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Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

e How to use fvOptions to apply custom source terms in OpenFOAM.

e How to use the DarcyForchheimer porous media model in OpenFOAM.
The theory of it:

e The theory of the buoyantBoussinesqSimpleFoam solver

e To understand the Darcy-Forchheimer equation to simulate drag in a porous media, applicable
to canopy drag in crop models.

e To understand the crop transpiration model and crop energy balance.
How it is implemented:
e How the explicitPorositySource class is implemented
e How the codedSource class is implemented
How to modify it:
e How to modify the buoyantBoussinesqSimpleFoam solver to account for water vapor

e How to implement additional sink and source terms using fvOptions.



Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:
e How to run standard document tutorials like hotRoom tutorial.

e Fundamentals of Computational Methods for Fluid Dynamics, Book by J. H. Ferziger and M.
Peric

e How to customize a solver and do top-level application programming.
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Nomenclature

Acronyms

AH
CFD
LAI
PPFD

Absolute Humidity

Computational Fluid Dynamics
Leaf Area Index

Photosynthetic Photon Flux Density

English symbols

4 Viscous Resistance Factor ... ... oo m~2
Cy Inertial Resistance Factor ........ ..o i e m~!
Cp Specific Heat at Constant Pressure ............ ... ... . i .. J/(kgK)
Do Effective DIffUsivity ... ..oooo e m?/s
g Gravitational Acceleration ......... ... ... 9.81m/s?
k Thermal Conductivity .........c.oiuiuiii e W/(mK)
l Mean Leaf Diameter .. ...........oouii e e e m
Quar Latent Heat FLUX ...t e e e e e W /m?
Qsen Sensible Heat FIUX ... ..ot e W /m?
Rice  Net Radiation . .......oo W /m?
Sc Schmidt number

Sct Turbulent Schmidt number

T TEMPETALUTE . ..ottt et K
u Local AIrspeed .. .......oouiui m/s
1% Cell VOIUINE ...ttt ettt e e e e e e e e e e m?3
Greek symbols

a Thermal Diffusivity . ... ..ot e m? /s
I} Coefficient of Thermal EXpansion . .............ooiuiiiiiitii i 1/K
€ Psychrometric Constant ......... ... i dimensionless
Aw  Latent Heat of Vaporization ......... ... ... . . J/kg
o Dynamic VISCOSItY .. ...t Pas
v Kinematic VISCOSIEY .. .utuirtttt e e m?/s
p DSty v vttt kg/m3
Subscripts

a Ambient Air

1 Leaf Surface

Ref Reference

S Stomatal



Chapter 1

Introduction

1.1 Background

Crop transpiration is a critical physiological process that plays an essential role in plant growth
and environmental control within controlled environments such as greenhouses or vertical farms.
The process involves the transfer of water vapor from plant leaves to the surrounding air, affecting
both heat and moisture exchange. Accurate modeling of transpiration is key to optimize indoor
climate for uniform crop growth and energy efficiency. Traditional studies have extensively used
Computational Fluid Dynamics (CFD) tools such as ANSYS Fluent to model airflow, heat transfer,
and crop response, incorporating user-defined functions to simulate complex interactions [1, 2, 3, 4].
An updated version of the Penman-Monteith equation and the ”big leaf” model by Graamans et al.
[5] have been widely applied to quantify energy balances and latent heat dissipation in vertical
farming setups. While ANSYS-based studies have provided valuable insights, their closed-source
nature limits adaptability and customization. This limitation has driven my interest in integrating
such model into open-source platforms like OpenF0AM, allowing broader accessibility and flexibility.

1.2 Objectives

This report aims to enhance the modeling capabilities of OpenFOAM by integrating a crop transpira-
tion model into the application of a modified buoyantBoussinesqSimpleFoam solver. The primary
objective is to incorporate physiological processes such as water vapor exchange into the simula-
tion to improve the prediction of environmental conditions in controlled agricultural environments.
Specifically, the focus lies in adapting the solver to account for crop transpiration effects by utilizing
the fvOptions framework. This involves modifying the buoyantBoussinesqSimpleFoam solver and
advancing its capabilities to consider water vapor transport by coupling heat and mass transfer,
which enables simulations to reflect the dynamic interaction of crop processes with their environ-
ment. The report seeks to provide a comprehensive guide to the theory and practical implementation
of these modifications. It addresses the limitations of closed-source solutions, promoting flexibility
and adaptability in agricultural and environmental modeling using OpenFOAM open-source platform.
The modified solver and crop transpiration model is demonstrated in a simple tutorial case showing
temperature and humidity dynamics in porous media regions.

1.3 Report structure

This report is organized into six main chapters to guide the reader from theoretical concepts to
practical implementation. It aims to offer a comprehensive understanding of the available theory
and implementation as well as the crop transpiration model development and its integration into
the OpenFO0AM framework:
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Chapter 2: Theory. This chapter discusses the theoretical foundations of the buoyantBoussinesq-
SimpleFoam solver, the porous media model, and the crop transpiration model. It establishes the
basis for understanding the subsequent implementation and simulation results.

Chapter 3: Existing implementations. Here, OpenFOAM’s existing capabilities are examined to
incorporate custom source terms and resistance models, providing a framework for implementing
new functionalities to represent a crop model.

Chapter 4: Implementations. Relevant modifications for both, the solver and fvOptions, are
described and presented, including the coupling of heat and mass transfer as well as the integration
of the crop transpiration model through fvOptions.

Chapter 5: Instructions for solver application. A step-by-step guide is provided for the
proposed solver and how to create a tutorial case, demonstrating the practical application of the
modified solver. This section outlines the solver, its compilation, simulation setup, and presents
results verifying the new implementation.

Chapter 6: Conclusion and future work. In the final chapter, key findings and contributions
are summarized and opportunities for future work proposed to enhance the capability and validity
of the presented work.



Chapter 2

Theory

2.1 Fundamentals of buoyantBoussinesqSimpleFoam solver

In cases where density variations are relatively small, the Boussinesq approximation provides a
practical and efficient approach to solving these flows without fully resolving compressibility effects.
The buoyantBoussinesqSimpleFoam solver in OpenFOAM utilizes the Boussinesq approximation to
model steady-state, incompressible buoyant flows. Thus, the governing equations of fluid motion are
simplified by assuming that density variations are negligible in all terms of the equations except the
buoyancy term. This assumption is valid for low Mach number flows (typically less than 0.3) where
temperature-induced density changes are small but sufficient to create buoyant forces [6]. In short,
the Boussinesq approximation assumes density, p, as constant everywhere except in the buoyancy
term of the momentum equation, and the buoyant force is approximated as a linear function of
temperature relative to a reference temperature. Thus, the density variations can be expressed as

p = po(1 = Bpo(T — Ther)) (2.1)

where T is the relative temperature, Tret is the reference temperature, p represents the density and
[ the coefficient of thermal expansion. These considerations lead to a system of equations that is
more computationally efficient to solve, while still capturing the essential physics of buoyant flow.
As a result, the continuity equation for conservation of mass can be reduced and formulated as

V-U=0 (2.2)

where U is the local velocity of a fluid and the density variation is ignored due to the Boussinesq
approximation. However, in the momentum equation, it must be accounted for density variations
with a fixed part and linear dependent part on temperature described in Eq. (2.1). This results in
a equation that can be described as

pU VU = —Vp+ V- (uV?U) + gB (T — Trer) (2.3)

where the left-hand side term is the convective term, describing momentum transfer due to the
fluid’s velocity field. On the right side, —Vp is the pressure gradient term, accounting for pressure
forces, V - uV2U represents the viscous term, modeling momentum diffusion due to fluid viscosity,
and lastly, the buoyancy term gB(T — Tget), representing the effect of temperature differences on
fluid motion.

The energy equation is typically formulated in terms of temperature or enthalpy, where buoyancy
effects are modeled as density variations proportional to temperature changes. The temperature
equation for this solver can be written as

V- (pUT) =V - (aVT) = St (2.4)
where the convective term V-(pUT) represents the transport of temperature by the flow field U. The
diffusive term V - (aVT) represents thermal diffusion, where « is the thermal diffusivity (a = p%,
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with k as thermal conductivity, p as density, and ¢, as specific heat at constant pressure). The source
term accounts for any additional sources of thermal energy, such as internal heat generation, radiation
or sink terms. The energy equation works alongside the momentum and continuity equations to
solve the flow field, where buoyancy effects are incorporated into the momentum equation using the
Boussinesq approximation.

2.2 Fundamentals of the porous media model

With the application of the porous media model, the simulation domain assumes a material or
medium with voids, pores or is filled with solid parts that accounts for the interaction between the
fluid and medium within the porous structure, capturing phenomena such as resistance to flow,
momentum transfer, and energy dissipation [7]. This is a bidirectional concept where the flow can
pass through opposite direction but properties such as porosity, permeability, and inertial resistance,
significantly influence the flow behavior. Using a porous media model can simplify the simulation
domain, reduces mesh complexity and saves computational time. In turbulent flow through porous
media, the momentum and continuity equations are modified to account for the porous matrix and re-
sistance forces. The Darcy—Forchheimer equation, an extension of Darcy’s law, adds an inertial term
to the viscous resistance, enabling accurate modeling of turbulent effects. The Darcy—Forchheimer
equation provides a robust framework for addressing these interactions by incorporating both viscous
and inertial resistance forces [7, 8].

The following section explains the theoretical implementation of the porous media resistance
model in OpenFOAM. The implementation of this equation in OpenFOAM involves splitting the re-
sistance forces into linear (Darcy) and quadratic (Forchheimer) terms. These terms are applied
in the momentum equation explicitly. In OpenFO0AM, this formulation is implemented within the
explicitPorositySource and DarcyForchheimer classes. These classes allow users to define the
resistance parameters and apply the porous media model to specific regions in the computational
domain. The consideration of resistance factors and thus, the Darcy-Forchheimer source term in
the momentum equation can be expressed as a volumetric source term added to the momentum
equation in the following general form of

C
S = Lu + e (2.5)

L YE__

Viscous Resistance ypertial Resistance
where K represents the permeability of the porous medium (m?) and + is the viscous drag coefficient
which is multiplied with the local velocity. The first term represents the Darcy (linear) resistance
coefficients for each direction and dominates at low flow velocities (laminar flow regimes). The
non-linear momentum loss coefficient Cf is used for the viscous resistance. This term accounts for
nonlinear effects due to inertial forces and dominates at higher flow velocities (turbulent or high-
speed flow regimes). Thus, the viscous (C;) and inertial resistance factor (Cjp) can be calculated
as

(2.6)

and
Co=— (2.7)

relevant for their application in porous regions using fvOptions and the explicitPorositySource
class in Section 3.2. For the test case application in Chapter 5, a permeability of 0.02 m? and
a non-linear momentum loss coefficient of 0.134 is assumed, which results in C'; = 50 m~2 and
Cy=2.0 m~! [4]. Although, the porous media model provides a computational efficient method to
consider crop resistance in a simulation, it is important to note that the complex structure of plant
will be simplified. Thus, detailed airflow patterns in and around plants can not be captured and
analyzed, which might yield valuable insights for designing more efficient airflow control systems.
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2.3 Crop transpiration model

A robust crop transpiration model is vital for the evaluation and optimization of environmental
conditions. It provides a numerical framework incorporates that heat, moisture, and momentum
exchange between the crops and the surrounding air. This model can be integrated as a porous
media representation of the crop canopy !, which simplifies the computational complexity by avoiding
explicit geometric modeling of individual plants [3]. Graamans et al. established a validated crop
transpiration model of lettuce to account for heat and moisture exchange between crops and ambient
air in simulations based on the concept of the ”big leaf” [5]. It considers the energy balance of the crop
due to the net radiation absorbed by the crop and its sensible and latent heat exchange illustrated
in Figure 2.1a. Thus, the crop transpiration rate, ET, can be derived and calculated using the
equation
ET = LAI. A" X2
Ts + Ta
where LAI is the leaf area index, defined as the one-sided leaf area per unit ground area. The vari-
ables x; and x, denote the water vapor concentration at the leaf surface and in the surrounding air,
respectively. The leaf surface water concentration, xi, is assumed to be the saturated vapor concen-
tration at the leaf surface temperature, while x, represents the ambient water vapor concentration.
Solving for ET, the added mass source of water vapor can be derived. The aerodynamic resistance,
ra, and stomatal resistance, rg, regulate the rate of transpiration. The aerodynamic resistance is
computed as

: (2.8)

1\ 05
Ta = 350 () LAI!, (2.9)
u
and stomatal resistance can be calculated as
1500 + PPFD
"= 0500 - ppED (2.10)

where [ is the mean leaf diameter, u is the local airspeed derived from CFD simulations, and PPF D
represents the photosynthetic photon flux density. The sum of these two resistances represent the
total resistance between inside leaves and air as illustrated in Figure 2.1b. However, before solving
the crop transpiration, the energy balance Eq. (2.11) must be solved. Therefore, the leaf surface
temperature, T, is determined by solving the energy balance of the crop canopy through an iterative
method (which is explained in Section 4.3). The energy absorbed from net radiation, Rye;, must
balance the sensible heat flux, Qsen, and latent heat flux, Q)as, as expressed by

Rnet - Qsen - Qlat = 07 (211)
Rnet = (1 - pr) . Ilighting . CAC; (2'12)
T —T,
Qsen = LAI- Pa * Cp * 1 ) (213)
Ta
Quat = Aw - ET, (2.14)

where p, is the reflection coefficient of a crop, lignting is the photosynthetically active radiation
irradiance, and CAC is the cultivation area coverage. The sensible heat flux, Qgey, is derived from
pa the air density, ¢, the specific heat of air, and 7}, the ambient air temperature. The latent
heat flux, Qat, is directly related to the transpiration rate ET multiplied by Aw the latent heat
of vaporization. Using the above equations, the leaf surface temperature is solved iteratively by
ensuring energy balance. Once Tj is determined, the crop transpiration rate, ET, is recalculated for
the source term of the absolute humidity.

1”Plant canopy structure is the spatial arrangement of the above-ground organs of plants in a plant community.
Leaves and other photosynthetic organs on a plant serve both as solar energy collectors and as exchangers for gases.
Stems and branches support these exchange surfaces in such a way that radiative and convective exchange can
occur in an efficient manner. Canopy structure affects radiative and convective exchange of the plant community, so
information about canopy structure is necessary for modelling these processes.” 1. Campbell GS, Norman JM. The
description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis PG, eds. Plant Canopies:
Their Growth, Form and Function. Society for Experimental Biology Seminar Series. Cambridge University Press;
1989:1-20



2.3. Crop transpiration model Chapter 2. Theory

n Rabs

Sensible convective

Flux Qs

Latent convective
flux gf
(a)

air
__—Boundary layer resistance 1
Stomatal !

pore \ Leaf stomatal resistance L
~
D O \Cuticle
\: VAN

D Intercellular
spaces
(b)

Figure 2.1: (a) Net radiation, sensible and latent heat balances of leaves and (b) Resistances to
water vapor transfer between leaf and air [9].
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Chapter 3

Existing implementations

3.1 codedSource

The following section will provide an overview of the relevant source code for the codedSource
class, which can be used for the consideration of user defined source terms in OpenFOAM. The
class implementation can be found under the OpenFOAM-v2112\src\fvOptions\sources\general\-
codedSource directory and includes three file CodedFvSource.H, CodedFvSource.C, and CodedFv-
Sources.C. The focus of this section is to explain how the code works as part of fvOptions.

First, the header file CodedFvSource . H declares the codedSource class, a template that integrates
on-the-fly source terms. ”On-the-fly” refers to dynamically adding, compiling, and running source
terms from case configuration files (e.g, fvOptions) during simulation runtime, without the need
for OpenFOAM’s source code to be modified or pre-compiled. It uses header guards to prevent multiple
inclusions of the header file and includes base classes as well provides base functionality for source
terms on specific cell regions through including cellSetOption.H and allows runtime compil ation
of user-provided code with codedBase.H. The class CodedSource is templated to support different
types (scalar, vector, etc.), inherit from base fvOption for cell-specific options and provides hooks
for dynamic code compilation as shown in Listing 3.1.

Listing 3.1: Class declaration

template<class Type>
class CodedSource

139 @

140
141

public fv::cellSetOption,
protected codedBase

As protected data, the class uses name_ to name the source term and strings to include the user-
supplied code snippets (e.g., codeCorrect_, codeAddSup_, codeAddSupRho_, and codeConstrain_).
The redirectOptionPtr_ is used to point to another fv::option for redirection of the source
term. The CodedFvSource.C file implements the class functionality and its constructor, shown in
Listing 3.2, defines and initializes the object with user inputs (name, modelType, dict, and mesh)
and calls read () to read the dictionary and initialize fields and code snippets.

Listing 3.2: Constructor definition and initalization

template<class Type>
Foam: :fv::CodedSource<Type>: :CodedSource
(

const word& name,

const word& modelType,

const dictionary& dict,

const fvMesh& mesh

fv::cellSetOption(name, modelType, dict, mesh)

11
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{
read(dict);
}

Relevant member functions in this class are correct(), addSup(), and constrain(). In case of
code implementation under codeCorrect, the correct () function is called to correct a field based
on the user-defined function/implementation. constrain() allows setting constraints on the matrix
under the codeConstrain shown in Listing 3.8. addSup() function is a overloaded function as it
can be used for either compressible or incompressible flows depending of its input parameters. Since
incompressible is the preferred flow for this report, the code implementation shown in Listing 3.3
must be considered. For compressible flow, an additional input parameter p is used. The addSup()
function calls dynamically complied code (described under codeAddSup in fvOptions) to add a
source term to the right side of the equation (eqn) for a given field (fieldi). A similar procedure
is applied to the other two functions, correct () and constrain().

Listing 3.3: addSup() implementation for incompressible flow

template<class Type>
void Foam::fv::CodedSource<Type>: :addSup
(

fvMatrix<Type>& eqn,

const label fieldi

~

{
DebugInfo
<< "fv::CodedSource<" << pTraits<Type>::typeName
<< ">::addSup for source " << name_ << endl;
updateLibrary(name_) ;
redirectOption() .addSup(eqn, fieldi);
}

3.1.1 Application in OpenF0AM

The following example demonstrates the implementation of a custom source term for the temper-
ature field T in OpenFOAM using the fvOptions framework. As for all header of an OpenFOAM file,
metadata and structural information are provided. First, the header banner indicates which version
of OpenF0AM is the following code compatible with (here v2112) and points to the official website for
documentation and resources. The following block provides the dictionary metadata describing the
file’s format and purpose. It specifies that the file content is written in ASCII (human-readable text)
format and belongs to the dictionary class, which is used for input configuration in OpenFOAM. Here
the object is defined as fvOptions which allows the user to apply custom source terms, constraints,
or other options to specific fields in OpenF0AM simulations.

Listing 3.4: OpenFO0AM header including metadata and structural information

VERE e -—— ——%— Ct++ —*k—————— - ———x\
| ===eemeee [ |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: v2112 |
I \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* ———x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object fvOptions;
}

J/ k% % % % % % % %k % *k %k * % % % % %k % % *k *k %k % % % %k % *k % *k *k * % * % % *x //

12
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The fvOptions configuration includes several key components: codeInclude, codeCorrect, and code-
AddSup, which are provided in the form of C++ code blocks within the OpenFOAM dictionary. The
following example implementation allows dynamic compilation of C++ code during runtime, inject-
ing a time-varying source term into the energy equation. The code begins by defining the type of the
source term and specifying the target field. The type is set to scalarCodedSource, which means
the source term applies to scalar fields, and the fields entry specifies the temperature field T
Furthermore, a unique name (temperatureSource) is assigned to the source term for identification

17
18
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as shown in Listing 3.5.

Listing 3.5: Type and field definition of custom source term

customTemperatureSource

{

type scalarCodedSource;

scalarCodedSourceCoeffs

{
// Specify the field(s) to which the source term is applied
fields (T);

// Unique name for the source term
name temperatureSource;

The codeInclude block Listing 3.6 can be used to include necessary C++ headers, but is not
necessary to run codedSource. This additional function is part of the codedBase base class and it
processes the dictionary inputs during the read() and perpare() phase. In this case, the cmath

29
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library is included to allow the use of mathematical functions such as std: :sin or std: :exp.

Listing 3.6: codeInclude block in fvOptions

// Include external headers or libraries (e.g., for custom math or helper functions)
codelInclude
#{
#include <cmath> // For mathematical operations
#3};

In Listing 3.7, the codeCorrect block is optional and can be used to apply any field corrections.

Here, it outputs a message to the terminal whenever it is executed:

Listing 3.7: codeCorrect block in fvOptions

// Code to correct the field, if needed
codeCorrect
#{
Pout << "xx*codeCorrect executed for T field*x" << endl;
#1;

The codeAddSup block in Listing 3.8 contains the logic for adding a source term to the temperature
field equation. The source term is defined as a function of time and cell volume V', given by
Q = a-t-V, where a is a user-defined coefficient, t is the simulation time, and V is the volume
of each computational cell. Here, the current simulation time is accessed using time.value(), and
the cell volumes are obtained from the mesh using mesh_.V(). The source term is added to the
right-hand side of the matrix equation through eqn.source(). Finally, the codeConstrain block is

41
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defined as an optional constraint mechanism, printing a message when executed.

Listing 3.8: codeAddSup block in fvOptions

// Code to add the source term to the temperature field
codeAddSup
#{

// Access current simulation time

const Time& time = mesh().time();

// Access the volume of each cell
const scalarField& V = mesh_.V();
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// Access the source term field (right-hand side of the matrix equation)
scalarField& TSource = eqn.source();

// Define a time-varying source term: Q = alpha * t * V
const scalar alpha = 5.0; // Source term coefficient
TSource += alpha * time.value() * V;

Pout << "Adding source to T field at time: " << time.value() << endl;
#};
// Optional: Code to constrain the equation
codeConstrain
#{

Pout << "x*codeConstrain executed for T field*x" << endl;
#};

The implementation dynamically injects the specified source term into the temperature field T during
runtime. The codeInclude block allows additional headers to be included, while the codeAddSup
block defines the logic for the source term. Messages are printed to the terminal to confirm the
execution of each block, ensuring transparency during simulation.

3.2 explicitPorositySource

The following code files explain the implementation of an explicit porosity source using fvOptions
to add porosity effects into fluid simulations. Therefore, explicitPorositySource class is inher-
ited from the fv:cellSetOption, which is a base class for applying source terms to cell regions
(defined by a cellSet). All relevant files including the source code of this class can be found un-
der the OpenFO0AM-v2112\src\fvOptions\sources\derived\explicitPorositySource directory.
The main function of this class is to add porosity resistance terms (momentum sinks) to momen-
tum equations in specific zones. The pointer autoPtr<porosityModel> porosityPtr is used to
encapsulate different models like Darcy-Forchheimer by pointing to a porosity model object that
calculates resistance contributions. Therefore, the overloaded function addSup() is used to add
resistance terms to the momentum equations in case of incompressible, compressible, or multi-
phase momentum equations. Thus, the function for incompressible flow is selected and described
in more detail due to the use case proposed in this report. The function definition can be found
in explicitPorositySource.C and is implemented as shown in Listing 3.9. It creates a tempo-
rary fvMatrix<vector> porosityEqn with the same size and dimensions as the target equation
and calls addResistance() of the porosityModel class to compute the resistance contributions
based on porosity parameters. At the end, it subtracts the resistance contributions (porosityEqn)
from the target equation.

Listing 3.9: Function to add source terms for incompressible flow

void Foam::fv::explicitPorositySource::addSup
(

fvMatrix<vector>& eqn,

const label fieldi

~

{
fvMatrix<vector> porosityEqn(eqn.psi(), eqn.dimensions());
porosityPtr_->addResistance(porosityEqn) ;
eqn -= porosityEqn;

}

The function addResistance() modifies the momentum equation represented by the finite volume
matrix (fvVectorMatrix) by adding porosity resistance terms. These terms account for the ef-
fects of a porous medium within specific cell zones of the computational domain, as defined by
the porosity model. It ensures that resistance effects are incorporated into the governing equa-
tions during simulation. This function is defined in porosityModel.C as shown in Listing 3.10. Its

14
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main components include checking if the porous region (defined by cellZoneIDs_) is non-empty,
applying transformations to resistance coefficients based on the mesh geometry, and modifying the
system matrix (UEqn) to account for resistance effects by invoking the correct() method. First,
if no porous regions are defined (i.e., cellZoneIDs_ is empty), the function exits early without
modifying the momentum equation. If a porous region is defined, resistance coefficients are trans-
formed to ensure that the resistance tensors (e.g., Darcy and Forchheimer coefficients) match the
current mesh configuration, especially in cases involving moving or transformed meshes. At the
end, the correct () function computes and applies the resistance contributions to the momentum
equation. Both, transformModel() and correct(UEqn) are implemented in derived classes such
as DarcyForchheimer. The complete source code of porosityModel and DarcyForcheimer class
can be found under the OpenF0AM-v2112\src\finiteVolume\cfdTools\porosity directory.

Listing 3.10: Function for incompressible flow to add porosity resistance terms to UEqn

void Foam::porosityModel::addResistance(fvVectorMatrix& UEqn)

{
if (cellZonelDs_.empty())
{
return;
}
transformModelData() ;
this->correct (UEqn) ;
}

The DarcyForchheimer class extends the porosityModel base class and uses both Darcy and
Forchheimer resistance terms. Its key data members are dimensionedVector dXYZ_ and fXYZ_
as well as List<tensorField> D_ and F_, which represent user-specified Darcy or Forchheimer
coefficient for spatial direction (viscous [m~2] and inertial resistance [m~!]) as well as converted
Darcy and Forchheimer coefficient tensors for cells, respectively. The implemented member func-
tions are calcTransformModelData, correct and apply. calcTransformModelData computes (D_
and F_) for the porous region based on user-specified dXYZ_ and £XYZ_ components, which slightly
differs depending on the selected porosityModel.

The correct () function modifies the momentum equation to account for the Darcy-Forchheimer
resistance in the specified porous region. The function retrieves the velocity field (U), cell volumes
(V), diagonal coefficients (Udiag), and source terms (Usource) from the matrix. Field names for
density (rhoName), dynamic viscosity (muName), and kinematic viscosity (nuName) are prepared as
shown in Listing 3.11 and an if-statement checks whether the momentum equation has force-like
dimensions, which determines if density (p) should be included in the resistance calculation.

Listing 3.11: Retrieve required field values

void Foam::porosityModels: :DarcyForchheimer::correct
(
fvVectorMatrix& UEqn
) const
{
const volVectorField& U = UEqn.psi();
const scalarField& V = mesh_.V();
scalarField& Udiag = UEqn.diagQ);
vectorField& Usource = UEqn.source();

word rhoName (IOobject: :groupName(rhoName_, U.group()));
word muName (IOobject: :groupName (muName_, U.group()));

word nuName (IOobject: :groupName(nuName_, U.group()));

if (UEqn.dimensions() == dimForce)

In case of a force-like dimension, it retrieves the density field (rho) and, if available, the dynamic
viscosity (mu). If mu is not found, it computes dynamic viscosity using pv, where v is the kinematic
viscosity. In case of incompressible flows (else-condition), the function either uses the kinematic
viscosity (nu), if available, or it computes it as mu/rho. Lastly, the resistance contributions are
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computed and applied by calling the apply () function. Since the proposed tutorial case is based on
incompressible flow, relevant lines show in Listing 3.12 will be executed.

Listing 3.12: Execute relevant apply () function inside correct () to update system equation UEqn
for incompressible flow

else
{
if (mesh_.foundObject<volScalarField>(nuName))
{
const auto& nu = mesh_.lookupObject<volScalarField>(nuName) ;
apply(Udiag, Usource, V, geometricOneField(), nu, U);
}

The core function apply() is a template function, it computes the resistance terms and mod-
ifies the system matrices as described in Listing 3.13 within the DarcyForchheimerTemplates.C
file. The application of this function involves two key operations. It modifies the diagonal terms
of the system matrix (Udiag), which corresponds to the coefficients of velocity in the momen-
tum equation, and it updates the source term vector (Usource) to include the momentum sink
caused by the porous medium. Therefore, apply() incorporates the Eq. (2.5) through direct
application of the Darcy and Forchheimer terms and can be interpreted as followed: The outer
loop iterates through all cell zones defined in the mesh, while the inner loop processes each cell
within the zone. The tensor Cd is calculated as a combination of the viscous and inertial compo-
nents: Cd = mulcellil] - dZones[j] + (rholcellil -mag(U[cellil)) - fZones[jl. The diagonal
term Udiag[celli] is updated by adding the product of the volume factor V and the trace of the
tensor Cd. The source term Usource[celli] is adjusted by subtracting the product of the volume
factor V and the difference between Cd and the identity tensor scaled by its trace , dot-multiplied
with the velocity vector U. This ensures that the momentum equation includes both viscous and
inertial resistance effects from the porous medium.

Listing 3.13: Apply method for diagonal and source terms

template<class RhoFieldType>
void Foam::porosityModels: :DarcyForchheimer: :apply
(

scalarField& Udiag,

vectorField& Usource,

const scalarField& V,

const RhoFieldType& rho,

const scalarField& mu,

const vectorField& U

) const
{
forAll(cellZoneIDs_, zonel)
{
const tensorField& dZones = D_[zonel];
const tensorField& fZones = F_[zonel];
const labellList& cells = mesh_.cellZones() [cellZoneIDs_[zoneI]];
forAll(cells, i)
{
const label celli = cells[i];
const label j = this->fieldIndex(i);
const tensor Cd =
mu[celli]*dZones[j] + (rhol[cellil*mag(U[cellil]))*fZones[j];
const scalar isoCd = tr(Cd);
Udiaglcelli] += V[cellil*isoCd;
Usource[celli] -= V[cellil*((Cd - I*isoCd) & Ul[cellil);
}
¥
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3.2.1 Application in OpenF0AM

The explicitPorositySource class in OpenFOAM applies porosity resistance effects to the momen-
tum equations within a specified region of the computational domain using the fvOptions frame-
work. It models Darcy and Forchheimer resistance based on user-defined porosity coefficients, ap-
plied to designated regions. Within the system directory, the fvOptions file can be configured.
The porosity model, coefficients, and region are specified in this file. Listing 3.14 illustrates a typ-
ical configuration using the DarcyForchheimer porosity model. It entails all key elements for the
configuration and application of the explicitPorositySource function, such as:

e type explicitPorositySource: Specifies that this fvOption will apply an explicit porosity
source.

e selectionMode: Specifies the mode of cell selection which can be all (use all cells in the
computational domain, cellZone (use a given cellZone), cellSet (use a given cellSet),
or points (use cells containing a given set of points. This handling of cell-set options in fv-
Options is part of the intermediate abstract class Foam: :fv::cellSetOption.

e cellZone: Specifies the porous region where the resistance terms are applied. This region
must be pre-defined in the mesh as a cellZone.

e explicitPorositySourceCoeffs: Contains details about the porosity model and its coeffi-
cients.

e type DarcyForchheimer: Specifies the Darcy-Forchheimer model, which combines viscous
(Darcy) and inertial (Forchheimer) resistance terms.

e d and f: Define the Darcy and Forchheimer coefficients, respectively, in tensor form for
anisotropic resistance. For isotropic resistance, all tensor components can be equal.

e coordinateSystem: Defines the local coordinate system for the porous zone. This is useful
for modeling anisotropic porosity, where resistance varies with direction.

Listing 3.14: explicitPorositySource application within system/fvOptions

porosityl

{
// Type of the fvOption
type explicitPorositySource;
active true;

explicitPorositySourceCoeffs

{
// Porosity model type
type DarcyForchheimer;
// Region to apply - porosity zone
selectionMode cellZone;
cellZone porousZone;

DarcyForchheimerCoeffs
{

// Darcy coefficients (viscous resistance)
d (50 50 50);

// Forchheimer coefficients (inertial resitance)
f (2 22);

// Coordinate system for anisotropic porosity

coordinateSystem

{
origin (0 0 0);
el (100);
e2 (0 10);

17
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45 }
46 }

47 }

as| }

In the provided example implementation, the porosity source is applied only in cells defined by
the cellZone porousZone. Hence, prior the application, a cellZone must be defined. This can be
done using topoSetDict for example (see topoSetDict- file in A.2.2) It ensure that the cellZone
is correctly defined in the mesh generation process.
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Chapter 4

Implementations of water vapor
dynamics

4.1 Water vapor implementation

While the original buoyantBoussinesqSimpleFoam solver only considers temperature-driven buoy-
ancy, many real-world applications, such as humid airflow in HVAC systems or natural convection
in moist air, require the inclusion of water vapor effects [10, 11]. In this section, the theoretical
framework for incorporating water vapor, represented by its mass fraction AH (absolute humidity,
non-dimensional), into the solver is presented. The inclusion of water vapor mass fraction in the
buoyantBoussinesqSimpleFoam solver expands its applicability to humid airflow simulations. By
solving the transport equation for AH alongside the momentum and temperature equations, the pro-
posed solver will capture the interaction between temperature-driven and humidity-driven buoyancy
forces. The extended solver includes four primary equations: the continuity equation, the momen-
tum equation, the temperature transport equation, and a transport equation for the water vapor
mass fraction.

4.1.1 Continuity equation
For incompressible flow under the Boussinesq approximation, the continuity equation is given by
V.U =0, (4.1)

where U is the velocity field. This equation remains unchanged in the modified solver.

4.1.2 Momentum equation

The momentum equation is modified to account for buoyancy effects due to both temperature and
water vapor. It is expressed as

po (U-VU) = =Vp+ V- (uV?>U) + pog [Br(T — Tret) + Ban(AH — AHger)] (4.2)

where pg is the reference density (constant under the Boussinesq approximation), p is the pressure
field, u is the dynamic viscosity, g is the gravitational acceleration vector, St is the thermal expansion
coefficient, Trer is the reference temperature, Say is the water vapor expansion coefficient, and A Hget
is the reference water vapor mass fraction.

The density-related term driving buoyancy is given by

pi =1 — Br(T — Tret) — Bau(AH — AHRget), (4.3)

which is used to compute the buoyancy forces.
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4.1.3 Temperature equation

The temperature transport equation governs the distribution of thermal energy in the flow and is
expressed as
V- (pUT) =V - (aVT) = S, (4.4)

where a = % is the thermal diffusivity, with k as the thermal conductivity, p as density, and ¢, as
the specific heat capacity at constant pressure, and St represents source terms, such as radiation or
user-defined energy inputs. Also this equation remains unchanged except for its coupling with the
updated buoyancy term in the momentum equation.

4.1.4 Water vapor transport equation

The water vapor mass fraction AH is modeled as a passive scalar, governed by the advection-diffusion
equation

U-VAH —V - (DgVAH) = Samn, (4.5)
where the effective diffusivity Deg is
1% Vg
Deg=— + — 4.
eff Se 4_A90t’ ( 6)

where v is the molecular kinematic viscosity, vy is the turbulent kinematic viscosity, Sc is the Schmidt
number for molecular diffusion, Sect is the turbulent Schmidt number, and Spy represents source
terms. This equation determines the distribution of AH and its contribution to buoyancy.

4.2 DbuoyantBoussinesqSimpleFoam modification

First, a new initial field AH will be implemented to account for the water vapor as absolute humidity
(dimensionless) as shown in Listing 4.1 in the createFields.H header file. In addition, the buoyancy
contribution of AH must be accounted for with an updated kinematic density for the buoyant force
as described in Eq. (4.3). This implementation can be seen in Listing 4.2.

Listing 4.1: Implement new AH field in createFields.H file

Info<< "Reading field AH (absolute humidity - dimensionless)\n" << endl;
volScalarField AH
(
I0object
(
AR,
runTime.timeName(),
mesh,
I0object::MUST_READ,
IOobject: :AUTO_WRITE
Do

mesh

Listing 4.2: Updated kinematic density of buoyant force in createFields.H file

volScalarField rhok
(
IOobject
(
"rhok" s
runTime.timeName(),
mesh
),
// Buoyancy contribution of AH
1.0 - beta*x(T - TRef) - betaAH*(AH - AHRef)
E
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The water vapor transport equation, described in Eq. (4.5), is implemented as shown in Listing 4.3
and derives the distribution of water vapor mass fraction (AH). The equation is governed by the
advection by the velocity field and effective diffusivity Deg (via Schmidt numbers) described in
Eq. (4.6) and implemented from Line 4-10 of the following code. The solution of the governing
equation determines how water vapor interacts with the flow and buoyancy.

Listing 4.3: New transport equation for AH in AHEqn.H file

volScalarField DYEff ("DYEff", turbulence->nu()/Sc + turbulence->nut()/Sct);

fvScalarMatrix AHEqn

(
fvm: :div(phi, AH)
- fvm::laplacian(DYEff, AH)

fvOptions (AH)
);

AHEqn.relax();
fvOptions.constrain(AHEgn) ;
solve (AHEqn) ;

fvOptions.correct (AH);

All relevant additional parameter values for solving the water vapor related equations will be
provided through the readTransportProperties.H file in OpenFOAM. Therefore, parameters such as
Ban - water vapor expansion coefficient, AHger the reference water vapor mass fraction, and both
Schmidt numbers for water vapor, laminar and turbulent (Sc¢ and Sct, respectively) are added to
the readTransportProperties.H file as shown in Listing 4.4 and thus, water properties are added to
the solver loop. Lastly, the newly created AHEqn.H file must be included in the source code file of the
solver (e.g., buoyantBoussinesqSimpleFoam.C). Therefore, a new line between #include "TEqn.H"
and #include "pEqn.H" is added, including #include "AHEqn.H" as illustrated in Listing 4.5. The
new solver can be compiled now.

Listing 4.4: Read additional parameter with readTransportProperties.H file to account for water
vapor

dimensionedScalar betaAH
(
"betaAH",
dimless,
laminarTransport

g

// Reference water vapor mass fraction
dimensionedScalar AHRef ("AHRef", dimless, laminarTransport);

// Laminar and Turbulent Schmidt number for water vapor transport
dimensionedScalar Sc("Sc", dimless, laminarTransport) ;
dimensionedScalar Sct("Sct", dimless, laminarTransport);

Listing 4.5: Modified buoyantBoussinesqSimpleFoamn. C file to account for transport of water vapor

#include "TEqn.H"
#include "AHEgn.H"
#include "pEgn.H"
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4.3 Utilization of fvOptions

The following section describes in detail the implementation of the crop transpiration model de-
scribed in Section 2.3. The modified fvOptions file includes equations and relevant informa-
tion about the porous media zone, as well as constant input parameters for add to the relevant
source term and updating effected temperature fields. Crop transpiration is only applied in re-
gions of a porous media, representing a crop region. Therefore, the proposed application example
of an explicitPorositySource implementation is used from Section 3.2.1. The presented crop
transpiration model and energy balance in Section 2.3 is based on Graamans et al. [5], while the
implementation in Section 4.3, follows a python implementation' of Graamans et al. described
theory.

The scalar coded source block implements a custom scalar source term using user-defined C++
code. The key entries include: The type is specified as scalarCodedSource, indicating a user-
defined source term for a scalar field. It is set to be active, and the name of the source term is
AHSource. The scalarCodedSourceCoeffs section specifies the configuration of this custom source.
The selectionMode is defined as cellZone, meaning the source applies to the porousZone and the
field affected by this source term is AH.

Listing 4.6: Definition of dictionary for scalar coded source block in fvOptions

AHSource

{
type scalarCodedSource;
active true;
name AHSource;

scalarCodedSourceCoeffs

{
selectionMode cellZone;
cellZone porousZone;
fields (AH) ;

The codeInclude section defines helper functions and constants related to physical processes
such as sensible heat exchange, latent heat flux, and surface temperature calculations. It includes
functions for vapor resistance, net radiation, and surface temperature, as well as temperature scale
conversions and energy balance calculations. Constants for crop properties, atmospheric and fluid
properties are also defined here, which are implemented at the beginning for this code block and
consider values as described in Table 4.1. Constants are valid under standard reference conditions
corresponding to a temperature of 20°C (293.15 K) and an atmospheric pressure of 101325 Pa.? Func-
tions are declared and described from Line 88-248 in Listing 4.7 and defined from Line 254-428
(see Listing A.2.2 for the complete implementation).

Lhttps://github.com/linucks/fu_evapotranspiration
2https://www.engineeringtoolbox.com/
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Table 4.1: Constant input parameters

Name Value Unit Source
Leaf Area Index 3.0 - [5]
Mean Leaf Diameter 0.1 m [5, 2]
Reflection Coefficient 0.05 - (5]
Photosynthetic Photon Flux Density 200.0 pmol/m?/s  [5]
Cultivation Area Coverage 0.90 - [5, 2]
Atmospheric Pressure 101325 Pa see 2
Heat Capacity of Air 1005.0 J/kg/K see 2
Heat Capacity of Water 1859.0 J/kg/K see 2
Density of Air 1.2041 kg/m3 see 2
Density of Water 998.0 kg/m? see 2
Latent Heat of Water 2264705  J/kg see 2
Molar Mass of Water 18.01528 g/mol see 2
Psychrometric Constant 65.0 Pa/K see 2
Ideal Gas Constant 8.3145 J/mol/K see 2
Zero Degrees in Kelvin 273.15 K see 2

Listing 4.7: Declaration and description of functions

//- Converts a temperature from Kelvin to Celsius.
// @param tempKev Temperature in Kelvin.
// @return Temperature in degree Celsius.
double convertKelvinToCelsius
(
double tempKev
)

//- Calculates the relative humidity
// This is based on the saturation vapor pressure p_vs (Pa)
// as the Tetens equation equation is valid for
// temperature between O C and 50 C )
// @param tempAir Temperature of the air in degree Celsius
// @param absolute_humidity Water vapor mass fraction (kg/kg)
// @return Relative humidity in percentage
double calcRelativeHumidity
(
double tempAir,
double absolute_humidity
)5

//- Calculates the aerodynamic resistance
// @param 1_leaf mean leaf diameter (m)
// @param lai leaf area index

// @param u local air speed (m/s)

// @return s/m

double calcVapourResistance

(
double 1_leaf,
double u,
double lai

);

//- Calculates the net radiation on the surface.

// @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).

// @param reflectionCoefficient Reflection coefficient of the surface.

// @param cultivationAreaCoverage Fraction of surface covered by vegetation or material.

// @return Net radiation on the surface in W/m
double calcNetRadiation

(
double ppfd,
double reflectionCoefficient,
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130 double cultivationAreaCoverage

131 D8

132

133 //- Calculates the radiation from lighting based on PPFD.

134 // @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).
135 // @return Radiation from lighting in W/m

136 // @throws std::runtime_error if PPFD value is unsupported.

137 double calcLightingRadiation

138 (

139 double ppfd

140 );

141

142 //- Calculates the sensible heat exchange between the surface and air.
143 // @param tempAir Air temperature in degrees Celsius.

144 // @param tempSurface Surface temperature in degrees Celsius.

145 // @param lai Leaf area index (area of leaves per unit ground area).
146 // @param vapourResistance Vapor resistance in s/m.

147 // @return Sensible heat exchange in W/m

148 double calcSensibleHeatExchange

149 (

150 double tempAir,

151 double tempSurface,

152 double lai,

153 double vapourResistance

154 )

155

156 //- Calculates the latent heat flux from evaporation or transpiration.
157 // @param tempAir Air temperature in degrees Celsius.

158 // @param tempSurface Surface temperature in degrees Celsius.

159 // @param relativeHumidity Relative humidity as a percentage.

160 // @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).
161 // @param lai Leaf area index (area of leaves per unit ground area).
162 // @param vapourResistance Vapor resistance in s/m.

163 // @return Latent heat flux in W/m

164 double calcLatentHeatFlux

165 (

166 double tempAir,

167 double tempSurface,

168 double relativeHumidity,

169 double ppfd,

170 double 1lai,

171 double vapourResistance

172 )

173

174 //- Calculates the vapor concentration in the air.

175 // @param tempAir Air temperature in degrees Celsius.

176 // @param relativeHumidity Relative humidity as a percentage.

177 // @return Vapor concentration of air in kg/m

178 double calcVapourConcentrationAir

179 (

180 double tempAir,

181 double relativeHumidity

182 );

183

184 //- Calculates the saturated vapor concentration of air at a given temperature.
185 // @param tempAir Air temperature in degrees Celsius.

186 // @return Saturated vapor concentration of air in kg/m

187 double calcSaturatedVapourConcentrationAir

188 (

189 double tempAir

190 );

191

192 //- Calculates the saturated vapor pressure of air at a given temperature.
193 // @param tempAir Air temperature in degrees Celsius.

194 // Q@return Saturated vapor pressure in Pascals.

195 double calcSaturatedVapourPressureAir

196 (

197 double tempAir
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g

//- Calculates the vapor concentration at the surface.

// @param tempAir Air temperature in degrees Celsius.

// @param tempSurface Surface temperature in degrees Celsius.

// @param vapourConcentrationAir Vapor concentration of air in kg/m
// @return Vapor concentration at the surface in kg/m

double calcVapourConcentrationSurface

(

double tempAir,

double tempSurface,

double vapourConcentrationAir
)5

//- Calculates the psychrometric constant epsilon at a given air temperature.
// @param tempAir Air temperature in degrees Celsius.
// Q@return Psychrometric constant epsilon (dimensionless)
double calcEpsilon
(
double tempAir
)5

//- Calculates stomatal resistance based on light intensity.
// @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).
// @return Stomatal resistance in s/m.
double calcStomatalResistance
(
double ppfd
)5

//- Solves for surface temperature based on energy balance.
// Root finding algorithm, a bisection method, is used to
// iteratively find the solution.
// @param tempAir Air temperature in degrees Celsius.
// @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).
// @param relativeHumidity Relative humidity as a percentage.
// @param lai Leaf area index (area of leaves per unit ground area).
// @param vapourResistance Vapor resistance in s/m.
// @param reflectionCoefficient Reflection coefficient of the surface.
// @param cultivationAreaCoverage Fraction of surface covered by vegetation or material.
// @return Surface temperature in degrees Celsius
double calcTempSurface
(
double tempAir,
double ppfd,
double relativeHumidity,
double lai,
double vapourResistance,
double reflectionCoefficient,
double cultivationAreaCoverage
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The codeAddSup block in the provided fvOptions file is responsible for implementing a custom
scalar source term in OpenFOAM into the right-hand side of the governing equations. This block adds
the necessary modifications to the fields representing absolute humidity (AH) and temperature (T)
for cells located within a defined porous zone. The primary goal is to model the effects of water
vapor addition through transpiration and the associated thermal changes.

The first step in this block is accessing the necessary fields from the mesh, visible from Line
440-447 in Listing 4.11. The AH field represents absolute humidity, the U field represents velocity,
and the T field represents temperature. The temperature field is fetched as a modifiable reference
to allow adjustments reflecting thermal effects. A scalar source term, AHSource, is also prepared for
modification as part of the governing equation for absolute humidity. The porous zone is identified
by accessing the cellZones of the mesh and determining the zone corresponding to porousZone.
Thus, the code iterates over all cells in the computational domain, and calculations are applied only
to cells that belong to this porous zone.

For each cell in the porous zone, the relevant variables are initialized. The temperature in Kelvin
(TlcellID]) is converted to degrees Celsius using the convertKelvinToCelsius() function and
the absolute humidity (AH[cellID]) is converted to relative humidity using the calcRelative-
Humidity() function, which is based on the Tetens equation for saturation vapor pressure. The
vapor resistance, representing the aerodynamic resistance r, (Eq. (2.9)) to vapor flow, is calculated
using the calcVapourResistance() function, which depends on the leaf size, leaf area index, and
local air velocity. Its definition can be see in Listing 4.8.

Listing 4.8: Definition of calcVapourResistance() functions

double calcVapourResistance

(
double 1_leaf,

double u,

double lai
)
{

return 350% pow(l_leaf/u,0.5) * pow(lai,-1);
I8

The leaf surface temperature of the porous region is calculated using the calcTempSurface()
function. This function solves the crop energy balance equation (Eq. 2.11) that accounts for net
radiation, sensible heat flux, and latent heat flux by using the root-finding algorithm. The bisection
method is applied, a numerical technique, for solving equations of the form f(z) = 0. Therefore, an
initial range of [Ty, — limit, T, + limit] is chosen for the surface temperature and the midpoint
of the range is iteratively refined based on the energy balance equation until the tolerance (107°) is
satisfied. The functions definition can be seen in the following Listing 4.9.

Listing 4.9: Definition of calcTempSurface() functions

double calcTempSurface

(
double tempAir,
double ppfd,
double relativeHumidity,
double lai,
double vapourResistance,
double reflectionCoefficient,
double cultivationAreaCoverage

double netRadiation = calcNetRadiation
(ppfd, reflectionCoefficient, cultivationAreaCoverage) ;
auto calcEnergyBalance = [&] (double tempSurface)
{
double sensibleHeat = calcSensibleHeatExchange
(tempAir, tempSurface, lai, vapourResistance);
double latentHeat = calcLatentHeatFlux
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(tempAir, tempSurface, relativeHumidity, ppfd, lai, vapourResistance);
return netRadiation - sensibleHeat - latentHeat;

8

// Root finding using bisection method
double limit = 10.0;

double xa = tempAir - limit;

double xb = tempAir + limit;

double tol = 1le-6;
while (std::fabs(xb - xa) > tol)
{
double xm = (xa + xb) / 2.0;
if (calcEnergyBalance(xm) * calcEnergyBalance(xa) < 0) {

Xxb = xm;
} else {
Xa = xm;

}

The net radiation is determined using a combination of light intensity (PPFD), reflection co-
efficients, and coverage factors, described as Eq. (2.12) and implemented in calcNetRadiation().
Sensible heat exchange between the air and the surface is computed using the calcSensibleHeat-
Exchange () function, while latent heat flux due to water vapor transport is calculated using the
calcLatentHeatFlux () function, following Eq. (2.13) and (2.14). The three implemented mathe-
matical equations in fvOptions as C++ code can be seen in Listing 4.10

Listing 4.10: Implementation of R,et Qsen and Qq¢ in £vOptions

double calcNetRadiation

(
double ppfd,
double reflectionCoefficient,
double cultivationAreaCoverage
)
{
double lightingRadiation = calcLightingRadiation(ppfd);
return (1.0 - reflectionCoefficient) * lightingRadiation * cultivationAreaCoverage;
}
double calcSensibleHeatExchange
(
double tempAir,
double tempSurface,
double lai,
double vapourResistance
)
{
return lai * HEAT_CAPACITY_OF_AIR * DENSITY_OF_AIR * \
(tempSurface - tempAir) / vapourResistance;
}
double calcLatentHeatFlux
(
double tempAir,
double tempSurface,
double relativeHumidity,
double ppfd,
double 1lai,
double vapourResistance
)
{

double vapourConcentrationAir = calcVapourConcentrationAir(tempAir, relativeHumidity);

double vapourConcentrationSurface = calcVapourConcentrationSurface(tempAir,
tempSurface, vapourConcentrationAir);

double stomatalResistance = calcStomatalResistance(ppfd) ;

return lai * (LATENT_HEAT_WATER / 1000.0) * ((vapourConcentrationSurface -
vapourConcentrationAir) / (stomatalResistance + vapourResistance));
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Based on the calculated latent heat flux, the transpiration rate, denoted as ET, is calculated as
the latent heat term Qj,; divided by the latent heat of vaporization and the height of the canopy [3].
This rate represents the water vapor added to the porous zone and is normalized by the density of
water. The resulting value is subtracted from the scalar source term AHSource, effectively adding
a water vapor source to the absolute humidity equation. The described calculation can be found
from Line 479-482 in Listing 4.11. In addition, the temperature field is updated to reflect the
heat transfer effects, following Line 484-490 in Listing 4.11. The change in temperature (AT) is
computed using the formula

Qsen

Mair * Cmoist

AT = (4.7)
where Qgen is the sensible heat flux, ma,; is the mass of moist air, and cpeist is the specific heat
capacity of moist air. Listing 4.11 shows the codeAddSup block which is crucial for simulating the
interaction between humidity and heat transfer dynamics in porous zones, such as those encoun-
tered in greenhouse or environmental flow modeling. It captures the physical processes associated
with transpiration and heat exchange effectively, by iteratively updating the absolute humidity and
temperature fields.

Listing 4.11: Calculation of ET as additional source term in AH and a AT for T field correction in
codeAddSup

#{
Pout<< "s*xcodedCorrect**" << endl;
#};

codeAddSup
#{
// Provide field values
const volScalarField& AH = mesh().lookupObject<volScalarField>("AH");
const volVectorField& U = mesh().lookupObject<volVectorField>("U");
// Allow modification of T
volScalarField T = const_cast<volScalarField&>(mesh().lookupObject<volScalarField>("T"));
// Reference to the source term in the equation
scalarField& AHSource = eqn.source();
// Access the porous zone ID
const label porousZoneID = mesh().cellZones().findZoneID("porousZone") ;

// Loop through the cells in mesh
forAll(AH, celllD)
{
// Execute code if cell is in porousZone
if (mesh().cellZones().whichZone(cellID) == porousZonelID)
{
// Get field values for celllD
double tempInKelvin = T[cellID];
double absolute_humidity = AH[celllID];
vector Ucell = Ul[celllD];
scalar u = mag(Ucell);
// Convert K into C
double tempAir = convertKelvinToCelsius(tempInKelvin);
// Convert AH into RH
double relativeHumidity = calcRelativeHumidity(tempAir, absolute_humidity);
// Calculate vapour/aerodynamic resistance
double vapourResistance = calcVapourResistance(l_leaf, u, lai);

// Calculate surface temperature - root-finding method
double tempSurface = calcTempSurface(tempAir, ppfd, relativeHumidity, lai,
vapourResistance, reflectionCoefficient,
cultivationAreaCoverage) ;

// Calculate sensible heat exchange and latent heat flux

double sensibleHeatExchange = calcSensibleHeatExchange(tempAir, tempSurface, lai,
vapourResistance) ;

double latentHeatFlux = calcLatentHeatFlux(tempAir, tempSurface, relativeHumidity,
ppfd, lai, vapourResistance);
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celllD]);

// Calculate the rate of mass flux per volume dervied from transpiration rate (ET)
scalar ET = latentHeatFlux / LATENT_HEAT_WATER / 1_leaf;

// Normalized the mass flux to a flux per time-unit

ET = ET / DENSITY_OF_WATER;

// Add as a source term to the right-hand side of the transport equation
AHSource[cellID] -= ET;

// Calculate the specific heat capacity of moist air
scalar specific_heat_moist_air = HEAT_CAPACITY_OF_AIR * \
(1 - AH[cellID]) + (AH[cellID] * HEAT_CAPACITY_OF_WATER);
// Calculate the mass of moist air
scalar m_air = (ATMOSPHERIC_PRESSURE / (287 * tempInKelvin)) / (1 + 0.61 * AH[

scalar delta_T = sensibleHeatExchange / (m_air * specific_heat_moist_air);
// Calculate temperature increase delta_T

The codeCorrect, in Listing 4.12, and codeConstrain, in Listing 4.13, blocks are placeholder for
applying field corrections or constraints but currently only output a message for runtime monitoring.

Listing 4.12: codeCorrect

#};

return (xa + xb) / 2.0;

Listing 4.13: codeConstrain

#};

29




Chapter 5

Instructions for solver application

A modified version of the hotRoom tutorial case will be described including inlet and outlet condition
to provide an example application of the newly developed solver and crop transpiration model
implementation using fvOptions. This chapter is divided into two section. First, instructions are
provided to modify the available bouyantBoussinesqSimpleFoam solver to account for the transport
of water vapor. In the second part, an instruction is provided to set up a the test case, run the
simulation and illustrate relevant results.

5.1 Solver modification

The following instructions describe how to create a new OpenFOAM solver named cropTranFoam,
derived from the existing buoyantBoussinesqSimpleFoam solver. Open a terminal, source your
OpenFoam-v2112 application and execute the following commands. The provided commands nav-
igate to the OpenFOAM project user directory and create the heatTransfer directory under
applications/solvers. Then a copy of the buoyantBoussinesqSimpleFoam solver directory to
a new directory named cropTranFoam is created. Make/files is modified to ensure the solver builds
in the user application binary directory. Then all occurrences of buoyantBoussinesqSimpleFoam
are replaced with cropTranFoam and the primary solver file buoyantBoussinesqSimpleFoam.C is
renamed to cropTranFoam.C. The final lines add the new header file AHEqn.H in the main solver file
and create a new (empty) file named AHEqn.H for custom modifications.

cd $WM_PROJECT_USER_DIR

mkdir -p applications/solvers/heatTransfer

cd applications/solvers/heatTransfer

cp -r $FO0AM_APP/solvers/heatTransfer/buoyantBoussinesqSimpleFoam cropTranFoam
cd cropTranFoam

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

find . -type f -exec sed -i 's/buoyantBoussinesqSimpleFoam/cropTranFoam/g' {} +
mv buoyantBoussinesqSimpleFoam.C cropTranFoam.C

sed -1 '932a A\ \ \ VN N\ N\ \ \ \ #include "AHEqn.H"' cropTranFoam.C

touch AHEqn.H

Now the user can open the relevant solver files (e.g., cropTranFoam.C, Make/files, AHEqn.H,
etc.) using your preferred editor (e.g., vim, VS Code). It must be ensured that the content of
each solver file aligns with the provided implementation in the Appendix A.1. Therefore, copy the
provided code from Appendix A.1l into your newly created cropTranFoam solver files. After making
all necessary modifications, navigate to the solver directory, source OpenFOAM-v2112 application
and compile the solver. Ensure no errors are encountered during compilation and the new solver
executable cropTranFoam should be available in the user binary directory.
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Notes to modified files

The files requiring updates may include:
e Make/files
e Main solver file: cropTranFoam.C

e Custom header file: AHEqn.H, TEqn.H, createFields.H and readTransportProperties.H

5.2 Running a tutorial case

Execute the provided code below in a terminal after you successfully compiled the cropTranFoam
solver as instructed in the previous Section 5.1 and sourced your OpenFOAM-v2112 application.
After successful execution of the code, use a preferred editor to open all relevant files mentioned
the appendix A.2, modify and/or overwrite the content of these files with the provided code in the
appendix.

run
cp -r $FOAM_TUTORIAL/heatTransfer/buoyantBoussinesqSimpleFoam/hotRoom testCropTranFoam
cd testCropTranFoam

sed -i s/setFields/topoSet/g Allrun

rm system/setFieldsDict

touch system/topoSetDict

touch system/fvOptions

Once the case files are aligned with the shown code in the Appendix you can execute the following
code to run the simulation.

./Allrun

paraFoam

Visualization of results

1. After the simulation finished and open ParaView either via the command paraFoam or as a
normal application. Load the newly created results.foam file to view the results.

2. In the Properties panel, select the options:

e Read Zones

e Copy Data to Cell Zones
and then load (Apply) the results.
3. Navigate to the Styling section and change the opacity of the results to 0.3.
4. Apply the Clip filter and configure the Plane Parameters to show the plane on Z Normal.
5. Right-click in the Pipeline Browser and select Show All.

6. For the two sources in the pipeline, modify the displayed field to either Absolute Humidity
(AH) or Temperature (T) and run the simulation.

7. Observe how the temperature and absolute humidity increases in the region where the porous
media zone is located (you may select Rescale to Data Range). The expected results are
shown in Figure 5.1.
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T
29e+02 2922 2924 29e+02
| |

AH
9.86-03 00105 1.1e-02
|

(a) AH field results (b) AH field results
Figure 5.1: Expected simulation results for absolute humidity (AH in kg/kg) in 5.1a and temperature
(Tin K) in 5.1b

Notes to modified files
The files requiring updates may include:
e 0.orig directory: AH, T, U, alphat, epsilon, k, nut, p, p_rgh

e system directory: blockMeshDict, controlDict, fvOptions, fvSchemes, fvSolution, topo-
SetDict

e constant directory: transportProperties

32



Chapter 6

Conclusion and future work

This study successfully modified the buoyantBoussinesqSimpleFoam solver, enhancing its capability
to simulate physiological and environmental dynamics within controlled agricultural environments.
The incorporation of water vapor transport equations, along with modifications to account for heat
and mass transfer coupling, enables the solver to capture the interplay between crop processes and
their surroundings. The theoretical underpinnings, implementation details, and practical applica-
tion of the enhanced solver have been systematically presented. Verification through a tutorial case
highlights the effectiveness of the proposed modifications. It demonstrated the solver’s capability
to model temperature and humidity dynamics within a porous media, representing the crop canopy
by using fvOptions. OpenFOAM’s open-source platform offered a flexible and adaptable framework
to demonstrate the application of CFD simulations for agricultural modeling in environmental con-
trolled systems such as vertical farms and greenhouses.

Future research should focus on the following directions to further enhance and expand the
utility of the modified solver and proposed simulation case. The developed fvOptions file can be
extended to incorporate a radiation heat model (e.g., a discrete ordinate model) instead of the
current fixed net radiation approach, which relies on a constant PPFD value. This enhancement
will enable the model to account for varying levels of transpiration based on the height of the
crop region, improving the accuracy of simulations. Additionally, time-dependent environmental
parameters, such as fluctuating light intensities and temperature profiles, should be explored to
simulate diurnal and seasonal variations more effectively. Transient modeling capabilities can also
be integrated to study the dynamic responses of crops under changing conditions, providing more
realistic and comprehensive results. However, before these advancements are implemented, the
presented simulation case must be experimental validated against real-world crop transpiration data
to ensure accuracy and reliability.
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Study questions

How to use it:

e What must be defined in fvOptions that a custom source term for U field is added under
codedAddSup?

e Which code blocks must be provided in fvOptions to use codedSource class?

e Which modes of cell selection are available and how are they used?

e When will you define different X, Y, Z values for the Darcy and Forchheimer coefficients?
The theory of it:

e When is the density assumed not to be constant and how is the buoyant force approximated?

e What resistance forces represent the Darcy-Forchheimer equation?

e Which parameter must be solved first to derive the added mass source of water vapor and
how?

How it is implemented:
e What header files are included in CodedFvSource.H and why?
e Why is the addSup() function in explicitPorositySource class overloaded?

e What function defines and uses the described Eq. (2.5) and which source file includes the
relevant code?

How to modify it:

e Which file(s) must be created and/or modified to account for water vapor using the buoyantBoussinesqSimpleFoam
solver?

e Why is T defined differently compared to AH and U under the codedAddSup block in Listing 4.117

e Why and how is the root-finding algorithm implemented?
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Appendix A

Developed codes

A.1 cropTranFoam solver

Water vapor transport equation AHEqn.H

volScalarField DYEff ("DYEff", turbulence->nu()/Sc + turbulence->nut()/Sct);

fvScalarMatrix AHEgqn

(
fvm: :div(phi, AH)
- fvm::laplacian(DYEff, AH)
fvOptions (AH)
)g

AHEgn.relax();
fvOptions.constrain(AHEqQn) ;
solve (AHEqQn) ;

fvOptions.correct (AH);

Temperature equation TEqn.H

alphat = turbulence->nut()/Prt;
alphat.correctBoundaryConditions () ;

volScalarField alphaEff("alphaEff", turbulence->nu()/Pr + alphat);

fvScalarMatrix TEqn
(
fvm::div(phi, T)
- fvm::laplacian(alphaEff, T)

radiation->ST (rhoCpRef, T)
+ fvOptions(T)

)

TEqn.relax();

fvOptions.constrain(TEqn) ;

TEqn.solve();
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radiation->correct();
fvOptions.correct(T);

// Updated to include buoyancy effects from both temperature and moisture
rhok = 1.0 - betax(T - TRef) - betaAH*x(AH - AHRef);

readTransportProperties.H

singlePhaseTransportModel laminarTransport(U, phi);

// Thermal expansion coefficient [1/K]
dimensionedScalar beta

(
"beta" ,
dimless/dimTemperature,
laminarTransport

)5

// Water expansion coefficient
dimensionedScalar betaAH

(
"betaAH",
dimless,
laminarTransport
);

// Reference water vapor mass fraction
dimensionedScalar AHRef ("AHRef", dimless, laminarTransport);

// Laminar and Turbulent Schmidt number for water vapor transport
dimensionedScalar Sc("Sc", dimless, laminarTransport) ;
dimensionedScalar Sct("Sct", dimless, laminarTransport);

// Reference temperature [K]
dimensionedScalar TRef ("TRef", dimTemperature, laminarTransport);

// Laminar Prandtl number
dimensionedScalar Pr("Pr", dimless, laminarTransport);

// Turbulent Prandtl number
dimensionedScalar Prt("Prt", dimless, laminarTransport);

createFields.H file

Info<< "Reading thermophysical properties\n" << endl;

Info<< "Reading field T\n" << endl;
volScalarField T

(
I0object
(
||Tll .
runTime.timeName(),
mesh,
IO0object: :MUST_READ,
IOobject::AUTO_WRITE
Do
mesh
)8

Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh

(
I0object
(
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"p_rgh",
runTime.timeName(),
mesh,
I0object::MUST_READ,
IOobject: :AUTO_WRITE
),
mesh

N

Info<< "Reading field U\n" << endl;
volVectorField U
(

I0object

(
||Ull N
runTime.timeName(),
mesh,

IO0object: :MUST_READ,
I0object::AUTO_WRITE
))
mesh

)

// Declare and initialize water vapor mass fraction
Info<< "Reading field AH (absolute humidity - dimensionless)\n" << endl;
volScalarField AH

(
I0object
(
"AH",
runTime.timeName(),
mesh,
I0object: :MUST_READ,
IOobject: :AUTO_WRITE
),
mesh
)8

#include "createPhi.H"
#include "readTransportProperties.H"

Info<< "Creating turbulence model\n" << endl;
autoPtr<incompressible: :turbulenceModel> turbulence
(

incompressible: :turbulenceModel: :New(U, phi, laminarTransport)

g

// Kinematic density for buoyancy force
volScalarField rhok
(

I0object

(
"rhok",
runTime.timeName(),
mesh

Do

// Buoyancy contribution of AH
1.0 - beta*(T - TRef) - betaAH*(AH - AHRef)
);

// kinematic turbulent thermal thermal conductivity m2/s
Info<< "Reading field alphat\n" << endl;
volScalarField alphat
(
I0object
(
"alphat",
runTime.timeName(),
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mesh,
IO0object: :MUST_READ,
IOobject: :AUTO_WRITE
))
mesh

N

#include "readGravitationalAcceleration.H"
#include "readhRef.H"
#include "gh.H"

volScalarField p

(
IO0object
(
l|pll,
runTime.timeName(),
mesh,
IOobject::NO_READ,
IO0object: :AUTO_WRITE
),
p_rgh + rhok*gh
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
P
p_rgh,
simple.dict(),
pRefCell,
pRefValue
);
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"ot
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
)3
}

mesh.setFluxRequired(p_rgh.name());

#include "createMRF.H"
#include "createIncompressibleRadiationModel.H"
#include "createFvOptions.H"

cropTranFoam.C

/* *\
SSS====== |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

Copyright (C) 2011-2017 OpenFOAM Foundation

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
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under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application
cropTranFoam

Group
grpHeatTransferSolvers

Description
Steady-state solver for buoyant, turbulent flow of incompressible fluids.

Uses the Boussinesq approximation:
\f[

rho_{k} = 1 - beta(T - T_{ref} - betaAH*(AH - AH_{refl}))
\£]

where:
\f$ rho_{k} \f$ = the effective (driving) density
beta = thermal expansion coefficient [1/K]
T = temperature [K]
\f$ T_{ref} \f$ = reference temperature [K]
betaAH = water expansion coefficient [-]
AH = absolute humidity [kg kg~-1]
\f$ AH_{ref} \f$ = reference absolute humidity [kg kg~ -1]

Valid when:
\f [

\frac{beta(T - T_{ref})}{rho_{ref}} << 1
\f]

\* */

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "radiationModel.H"

#include "fvOptions.H"

#include "simpleControl.H"

// % % % % % % % % % *k % % % % % % %k % % %k %k % % %k * %k % *k % %k % * % * % % *x //

int main(int argc, char *argv([])

{
argList::addNote
(
"Steady-state solver for buoyant, turbulent flow"
" of incompressible fluids."
)5

#include "postProcess.H"

#include "addCheckCaseOptions.H"
#include "setRootCaseLists.H"
#include "createTime.H"

#include "createMesh.H"

#include "createControl.H"
#include "createFields.H"
#include "initContinuityErrs.H"
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turbulence->validate();
J/ % k k ok ok k ok k k ok ok k k k k k ok >k k k ok k k *k k k *x * * * * * *k x x //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
Info<< "Time = " << runTime.timeName() << nl << endl;
// Pressure-velocity SIMPLE corrector
{
#include "UEgn.H"
#include "TEgn.H"
#include "AHEqn.H"
#include "pEqn.H"
}

laminarTransport.correct();
turbulence->correct();

runTime.write();

runTime.printExecutionTime (Info) ;

}
Info<< "End\n" << endl;

return 0;

// 3k >k 3k >k 5k >k 5k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k %k >k %k >k %k >k %k %k >k %k >k k k //

files - file in Make directory

cropTranFoam.C

EXE = $(FOAM_USER_APPBIN) /cropTranFoam

options - file in Make directory

EXE_INC = \
-I$(LIB_SRC)/finiteVolume/1lnInclude \
-I$(LIB_SRC)/meshTools/1nInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/1lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(LIB_SRC)/thermophysicalModels/radiation/1nInclude

EXE_LIBS = \
-1finiteVolume \
-1fvOptions \
-1lmeshTools \
-1lsampling \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lradiationModels \
-latmosphericModels
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A.2 Tutorial case cropTranFoamCase

A.2.1 0.orig directory files

AH - field file

/% *— C++ —% *\
| ========= |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\k————- =%/
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object AH;
}

// k% % % % % % % %k % k% % % % % %k % %k % % %k *k % * %k * %k % *k % %k % * % * % *x *x //
dimensions [00O0O0OOO0];

internalField uniform 0.0098;

boundaryField
{
floor
{
type zeroGradient;
¥
ceiling
{
type zeroGradient;
}
leftWall
{
type fixedValue;
value uniform 0.0098;
}

"(rightWall|backWall|frontWall)"
{

type zeroGradient;

}

// 3k >k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k %k >k 3k >k 3k >k 5k >k 5k >k >k 3k >k 3k >k >k >k >k %k >k 3k >k 3k %k >k %k >k %k >k %k %k >k %k >k k k //

alphat - field file

*— C++ —x% *\
|
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
I \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
* */
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object alphat;
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}

// k% % % % % % % % % * % * % % % % %k % % *k %k % % % % %k % *k % *k *x * % * % % *x //
dimensions [02-1000 0];

internalField uniform O;

boundaryField
{

floor

{
type alphatJayatillekeWallFunction;
Prt 0.85;
value uniform O;

¥

ceiling

{
type alphatJayatillekeWallFunction;
Prt 0.85;
value uniform O;

}

"(leftWalllrightWall)"

{
type zeroGradient;

}

"(backWall|frontWall)"

{
type alphatJayatillekeWallFunction;
Prt 0.85;
value uniform O;

}

[/ ok sk ok sk sk ok s ok sk ok ok sk ok s ok 3k sk ok s ok ok ok sk ok ok 3k ok ok s ok 3 ok ok s ok ok 3k sk ok ok 3k ok ok ok 3k ok sk sk ok sk ok sk ok ok ok sk kokskokkkk -/ /

epsilon - field file

[x————= *— C++ —% *\
| ========= |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
I \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* ———x/
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object epsilon;
}

// k% % % % % % % %k % *k % % % % % % %k % % %k * % % % % %k % *k % *k % * % * % % *x //
dimensions [02-30000];

internalField uniform 0.00108;

boundaryField
{
floor
{
type epsilonWallFunction;
value uniform O;
}
ceiling
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{
type epsilonWallFunction;
value uniform O;
}
leftWall
{
type fixedValue;
value uniform 0.00108; // Example value; adjust based on your specific calculation
}
rightWall
{
type zeroGradient;
}
" (backWall|frontWall)"
{
type epsilonWallFunction;
value uniform O;
}

[/ kokskok ok sk ok sk ok sk sk ok sk ok ok k sk ok s ok ok sk ok sk ok o ok ok sk ok s ok 3k ok ok s ok ok K sk ok ok 3k ok ok s ok s ok sk sk ok sk ok sk sk ok kok skok sk sk ok skokkkk -/ /

k - field file

/% *— C++ —% *\
| ========= | |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\k————— - - - ———x/
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object k;
}

[/ % % ok ok kK k ok ok ko k ok ok ok ok k ok k Kk k ok k Kk k ok ok k k k ok k k k *k * x *x *x //
dimensions [02-2000 0];

internalField uniform 0.00375;

boundaryField
{
floor
{
type kqRWallFunction;
value uniform O;
}
ceiling
{
type kqRWallFunction;
value uniform 0;
}
leftWall
{

type fixedValue;

value uniform 0.00375; // Example value; adjust based on your turbulence assumptions
}
rightWall
{
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type zeroGradient;

}

"(backWall|frontWall)"

{
type kqRWallFunction;
value uniform O;

}

// 3k >k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k 3k 3k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k 5k %k >k 3k >k 3k >k >k >k >k >k >k 3k >k 3k %k >k %k >k %k >k %k %k >k %k >k k k //

nut - field file

- ——%— Ct++ —k—————mm ———x\

| |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* */
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object nut;
}

J/ % % % % % % % %k % *k %k %k % % % % %k % %k *k *k %k %k %k % %k % *k X *k k * % * % % *x //
dimensions [02-1000 0];

internalField uniform 0.00117;

boundaryField
{
floor
{
type nutkWallFunction;
value uniform O;
}
ceiling
{
type nutkWallFunction;
value uniform O;
}
leftWall
{

type calculated;
value uniform le-5; // Adjust based on the actual turbulence model parameters

}

rightWall

{
type zeroGradient;

}

" (backWall|frontWall)"

{
type nutkWallFunction;
value uniform O;

¥

// 3k >k 3k >k 3k ok 3k 3k ok 3k ok 3k ok ok ok 3k k ok 3k ok sk ok sk 3k ok 3k ok 3k ok sk ok Sk 3k Sk 3k ok dk ok ok k ok 3k ok sk ok sk ok sk 3k ok 3k ok ok ok Sk ok K 3k ok 3k ok ok ok K k >k 3k >k sk ok sk k k //
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p - field file

[x————= k= C++ —% *

|
\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Version: v2112
|
|

N——— =~

\\ / A nd Website: www.openfoam.com
\\/ M anipulation
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object P;
}

// % % % % % % % %k % *k % % % % % % %k % % %k * % % %k % %k % *k % *k *x * % * % % *x //
dimensions [02-2000 0];

internalField uniform O;

boundaryField
{
floor
{
type calculated;
value $internalField;
}
ceiling
{
type calculated;
value $internalField;
}
leftWall
{
type zeroGradient;
}
rightWall
{

type fixedValue;
value uniform O;

¥
" (backWall|frontWall)"
{
type calculated;
value $internalField;
}

// 3k >k 3k >k 3k 3k >k 3k >k 3k >k 3k ok 3k ok >k 3k >k 3k >k 3k k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k ok >k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k >k >k 3k >k %k >k >k %k >k >k k //

p-rgh - field file

[k————— *— C++ —* *\
| ========= |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\k—==== ——=x/
FoamFile
{

version 2.0;

format ascii;
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class volScalarField;
object p_rgh;
}

// k% % % % % % % % % k % % % % % % %k % % %k %k % % %k * %k % *k % *k % * % * *x % *x //
dimensions [02-200 0 0];

internalField uniform O;

boundaryField
{

floor

{
type fixedFluxPressure;
rho rhok;
value uniform O;

}

ceiling

{
type fixedFluxPressure;
rho rhok;
value uniform 0;

}

leftWall

{
type zeroGradient;

}

rightWall

{
type fixedValue;
value uniform O;

}

"(backWall|frontWall)"

{
type fixedFluxPressure;
rho rhok;
value uniform O;

}

T - field file - T

VERE e - ——%— Ct++ —k—————— - ———x\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
I \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\m=m=e ===t/
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

object T;
}

J/ % % % % % % % %k % k% %k * % % % % %k % %k k *k *k * %k % %k % *k X *k k * *x * *x % *x //
dimensions [0001000];

internalField uniform 297;
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boundaryField
{
floor
{
type zeroGradient;
}
ceiling
{
type zeroGradient;
}
leftWall
{

type fixedValue;
value uniform 292; // Set the desired inlet temperature

}
"(rightWall|backWall|frontWall)"
{

type zeroGradient;
}

// 3k >k 3k >k 3k ok 3k 3k >k 3k ok 3k ok ok ok 3k k ok 3k ok sk ok sk 3k ok 3k ok 3k ok sk ok 3k 3k Sk 3k ok Sk ok ok ok ok 3k ok sk ok sk ok sk 3k ok 3k ok ok ok sk ok K 3k ok 3k ok dk ok dk ok >k 3k >k sk ok k kK //

U - field file

-— *— C++ —* ———x%\

|
F ield | OpenFOAM: The Open Source CFD Toolbox
0 peration | Version: v2112
|
|

|
|
|
|
|
- - -—— - ———x/

A nd Website: www.openfoam.com
M anipulation
FoamFile
{
version 2.0;
format ascii;
class volVectorField;
object g
}

J/ * % % %k %k % % % % % >k % %k % % % % % % % % % % % % % % %k % % %k % %k * *x *x x //
dimensions [01-10000];

internalField uniform (0 0 0);

boundaryField
{
floor
{
type noSlip;
}
ceiling
{
type noSlip;
}
leftWall
{
type fixedValue;
value uniform (1 0 0);
}
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rightWall
{
type zeroGradient;

}

"(backWall|frontWall)"
{

type noSlip;
}

// 3k >k 3k >k 3k ok 3k 3k >k 3k ok 3k ok ok ok >k 3k >k 3k ok sk ok sk 3k ok 3k ok 3k ok sk ok 3k 3k ok 3k ok Sk ok ok 3k >k 3k >k 3k ok sk ok sk 3k ok 3k ok 3k ok sk ok ok 3k ok 3k ok 3k ok dk 5k >k 3k >k 3k %k >k >k k //

A.2.2 system directory files

blockMeshDict -file

/* *x— C++ —% *\
| ===s====== |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\Kkmmm e e e */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;
}

[/ % % ok K k kx k ok ok ok k ok ok ok k ok Kk Kk k ok k Kk k ok k Kk k k k x kx *k * * x x *x //

scale 0.1;

vertices
(
00
(10 0 0)
(10 5 0)
(0 50
(0 0 10)
(10 0 10)
(10 5 10)
(0 5 10)
);
blocks
(
hex (01 23456 7) (40 20 40) simpleGrading (1 1 1)
)5
edges
(
);
boundary
(
floor
{
type wall;
faces
(

(1540
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);
}
ceiling
{
type wall;
faces
(
(376 2)
);
}
leftWall
{
type patch;
faces
(
(0 47 3)
);
}
rightWall
{
type patch;
faces
(
(156 2)
);
}
frontWall
{
type wall;
faces
(
(0 123)
);
}
backWall
{
type wall;
faces
(
(4567)
);
}
);
mergePatchPairs
(
);

// 3k >k 3k >k 5k 3k 5k 3k >k 3k ok 3k >k >k 3k >k 3k >k 3k >k 3k %k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k 5k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k %k >k %k >k %k >k %k %k >k %k >k k k //

controlDict - file

[ \\ / F ield
[\ / 0 peration
[ \\ / A nd
| \\/ M anipulation
\*
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object controlDict;
}

s (Gap SHEee
OpenFOAM: The Open Source CFD Toolbox

WWW. openfoam .com

———x\

J/ k% % % % % % % %k % *k % % % % % % %k % % *k *k % % % % % % *k % *k * * % * % % *x //
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application cropTranFoam;
startFrom latestTime;
startTime OF

stopAt endTime;
endTime 100;

deltaT ig
writeControl timeStep;

writelnterval 25;
purgeWrite 0;
writeFormat ascii;
writePrecision 10;
writeCompression off;
timeFormat general;
timePrecision 6;

runTimeModifiable true;

[/ skokskook ok sk ok sk ok ok sk ok sk ok ok ok sk ok s ok ok sk ok sk ok o sk ok sk ok s sk k ok ok s ok k ok k sk ok ok 3k ok ok sk ok sk ok sk sk ok sk ok sk sk ok skok skosk sk sk ok kokkkk -/ /

fvOptions - file for definition of source terms and crop transpiration model

/* *— C++ —* *\

/ F ield

|
\ | OpenFOAM: The Open Source CFD Toolbox
A\ / 0 peration | Version: v2112
|
|

| |
| I
| |
| |
\k—mmmm - - - e */

\\ / A nd Website: www.openfoam.com
\\/ M anipulation
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object fvOptions;
}
[/ % % ok ok k k k ok ok ok ok ok ok ok k ok k Kk k ok ok Kk k ok ok k k k k k kx *k *k * x x *x //
porosityl
{
// Type of the fvOption
type explicitPorositySource;
active true;

explicitPorositySourceCoeffs

{
// Porosity model type
type DarcyForchheimer;
// Region to apply - porosity zone
selectionMode cellZone;
cellZone porousZone;

DarcyForchheimerCoeffs

{
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// Darcy coefficients (viscous resistance)
d (50 50 50);

// Forchheimer coefficients (inertial resitance)
£ (22 2);

// Coordinate system for anisotropic porosity

coordinateSystem

{
origin (0 0 0);
el (100);
e2 (0 10);

}

// Calculation for absolute humdity source term to add water vapor from transpiration
AHSource

{
type scalarCodedSource;
active true;
name AHSource;
scalarCodedSourceCoeffs
{
selectionMode cellZone;
cellZone porousZone;
fields (AH) ;
codeInclude
#{
// Constant values for case study
const double lai = 3.0; // Leaf area index
const double 1_leaf = 0.1; // Mean leaf diameter (m)
const double reflectionCoefficient = 0.05; // Reflection coefficient of lettuce for
PAR (0.05-0.08)
const double ppfd = 200.0; // Light intensity ( mol /m~2/s)
const double cultivationAreaCoverage = 0.90; // Ratio of projected leaf area to
cultivation area (0.9-1.0)
// Constant values for fluids
const double ATMOSPHERIC_PRESSURE = 101325; // Pa (standard atmospheric pressure)
const double HEAT_CAPACITY_OF_AIR = 1005.0; // J kg~-1 K™-1
const double HEAT_CAPACITY_OF_WATER = 1859.0; // J kg™-1 K~-1
const double DENSITY_OF_AIR = 1.2041; // kg/m~3
const double DENSITY_OF_WATER = 998; // kg/m~3
const double LATENT_HEAT_WATER = 2264705; // 3 kg™-1
const double PSYCHOMETRIC_CONSTANT = 65.0; // Pa/K
const double IDEAL_GAS_CONSTANT = 8.3145; // J mol~-1 K~-1
const double MOLAR_MASS_H20_GRAMS = 18.01528; // g mol™-1
const double ZERO_DEGREES_IN_KELVIN = 273.15;
/* *\
Function Declaration
\* */

//- Converts a temperature from Kelvin to Celsius.
// @param tempKev Temperature in Kelvin.
// @return Temperature in degree Celsius.
double convertKelvinToCelsius
(
double tempKev
)5

//- Calculates the relative humidity

// This is based on the saturation vapor pressure p_vs (Pa)
// as the Tetens equation equation is valid for
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// temperature between O C and 50 C )
// @param tempAir Temperature of the air in degree Celsius
// @param absolute_humidity Water vapor mass fraction (kg/kg)
// @return Relative humidity in percentage
double calcRelativeHumidity
(
double tempAir,
double absolute_humidity
)5

//- Calculates the aerodynamic resistance
// @param 1_leaf mean leaf diameter (m)
// @param lai leaf area index

// @param u local air speed (m/s)

// @return s/m

double calcVapourResistance

(
double 1_leaf,
double u,
double lai

)3

//- Calculates the net radiation on the surface.

// @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).

// @param reflectionCoefficient Reflection coefficient of the surface.

// @param cultivationAreaCoverage Fraction of surface covered by vegetation or material.
// @return Net radiation on the surface in W/m

double calcNetRadiation

(
double ppfd,
double reflectionCoefficient,
double cultivationAreaCoverage
)5

//- Calculates the radiation from lighting based on PPFD.
// @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).
// @return Radiation from lighting in W/m
// @throws std::runtime_error if PPFD value is unsupported.
double calcLightingRadiation
(
double ppfd
)5

//- Calculates the sensible heat exchange between the surface and air.
// @param tempAir Air temperature in degrees Celsius.

// @param tempSurface Surface temperature in degrees Celsius.

// @param lai Leaf area index (area of leaves per unit ground area).
// @param vapourResistance Vapor resistance in s/m.

// @return Sensible heat exchange in W/m

double calcSensibleHeatExchange

(
double tempAir,
double tempSurface,
double lai,
double vapourResistance
);

//- Calculates the latent heat flux from evaporation or transpiration.
// @param tempAir Air temperature in degrees Celsius.
// @param tempSurface Surface temperature in degrees Celsius.
// @param relativeHumidity Relative humidity as a percentage.
// @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).
// @param lai Leaf area index (area of leaves per unit ground area).
// @param vapourResistance Vapor resistance in s/m.
// Qreturn Latent heat flux in W/m
double calcLatentHeatFlux
(
double tempAir,
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double tempSurface,
double relativeHumidity,
double ppfd,

double 1lai,

double vapourResistance

Vg

//- Calculates the vapor concentration in the air.
// @param tempAir Air temperature in degrees Celsius.
// @param relativeHumidity Relative humidity as a percentage.
// @return Vapor concentration of air in kg/m
double calcVapourConcentrationAir
(
double tempAir,
double relativeHumidity

D8

//- Calculates the saturated vapor concentration of air at a given temperature.
// @param tempAir Air temperature in degrees Celsius.
// Q@return Saturated vapor concentration of air in kg/m
double calcSaturatedVapourConcentrationAir
(
double tempAir
)3

//- Calculates the saturated vapor pressure of air at a given temperature.
// @param tempAir Air temperature in degrees Celsius.
// @return Saturated vapor pressure in Pascals.
double calcSaturatedVapourPressureAir
(
double tempAir
)5

//- Calculates the vapor concentration at the surface.

// @param tempAir Air temperature in degrees Celsius.

// @param tempSurface Surface temperature in degrees Celsius.

// @param vapourConcentrationAir Vapor concentration of air in kg/m
// Q@return Vapor concentration at the surface in kg/m

double calcVapourConcentrationSurface

(

double tempAir,

double tempSurface,

double vapourConcentrationAir
)8

//- Calculates the psychrometric constant epsilon at a given air temperature.
// @param tempAir Air temperature in degrees Celsius.
// @return Psychrometric constant epsilon (dimensionless)
double calcEpsilon
(
double tempAir
)5

//- Calculates stomatal resistance based on light intensity.
// @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).
// Qreturn Stomatal resistance in s/m.
double calcStomatalResistance
(
double ppfd
)8

//- Solves for surface temperature based on energy balance.

// Root finding algorithm, a bisection method, is used to

// iteratively find the solution.

// @param tempAir Air temperature in degrees Celsius.

// @param ppfd Photosynthetic photon flux density (light intensity in mol /m /s).
// @param relativeHumidity Relative humidity as a percentage.

// @param lai Leaf area index (area of leaves per unit ground area).
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// Q@param vapourResistance Vapor resistance in s/m.

// @param reflectionCoefficient Reflection coefficient of the surface.

// Q@param cultivationAreaCoverage Fraction of surface covered by vegetation or material.
// @return Surface temperature in degrees Celsius

double calcTempSurface

(
double tempAir,
double ppfd,
double relativeHumidity,
double lai,
double vapourResistance,
double reflectionCoefficient,
double cultivationAreaCoverage
)5
—————————————— - ————————— ————— ——————x%\
Function Definition
-—— - -—— ———x/
double convertKelvinToCelsius
(
double tempKev
)
{
return (tempKev - ZERO_DEGREES_IN_KELVIN);
I8
double calcRelativeHumidity
(
double tempAir,
double absolute_humidity
)
{
double teten = (7.5 * tempAir / (tempAir + 237.3));
double p_vs = 610.94 * pow(10, teten);
double p_v = absolute_humidity * ATMOSPHERIC_PRESSURE;
return (p_v / p_vs) * 100;
};
double calcVapourResistance
(
double 1_leaf,
double u,
double lai
)
{
return 350* pow(l_leaf/u,0.5) * pow(lai,-1);
I8
double calcLightingRadiation
(
double ppfd
)
{
if (ppfd == 140) return 28.0;
if (ppfd == 200) return 41.0;
if (ppfd == 300) return 59.0;
if (ppfd == 400) return 79.6;
if (ppfd == 450) return 90.8;
if (ppfd == 600) return 120.0;
throw std::runtime_error ("PPFD value not supported.");
}

double calcNetRadiation

(
double ppfd,
double reflectionCoefficient,
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double cultivationAreaCoverage

)
{
double lightingRadiation = calcLightingRadiation(ppfd) ;
return (1.0 - reflectionCoefficient) * lightingRadiation * cultivationAreaCoverage;
}
double calcSensibleHeatExchange
(
double tempAir,
double tempSurface,
double 1lai,
double vapourResistance
)
{
return lai * HEAT_CAPACITY_OF_AIR * DENSITY_OF_AIR * \
(tempSurface - tempAir) / vapourResistance;
}
double calcLatentHeatFlux
(
double tempAir,
double tempSurface,
double relativeHumidity,
double ppfd,
double lai,
double vapourResistance
)
{

double vapourConcentrationAir = calcVapourConcentrationAir(tempAir, relativeHumidity);

double vapourConcentrationSurface = calcVapourConcentrationSurface(tempAir,
tempSurface, vapourConcentrationAir);

double stomatalResistance = calcStomatalResistance(ppfd) ;

return lai * (LATENT_HEAT_WATER / 1000.0) * ((vapourConcentrationSurface -
vapourConcentrationAir) / (stomatalResistance + vapourResistance));

}
double calcVapourConcentrationAir
(
double tempAir,
double relativeHumidity
)
{
return calcSaturatedVapourConcentrationAir(tempAir) * (relativeHumidity / 100.0);
}
double calcSaturatedVapourConcentrationAir
(
double tempAir
)
{

double saturatedVapourPressure = calcSaturatedVapourPressureAir (tempAir);
return (saturatedVapourPressure / (IDEAL_GAS_CONSTANT * (tempAir +
ZERO_DEGREES_IN_KELVIN))) * MOLAR_MASS_H20_GRAMS;

}
double calcSaturatedVapourPressureAir
(
double tempAir
)
{

double tempAirK = tempAir + ZERO_DEGREES_IN_KELVIN;
return std::exp(77.345 + (0.0057 * tempAirK) - (7235.0 / tempAirK)) / std::pow(
tempAirK, 8.2);
}

double calcVapourConcentrationSurface

(
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double tempAir,
double tempSurface,
double vapourConcentrationAir

~

double epsilon = calcEpsilon(tempAir) ;
return vapourConcentrationAir + ((HEAT_CAPACITY_OF_AIR * DENSITY_OF_AIR) /
LATENT_HEAT_WATER) * epsilon * (tempSurface - tempAir) * 1000.0;

}
double calcEpsilon
(
double tempAir
)
{
double delta = 0.04145 * std::exp(0.06088 * tempAir);
return (delta / PSYCHOMETRIC_CONSTANT) * 1000.0;
}
double calcStomatalResistance
(
double ppfd
)
{
return 60.0 * (1500.0 + ppfd) / (200.0 + ppfd);
}
double calcTempSurface
(
double tempAir,
double ppfd,
double relativeHumidity,
double lai,
double vapourResistance,
double reflectionCoefficient,
double cultivationAreaCoverage
)
{
double netRadiation = calcNetRadiation
(ppfd, reflectionCoefficient, cultivationAreaCoverage) ;
auto calcEnergyBalance = [&] (double tempSurface)
{
double sensibleHeat = calcSensibleHeatExchange
(tempAir, tempSurface, lai, vapourResistance);
double latentHeat = calcLatentHeatFlux
(tempAir, tempSurface, relativeHumidity, ppfd, lai, vapourResistance);
return netRadiation - sensibleHeat - latentHeat;
};
// Root finding using bisection method
double limit = 10.0;
double xa = tempAir - limit;
double xb = tempAir + limit;
double tol = le-6;
while (std::fabs(xb - xa) > tol)
{
double xm = (xa + xb) / 2.0;
if (calcEnergyBalance(xm) * calcEnergyBalance(xa) < 0) {
xb = xm;
} else {
Xa = xm;
}
}
return (xa + xb) / 2.0;
}

#};
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codeCorrect

#{

#};

Pout<< "**xcodedCorrect**" << endl;

codeAddSup

#{

// Provide field values

const volScalarField& AH = mesh().lookupObject<volScalarField>("AH");

const volVectorField& U = mesh().lookupObject<volVectorField>("U");

// Allow modification of T

volScalarField& T = const_cast<volScalarField&>(mesh().lookupObject<volScalarField>("T"));
// Reference to the source term in the equation

scalarField& AHSource = eqn.source();

// Access the porous zone ID

const label porousZoneID = mesh().cellZones().findZoneID("porousZone") ;

// Loop through the cells in mesh
forAll(AH, celllD)
{
// Execute code if cell is in porousZone
if (mesh().cellZones().whichZone(cellID) == porousZonelD)
{
// Get field values for celllD
double tempInKelvin = T[cellID];
double absolute_humidity = AH[celllD];
vector Ucell = UlcellID];
scalar u = mag(Ucell);
// Convert K into C
double tempAir = convertKelvinToCelsius(tempInKelvin);
// Convert AH into RH
double relativeHumidity = calcRelativeHumidity(tempAir, absolute_humidity);
// Calculate vapour/aerodynamic resistance
double vapourResistance = calcVapourResistance(l_leaf, u, lai);

// Calculate surface temperature - root-finding method
double tempSurface = calcTempSurface(tempAir, ppfd, relativeHumidity, lai,
vapourResistance, reflectionCoefficient,

cultivationAreaCoverage) ;

// Calculate sensible heat exchange and latent heat flux

double sensibleHeatExchange = calcSensibleHeatExchange(tempAir, tempSurface, lai,
vapourResistance) ;

double latentHeatFlux = calcLatentHeatFlux(tempAir, tempSurface, relativeHumidity,
ppfd, lai, vapourResistance);

// Calculate the rate of mass flux per volume dervied from transpiration rate (ET)
scalar ET = latentHeatFlux / LATENT_HEAT_WATER / 1_leaf;

// Normalized the mass flux to a flux per time-unit

ET = ET / DENSITY_OF_WATER;

// Add as a source term to the right-hand side of the transport equation
AHSource[cellID] -= ET;

// Calculate the specific heat capacity of moist air
scalar specific_heat_moist_air = HEAT_CAPACITY_OF_AIR * \
(1 - AH[cellID]) + (AH[cellID] * HEAT_CAPACITY_OF_WATER);
// Calculate the mass of moist air
scalar m_air = (ATMOSPHERIC_PRESSURE / (287 * tempInKelvin)) / (1 + 0.61 * AH[

cellID]);
scalar delta_T = sensibleHeatExchange / (m_air * specific_heat_moist_air);
// Calculate temperature increase delta_T
T[cellID] += delta_T;
}
}
#};
codeConstrain
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#{
Pout<< "xxcodeConstrain**" << endl;
#1;

}

[/ kokskok ok sk ok sk ok sk ok ok sk ok s ok ok sk ok s ok ok ok ok sk ok 3 ok ok sk ok ok 3 ok ok s ok k ok k sk ok ok 3 ok ok ok 3k ok sk sk ok sk ok sk sk ok ok skok sk kokskokkkk -/ /

fvSchemes - file

[x————= k= C++ —% *\
| ———— | |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
[ \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* ———x/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object fvSchemes;
}
// % % % % % % % %k % *k % % % % % % %k % % %k %k % % % % %k % *k % %k *x * % * % % *x //
ddtSchemes
{
default steadyState;
}
gradSchemes
{
default Gauss linear;
}
divSchemes
{
default none;
turbulence bounded Gauss upwind;
div(phi,AH) $turbulence;
div(phi,U) $turbulence;
div(phi,T) $turbulence;
div(phi,k) $turbulence;
div(phi,epsilon) $turbulence;
div((nuEff*dev2(T(grad(U))))) Gauss linear;
}
laplacianSchemes
{
default Gauss linear corrected;
}
interpolationSchemes
{
default linear;
}
snGradSchemes
{
default corrected;
}

[/ ok sk ok sk sk ok s ok sk ok ok sk ok s ok 3k sk ok s ok 3k ok ok sk ok 3 ok 3k sk ok 3 ok 3 ok ok s ok ok K sk ok ok 3k ok ok ok 3k ok 3k sk ok sk ok sk ok ok sk sk kokskokkokk -/ /
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fvSolution - file

[x————= -—— *— C++ —% ———x\
[ ——— | |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
[ \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object fvSolution;
}
// % % % % % % % %k % *k % % % % % % %k % % %k * % % %k % %k % *k % *k *x * % * % % *x //
solvers
{
AH
{
solver PBiCG; // Solver type
preconditioner DILU; // Preconditioner
tolerance 1e-8; // Tolerance
relTol 0.01; // Relative tolerance
¥
p_rgh
{
solver PCG;
preconditioner DIC;
tolerance 1e-08;
relTol 0.01;
¥
"(UIT|k|epsilon)"
{
solver PBiCGStab;
preconditioner DILU;
tolerance 1e-05;
relTol 0.1;
¥
}
SIMPLE
{
nNonOrthogonalCorrectors 0;
pRefCell ©3
pRefValue 0;
residualControl
{
p_rgh le-2;
U le-4;
T le-2;
// possibly check turbulence fields
"(k|epsilon|omega)" 1le-3;
¥
}
relaxationFactors
{
fields
{
p_rgh 0.7;
}
equations
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U 0.5;
T 0.5;
"(k|epsilon)" 0.7;

// 3k >k 3k >k 3k 3k 3k 3k ok 3k ok 3k >k >k 3k >k 3k >k 3k >k 3k 5k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k %k >k %k >k %k %k >k >k >k k k //

topoSetDict to add porous media zone

[ k————— -—= ——%— Ct++ —k—————— -—= ———x%\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\komoo- -—-x/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object topoSetDict;
}
J/ % % % % % %k % %k % k % *k %k % %k % *k % %k k *k *k *k %k % %k X *k X *k k * *x * *x *x *x //
actions
(
{
name porousCells;
type cellSet;
action new;
source boxToCell;
box (0.25 0 0.25) (0.75 0.1 0.75);
}
{
name porousZone;
type cellZoneSet;
action new;
source setToCellZone;
set porousCells;
}
)s

A.2.3 constant directory files

g - file for gravitational force

[*————— *x— C++ —% *\
| ===s====== |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\k——mmmm—— - - - - ———x/
FoamFile
{

version 2.0;

format ascii;

class uniformDimensionedVectorField;

object g;
}

[/ % % ok ok k k k kK ok ok ok ok ok ok ok Kk Kk k ok k Kk k ok k k k k ok k x k *k * x x *x //
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dimensions [01-20000];
value (0 -9.81 0);

[/ Fxxkkokokkokkskokokokok ook skokokokok ko skokokokok ok ok okskokokokok sk ok sk sk okokok ok ok sk skokokok ok ok kskskokokok ok Rk kkokokok -/ /

transportProperties - file

/% *— C++ —% *\
e | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: v2112 |
[ \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object transportProperties;
}

J/ k% % % % % % % %k % *k % %k % % % % %k % % *k *k %k % % % % % *k % *k *x * % * % % *x //
transportModel Newtonian;

// Laminar viscosity
nu 1.54e-05;

// Thermal expansion coefficient
beta 3e-03;

// Reference temperature
TRef 292;

// Laminar Prandtl number
Pr 0.7;

// Turbulent Prandtl number
Prt 0.85;

// Water expansion coefficient
betaAH 2.6e-5; // m"2/s for water vapor in air at 25 C

// Reference water vapor mass
AHRef 0.00968;

// Laminar Schmidt number
Sc 0.7;

// Turbulent Schmidt number
Sct 0.8;

// 3k >k 3k >k 5k 3k 5k 3k >k 3k ok 3k >k 3k 3k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k >k >k >k 5k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k %k >k %k >k %k >k %k %k >k >k >k >k k //

turbulenceProperties - file

/* *— C++ —% *\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2112 |
I \\ 7/ A nd | Website: www.openfoam.com |
| \\/ M anipulation |

* */
FoamFile
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2.0;

ascii;

dictionary;
turbulenceProperties;

// % % %k % % % % %k % *k % * % * % * % % %

{
version
format
class
object
}
simulationType
RAS
{
RASModel
turbulence
printCoeffs
}

RAS;

kEpsilon;
on;

on;

% %k k %k k % % %k % k % k kx k kx * x *x //

// 3k >k 3k >k 3k ok 3k 3k 3k 3k ok 3k ok ok ok ok k >k 3k ok sk ok sk 3k ke 3k ok 3k ok sk ok sk 3k ok 3k ok 3k ok ok k >k 3k >k sk ok sk ok sk 3k ok 3k ok 3k ok K ok ok 3k ok 3k ok k ok %k k >k 3k >k 3k ok 5k k k //
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