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Figure 1: Plant Physiology adopted from Lüttge (2008).[1]

MOTIVATION
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AGENDA

1. Theoretical background
• buoyantBoussinesqSimpleFoam

• Porous media model

• Crop transpiration model

2. Existing Implementations

3. Implementation of water vapor dynamics
• buoyantBoussinesqSimpleFoam modification 

• Utilization of fvOptions

4. Hands-on tutorial

5. Conclusion
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THEORETICAL BACKGROUND

1. Fundamentals of buoyantBoussinesqSimpleFoam solver
• Steady-state, incompressible buoyant flows using Boussinesq 

approximation

Boussinesq approximation:
• Assumes small density variations, only significant in the buoyancy 

term

• Governing equation: 𝜌𝜌 = 𝜌𝜌0(1 − 𝛽𝛽𝜌𝜌0 𝑇𝑇 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 )
• Implications: Efficient handling of buoyant flows for low Mach number 

scenarions
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THEORETICAL BACKGROUND

1. Fundamentals of buoyantBoussinesqSimpleFoam solver

• Continuity equation: 
∇ ⋅ 𝐔𝐔 = 0

• Momentum equation:

𝜌𝜌𝐔𝐔 ⋅ ∇𝐔𝐔 = −∇𝑝𝑝 + ∇ ⋅ 𝜇𝜇∇2𝐔𝐔 + g𝛽𝛽(𝑇𝑇 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅)

• Energy equation: Tracks temperature variations.

∇ ⋅ 𝜌𝜌𝐔𝐔𝑇𝑇 − ∇ ⋅ (𝛼𝛼∇𝑇𝑇) = 𝑆𝑆𝑇𝑇
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2. Porous media model
• Models the interaction between fluid and 

porous structures, such as plant canopies

• Darcy-Forchheimer Equation:

• 𝐾𝐾: Permeability

• 𝐶𝐶𝑅𝑅 : Inertial resistance coefficient

THEORETICAL BACKGROUND

Figure 2: Description of the crop: homogenization method.[2]
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THEORETICAL BACKGROUND
2. Porous media model

• Distinguishes between:

• Linear Resistance (Darcy term): Dominant in laminar flow. 𝐶𝐶1 = 1
𝐾𝐾

• Non-linear Resistance (Forchheimer term): Relevant for turbulent or high-

velocity flow 𝐶𝐶2 = 𝐶𝐶𝑓𝑓
𝐾𝐾

• Handled using classes like explicityPorositySource in OpenFOAM

• Helps to represent canopy drag and airflow resistance
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THEORETICAL BACKGROUND
3. Crop transpiration model [3]

• To represent the exchange of water vapor from leaves into the atmosphere

• Energy balance of a crop: 𝑅𝑅𝑛𝑛𝑅𝑅𝑛𝑛 − 𝑄𝑄𝑠𝑠𝑅𝑅𝑛𝑛 − 𝑄𝑄𝑙𝑙𝑙𝑙𝑛𝑛 = 0

Figure 3:  Net radiation, sensible and latent heat balances of leaves.2]

𝑅𝑅𝑛𝑛𝑅𝑅𝑛𝑛 = 1 −𝜌𝜌𝑟𝑟 ⋅ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛𝑙𝑙 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑄𝑄𝑠𝑠𝑅𝑅𝑛𝑛 = 𝐿𝐿𝐶𝐶𝐼𝐼 ⋅ 𝜌𝜌𝑙𝑙 ⋅ 𝑐𝑐𝑝𝑝 ⋅
𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑙𝑙
𝑟𝑟𝑙𝑙

𝑄𝑄𝑙𝑙𝑙𝑙𝑛𝑛 = 𝜆𝜆𝑊𝑊 ⋅ 𝐸𝐸𝑇𝑇
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Figure 4: Resistances to water vapor transfer between leaf and air.[2]

𝑅𝑅𝑛𝑛𝑅𝑅𝑛𝑛 = 1 −𝜌𝜌𝑟𝑟 ⋅ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛𝑙𝑙 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑄𝑄𝑠𝑠𝑅𝑅𝑛𝑛 = 𝐿𝐿𝐶𝐶𝐼𝐼 ⋅ 𝜌𝜌𝑙𝑙 ⋅ 𝑐𝑐𝑝𝑝 ⋅
𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑙𝑙
𝑟𝑟𝑙𝑙

𝑄𝑄𝑙𝑙𝑙𝑙𝑛𝑛 = 𝜆𝜆𝑊𝑊 ⋅ 𝐸𝐸𝑇𝑇

𝐸𝐸𝑇𝑇 = 𝐿𝐿𝐶𝐶𝐼𝐼 ⋅
𝜒𝜒𝑙𝑙 − 𝜒𝜒𝑙𝑙
𝑟𝑟𝑠𝑠 + 𝑟𝑟𝑙𝑙

𝑟𝑟𝑠𝑠 = 60
1500 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
200 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑙𝑙 = 350

𝑙𝑙
𝑢𝑢

0.5

𝐿𝐿𝐶𝐶𝐼𝐼−1

THEORETICAL BACKGROUND
3. Crop transpiration model [3]

• Energy balance of a crop: 𝑅𝑅𝑛𝑛𝑅𝑅𝑛𝑛 − 𝑄𝑄𝑠𝑠𝑅𝑅𝑛𝑛 − 𝑄𝑄𝑙𝑙𝑙𝑙𝑛𝑛 = 0

• 𝑇𝑇𝑙𝑙 is the only unknown variable but the equation can 
be solved iteratively using a root-finding algorithm (bi-
section method)
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EXISTING IMPLEMENTATIONS IN OPENFOAM

1. codedSource class
• Allows users to embed custom equations directly 

in the dictionary files and integrate “on-the-fly” 
source terms.

• No source code modification or pre-compiling

• Can define temperature, momentum, or 
transport source terms

• Inheritance from:

• fv::cellSetOption – allows operation on specific 
cells in the mesh

• codedBase – enables to execute custom code

• Constructor initialization of parent class and reads 
additional defined parameters from dictionary

Figure 5: Class declaration

Figure 6: Constructor definition
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EXISTING IMPLEMENTATIONS IN OPENFOAM

2. explicitPorositySource class
• Also inherited from fv::cellSetOption  

• A pointer is used to encapsulate 
different porosity models and calculate 
resistance contributions by pointing to 
the relevant model (e.g., Dracy-
Forchheimer)

• Execute relevant apply() function inside 
correct() to update system equation 
UEqn
• Templated apply() function computes the 

resistance terms

Figure 7: Source code in DarcyForchheimer.C file

https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1fv_1_1explicitPorositySource.html
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EXISTING IMPLEMENTATIONS IN OPENFOAM

2. explicitPorositySource – Example
• Dictionary configures an fvOption named 

porosity1 which applies explicitPorositySource

• selectionMode specifies the mode of cell 
selection (e.g., all, cellZone, cellSet, or points)

• type specifies the selected porosity model

• d and f define the Darcy and Forchheimer 
coefficient

• coordinateSystem defines the local coordinate 
system of the porous zone

Figure 8: fvOptions file under system directory
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IMPLEMENTATION OF WATER VAPOR DYNAMICS

1. Water vapor implementation
• Continuity and temperature equation remain unchanged

• Momentum equation is modified:

𝜌𝜌𝐔𝐔 ⋅ ∇𝐔𝐔 = −∇𝑝𝑝 + ∇ ⋅ 𝜇𝜇∇2𝐔𝐔 + g 𝛽𝛽𝑇𝑇 𝑇𝑇 − 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽𝐴𝐴𝐴𝐴(𝐶𝐶𝐴𝐴 − 𝐶𝐶𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅)

• Transport equation added for water vapor:

𝐔𝐔 ⋅ ∇𝐶𝐶𝐴𝐴 − ∇ ⋅ 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅∇𝐶𝐶𝐴𝐴 = 𝑆𝑆𝐴𝐴𝐴𝐴

𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝜈𝜈
𝑆𝑆𝑐𝑐

+
𝜈𝜈𝑛𝑛
𝑆𝑆𝑐𝑐𝑆𝑆
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IMPLEMENTATION OF WATER VAPOR
2. buoyantBoussinesqSimpleFoam modification

• Modified files: buoyantBoussinesqSimpleFoam.C, AHEqn.H, createFields.H and 
readTransportProperties.H

• Make/files if solver name will be change (e.g., cropTranFoam)

Figure 9: modified buoyantBoussinesqSimpleFoam.C file

Figure 10: new created AHEqn.H file
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IMPLEMENTATION OF WATER VAPOR
2. buoyantBoussinesqSimpleFoam modification

Figure 11: modified readTransportProperties.H file

Figure 12: modified createFields.H file
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IMPLEMENTATION OF WATER VAPOR
3. Utilization of fvOptions

• type – indicating a user-defined source 
term for a scalar field

• active (optional) – to “turn” source term 
on/off during simulation

• name – defines the name of the source 
term

• selectionMode – as cellZone to apply the 
source term only in the selection zone 
(porousZone)

• fields – is chosen based on the 
affected source term (e.g., AH)

Figure 13: fvOptions file under system directory
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IMPLEMENTATION OF WATER VAPOR
3. Utilization of fvOptions

• codeInclude section (optional) to define 
helper functions and constant

• Follows a python implementation[4] 

based on Graamans et al. (2018) [3] 

described theory

Figure 14: fvOptions file under system directory

https://github.com/linucks/fu_evapotranspiration
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IMPLEMENTATION OF WATER VAPOR
3. Utilization of fvOptions

• Provide fields values (allow T to be 
modified)

• Access the source term in the governing 
equation (eqn)

• Access porous zone IDs

• Loop through all cells in the mesh and 
check if cell belongs to the porous zone

Figure 15: fvOptions file under system directory
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IMPLEMENTATION OF WATER VAPOR
3. Utilization of fvOptions

• Requires several input parameters

• Net radiation is calculated to return 
available energy for heat and mass 
exchange

• Use a lambda function for energy 
balance
• Call helper functions to compute fluxes

• Solve energy balance using bisection 
method
• Set initial temperature bounds

• Iterative refinement of the bounds

• Return surface temperature

Figure 16: fvOptions file under system directory
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TUTORIAL CASE

• Modified version of hotRoom tutorial

• Scale 0.1 & grid resolution increased to 
(40 20 40)

• Adjusted initial conditions in 0.orig 
directory according to new boundary 
conditions

• Updated transportProperties and 
controlDict file

• Created new topoSetDict file for porous 
zone

Figure 17: blockMeshDict in system-directory

Figure 18: U field in 0.orig directory
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TUTORIAL CASE
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CONCLUSION

• Modified version of buoyantBoussinesqSimpleFoam solver

• Explained and used explicitPorositySource and codedSource under the 

fvOptions dictionary 

Next step:

• Advance the fvOptions file to account for radiation models (fvDOM)
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