID = floor(vofID_[cellI] + 0.5);

59



A.2. Eulerian to Lagrangian Algorithm Appendix A. Implemented Transition Algorithms

//-ML: Store data in corresponding list

scalar oneMinusalpha1 = (1 - alpha1[cellI]);

noCells[volID] += 1;

cellVolume[volID] += mesh.V()[cellI];

volume[volID] += oneMinusalpha1*mesh.V()[cellI];

velocity[volID] += oneMinusalpha1*mesh.V()[cellI]*U[cellI];

position[volID] += oneMinusalpha1*mesh.V()[cellI]*mesh.C()[cellI];

}

}

//-ML: Account for parallel processing

reduce( noCells, sumOp<labelList>() );

reduce( cellVolume, sumOp<scalarList>() );

reduce( volume, sumOp<scalarList>() );

reduce( position, sumOp<vectorList>() );

reduce( velocity, sumOp<vectorList>() );

//-ML: Print out Info

for(int i=1; i<=maxID; i++)

{

Info << "/************** Structure Number is " << i << " **************/" << endl;

Info << "Number of Cells: " << noCells[i] << endl;

Info << "Volume of Structure: " << volume[i] << endl;

Info << "position of Structure: " << position[i] / volume[i] << endl;

Info << "velocity of Structure: " << velocity[i] / volume[i] << endl;

}

//-ML: Process small structures

//-ML: Add code to inject properties (e.g., position, velocity) into the cloud

for (label i = 1; i <= maxID; i++)

{

if (noCells[i] < minCells)

{

forAll(mesh.cells(), cellI)

{

label strcutureID = floor(vofID_[cellI] + 0.5);

if (strcutureID == i)

{

alpha1[cellI] = 1.0; //-ML: Set alpha1 to 1 for small structures

}

}

//-ML: Calculate center position of the structure

vector bubblePosition = position[i] / volume[i] ;

//-ML: Find the cell that contains this position

label cellSample = mesh.findCell(bubblePosition);

//-ML: Calculate average velocity of the structure

vector bubbleVelocity = velocity[i] / volume[i] ;

if (cellSample > -1)

{

//-ML: Apply corrections to position for 2-D cases

meshTools::constrainToMeshCentre(mesh, bubblePosition);

//-ML: Inject into Lagrangian cloud

basicKinematicBubbleParcel* pPtr = new basicKinematicBubbleParcel(mesh, bubblePosition,

cellSample);

//-ML: Number of particles per parcel

pPtr->nParticle() = 1;

//-ML: Particle diameter

pPtr->d() = Foam::cbrt(6.0 * volume[i] / constant::mathematical::pi);

//-ML: Velocity

pPtr->U() = bubbleVelocity;

basicKinematicBubbleParcel::trackingData td(parcels);

scalar trackTime = mesh.time().deltaTValue();
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td.part() = basicKinematicBubbleParcel::trackingData::tpLinearTrack;

//-ML: Check/set parcel properties

parcels.setParcelThermoProperties(*pPtr, trackTime);

parcels.checkParcelProperties(*pPtr, trackTime, false);

//-ML: Apply correction to velocity for 2-D cases

meshTools::constrainDirection

(

mesh,

mesh.solutionD(),

pPtr->U()

);

if (pPtr->move(parcels, td, trackTime)) //-ML: Check the possiblity of using move function

{

Pout << "Injecting Structure " << i

<< " into Lagrangian cloud by processor: " << Pstream::myProcNo()

<< " with velocity of " << pPtr->U()

<< " and diamter " << pPtr->d() << endl;

parcels.addParticle(pPtr); //-ML: Add particle to the cloud

}

else

{

delete pPtr;

}

}

}

}
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Developed codes

B.1 interPhaseChangeBubbleFoam solver

Listing B.1: interPhaseChangeBubbleFoam.C

/*---------------------------------------------------------------------------*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

-------------------------------------------------------------------------------

Copyright (C) 2011-2017 OpenFOAM Foundation

-------------------------------------------------------------------------------

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

interPhaseChangeBubbleFoam

Group

grpMultiphaseSolvers

Description

Solver for two incompressible, isothermal immiscible fluids with

phase-change (e.g. cavitation).

Uses VOF (volume of fluid) phase-fraction based interface capturing.

The momentum and other fluid properties are of the "mixture" and a

single momentum equation is solved.

The set of phase-change models provided are designed to simulate cavitation

but other mechanisms of phase-change are supported within this solver

framework.

Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
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\*---------------------------------------------------------------------------*/

#include "fvCFD.H"

#include "CMULES.H"

#include "subCycle.H"

#include "interfaceProperties.H"

#include "hybridPhaseChangeTwoPhaseMixture.H"

#include "turbulentTransportModel.H"

#include "pimpleControl.H"

#include "fvOptions.H"

//-ML : declarition of basicKinematicBubbleCloud

#include "basicKinematicBubbleCloud.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

argList::addNote

(

"Solver for two incompressible, isothermal immiscible fluids with"

" phase-change.\n"

"Uses VOF (volume of fluid) phase-fraction based interface capturing."

);

#include "postProcess.H"

#include "addCheckCaseOptions.H"

#include "setRootCaseLists.H"

#include "createTime.H"

#include "createMesh.H"

#include "createControl.H"

#include "createFields.H"

#include "createTimeControls.H"

#include "CourantNo.H"

#include "setInitialDeltaT.H"

turbulence->validate();

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

#include "readTimeControls.H"

#include "CourantNo.H"

#include "setDeltaT.H"

++runTime;

Info<< "Time = " << runTime.timeName() << nl << endl;

// --- Pressure-velocity PIMPLE corrector loop

while (pimple.loop())

{

#include "alphaControls.H"

surfaceScalarField rhoPhi

(

IOobject

(

"rhoPhi",

runTime.timeName(),

mesh

),

mesh,
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dimensionedScalar(dimMass/dimTime, Zero)

);

//-ML: update the gamma value from multiplication of alpha1_*beta1_

mixture->update_gamma();

//-ML: update the mixture nu() forlaminar by using gamma

mixture->correct();

#include "alphaEqnSubCycle.H"

interface.correct();

#include "UEqn.H"

// --- Pressure corrector loop

while (pimple.correct())

{

#include "pEqn.H"

}

if (pimple.turbCorr())

{

turbulence->correct();

}

}

//-ML: Transition from Eulerian to Lagrangian

if(EulerToLagrang_activation)

{

#include "EulerianToLagrangian.H"

}

mixture->update_gamma();

//-ML: Adding evolution of cloud

Info<< "Evolution of Cloud: "<< parcels.name() << endl;

parcels.evolve();

//-ML: update the gamma value from multiplication of alpha1_*beta1_

mixture->update_gamma();

runTime.write();

runTime.printExecutionTime(Info);

}

Info<< "End\n" << endl;

return 0;

}

// ************************************************************************* //

B.2 Make/options for interPhaseChangeBubbleFoam solver

Listing B.2: options file

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \

-I$(LIB_SRC)/finiteArea/lnInclude \

-I$(LIB_SRC)/lagrangian/distributionModels/lnInclude \

-I$(LIB_SRC)/regionModels/regionModel/lnInclude \
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-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \

-I$(LIB_SRC)/regionFaModels/lnInclude \

-I$(LIB_SRC)/faOptions/lnInclude \

-I$(LIB_SRC)/lagrangian/basic/lnInclude \

-I$(LIB_SRC)/lagrangian/intermediate/lnInclude \

-I./hybridTransportModels/hybridTwoPhaseMixture/lnInclude \

-I$(LIB_SRC)/transportModels \

-I./hybridTransportModels/hybridIncompressible/lnInclude \

-I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \

-I./hybridPhaseChangeTwoPhaseMixtures/lnInclude \

-I./bubbleDynamics/lnInclude \

-I$(LIB_SRC)/ODE/lnInclude

EXE_LIBS = \

-L$(FOAM_USER_LIBBIN) \

-lfiniteVolume \

-lfvOptions \

-lmeshTools \

-lsampling \

-lregionModels \

-lsurfaceFilmModels \

-lsurfaceFilmDerivedFvPatchFields \

-lturbulenceModels \

-lincompressibleTurbulenceModels \

-llagrangian \

-llagrangianIntermediate \

-llagrangianTurbulence \

-lfiniteArea \

-lfaOptions \

-lhybridTwoPhaseMixture \

-ltwoPhaseProperties \

-linterfaceProperties \

-lhybridIncompressibleTransportModels \

-lhybridPhaseChangeTwoPhaseMixtures \

-lbubbleDynamics \

-lODE
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