
Cite as: Camacho, J.: Intrusive Polynomial Chaos for Uncertainty Quantification of Supersensitivity in the

Burgers’ Equation Using OpenFOAM. In Proceedings of CFD with OpenSource Software, 2024, Edited by

Nilsson. H., http://dx.doi.org/10.17196/OS CFD#YEAR 2024

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Intrusive Polynomial Chaos for
Uncertainty Quantification of

Supersensitivity in the Burgers’ Equation
Using OpenFOAM

Developed for OpenFOAM-v2306
Requires: pyFoam, chaosPy

Author:
Javier I. Camacho
Lund University
javier.camacho@brand.lth.se

Peer reviewed by:
Assoc. Prof. Marcus Runefors

Dr. Saeed Salehi
Khoder Alhamwi Alshaar

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like to learn some

details similar to the ones presented in the report and in the accompanying files. The material has
gone through a review process. The role of the reviewer is to go through the tutorial and make
sure that it works, that it is possible to follow, and to some extent correct the writing. The

reviewer has no responsibility for the contents.

January 21, 2025

http://dx.doi.org/10.17196/OS_CFD#YEAR_2024

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• Step-by-step guide on running a modified deterministic (burgersFoam) and stochastic
(gPCBurgersFoam) Burger’s equation solver in OpenFOAM.

The theory of it:

• Explanation of the Burgers equation as a model for Uncertainty Quantification (UQ) in non-
linear PDEs, focusing on the influence of uncertainties in boundary conditions.

• Overview of UQ in CFD, focusing on Intrusive Generalised Polynomial Chaos (gPC).

• The formulation of Generalised Polynomial Chaos Expansion (gPCE) and Galerkin projection.

• Description of Galerkin projection and coefficients.

How it is implemented1:

• burgersFoam: Detailed breakdown of the deterministic base solver structure (scalarTrans-
portFoam) within OpenFOAM used to implement Burger’s equation solver. Overview of the
solver’s fundamental steps, focusing on deterministic aspects before adding stochastic elements.

• gPCBurgersFoam: Explanation of each step on how to implement a solver to apply intrusive
gPC methods, including gPCE integration and the Galerkin projection.

How to modify it:

• Instructions on modifying the solver to incorporate precomputed Galerkin coefficient.

• Addition of pre- and post-processing tools to compute the Galerkin coefficients ,mean, variance,
and uncertainty for analysing effects on the quantity of interest from boundaries condition
under random perturbation.

1Solvers burgersFoam and gPCBurgersFoam from the repository in Ref. [1]

1

Prerequisites

For readers to fully benefit from this report guide, they should be familiar with the following areas:

• Fundamentals of Partial Differential Equations (PDEs) and Fluid Mechanics.

• Basic understanding of Probability and Statistics is required. It is recommended to be famil-
iar with topics such as random variables, probability distributions, and statistical moments.
For further details, refer to the chapters “Basic Concepts of Probability Theory” in [2] and
“Measure and Probability Theory” in [3].

• Hands-on Experience in OpenFOAM: Including navigating its environment, configuring case
files, and locating files, classes, and functions within the source code.

• Basic C++ and Python Programming Skills

2

Contents

1 Introduction 9
1.1 Verification and Validation (V&V) . 9
1.2 Uncertainty Quantification in CFD . 10

1.2.1 What is Uncertainty Quantification? . 10
1.2.2 Uncertainty Propagating Methods (Intrusive vs Non-Intrusive) 10
1.2.3 A Word of Caution: Challenges in UQ Theory 11

1.3 Illustrative Scenario for UQ Potential Application . 11
1.3.1 Simulation Input Parameters . 12
1.3.2 Sequential Modelling Stages . 12
1.3.3 Propagation of Uncertainty . 12
1.3.4 QoI Analysis . 12

1.4 Objective, Scope, and Report Structure . 13
1.4.1 Objectives . 13
1.4.2 Scope . 13
1.4.3 Report Structure . 13

2 Background 14
2.1 The Burgers’ Equation: An Important Tool in CFD 15

2.1.1 Modelling Versatility of Burgers’ Equation . 15
2.1.2 Burgers’ Equation with Perturbed Boundary Conditions 16

2.2 Deterministic Supersensitivity . 16
2.2.1 Exact Solution . 16
2.2.2 Finite Volume Method Formulation . 17

2.3 Stochastic Supersensitivity . 18
2.3.1 Procedure Overview . 18
2.3.2 Generalised Polynomial Chaos . 19
2.3.3 Random Differential Equation . 21
2.3.4 Galerkin Projection . 21
2.3.5 Boundary Conditions Expansion (Pre-Processing Phase) 25
2.3.6 Statistical Moments of the Solution (Post-Processing Phase) 27

2.4 Some Advantages and Limitations of gPC . 27
2.4.1 Advantages . 27
2.4.2 Limitations . 27
2.4.3 Recommendations for the Reader . 28

3 Existing Solvers 29
3.1 Solvers Structure Overview . 29

3.1.1 Directory Structure of Repository Files . 29
3.1.2 Base Solver Structure . 30

3.2 Numerical Implementation of the Deterministic Solver 31
3.2.1 Description of Solver File burgersFoam.C . 31
3.2.2 Description of createFields.H File . 33

3

Contents Contents

3.2.3 Make Folder Files . 34
3.2.4 Modifications for burgersFoam: Critical and Optional 35

3.3 Numerical Implementation of the Stochastic Solver 36
3.3.1 Description of Solver File gPCBurgersFoam.C 36
3.3.2 Description of createFields.H File . 37
3.3.3 Make Folder Files . 39
3.3.4 Modifications for gPCBurgersFoam: Critical and Optional 39

4 Solvers Modifications 40
4.1 Modifications to burgersFoam . 40

4.1.1 Creating myBurgersFoam . 40
4.1.2 Modifying Solver File myBurgersFoam.C . 41
4.1.3 Modifying createFields.H File of myBurgersFoam.C 41

4.2 Modifications to gPCBurgersFoam . 42
4.2.1 Creating myGPCBurgersFoam . 42
4.2.2 Modifying Solver File myGPCBurgersFoam.C 42
4.2.3 Modifying createFields.H File of myGPCBurgersFoam.C 43

4.3 Pre-Processing Tools . 45
4.3.1 Step 1: Generate Distribution and Polynomials 45
4.3.2 Step 3: Calculate Tensor Coefficients . 46

4.4 Post-Processing Tools . 47
4.4.1 Steady-State Burgers’ Equation Exact Solution 47
4.4.2 Calculation of Transition Layer Location (zfoam) 48
4.4.3 Velocity Mean Value, Variance and Uncertainty Calculations 48

5 Verification and Uncertainty Quantification 50
5.1 Case Studies: Structure and Insights . 50
5.2 Deterministic Study . 51

5.2.1 Configuration and Execution of Deterministic Cases 51
5.2.2 Verification Results (myBurgersFoam) . 54

5.3 Stochastic Study . 55
5.3.1 Configuration and Execution of Stochastic Cases 55
5.3.2 Verification Results (myGPCBurgersFoam) . 57
5.3.3 Uncertainty Quantification . 58

6 Conclusions and Future Work 60
6.1 Conclusion . 60
6.2 Future Work . 60

A Solvers Source Code 65
A.1 myBurgersFoam Solver . 65

A.1.1 myBurgersFoam.C . 65
A.1.2 createFields.H . 67
A.1.3 Make Folder . 67

A.2 myGPCBurgersFoam Solver . 68
A.2.1 myGPCBurgersFoam.C . 68
A.2.2 createFields.H . 70
A.2.3 Make Folder . 72

B Case Studies Files 73
B.1 deterministicBurgersBCs Study . 73

B.1.1 Allrun . 73
B.1.2 Allclean . 75
B.1.3 Case 1 detLBBCs Verification . 76

B.2 stochasticBurgersBCs Study . 83

4

Contents Contents

B.2.1 Allrun . 83
B.2.2 Allclean . 85
B.2.3 Case 3 stocBCs UQ . 86

C Processing Tools 97
C.1 Pre-processing Tools . 97

C.1.1 Polynomial Triple Product Coefficients (eijk) 97
C.1.2 Polynomial Triple Product Coefficients (eijk) (Stand-alone Script) 99
C.1.3 Auxiliary File Orthonormality and Galerkin Coefficient Verification 101
C.1.4 Auxiliary File Read UQProperties from OpenFOAM 104
C.1.5 Auxiliary File Read Transport Properties from OpenFOAM 105

C.2 Post-processing Tools . 106
C.2.1 Burgers Equation Steady-state Exact Solution 106
C.2.2 Deterministic Solver Verification . 106
C.2.3 Stochastic Solver Verification . 110
C.2.4 Stochastic Solver Uncertainty Quantification 116

5

Nomenclature

Acronyms
1D One-Dimension
CFD Computational Fluid Dynamics
FVM Finite Volume Method
gPC Generalised Polynomial Chaos
gPCE Generalised Polynomial Chaos Expansion
IPC Intrusive Polynomial Chaos
PDE Partial Differential Equation
PDF Probability Density Function
QoI Quantity of Interest
RDE Random Differential Equation
SDE Stochastic Differential Equation
SiP Simulation Input Parameters
UQ Uncertainty Quantification
V&V Verification and Validation

English symbols
U Uniform Distribution
ũ(x, t;ω) Approximated Stochastic Solution
A Slope at Transition Layer Location
a, b Support of the Probability Density Function Upper and Lower Bound
P Polynomial Order
S Support of the Probability Density Function
u(x, t) Deterministic Solution
u(x, t;ω) Stochastic Solution
z Transition Layer Location
E[·] Expectation Operator

Greek symbols
δ Perturbation Applied to Boundary
δij Kronecker Delta
ϵ The Maximum Value within the Uniform Distribution of Perturbation δ
γi Normalisation Non-Zero Constant Factor
µ Mean or Expected Value
ν Kinematic Viscosity
ω Random Parameter
Φ Orthogonal Polynomial Basis Functions
ϕ Flux
ρ(ξ) Probability Density Function used as a Weight
σ Standard Deviation
ξ Random Variable or Germ

6

Nomenclature Nomenclature

Superscripts
n previous iteration step
n+ 1 current iteration step

Subscripts
i, j, k Polynomial or Coefficient Index, non-negative integers
ex exact

7

”Essentially, all models are wrong,

but some are useful.”

— George E.P. Box [4].

8

Chapter 1

Introduction

This chapter briefly introduces the concepts of Verification and Validation (V&V), which are essential
to ensuring the accuracy and reliability of numerical simulations for their intended applications.
The significance of Uncertainty Quantification (UQ) in Computational Fluid Dynamics (CFD) is
discussed, providing a general overview of the topic.

1.1 Verification and Validation (V&V)

In CFD modelling and simulation, rigorous V&V are important for establishing accuracy, reliability,
and credibility of the simulations. These processes address two fundamental questions: verification
asks, “Are we solving the equations, right?” while validation focuses on, “Are we solving the right
equations?”. Through the V&V process—viewed as a continuous improvement effort—confidence
is established in the model’s ability to computationally reproduce system behaviour that repre-
sents ”reality” and predict it accurately within specified parameters, based on the model’s intended
use. While the interpretation of the validation definition in V&V is still under debate, readers are
encouraged to consult ASME standards (Ref.[5, 6]) for a comprehensive understanding of V&V,
alongside Roache’s perspective in Ref. [7]. As illustrated in Figure 1.1, the V&V framework inte-
grates model development, simulation, and UQ. Verification ensures that the mathematical model is
implemented correctly within the computational framework, while the validation process compares
model simulation outputs against empirical data to determine the extent of agreement.

Figure 1.1: Overview of the CFD Modelling and Simulation Process. (Diagram inspired from Ref. [8, 9])

9

1.2. Uncertainty Quantification in CFD Chapter 1. Introduction

1.2 Uncertainty Quantification in CFD

1.2.1 What is Uncertainty Quantification?

”...uncertainty quantification can be broadly defined as the science of identifying, quantifying, and
reducing uncertainties associated with models, numerical algorithms, experiments, and predicted out-
comes or quantities of interest.” [10]

UQ

ComputingProbability & Statistics

Engineering

Figure 1.2: Main Disciplines Involved in UQ (Diagram inspired from Ref. [11])

To address the inherent uncertainties in simulations, which may arise from input variability
(Aleatory Uncertainties), numerical errors, or limited knowledge of a physical phenomena (Epistemic
Uncertainties). UQ involves several key steps as described by McClarren in Ref. [12]:

1. Identifying quantities of interest (QoIs).

2. Modelling uncertainties in inputs.

3. Narrowing down uncertain inputs.

4. Propagating uncertainties through simulations

5. Assessing their impact on the QoIs.

As illustrated in Figure 1.2, UQ is inherently multidisciplinary, requiring expertise from three key
domains: Engineering, Probability and Statistics, and Computing. The synergy between these disci-
plines ensures that uncertainties are rigorously characterised, efficiently propagated, and effectively
analysed within a robust computational framework.

1.2.2 Uncertainty Propagating Methods (Intrusive vs Non-Intrusive)

Within the context of UQ for CFD simulations, two approaches or techniques for UQ are commonly
discussed in the literature [10, 13]: non-intrusive and intrusive methods. Deterministic simulations at
particular parameter values (realisations) are used by non-intrusive methods (e.g., Monte Carlo and
Sampling-Based Methods) to create approximations of the output function. The deterministic solver
is treated as a “black box,” thus necessitating no code modifications, this constitutes a significant
advantage. While relatively easier to implement, these methods necessitate extensive sampling for
accurate uncertainty quantification.

10

1.3. Illustrative Scenario for UQ Potential Application Chapter 1. Introduction

Conversely, intrusive approaches directly modify the governing equations or the solution algo-
rithm to incorporate uncertainty quantification, for example, through generalised polynomial chaos
expansions (gPC). Although computationally efficient and adaptable to uncertainty propagation,
this method necessitates substantial modifications to the simulation code and a comprehensive un-
derstanding of the underlying numerical and mathematical principles.

1.2.3 A Word of Caution: Challenges in UQ Theory

As noted by Sullivan in 2015 on page 6 of Ref. [3], Uncertainty Quantification (UQ) is a relatively
young discipline compared to mature fields like linear algebra and single-variable complex analysis,
which are founded on established classical theorems by Cauchy, Gauss, and Hamilton. UQ’s develop-
ment is closely tied to practical applications, focusing on solving specific problems with appropriate
methods instead of adhering to a unified theoretical framework. While the UQ framework employs
sophisticated methods, a unifying theoretical structure remains absent, a characteristic that Sullivan
highlighted and which continues to hold relevance today. instead of adhering to

1.3 Illustrative Scenario for UQ Potential Application

A CFD simulation problem and the corresponding UQ, may involve multiple, interconnected, and
complex phenomena. Besides numerical uncertainties (e.g., round-off and discretisation errors), two
main sources contribute to uncertainties in the model. Intrinsic model errors, including simplify-
ing assumptions, approximations of physical processes, and grid-scale limitations (e.g., turbulence
representation), form the primary source of inaccuracies. Assessing model errors often requires
a problem-specific approach and additional expertise in the relevant field. The second source of
uncertainty arises from input parameters, forcing functions, and initial and boundary conditions.

DeflagrationIgnition

1-D Flame Kernel Initialisation

Release

Input
𝑋

Output
𝑌

Flame Front

Turbulence

Burnt Mixture

Unburnt Mixture

Dispersion

Model

ℳ

Data Mapping
Hydrogen Distribution
Initial Velocity
Temperature Distribution

Location
Ignition Energy
Ignition Duration
Laminar Flame Models

Data MappingData Mapping
Velocity
Location

Ignition Source

𝑋 𝑌ℳ1 𝑋 𝑌ℳ2 𝑋 𝑌ℳ3 𝑋 𝑌ℳ4

QoI
Quantity of Interest

SiP
Simulation Input Parameters

Jet Release
Pseudo-source model: "Notional-Nozzle
Model"
Integral Plume Model
Two-Layer Model
Source Box Accident Model (SBAM)

Figure 1.3: Illustration example of the complexity in simulating deflagration phenomena.
(Release phenomena simulation diagram inspired from Ref. [14], dispersion diagram inspired from Ref. [15]).

11

1.3. Illustrative Scenario for UQ Potential Application Chapter 1. Introduction

As an example, Figure 1.3 illustrates the challenges inherent in deflagrations 1 simulations within
partially confined spaces. This complex nature emphasises the significance of UQ in CFD. The
simulation input parameters (SiP) are subject to uncertainties at each stage of the process, which
propagate through the system, impacting the final QoI. To enhance credibility and accuracy during
the validation process of simulations, robust uncertainty quantification methods are indispensable.

1.3.1 Simulation Input Parameters

Sources of uncertainty include, but are not limited to, simulation input parameters (SiP) such as
boundary conditions, initial conditions, and material/fluid properties (e.g., enclosure, fluid proper-
ties). The quantification and systematic propagation of uncertainties through the CFD model enable
an assessment of their influence on the resulting outputs.

1.3.2 Sequential Modelling Stages

The simulation process involves multiple interconnected stages, each contributing to the overall
uncertainty of the system. These stages represent the physical processes involved in hydrogen com-
bustion, from its release to its deflagration, and highlight the uncertainties associated with each
step. By quantifying and propagating these uncertainties, the sequential modelling framework en-
sures a comprehensive understanding of the system’s behaviour under variable conditions. Below is
a breakdown example of the key stages in the simulation process:

– Release (M1): Models, such as the “Notional-Nozzle Model”[14] are employed to simulate the
release of hydrogen. Data uncertainties related to velocity and release location are quantified
and passed to subsequent stages.

– Dispersion (M2): For example, hydrogen dispersion models are employed to predict the gas
distribution. Uncertainties in the concentration and velocity fields can affect downstream
outcomes.

– Ignition (M3): Combustion initiation is represented by models that account for uncertainties
in ignition energy, location, and laminar flame speed.

– Deflagration (M4): The combustion phase is simulated, incorporating uncertainties related to
flame propagation, turbulence, and the interaction between burned and unburnt gases.

Note

It should be noted that the diagram in Figure 1.3 is subject to further revision and currently omits
the finer details of individual steps to maintain the clarity of the overall workflow.

1.3.3 Propagation of Uncertainty

At every stage, uncertainties arising from the outputs of the preceding simulation model, such as
the hydrogen concentration derived from dispersion, are incorporated as inputs for the following
stage. The cumulative propagation of uncertainty significantly amplifies the overall uncertainty,
highlighting the importance of a systematic procedure for uncertainty quantification for effective
management and quantification of these effects.

1.3.4 QoI Analysis

The QoI encompasses simulation outputs such as peak overpressure, flame speed, and location. Inte-
grating UQ into CFD is crucial for evaluating its influence on simulation results, especially in critical
applications such as hydrogen storage and transportation, where safety is paramount. UQ facilitates
more informed decision-making within design optimisation and risk assessment, particularly when
confronting the intricacies of multi-scale scenarios.

1Deflagration: combustion wave propagating at subsonic velocity.[16]

12

1.4. Objective, Scope, and Report Structure Chapter 1. Introduction

1.4 Objective, Scope, and Report Structure

1.4.1 Objectives

This report aims to provide a comprehensive tutorial for integrating UQ methods into CFD solvers
in OpenFOAM, focusing on the one-dimensional viscous Burgers’ equation. By bridging theoretical
concepts of gPC with practical implementation in OpenFOAM, the report intends to:

– Equip users with a foundational understanding of UQ and intrusive gPC.

– Describe a systematic verification of deterministic and stochastic solvers using exact solutions.

– Offer pre- and post-processing tools to streamline the implementation and analysis of gPC
frameworks.

– Support future improvements and expansions of the implemented solvers in OpenFOAM by
enhancing adaptability and scalability.

1.4.2 Scope

The scope of this report includes:

– Specific Problem: A special case of the 1D viscous Burgers’ equation, exhibiting Supersen-
sitivity, is examined, building upon Xiu and Karniadakis’s work on “Supersensitivity due to
Uncertain Boundary Conditions” (Ref. [17]).

– Modifications Implementation and Verification: Detailed guidance on modifying and verify-
ing two different solvers, burgersFoam and gPCBurgersFoam, for deterministic and stochastic
studies.

– Tool Development: Introduction of pre- and post-processing tools designed to facilitate efficient
execution and analysis of intrusive gPC solvers in OpenFOAM.

– Uncertainty Quantification: Application of UQ methodologies to study the supersensitivity
phenomenon in the viscous Burgers’ equation, with an emphasis on gPC for random input
boundary condition scenario.

– Practical Relevance: Providing a structured approach that supports broader adoption of UQ
methods by users, with potential extensions to more complex CFD scenarios.

1.4.3 Report Structure

This report is divided into six chapters, including this introduction. The structure is as follows:

– Chapter 2: Background on Intrusive Generalised Polynomial Chaos

– Chapter 3: Existing Solvers: Structure and Implementation Details

– Chapter 4: Solvers Modifications: Implementation Details and Supporting Tools

– Chapter 5: Verification and Uncertainty Quantification

– Chapter 6: Conclusions and Future Work

13

Chapter 2

Background on Intrusive
Generalised Polynomial Chaos

This chapter outlines a comprehensive framework for the formulation of the viscous Burgers’ equa-
tion, subjected to perturbed boundary conditions. It aims to establish a background in both the
viscous Burgers’ equation and the Generalised Polynomial Chaos (gPC) method, with the objective
of enhancing the existing OpenFOAM solvers implementation, which will be described in subsequent
chapters. The work of Xiu and Karniadakis, titled ”Supersensitivity due to Uncertain Boundary
Conditions”(Ref. [17]), serves as a primary reference for gPC method formulations and results veri-
fication. Moreover, auxiliary references, such as the book titled ”Numerical Methods for Stochastic
Computations: A Spectral Method Approach” [2], along with other documented sources, are incor-
porated as relevant information. Two types of perturbations (δ(0, ϵ)) are considered: deterministic
and random.

For deterministic perturbations, the boundary conditions are modified by introducing predefined
perturbations or deviations from their nominal values. Two formulations are described: an exact
steady-state solution, which serves as a benchmark for verification, and the conservative form of the
Burgers’ equation for a Finite Volume Method (FVM) numerical implementation in OpenFOAM. In
the case of random perturbations, the boundary conditions are represented using a random variable
component and the intrusive generalised polynomial chaos method, as introduced by Xiu and Kar-
niadakis in Ref. [18]. This approach expands a stochastic process, such as random perturbations in
boundary conditions, using orthogonal polynomial functionals from the Askey scheme (see Ref. [19]).
The probability density function of the random variable (e.g., uniform or normal) is incorporated
through the selection of an appropriate polynomial basis.

As demonstrated by Xiu and Karniadakis in Ref. [17], both deterministic and stochastic pertur-
bations exhibit the phenomenon of supersensitivity in the context of the viscous Burgers’ equation
(with x ∈ [−1, 1]). Even small perturbations (e.g., 10% of the nominal value) can cause substan-
tial shifts in the transition layer’s location—the spatial position where the velocity is zero—in the
steady-state solution. In this report, the transition layer’s location is used as a key reference metric
for comparing implementation results against those reported in Ref. [17], with a series of verification
and uncertainty quantification case studies outlined in Chapter 5.

14

2.1. The Burgers’ Equation: An Important Tool in CFD Chapter 2. Background

2.1 The Burgers’ Equation: An Important Tool in CFD

The Burgers’ equation is a nonlinear partial differential equation, analogous to the Navier-Stokes
equation, omitting the pressure term. This equation serves as a prototype model in fluid dynamics,
facilitating the study of fundamental phenomena, including shock formation and diffusion, and
provides a valuable framework for verifying novel numerical implementations. A comprehensive
analysis of the Burgers’ equation is provided in Ref. [20]. The 1D viscous Burgers’ equation in its
non-conservative form can be expressed as,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ R, t ≥ 0, (2.1)

where

∂u
∂t : Temporal rate of change of the velocity u(x, t) term, which provide information on how
the velocity changes with respect to time at a fixed spatial location.

u∂u
∂x : Nonlinear convective term, which accounts for the advection (i.e., transport) of velocity

due to the flow itself,, which provide information on how the velocity changes spatially (∂u∂x)
and is scaled by the velocity u.

ν ∂2u
∂x2 : Viscous diffusion of velocity term, where ν > 0 is the kinematic viscosity. It smooths

out velocity gradients over time and introduces parabolic behaviour to the equation.

2.1.1 Modelling Versatility of Burgers’ Equation

The versatility of the Burgers’ equation arises from its dual nature, exhibiting wave-like (hyperbolic)
and diffusion-like (parabolic) characteristics, depending on the comparative influence of convective
(inertial) and viscous forces. The hyperbolic regime, dominated by convective forces, involves wave
propagation and sharp fronts, such as shocks in the inviscid Burgers’ equation. Although it can
model nonlinear acoustic waves and shocks, the model lacks the complexity to model contact dis-
continuities. The parabolic regime is driven by viscous forces, leading to smooth, diffusion-like
solutions. For more details about the Burgers’ equation see Ref. [20, 21] and Section 4.8 in Ref. [22].
Figure 2.1 illustrates the impact of viscosity variations, which may be modelled as an uncertainty
parameter, which is characterised by its range and probability distribution (e.g., uniform, Gaussian).

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

−1.0

−0.5

0.0

0.5

1.0

u
(x

)

SteadyState Exact Solution for ν = 0.05

SteadyState Exact Solution for ν = 0.025

SteadyState Exact Solution for ν = 0.0005

Figure 2.1: Viscosity Effect on Steady-State Burgers’ Equation (with x ∈ [−1, 1])

The ability to transition between these regimes makes the Burgers’ equation a versatile bench-
mark problem in CFD for evaluating numerical methods. The versatility of the equation within the
framework of UQ allows for the demonstration of how uncertainties in input parameters, such as
initial/boundary conditions or viscosity, propagate through systems characterised by mixed dynam-
ics. Through implementing techniques such as intrusive polynomial chaos, the Burgers’ equation
enables an analysis of the output of quantities of interest in simulations under uncertain conditions.

15

2.2. Deterministic Supersensitivity Chapter 2. Background

2.1.2 Burgers’ Equation with Perturbed Boundary Conditions

This report details an analysis of a particular case of the one-dimensional viscous Burgers’ equation
(Eq. (2.2)) expressed in its non-conservative form, with the spatial domain restricted to x ∈ [−1, 1],
where small perturbations (δ) are introduced at the left boundary.

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [−1, 1], t ≥ 0. (2.2)

This case is relevant for both understanding and quantifying the effects of uncertain boundary
conditions, and allows for direct comparison with the results of Xiu and Karniadakis’s work [17].
The boundary and initial conditions are given by

u(−1, t) = 1 + δ, u(1, t) = −1, t ≥ 0, (2.3)

u(x, 0) = 0, x ∈ [−1, 1], (2.4)

where the Dirichlet boundary conditions (Eq. (2.3)) defines the velocity at the boundaries of the
domain x = −1 and x = 1. Depending on the implementation case, the parameter δ introduces a
small perturbation to the left boundary condition (x = −1), which can be deterministic 0 < δ ≪ O(1)
or random where δ ∈ (0, ϵ) is a random variable in (0, ϵ) with ϵ ≪ O(1) and a predefined continuous
probability distribution function (PDF) f(δ).

Transition Layer Location (z) and Supersensitivity Phenomenon

A transitional layer region of rapid variation is present in the solution of the viscous Burgers’ equation
(Eq. (2.2)), this region extends over a distance proportional to the viscosity ν, as ν tends to zero.
The position of the transition layer, z, identified as the point where the solution profile u(z) is zero,
exhibits temporal variability, and its final steady-state position demonstrates significant sensitivity
to the imposed boundary conditions. Lorentz [23] first reported on the phenomenon, subsequently
termed supersensitivity in deterministic asymptotic analysis.

2.2 Deterministic Supersensitivity Formulation

A solution formulation is presented in this section for the viscous Burgers’ equation (Eq. (2.2)) under
a small, deterministic perturbation (δ > 0) of the upstream boundary condition. Two numerical
methods are employed to address the deterministic supersensitivity problem. Initially, the exact
steady-state solution to the viscous Burgers’ equation is provided, which is defined implicitly as
a non-linear equation. The iterative solution algorithm, incorporating chosen parameters and an
initial estimate, is described in the verification chapter, which includes a Python implementation.
The viscous Burgers’ equation is subsequently recast in conservative form from its non-conservative
counterpart, thus providing a suitable framework for the FVM implementation within OpenFOAM.

2.2.1 Exact Solution

The exact steady-state solution of the 1D viscous Burgers’ equation (Eq. (2.2)), as described in
Ref. [17], is expressed as follows,

u(x) = −A tanh

[
A

2ν
(x− zex)

]
, (2.5)

where zex is the location of the transition layer where u(zex) = 0, and −A = ∂u
∂x

∣∣∣
x=zex

, represents

the slope at this location. By applying the boundary conditions Eq. (2.3) to Eq. (2.5),

A tanh

[
A

2ν
(1 + zex)

]
= 1 + δ, A tanh

[
A

2ν
(1− zex)

]
= 1, (2.6)

16

2.2. Deterministic Supersensitivity Chapter 2. Background

then two unknowns, A and zex, are required to be solved for. First, by elimination of zex and
obtaining a single equation for A,

(1 + δ +A2) tanh

(
A

ν

)
= (2 + δ)A. (2.7)

By first solving Eq. (2.7) for the slope A, the value of the location of the transition layer zex can
subsequently be determined using one of the equations in Eq. (2.6). Iterative methods are needed to
solve these non-linear equations, the details about the python implementation are provided in the
Section 4.4.1. It is important to note that the convergence of the solution depends strongly on the
initial guess, a consequence of the supersensitivity of the original problem defined in Eq. (2.2) and
Eq. (2.3).

2.2.2 Finite Volume Method Formulation

Formulating the viscous Burgers’ equation is a necessary preliminary step before engaging with the
complexities of the intrusive polynomial chaos method, facilitating subsequent modifications within
the OpenFOAM solver’s implementation. This step establishes a fundamental comprehension of the
equation’s derivation. This clarifies the differences between deterministic and stochastic (intrusive
polynomial chaos) formulations, thereby improving both the theoretical comprehension and practical
implementation of the OpenFOAM method.

The numerical discretisation method implemented in OpenFOAM is the FVM1, which is widely
used for its conservation properties in solving fluid dynamics and multi-physics problems. FVM
ensures the conservation of physical quantities across control volumes. As described in Thermal
Systems and Models, Section 8.2.1.6 (page 420) in Ref. [25], the loss experienced by one cell results in
a corresponding gain for another cell. Through a conservative scheme, the amplification of numerical
errors affecting the conservation of physical quantities is prevented. However, this approach cannot
mitigate (or dampen) the inherent instability present in the physical system.

To ensure the total conserved quantity remains consistent across the computational domain,
conservative formulations are the preferred approach in numerical methods for scalar conservation
laws. The implementation of the Eq. (2.2) in OpenFOAM, required the conservative form version
of the viscous Burgers’ equation (see Ref. [20, 26, 27, 28]) that can be expressed as

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= ν

∂2u

∂x2
. (2.8)

The different equation forms still remain analogous (Eq. (2.2) and Eq. (2.8)), with the difference
in the nonlinear term where the relationship between the Burgers’ equation forms can be seen by
applying the product rule to the nonlinear advection term u∂u

∂x as shown in Eq. (2.9) and Eq. (2.10).

∂(u.v)

∂x
= v

∂u

∂x
+ u

∂v

∂x
, u = v, → ∂(u.u)

∂x
= 2u

∂u

∂x
(2.9)

u
∂u

∂x
=

1

2

∂(u.u)

∂x
=

1

2
∇ · (u.u) (2.10)

1For more details see OpenFOAM guide/Finite volume method (OpenFOAM) in Ref. [24].

17

2.3. Stochastic Supersensitivity Chapter 2. Background

2.3 Stochastic Supersensitivity Formulation

This section addresses the supersensitivity problem, as defined in equation Eq. (2.2), under condi-
tions of stochastic perturbation. The formulation of the generalised polynomial chaos (gPC) expan-
sion is presented, along with a detailed outline of the steps required to derive the corresponding
deterministic system of equations.

2.3.1 Procedure Overview

A high-level schematic of the workflow is presented in Figure 2.2, providing an overview of how
the implemented formulation will be utilised. This schematic precedes the detailed mathematical
formulation of each step, aiming to give readers a clear and concise outline of the process. The
probability density functions (PDFs) in Figure 2.2 are for illustration only and do not imply that
inputs must always follow a normal distribution. In practice, generalised polynomial chaos (gPC)
is capable of handling diverse probability distributions, including but not limited to normal and
uniform distributions, depending on the estimated uncertainty characteristics of the problem. This
distinguishes gPC from standard polynomial chaos (PC), which is dedicated to normal inputs, using
Hermite-chaos polynomial functionals as basis functions. Regarding the solution, gPC provides the
mean (µ) and standard deviation (σ) of the output fields. While the figure shows example PDFs,
determining the actual solution PDF requires further analysis, which is out of the scope of this
report.

3-Post-Processing

2-Simulations

Numerical
Parameters Discretisation

Solution
Post-Treatment

Visualisation

Post-Treatment
Uncertainty

Quantification

1-Pre-Processing (Case Specification)

Geometry
Modelling

Boundary
ConditionsInitial Conditions

Physics
Constants
Definition

Model Constants
Definition

Forcing Source
Terms

Deterministic
Data

Probabilistic Model of
Uncertain Data
(Perturbation)

Uncertainty Parametrisation

Random Variables
Definition

Figure 2.2: Illustration of the different steps of uncertainty propagation using intrusive gPC method.

The procedure commences with a pre-processing phase, in which deterministic data and proba-
bilistic models of uncertain inputs, including boundary conditions (see Figure 2.2, top plot) based
on a known probability of the boundary condition uncertain data and random variables (parametri-
sation), are established. In the parametrisation step, a probability distribution function (PDF) is
assigned to each random variable used to model these uncertainties (see Figure 2.2, middle plot).
In the simulation phase, numerical parameters and discretisation schemes are utilised to propagate
uncertainties through the coupled deterministic equations, which are derived (see Section 2.3.2) and

18

2.3. Stochastic Supersensitivity Chapter 2. Background

implemented in the solver using the intrusive gPC method (see Section 4.2). The post-processing
stage involves quantifying the moments (mean and standard deviation) of the quantities of interest
(QoI), as illustrated in Figure 2.2 (bottom plot), enabling uncertainty quantification.

Note

Although the intrusive gPC method propagates uncertainties and provides statistical information
(e.g., mean or expected value, variance, skewness) about the solution, it is not classified as a statisti-
cal method. Non-intrusive methods, such as Monte Carlo and stochastic collocation, are categorised
as statistical methods because they generate statistical information from multiple simulation runs,
unlike their intrusive counterparts.

2.3.2 Generalised Polynomial Chaos

The generalised polynomial chaos (gPC) is a spectral representation or expansion of a second-order
(i.e., finite variance) stochastic processes by polynomial functionals Φ(ξ(ω)) of random variables
ξ(ω) (where ξ is often called the germ [3, 13, 29]). It should be noted that, given that random
variables are functions of the random parameter ω, the polynomial basis (also known as random
trial basis functions) are, in fact, functionals of these functions.

The key advantage of the expansion lies in its ability to decompose a stochastic process into
deterministic spatial-temporal functions, where each function is multiplied by a set of random basis
polynomials that are entirely independent of both spatial and temporal variables. The solution
of the Burgers’ equation u(x, t) is expanded to a random variable u(x, t;ω), considering that any
second-order random field u(x, t;ω) can be expressed in this form (see page 14 on [30]),

u(x, t;ω) =

∞∑
i=0

ûi(x, t)Φi(ξ(ω)), (2.11)

where

ξ(ω) represents multi-dimensional random variables dependent on the random parameter ω.

Φi(ξ(ω)) are a set of orthogonal polynomial basis functions defined over the probability space
of ξ.

ûi(x, t) are the deterministic coefficients or modes associated with the basis functions, where
the index i is a non-negative integer.

Polynomial Truncation

Theoretically, the expansion exists within an infinite-dimensional stochastic space of ξ. The dimen-
sionality of this space in practical applications is finite and defined by the number of random input
parameters. Given that the boundary condition introduces δ as the only random input in Eq. (2.2),
the infinite expansion in Eq. (2.11) is one-dimensional and it is truncated to a finite-dimensional
form,

u(x, t;ω) ≈ ũ(x, t;ω) =

P∑
i=0

ûi(x, t)Φi(ξ(ω)), (2.12)

where P is the highest degree (polynomial order) of the polynomial basis used.

Polynomial Basis Orthogonality Property

The generalised polynomial chaos basis functions are the orthogonal polynomial functions satisfying,

⟨Φi(ξ),Φj(ξ)⟩ = E[Φi(ξ)Φj(ξ)] =

∫
S

Φi(ξ)Φj(ξ)ρ(ξ)dξ = γiδij ,with i, j ∈ N, (2.13)

γi = E[Φi(ξ)
2] = ⟨Φ2

i ⟩ =
∫
S

Φ2
i (ξ)ρ(ξ)dξ, (2.14)

19

2.3. Stochastic Supersensitivity Chapter 2. Background

where

ρ(ξ): weighting function2, which is the PDF of the random variable ξ.

δij : Kronecker delta.

Φi(ξ(ω)) and Φj(ξ(ω)): are orthogonal polynomial basis functions defined over the probability
space of ξ.

⟨·, ·⟩: denotes the inner product (often referred to as the ensemble average), another notation
commonly seen in literature is the expectation operator E[·], as utilised in Section 6.5 Nonlinear
Problems page 76 in Ref. [2].)

γi: normalisation non-zero constant factor, which will be 1 if the basis functions are normalised,
and the basis polynomial functions will be orthonormal. As suggested in Ref. [17], this factor
admits an analytical calculation, alternatively, a numerical computation, implemented in this
report using chaoPy and normalised (using normed functionality) to maintain orthonormality
of the polynomial basis, is employed.

S: support of the PDF ρ(ξ) that depends on the selected polynomial basis.

The basis functions Φ(ξ) constitute a set of orthogonal polynomials defined on ξ ∈ R, with respect
to the weight function ρ(ξ), representing the probability density function of the random variable ξ.
A relationship is established between the distribution of the random variable ξ and the orthogonal
polynomial family that constitutes its gPC basis. The stochastic solution formulation will incorpo-
rate this property in the following steps. For notational simplicity and to facilitate the derivation,
the explicit dependence of Φ on ξ(ω) is temporarily suppressed, while its functional dependence is
implicitly preserved.

Polynomial Basis Selection

In practical applications, the selection of the basis type (Φ) and order (M) for gPCE implementation
in uncertainty quantification is typically guided by engineering judgement supported by available
data and the known properties of the random variable. This process leads to the choice of the
orthogonal polynomial basis Φ, which depends on the known or assumed probability distribution of ξ.
Table 2.1 summarised the relationship between common random variables probability distributions
and their corresponding polynomial basis.

Table 2.1: Correspondence of the polynomial chaos type (Wiener–Askey) and continuous random
variable distributions (adapted from [18]).

Random Variables (ξ) Orthogonal Polynomials Basis (Φ(ξ)) Support(S)
Gaussian Hermite-chaos (−∞,∞)
Gamma Laguerre-chaos [0,∞)
Beta Jacobi-chaos [a, b]

Uniform Legendre-chaos [a, b]

2Remark As has been noted by T.J. Sullivan (see page 136 in Ref. [3]), in many references, particularly those

written by physicists, the weight function e−x2
dx is commonly used for Hermite polynomials, whereas probabilists’

often prefer (2π)−1/2e−x2/2 dx or e−x2/2 dx. While straightforward, shifting between these normalisations requires
careful consideration to identify the precise normalisation used, especially when employing third-party software. In
Chaospy, this distinction can be specified by using the physicist=False option when defining the Hermite polynomials,
ensuring the probabilists’ normalisation is applied.

20

2.3. Stochastic Supersensitivity Chapter 2. Background

2.3.3 Random Differential Equation

In a random differential equation (RDE), randomness is introduced via the parameters, initial/bound-
ary conditions, or external forcing functions. These random effects vary in a regular manner, such
as being continuous over time and space. The random nature of the boundary conditions in this
work propagates through the system, resulting in solutions exhibiting stochastic behaviour. The
probabilistic nature of the solution is modelled and quantified through the application of intrusive
gPC. By employing this approach, the uncertainty present in the solution space is captured without
affecting the deterministic characteristics of the governing equations for fixed realisations of the
random inputs. This yields a scenario in which the governing equation is classified as a RDE and,
by substitution of Eq. (2.11) into Eq. (2.2), the original governing equation is redefined as,

∂u(x, t;ω)

∂t
+ u(x, t;ω)

∂u(x, t;ω)

∂x
= ν

∂2u(x, t;ω)

∂x2
, x ∈ [−1, 1], t ≥ 0. (2.15)

Note

In contrast, a stochastic differential equation (SDE) is a type of differential equation in which un-
certainty plays a distinct role. The system is influenced by irregular processes, such as Wiener
processes or Brownian motion, which introduce randomness directly into the dynamics of the equa-
tion. For further details, the reader is referred to Section 4.7, ”Random versus Stochastic Differential
Equations”, on page 115 in Ref. [10] , as this topic is beyond the scope of this report.

Expanded Random Burgers’ Equation

By substituting u for ũ from the truncated gPCE from Eq. (2.12) into the RDE Eq. (2.15) gives

∂

∂t

P∑
i=0

ûi(x, t)Φi(ξ)+

(
P∑
i=0

ûi(x, t)Φi(ξ)

)
∂

∂x

 P∑
j=0

ûj(x, t)Φj(ξ)

 = ν
∂2

∂x2

P∑
i=0

ûi(x, t)Φi(ξ). (2.16)

The summation can be moved outside the differentiation because of the linearity of differentiation
property, (α · f + β · g)′ = α · f ′ + β · g′. Additionally, the basis functions Φi(ξ) are independent
of the differentiation variables (e.g., t or x) and can be treated as constants during differentiation.
Therefore, differentiation is applicable solely to terms involving the differentiation variables. The
order of summation and differentiation may be reversed without altering the result; the reorganised
final expression is,

P∑
i=0

∂ûi(x, t)

∂t
Φi(ξ) +

P∑
i=0

P∑
j=0

ûi(x, t)
∂ûj(x, t)

∂x
Φi(ξ)Φj(ξ) = ν

P∑
i=0

∂2ûi(x, t)

∂x2
Φi(ξ). (2.17)

2.3.4 Galerkin Projection

The stochastic Galerkin projection3 involves multiplying Eq. (2.17) by the same basis function Φk(ξ),
and then integrating the result over the probability support S. (i.e., taking the expectation (inner
product) with respect to the basis random variable ξ). The following provides a compact expression
for the projection,

E[L[ũ(x, t, ω)]Φk(ξ(ω))] = ⟨L[ũ(x, t, ω)],Φk(ξ(ω))⟩ = 0, k = 0, . . . , P, (2.18)

where E[·] represents the expectation operator (equivalent notation to the ensemble average ⟨·, ·⟩)
and L[·] the differential operator in the governing equation. By making use of the orthogonality
property of the basis polynomials the final formulation result in a system of coupled deterministic

3The Galerkin projection method is a specific case of the Method of Weighted Residuals (MWR), where the
weighting functions are chosen to be the same as the basis (trial) functions.

21

2.3. Stochastic Supersensitivity Chapter 2. Background

equations, where the unknowns are the expansion coefficients or modes ûk(x, t). The Figure 2.3 visu-
ally represents the Galerkin projection process for a two-term expansion, inspired by Figure 17.1 on
page 621 in Ref. [29]. The random variable u lies in the full function space, while ũ (the approximate
solution) is its projected onto the subspace spanned by the polynomial chaos basis functions Φ0,Φ1.
The expansion coefficients u0, u1 represent the weight of each polynomial basis function. The key
property shown is that the residual ϵ (the difference between u and ũ) is orthogonal to the space
covered by the basis functions, ensuring the best approximation in the L2-norm sense. For more
details, see Chapter 17 ”Intrusive Polynomial Chaos Methods for Forward Uncertainty Propagation”
in Ref. [29].

Figure 2.3: Illustration of the Galerkin projection

For notational simplicity and to facilitate the derivation, the explicit dependence of Φ on ξ, and
û on (x, t) is temporarily suppressed, while its functional dependence is implicitly preserved. The
Galerkin projection of the expanded Burgers’ equation (Eq. (2.17)) can be expressed as follows,
where the process will involve formulating each term of the Burgers’ equation individually in a series
of intermediate steps.

E

 P∑
i=0

∂ûi

∂t
ΦiΦk +

P∑
i=0

P∑
j=0

ûi
∂ûj

∂x
ΦiΦjΦk

 = E

[
ν

P∑
i=0

∂2ûi

∂x2
ΦiΦk

]
. (2.19)

Term-by-Term Breakdown

Time Derivative Term

E

[
P∑
i=0

∂ûi

∂t
ΦiΦk

]
(2.20)

The linearity of the expectation E[·], allow us to move the operator inside the summations since only
the basis functions Φ depend on ξ, which leads to

P∑
i=0

∂ûi

∂t
E [ΦiΦk] , and by orthogonality property E[ΦiΦk] = γkδki, (2.21)

γk = E[Φ2
k] = ⟨Φ2

k⟩ =
∫
S

Φ2
k(ξ)ρ(ξ)dξ, (2.22)

where γk is the normalisation non-zero constant factor (equal 1 for orthonormal basis functions) ,
then the time derivative term reduces to,

γk
∂ûk

∂t
. (2.23)

22

2.3. Stochastic Supersensitivity Chapter 2. Background

Nonlinear Advection Term

E

 P∑
i=0

P∑
j=0

ûi
∂ûj

∂x
ΦiΦjΦk

 (2.24)

Similarly, as in the previous term, we can apply the linearity of expectation to move the E[·] operator
inside the summations, thus obtaining

P∑
i=0

P∑
j=0

ûi
∂ûj

∂x
E [ΦiΦjΦk] , (2.25)

and the triple product coefficients can be expressed as eijk,

eijk = E[ΦiΦjΦk] =

∫
S

Φi(ξ)Φj(ξ)Φk(ξ)ρ(ξ) dξ, (2.26)

where,

ρ(ξ): weight function, which is the probability density function (PDF) of the random variable

S: support of the PDF ρ(ξ) that depends on the selected polynomial basis.

The triple product coefficients eijk within these equations remain invariant with respect to û and
ξ, as they are constant. Pre-calculation of these values is feasible at the start of the simulation,
given a priori knowledge of the basis functions and the corresponding PDF (see Section 2.3.4). This
calculation can be conducted analytically, as suggested in Ref. [17], or numerically as has been
implemented for this report using a Gaussian quadrature. Thus, the nonlinear advection term
becomes,

P∑
i=0

P∑
j=0

ûi
∂ûj

∂x
eijk. (2.27)

Diffusion Term

E

[
ν

P∑
i=0

∂2ûi

∂x2
ΦiΦk

]
. (2.28)

Moving the expectation E[·] operator inside the summations, as explained before, the products yield

ν

P∑
i=0

∂2ûi

∂x2
E [ΦiΦk] , and by orthogonality property E[ΦiΦk] = γkδki, (2.29)

γk = ⟨Φ2
k⟩ =

∫
S

Φ2
k(ξ)ρ(ξ)dξ. (2.30)

Thus, the diffusion term simplifies to

νγk
∂2ûk

∂x2
. (2.31)

Deterministic System of Coupled Equations

Combining all terms, the deterministic system of equations for uk(x, t) is defined as,

γk
∂ûk

∂t
+

P∑
i=0

P∑
j=0

ûi
∂ûj

∂x
eijk = νγk

∂2ûk

∂x2
. (2.32)

23

2.3. Stochastic Supersensitivity Chapter 2. Background

Following division by γk,

∂ûk

∂t
+

P∑
i=0

P∑
j=0

ûi
∂ûj

∂x

eijk
γk

= ν
∂2ûk

∂x2
, (2.33)

∂ûk

∂t
+

P∑
i=0

P∑
j=0

ûi
∂ûj

∂x
Mijk = ν

∂2ûk

∂x2
, (2.34)

where Mijk is the Galerkin Tensor. Subsequent rearrangement, the final system is expressed in
conservative form, analogous to Eq. (2.8),

∂ûk

∂t
+

1

2

P∑
i=0

P∑
j=0

∂(ûiûj)

∂x
Mijk = ν

∂2ûk

∂x2
, ∀k ∈ [0, P], (2.35)

Galerkin Tensor (Pre-Processing Phase)

Mijk =
eijk
γk

=
E [ΦiΦjΦk]

E [Φ2
k]

=
⟨ΦiΦjΦk⟩

⟨Φ2
k⟩

=

∫
S
Φi(ξ)Φj(ξ)Φk(ξ)ρ(ξ) dξ∫

S
Φ2

k(ξ)ρ(ξ)dξ
(2.36)

The term Mijk in Eq. (2.36) represents the multiplication or Galerkin tensor. Throughout the
derivation of the intrusive generalized Polynomial Chaos (gPC) and Galerkin projection formula-
tions, different notations have been introduced for various components of this tensor. These multiple
representations aim to bridge the gap between different literature sources. By recognising these no-
tations and their equivalence, it is expected that the readers will be better equipped to navigate
the diverse literature on UQ, gPC and the Galerkin projection method when applying these formu-
lations in theoretical and computational settings. The derivation procedure outlined in this report
encountered significant challenges in identifying and reconciling diverse notations. In this report, the
tensor Mijk simplifies to the triple product coefficients eijk due to the normalisation factor γk = 1.

Remarks

As described in Section ”Galerkin Multiplication” (page 253 in Ref. [3]) some relevant aspects of the
multiplication tensor are summarised below.

Symmetry: The Galerkin tensor Mijk is symmetric in its first two indices (i, j), i.e., Mijk =
Mjik. However, no general symmetry exists involving the third index (k).

Sparsity: Since {Φi}Pi=0 form an orthogonal basis, many entries of Mijk are zero, making it
a sparse tensor. This sparsity can be exploited for computational efficiency.

Pre-computation: The computation of Mijk depends entirely on the polynomial basis {Φi}
and the probability density function ρ(ξ). Once computed, the tensor can be stored and reused
for various applications, significantly reducing computational cost in repeated evaluations.

Numerical Evaluation: WhileMijk can be computed analytically in certain cases, numerical
methods such as Gaussian quadrature are often used for practical applications.

The deterministic 1D viscous Burgers’ equation (Eq. (2.2)) has been transformed into a system
of coupled deterministic equations (Eq. (2.35)), which is an expansion representation of the original
single PDE into a RDE, through application of generalised polynomial chaos expansion (gPCE)
and Galerkin projection. This system in Eq. (2.35), comprising a set of P + 1 coupled equations
analogous to the Burgers’ equation, propagates uncertainty from the boundary conditions through
the nonlinear coupling term. A semi-implicit approach will be employed to solve the system, using
FVM in OpenFOAM, treating nonlinear coupling terms explicitly (for unsolved coefficients at the
current iteration step) and diffusion terms implicitly.

24

2.3. Stochastic Supersensitivity Chapter 2. Background

However, conventional OpenFOAM solvers are unsuitable for such coupled systems, necessitating
the development or adaptation of solvers to handle uncertainty propagation. This exemplifies an
intrusive UQ method, where the solution process differs from that of deterministic equations. Further
details on Galerkin methods for uncertainty quantification are provided in Chapter 4 of “Spectral
Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics” [13].

2.3.5 Boundary Conditions Expansion (Pre-Processing Phase)

This phase involves the implementation of probabilistic models to account for the uncertainty asso-
ciated with input parameters, namely the boundary conditions, using established probability distri-
butions for the uncertain data and random variables (parametrisation). The gPC framework from
Eq. (2.12) is also utilised to expand the boundary conditions. The polynomial chaos expansion of
the boundary conditions yields the values of the expansion coefficients (or modes) ûk, such as û0(−1)
and û1(−1), which serve as inputs at the boundary. These coefficients represent the deterministic
values needed by the solver to impose the boundary condition in each mode of the polynomial chaos
expansion. A Step-by-Step derivation of the boundary conditions is described below.

Left Boundary Condition

For this report, similarly to Xiu and Karniadakis’ work in Ref. [17], the small imposed perturbation
(δ) is assumed to be a δ ∈ (0, ϵ) ∼ U(0, ϵ) uniform distribution between 0 and ϵ. Therefore, Legendre-
chaos polynomials are used, which are a special case of the Jacobi-chaos polynomials for uniform
random variables.

Define the Boundary Condition with Random Perturbation

The left-hand boundary condition (ũ(−1)) is initially represented by a nominal value (e.g., 1) to
which a perturbation (δ) is added.

ũ(−1) = 1 + δ, (2.37)

Expand the Boundary Condition Using Polynomial Chaos Expansion

The left boundary condition ũ(−1) is expanded in the same form of Eq. (2.12)

ũ(−1) =

P∑
k=0

ûk(−1)Φk(ξ), ∀k ∈ [0, P], (2.38)

where

Φk(ξ) are the orthogonal polynomials in terms of the random variable ξ, chosen based on its
probability distribution. Since δ is uniformly distributed, ξ is a standardized random variable
uniformly distributed in the interval [−1, 1], and the appropriate orthogonal polynomials are
Legendre polynomials.

ûk(−1) are the deterministic coefficients (also called modes) of the expansion at the left bound-
ary.

Legendre Polynomial Expressions

For a uniformly distributed random variable ξ in the interval [−1, 1], the first three Legendre poly-
nomials are

Φ0(ξ) = 1, Φ1(ξ) = ξ, Φ2(ξ) =
1

2
(3ξ2 − 1), . . . (2.39)

A more comprehensive list of Legendre polynomials can be found in Table 9.6 of Ref. [12].

25

2.3. Stochastic Supersensitivity Chapter 2. Background

Apply the First-Order Polynomial Chaos Expansion

In a first-order expansion (P = 1), the approximation is truncated to the first two terms, as only the
mean and standard deviation are required to define the coefficients at the left boundary condition.

ũ(−1) = û0(−1)Φ0(ξ) + û1(−1)Φ1(ξ). (2.40)

By substituting the first two Legendre polynomials Φ0(ξ) = 1, and Φ1(ξ) = ξ from Eq. (2.39) into
Eq. (2.40) we obtain

ũ(−1) = û0(−1) + û1(−1)ξ. (2.41)

Compute Expansion Deterministic Coefficients/Modes

The expansion coefficients û0(−1) and û1(−1) are obtained by expressing the perturbation δ in
terms of its mean (µδ) and standard deviation (σδ). Given a uniformly distributed perturbation δ
with support (0, ϵ), the values of µδ and σδ are derived directly from their definitions 4.

µδ =
a+ b

2
=

0 + ϵ

2
=

ϵ

2
, (2.42)

σδ =
b− a

2
√
3

=
ϵ− 0

2
√
3

=
ϵ

2
√
3
. (2.43)

The expansion coefficients can be expressed as follows

û0(−1) = 1 + µδ = 1 +
ϵ

2
, (2.44)

û1(−1) = σδ =
ϵ

2
√
3
. (2.45)

Final Expression of the Deterministic Coefficients/Modes

Since this is a first-order expansion, the coefficients for higher-order terms (k ≥ 2) are defined as zero.
All coefficient terms to be used as left boundary condition inputs in Chapter 5 for the stochastic
study are summarised as follows.

ûk(−1) =


1 + µδ = 1 + ϵ

2 , if k = 0,

σδ = ϵ
2
√
3
, if k = 1,

0, if k ≥ 2.

(2.46)

Right Boundary Condition

The boundary condition at x = 1 simplifies to ũ(1) = −1 since no random perturbation is imposed.
Consequently, the zeroth-order term is û0(1) = −1, and all higher-order terms vanish, i.e., ûk(1) = 0
for k ≥ 1. The polynomial expansion for the right boundary condition can thus be expressed as

ûk(1) =

{
−1, if k = 0,

0, if k ≥ 1.
(2.47)

4By definition from page 333-334 (A.11 Uniform Distribution A.11.3 Properties) in Ref. [12].

26

2.4. Some Advantages and Limitations of gPC Chapter 2. Background

2.3.6 Statistical Moments of the Solution (Post-Processing Phase)

The intrusive gPC method facilitates the propagation of uncertainties and yields statistical moments
of the solution, including the mean and variance. Given the calculated coefficients or modes ûk by
using an implemented solver in OpenFOAM (or other software) and independently of the selected
basis functions Φk(ξ) type (see Table 2.1), the statistical moments of the solution can be estimated.
The mean (µ) and variance (σ2) of the solution ũ(x, t) are determined by the following formulas:

Expected or Mean Value (µ)

The mean of the solution is determined by the first coefficient û0, due to the orthonormality condition
⟨Φ0,Φk⟩ = δ0k, the mean value can be obtained by

E[ũ(x, t, ω)] = ⟨ũ(x, t, ω)⟩ =
P∑

k=0

ûk(x, t)⟨Φ0,Φk⟩ = û0(x, t). (2.48)

Variance (σ2)

The variance of the solution is obtained as the weighted sum of the squared coefficients for k ≥ 1,
leveraging the orthonormality of the basis functions,

V[ũ(x, t, ω)] = σ2 = E
[
(ũ(x, t, ω)− E[ũ(x, t, ω)])2

]
=

P∑
k=1

û2
k(x, t)⟨Φ2

k⟩ =
P∑

k=1

û2
k(x, t), (2.49)

where ⟨Φ2
k⟩ = 1 due to normalisation. These moments summarise the key statistical properties of the

uncertain solution and rely on the orthonormality property of the basis functions. Further details
on moments formulation are provided in Ref. [13, 30, 3], on page 39, 14 and 241 respectively.

2.4 Some Advantages and Limitations of gPC

2.4.1 Advantages

Mean and Variance Representation: In generalised Polynomial Chaos (gPC) expansions, the
coefficient corresponding to the zeroth-order term represents the mean (expected value) of the QoI,
while the variance is obtained as the sum of the squared higher-order coefficients. This property
of gPC expansions is particularly significant for Uncertainty Quantification (UQ), as it allows the
standard deviation (σ) of the QoI to be directly quantified. While gPC provides access to these
quantities, the method is not inherently statistical, unlike the Monte Carlo method. Therefore,
any additional interpretation involving confidence intervals would require further assumptions and
analyses beyond the scope of this report.

Efficient Computation: Following offline pre-computation of the Galerkin tensor (Mijk) (see
Section 4.3 and Appendix C.1.2), the resulting tensor may be stored for subsequent reuse across di-
verse applications, thereby substantially mitigating computational expense in repetitive evaluations.

2.4.2 Limitations

Curse of Dimensionality: The exponential growth in computational cost as the number of
random variables increases is a key drawback of gPC. This ”curse of dimensionality” limits its
applicability to high-dimensional problems unless mitigation strategies like sparse quadrature or
low-rank approximations are employed.

27

2.4. Some Advantages and Limitations of gPC Chapter 2. Background

High-Order Truncation Error: Significant limitations inherent in High-Order (i.e., over two
random variables) Galerkin multiplication (i.e., calculation of Galerkin Tensor Coefficients) arise
from its non-associative property, a direct result of the compounded truncation errors. Further
details on Chapter ”Stochastic Galerkin Methods” page 255 in Ref. [3].

Polynomial-Order Sensitivity Analysis: Unlike deterministic simulations, where mesh, time
step, and domain sensitivity analyses are standard practices, gPC introduces an additional layer of
sensitivity analysis related to the polynomial order. This analysis involves systematically increasing
the polynomial order while monitoring the convergence of the solution and key statistical quantities
of interest (e.g., mean and variance).

2.4.3 Recommendations for the Reader

While this chapter aims to provide a solid background, it cannot comprehensively address the vast
and interdisciplinary fields of probability, engineering, and computational science. Additionally, the
methodology presented is specifically tailored to the application under consideration. Readers are
therefore encouraged to supplement this material with the cited references to gain a deeper un-
derstanding of the relevant theoretical frameworks, including their advantages and limitations for
particular applications. The described method, while suitable for the present application, does not
address more complex cases, such as High-Order(multivariate) (e.g., more than two random vari-
ables and dealing with variables’ correlation) Uncertainty Quantification (UQ), which may require
expanded methodologies and special limitations considerations.

28

Chapter 3

Existing Solvers: Structure and
Implementation Details

This chapter presents a description of how deterministic and stochastic solvers are implemented in
OpenFOAM. The deterministic solver serves as a baseline for solving the viscous Burgers’ equation,
while the stochastic solver incorporates the generalised Polynomial Chaos (gPC) method for uncer-
tainty quantification. The solvers burgersFoam and gPCBurgersFoam have been made available by
Robert Manson-Sawko through a public repository on GitHub in Ref. [1]. Additionally, key aspects
of the solvers’ structure, numerical schemes, and configuration files will be described to familiarise
the reader with their implementation. Within this chapter, solver modifications are categorised and
presented as either critical or optional modifications. Critical modifications are those necessary for
the solver’s proper operation, while optional modifications aim to enhance performance, readabil-
ity (e.g.,user experience), and flexibility. Lastly, the listed modifications will be implemented in
Chapter 4.

3.1 Solvers Structure Overview

3.1.1 Directory Structure of Repository Files

Downloaded from GitHub in Ref.[1]1, the solver package is structured according to the standard
OpenFOAM directory hierarchy, ensuring user-friendly accessibility. The main directories are listed
below:

run directory: Contains example case files and configuration setups necessary for executing the
solvers. These cases provide a starting point for running both deterministic and stochastic simula-
tions.

applications directory: This directory includes the implementation of the two solvers:

– burgersFoam: The deterministic solver for the standard Burgers’ equation.

– gPCBurgersFoam: The stochastic solver implementing the generalised Polynomial Chaos (gPC)
method for uncertainty quantification.

Each solver is located in its respective subdirectory and follows the OpenFOAM convention, includ-
ing:

– Make directory: Contains the compilation instructions, including the files and options

files required for compile the solvers.

1git clone https://github.com/robertsawko/pdesoft2016-burgers-uq.git

29

3.1. Solvers Structure Overview Chapter 3. Existing Solvers

This structure ensures a modular and organised layout, allowing users to easily navigate between
solvers, modify case files, and compile the solvers as needed.

Remark

At the time of writing this report, the implementation of the deterministic and stochastic solvers,
as well as their associated cases, exhibited certain deficiencies. Specifically, the implemented equa-
tions and Galerkin coefficients in the gPCBurgersFoam solver required corrections due to improper
initialisation. These modifications will be discussed in detail in the subsequent chapter. Neverthe-
less, despite these issues, the solvers, in particular the stochastic solver gPCBurgersFoam serve as
an excellent foundation and a valuable source of inspiration for understanding the implementation
process of intrusive polynomial chaos methods in OpenFOAM. These solvers provide a solid starting
point for further development and refinement.

3.1.2 Base Solver Structure

The solvers burgersFoam and gPCBurgersFoam are implemented following the general structure of
the basic scalarTransportFoam solver in OpenFOAM. While the equations implemented in each
solver differ, the overall structure remains consistent and adheres to the OpenFOAM conventions.
The key components of the solver structure are as follows:

Header Files

In the solvers .C files (burgersFoam.C and gPCBurgersFoam.C) the standard OpenFOAM classes
are included, such as fvCFD.H for the finite volume framework (includes the class declarations) and
simpleControl.H for preparing to read the SIMPLE sub-dictionary.

Setup and Initialisation

– setRootCaseLists.H and createTime.H Set the correct path and initialise the simulation
time settings.

– createMesh.H create/loads the computational mesh into memory.

– createFields.H defines and initialises the necessary fields, such as the solution variable (e.g.,
T for scalarTransportFoam or U/Uhat for our solvers) and associated parameters.

Main Solution Loop

The solvers execute the following steps iteratively until convergence:

– Time Loop.
Controlled by the simpleControl class to iterate over time steps.

– Non-Orthogonal Correction Loop.
Ensures robustness for non-orthogonal meshes by performing multiple corrections.

– Matrix Assembly and Solution.

– Constructs the finite volume matrix system for the governing equation using fvm:: and
fvc:: operators (e.g., time derivative, convection, and diffusion terms).

– Solves the assembled matrix system using OpenFOAM’s linear solver libraries.

– Field Update andWrite: Updates the fields, applies any constraints or sources term (fvOptions),
and writes the results at specified intervals.

30

3.2. Numerical Implementation of the Deterministic Solver Chapter 3. Existing Solvers

Finalisation

After the solution converges or the maximum time is reached, the solver outputs a summary
and terminates. The structure ensures modularity, flexibility, and ease of extension. The solvers
burgersFoam and gPCBurgersFoam follow this template but implement different governing equa-
tions tailored for deterministic and stochastic simulations, respectively. A detailed explanation of
the equations and their implementation will be provided in subsequent sections.

3.2 Numerical Implementation of the Deterministic Solver

The implementation in OpenFOAM uses Eq. (2.8) in a semi-implicit finite volume framework,
where implicit terms are discretized and included in the matrix system using fvm:: (’finite vol-
ume method’), while explicit terms are evaluated using fvc:: (’finite volume calculus’) based on
previously computed field values. The convective term, represented by the divergence operator
fvm::div(phi, U) in Listing 3.1 (line 64), is treated semi-implicitly. During the solve step, the
flux ϕ is calculated explicitly using the velocity field from the previous time step or iteration and
is treated as a known coefficient. The velocity field un+1 is then solved implicitly, after which the
flux ϕ is updated to ensure consistency with the newly computed velocity field for subsequent cal-
culations. As only the steady-state solution is of interest, a first-order time discretisation scheme
(the Euler method) will be utilised in the different example cases. Discretisation schemes for the
remaining terms are detailed in the verification cases presented in Chapter 5. The discrete version
of the viscous Burgers’ equation (Eq. (2.8)) can be expressed as follows,

un+1 − un

∆t
+

1

2
∇ ·
(
unun+1

)
= ν∇2un+1, (3.1)

where

un+1: Velocity at the current iteration step (n+ 1).

un: Velocity at the previous iteration step (n).

It is important to note that a high-resolution mesh is required for accurately resolving the transition
layer’s position, given its sensitivity to minor boundary condition fluctuations. Enhancement of the
solution is achievable via a non-uniform redistribution of elements within the computational domain.

Note (Implicit vs Explicit)

In the matrix form, [A][Ψ] = [b], discretisation is considered implicit when terms contribute to
[A], treating Ψ as the unknown. However, in OpenFOAM’s fvm namespace, implicit algorithms
often include explicit contributions. In contrast, explicit discretisation calculates coefficients in [b]
only, using the current values of the fields. For more details on discretisation schemes and matrix
construction, see “Notes on Computational Fluid Dynamics: General Principles” [31].

3.2.1 Description of Solver File burgersFoam.C

The main computational process in the burgersFoam solver occurs within the simple loop (List-
ing 3.1), where the governing equation is implemented and solved iteratively. The main source code
for the solver is described below.

31

3.2. Numerical Implementation of the Deterministic Solver Chapter 3. Existing Solvers

Listing 3.1: burgersFoam.C(simple.loop)

55 while (simple.loop())

56 {

57 Info<< "Time = " << runTime.timeName() << nl << endl;

58

59 while (simple.correctNonOrthogonal())

60 {

61 solve

62 (

63 fvm::ddt(U)

64 + fvm::div(phi, U)

65 - fvm::laplacian(nu, U)

66 ==

67 fvOptions(U)

68);

69 }

70 phi = linearInterpolate(U) & mesh.Sf();

71 runTime.write();

72 }

Implementation in the Solver

The simple loop is structured as follows:

Time Loop (simple.loop())
The solver iterates over time steps until the final simulation time is reached.

Correct Non-Orthogonal Iterations (simple.correctNonOrthogonal())
Ensures accuracy in handling non-orthogonal meshes.

Equation Solving
The numerical implementation of the Burgers’ equation is listed in code 3.1 in line 40–44 where
the different terms and its role in the solver matrix construction can be describes as follow

fvm::ddt(U): Time derivative discretised implicitly.

fvm::div(phi, U): Divergence of the convective flux, where ϕ is the flux field.

fvm::laplacian(nu, U): Diffusion term discretised implicitly.

fvOptions(U) Source terms (optional)

Flux Update
After solving for U , the flux ϕ is explicitly updated using

phi = linearInterpolate(U) & mesh.Sf();

where

linearInterpolate(U) interpolates the velocity field U from cell centres to the cell faces.

mesh.Sf() represents the face area vector, which combines the face’s magnitude (area)
and direction (normal vector).

The & operator performs the scalar (dot) product between the interpolated velocity vector
and the face area vector.

This step ensures consistency between the updated velocity field and the flux field, which is
essential for accurate flux calculations in the finite volume method.

Writing Results
Simulation data is written to the output files at each time step using runTime.write();.

Remark

The implemented equation in Listing 3.1 line 64 is missing a factor of 1
2 for a conservative form

required in OpenFOAM (see Eq. (2.8)). This will be listed as a critical modification.

32

3.2. Numerical Implementation of the Deterministic Solver Chapter 3. Existing Solvers

3.2.2 Description of createFields.H File

The createFields.H file is responsible for initialising the key fields and input parameters required
for the solver. It includes the following lines of code:

Reading the Velocity Field U

The velocity field U is read from the case files using the following lines of code (Listing 3.2):

Listing 3.2: burgersFoam(createFields.H (U Field))

1 Info<< "Reading field U\n" << endl;

2

3 volVectorField U

4 (

5 IOobject

6 (

7 "U",

8 runTime.timeName(),

9 mesh,

10 IOobject::MUST_READ,

11 IOobject::AUTO_WRITE

12),

13 mesh

14);

The instruction IOobject::MUST READ associated with the IOobject class ensures that the velocity
field U is read from the input files, and AUTO WRITE allows the field to be written to output during
the simulation.

Reading the Transport Properties (Kinematic Viscosity ν) and Creating Flux Field

A dictionary named transportProperties is read, which contains the physical parameters required
for the solver (Listing 3.3).

Listing 3.3: burgersFoam(createFields.H (Transport Properties & Flux))

17 Info<< "Reading transportProperties\n" << endl;

18

19 IOdictionary transportProperties

20 (

21 IOobject

22 (

23 "transportProperties",

24 runTime.constant(),

25 mesh,

26 IOobject::MUST_READ_IF_MODIFIED,

27 IOobject::NO_WRITE

28)

29);

30

31

32 Info<< "Reading viscosity nu\n" << endl;

33

34 dimensionedScalar nu

35 (

36 transportProperties.lookup("nu")

37);

38

39 #include "createPhi.H"

The MUST READ IF MODIFIED flag ensures that updates to the transport properties are recog-
nised during the simulation.

33

3.2. Numerical Implementation of the Deterministic Solver Chapter 3. Existing Solvers

Reading the Kinematic Viscosity ν
The kinematic viscosity ν is extracted from the transportProperties dictionary(Listing 3.3
line 34-37). This value is essential for defining the diffusion term in the governing equation.

Creating the Flux Field(#include "createPhi.H")
The flux field ϕ is initialised using the createPhi.H file (Listing 3.3 line 39), which computes
the flux based on the velocity field U and the mesh surface area vector mesh.Sf().

Compilation Warning Message

During the compilation of the solver, the following warning is generated in the createFields.H file:

createFields.H:37:5: warning: ‘Foam::dimensioned<Type>

::dimensioned(Foam::Istream&) [with Type = double]’ is deprecated:

Since 2018-11 [-Wdeprecated-declarations] 37 |);

This warning indicates that the use of the dimensioned<Type> constructor from the Foam::Istream
interface has been deprecated since November 2018. Although the solver will still function correctly,
this issue highlights the need for updating deprecated constructs to ensure compatibility with future
versions of OpenFOAM. This warning will be added to the list of Critical Modifications to address
and update the solver implementation.

3.2.3 Make Folder Files

The Make folder in the solver directory contains the files and options files.

files

The files file lists the source files to be compiled and specifies the name of the executable generated
(see Listing 3.4):

Listing 3.4: files

1 burgersFoam.C

2

3 EXE = $(FOAM_APPBIN)/burgersFoam

The executable burgersFoam is placed in the default OpenFOAM application binary directory
($(FOAM APPBIN)), which is generally not considered a best practice.

options

The options file includes the required include directories (EXE INC) and the linked libraries (EXE LIBS)
necessary for compilation:

Listing 3.5: options

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/fvOptions/lnInclude \

4 -I$(LIB_SRC)/meshTools/lnInclude \

5 -I$(LIB_SRC)/sampling/lnInclude
6

7 EXE_LIBS = \

8 -lfiniteVolume \

9 -lfvOptions \

10 -lmeshTools \

11 -lsampling

34

3.2. Numerical Implementation of the Deterministic Solver Chapter 3. Existing Solvers

EXE INC: Specifies the include directories for necessary OpenFOAM libraries.

EXE LIBS: Links the required OpenFOAM libraries for finite volume operations, mesh tools,
options handling, and sampling.

3.2.4 Modifications for burgersFoam: Critical and Optional

Critical Modifications

All necessary modifications will be incorporated in the subsequent chapter.

1. The implemented equation in Listing 3.1, line 64 , is analogous to the conservative form of the
Burgers’ equation (Eq. (2.8)), differing only by the omission of the factor 1

2 .

2. Using phi = fvc::flux(U) instead of phi = linearInterpolate(U) & mesh.Sf(), is gen-
erally more beneficial because it is a built-in OpenFOAM function that ensures consistent flux
calculation with the selected numerical schemes. It reduces redundancy in the code, avoids
potential errors, and aligns with OpenFOAM discretisation framework.

3. Address ”warning message” during solver compilation.

4. Changing to $(FOAM USER APPBIN): By modifying the EXE line in the files file,
EXE = $(FOAM USER APPBIN)/burgersFoam, the executable will be placed in the user-specific
binary directory ($(FOAM USER APPBIN)), instead of the global application directory. This ap-
proach has the following advantages:

Customisation: It keeps user-defined solvers separate from OpenFOAM’s default solvers,
avoiding any potential conflicts.

Ease of Development: Facilitates testing and debugging of custom solvers without
affecting existing OpenFOAM installations.

This modification is a good practice recommendation when developing a new solver based on
an existing one.

Optional Modifications

1. By introducing fvVectorMatrix UEqn instead of directly solving the equation with solve,
the equation is first encapsulated into a finite volume matrix system. This approach allows
users to construct the coefficients and source terms into a linear system of equations that
can be inspected, manipulated, and controlled before solving. It provides flexibility to apply
operations such as relaxation, constraints, or additional corrections (e.g., UEqn.relax() or
fvOptions.constrain(UEqn)) prior to calling the solver, ensuring greater control over the
solution process.

2. Adding runTime.printExecutionTime(Info) after runTime.write(), it does not impact the
solver’s numerical results, accuracy, or stability. It is purely for monitoring, profiling, and user
feedback, which can be beneficial during development or testing but is not strictly necessary
for the solver to function.

35

3.3. Numerical Implementation of the Stochastic Solver Chapter 3. Existing Solvers

3.3 Numerical Implementation of the Stochastic Solver

3.3.1 Description of Solver File gPCBurgersFoam.C

The main computational process for the stochastic solver is implemented within the simple.loop()
structure illustrated in Listing 3.6, where the main components are in lines 66-83. The solver
implements the gPC method described in the previous chapter to decompose the velocity field U
into its mode coefficients Ûk, which will correspond to an equation per mode, from the coupled
system of equations (see Eq. (2.35)).

Listing 3.6: gPCBurgersFoam.C (simple.loop)

60 while (simple.loop())
61 {
62 Info<< "Time = " << runTime.timeName() << nl << endl;
63

64 while (simple.correctNonOrthogonal())
65 {
66 forAll(Uhat, k)
67 {
68 fvVectorMatrix UhatEqn(
69 fvm::ddt(Uhat[k])
70 -
71 fvm::laplacian(nu, Uhat[k])
72);
73

74 forAll(Uhat, i){
75 forAll(Uhat, j){
76 if(j == k)
77 UhatEqn += e[i][j][k] * fvm::div(phihat[i], Uhat[j]);
78 else
79 UhatEqn += e[i][j][k] * fvc::div(phihat[i], Uhat[j]);
80 }
81 }
82 solve(UhatEqn);
83 phihat[k] = linearInterpolate(Uhat[k]) & mesh.Sf();
84 }
85

86 }
87 runTime.write();
88 }

Remark

As with the deterministic solver, the implemented equation in Listing 3.6 (line 77 and 79) a factor 1
2

is missing for a conservative form required in OpenFOAM (see Eq. (2.35)). This will be categorised
as a critical modification.
The system of equations is iteratively solved as follows:

Time Loop (simple.loop())
The solver iterates over time steps until the final simulation time is reached.

Correct Non-Orthogonal Iterations (simple.correctNonOrthogonal())
Ensures accuracy in handling non-orthogonal meshes.

Modes Loop
Iterates over each mode Ûk, where the following operations are performed:

– Solve the time derivative and diffusion terms implicitly for the current mode:

UhatEqn = fvm::ddt(Uhat[k]) - fvm::laplacian(nu, Uhat[k]).

– Add contributions from the nonlinear convection term, introducing coupling between the
modes:

UhatEqn += e[i][j][k] ·

{
fvm::div(phihat[i], Uhat[j]) if j = k (implicit)

fvc::div(phihat[i], Uhat[j]) if j ̸= k (explicit)
.

36

3.3. Numerical Implementation of the Stochastic Solver Chapter 3. Existing Solvers

For example, when solving mode Û0 is treated implicitly, while the contributions from
other modes Ûj (where j ̸= k) are treated explicitly using their values from the previous
iteration step, as these modes have not yet been updated. The term e[i][j][k] corre-
spond to the pre-computed triple product coefficients (eijk) (see Eq. (2.26)) which are
the same as the Galerkin Tensor Mijk (see Eq. (2.36)) since γk = 1 due to normalisa-
tion. In summary, gPCBurgersFoam is solving one mode equation at the time, using the
corresponding constant coefficients.

– Solve the system for Ûk and update the flux ϕ̂k:

phihat[k] = linearInterpolate(Uhat[k]) & mesh.Sf().

Output
Results are written at each time step using runTime.write().

Key Features

The stochastic solver solves a coupled system of equations resulting from the gPC expansion.

Mode coupling arises through the nonlinear convection term, handled partially implicitly and
explicitly.

Fluxes are updated after solving the mode coefficients to ensure consistency with the velocity
field.

3.3.2 Description of createFields.H File

The createFields.H file for the stochastic solver gPCBurgersFoam is responsible for reading user-
defined input properties and initializing the required fields, including the mode coefficients and
fluxes. Key elements of this file are described as follows:

UQProperties Dictionary

A dictionary named UQProperties (Listing 3.7) is defined to read the required parameters for
uncertainty quantification, in this case, the polynomial order. The polynomial order for the gPC
expansion is extracted using order = readLabel(UQProperties.lookup("order")).

Listing 3.7: gPCBurgersFoam (createFields.H (UQProperties))

1 IOdictionary UQProperties
2 (
3 IOobject
4 (
5 "UQProperties",
6 runTime.constant(),
7 mesh,
8 IOobject::MUST_READ,
9 IOobject::NO_WRITE

10)
11);
12

13 label order
14 (
15 readLabel(UQProperties.lookup("order")) //need readLabel!
16);

Galerkin Tensor Coefficients (e[3][3][3])

The array e[3][3][3] in Listing 3.8 (line 18) defines the precomputed triple product coefficients
(i.e., the Galerkin tensor for the normalised case) that multiply the nonlinear convective term.
These precomputed coefficients, which are hardcoded in the solver implementation, correspond to a
normally distributed random variable and are associated with a second-order Hermite polynomial
basis. However, apart from the hardcoded nature of the coefficients, the current polynomial type is

37

3.3. Numerical Implementation of the Stochastic Solver Chapter 3. Existing Solvers

not suitable for verification purposes. Therefore, it will be necessary to implement a version based
on Legendre-chaos polynomials.

Listing 3.8: gPCBurgersFoam (createFields.H (Tensor Coefficients))

18 scalar e[3][3][3];
19 e[0][0][0] = 1.0;
20 e[1][1][0] = 1.0;
21 e[2][2][0] = 1.0;
22

23 e[0][1][1] = 1.0;
24 e[1][0][1] = 1.0;
25 e[1][2][1] = Foam::sqrt(2.0);
26 e[2][1][1] = Foam::sqrt(2.0);
27

28 e[0][2][2] = 1.0;
29 e[2][0][2] = 1.0;
30 e[1][1][2] = Foam::sqrt(2.0);
31 e[2][2][2] = 2.0 * Foam::sqrt(2.0);

Note

While directly hard-coding the coefficients into the OpenFOAM solver or dictionary is simpler, it
bypasses an important step of linking the mathematical derivation of the coefficients to their im-
plementation. This report details the process of Galerkin Coefficient Calculation (see Section 4.3
and Appendix C.1.2), including the mathematical framework, Python-based computation, and in-
tegration into the OpenFOAM workflow. Python-based coefficient calculation provides flexibility,
reproducibility, and potential for modification, overcoming limitations inherent in hard-coded values
while enhancing transparency and learning process.

Mode Fields Initialization

In the solver createFields.H file (Listing 3.9) it is implemented a PtrList(pointer list) to initialise
multiple velocity modes Uhat and corresponding fluxes phihat, where the number of modes depends
on the polynomial order. Each mode field (Uhat[i] and phihat[i]) is created using a loop over
the number of equation needed to solved (order +1). The velocity fields Uhat are initialised as
volVectorField, and the flux fields phihat are computed explicitly using,

phihat[i] = linearInterpolate(Uhat[i]) & mesh.Sf().

Listing 3.9: gPCBurgersFoam (createFields.H (Uhat,phihat))

33 PtrList<volVectorField> Uhat(order + 1);
34 PtrList<surfaceScalarField> phihat(order + 1);
35 forAll(Uhat, i)
36 {
37 Info<< "Reading field U" << i <<endl;
38 Uhat.set(i, new volVectorField(
39 IOobject
40 (
41 "Uhat" + std::to_string(i),
42 runTime.timeName(),
43 mesh,
44 IOobject::MUST_READ,
45 IOobject::AUTO_WRITE
46),
47 mesh));
48 phihat.set(i, new surfaceScalarField(
49 IOobject
50 (
51 "phihat" + std::to_string(i),
52 runTime.timeName(),
53 mesh,
54 IOobject::READ_IF_PRESENT,
55 IOobject::AUTO_WRITE
56),
57 linearInterpolate(Uhat[i]) & mesh.Sf()));
58 }

38

3.3. Numerical Implementation of the Stochastic Solver Chapter 3. Existing Solvers

Reading Transport Properties (ν) and Compilation Warning Message

The lines of code in the file createFields.H (transportProperties) of the solver gPCBurgersFoam
are the same as burgersFoam. The compilation warning message will be handled in a similar manner
as the deterministic solver.

3.3.3 Make Folder Files

Modifications to the files contained in the Make folder are similar to those applied to the deterministic
solver.

3.3.4 Modifications for gPCBurgersFoam: Critical and Optional

All necessary modifications will be incorporated in the subsequent chapter.

Critical Modifications

1. As with the deterministic solver, the implemented equation in Listing 3.6 (line 77 and 79) a
factor 1

2 is missing for a conservative form required in OpenFOAM.

2. Using phihat[k] = fvc::flux(Uhat[k]) instead of phihat[k] =linearInterpolate

(Uhat[k]) & mesh.Sf(), is generally more advantageous, as it utilises a built-in OpenFOAM
function that ensures consistent flux calculation with the selected numerical schemes. It reduces
redundancy in the code, avoids potential errors, and aligns with OpenFOAM discretisation
framework.

3. The solver incorporate the hardcoded polynomial type and order for the precomputed non-
zero coefficients (e[ijk]). This design restricts the solver’s flexibility, as any change in the
random variable distribution or the polynomial order requires recompilation of the solver.
This limitation reduces its adaptability for broader applications involving other distributions
or higher-order expansions.

4. Uninitialised zero components in the coefficient tensor (e[ijk]). This causes the solver to
crash, as it has been observed that OpenFOAM assigns arbitrary values to the tensor coefficient
locations where zeros are expected.

5. Address ”warning message” during solver compilation.

Optional Modifications

1. Syntax consistency: solve(UhatEqn)) can be change for UhatEqn.solve(), to keep consis-
tency with OpenFOAM.

2. Adding runTime.printExecutionTime(Info) after runTime.write(), it is mainly for mon-
itoring, and user feedback, which can be beneficial during development or testing but is not
strictly necessary for the solver to function.

39

Chapter 4

Solvers Modifications:
Implementation Details and
Supporting Tools

This chapter focuses on the critical and optional modifications required for the deterministic solver
(burgersFoam) and the stochastic solver (gPCBurgersFoam), intended to improve functionality and
consistency within OpenFOAM framework. The modifications address critical issues such as equa-
tion formulation, flux computation, and solver robustness, while optional improvements provide
recommendations to enhance usability.

Furthermore, this chapter also includes the development of supplementary Python-based pre- and
post-processing tools designed to facilitate both the implementation and verification of the modified
solvers. The pre-processing tools compute the Galerkin coefficients necessary for the stochastic
solver. These tools are designed to enhance flexibility by allowing users to modify the expansion
order for Legendre-chaos polynomials and are readily adaptable to other polynomial types with
minor adjustments. By pre-computing the coefficients, the solvers can be reused without rerunning
the coefficient generation process, saving time and computational resources.

In addition, the modified implementation in this report, enables the coefficients to be automat-
ically recomputed with every execution of the solver by incorporating a flag (coeffCalc=true) in
the Allrun scripts that are designed to run all codes in an automated manner. This feature could
provide an advantage when conducting sensitivity analyses across multiple instances involving dif-
ferent polynomial orders. Post-processing scripts compute the analytical solution of the steady-state
viscous Burgers’ equation, providing a benchmark for verification. Additionally, the corresponding
moments and uncertainty quantification calculations are implemented for data analysis by extracting
key results of the QoI (in this case the transition layer’s location (z)).

4.1 Modifications to burgersFoam

4.1.1 Creating myBurgersFoam

After downloading the solver from the repository in Ref. [1], it is recommended to create a copy of
the solver, rename the relevant folders (e.g., renaming burgersFoam to myBurgersFoam), and update
all occurrences of the original name within the code. This section provides a step-by-step guide for
creating a new OpenFOAM solver, myBurgersFoam, derived from the downloaded burgersFoam

solver. Initiate a terminal session, source your OpenFOAM-v2306 application, and then execute
the commands provided below. Execution of the provided commands results in navigation to the
designated OpenFOAM user directory, followed by the creation of a 1D ViscousBurgersEquation

directory within the applications/solvers hierarchy. Following this, the burgersFoam solver
directory is replicated into a newly created directory named myBurgersFoam. Modifications to the

40

4.1. Modifications to burgersFoam Chapter 4. Solvers Modifications

Make/files file guarantee the solver’s inclusion within the user application’s binary directory (no
changes are needed for the Make/options file). In the final step, the main solver file is renamed
from burgersFoam.C to myBurgersFoam.C.

cd $WM_PROJECT_USER_DIR

mkdir -p applications/solvers/1D_ViscousBurgersEquation

cd applications/solvers/1D_ViscousBurgersEquation

cp -r /path/to/downloaded/files/burgersFoam myBurgersFoam

cd myBurgersFoam

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

find . -type f -exec sed -i 's/burgersFoam/myBurgersFoam/g' {} +

mv burgersFoam.C myBurgersFoam.C

As a recommended coding practice, it is advised to compile the solver using wmake and run a simple
case after each modification. This ensures that any errors introduced during the implementation are
identified early, facilitating a smoother debugging and development process.

4.1.2 Modifying Solver File myBurgersFoam.C

The Listing 4.1 details modifications to myBurgersFoam.C, the key change being the introduction of
a 0.5 factor in the nonlinear term for representing the conservative form of the Burgers’ equation.
For consistency with OpenFOAM’s discretisation framework and to eliminate redundant code, the
computation of phi now utilises fvc::flux(U). Utilising fvVectorMatrix UEqn, rather than a
direct solution with solve, facilitates the incorporation of under-relaxation factors where necessary
by calling UEqn.relax().

Listing 4.1: myBurgersFoam.C(simple.loop)

84 while (simple.loop())
85 {
86 Info<< "Time = " << runTime.timeName() << nl << endl;
87

88 while (simple.correctNonOrthogonal())
89 {
90

91 fvVectorMatrix UEqn
92 (
93 fvm::ddt(U)
94 + 0.5 * fvm::div(phi, U)
95 - fvm::laplacian(nu, U)
96 ==
97 fvOptions(U)
98);
99 UEqn.relax();

100 UEqn.solve();
101 }
102 phi = fvc::flux(U);
103 runTime.write();
104 runTime.printExecutionTime(Info);
105 }

4.1.3 Modifying createFields.H File of myBurgersFoam.C

To avoid the deprecation warning during compilation, the definition of the kinematic viscosity nu in
createFields.H can be updated as follows:

Listing 4.2: myBurgersFoam(createFields.H (Read Kinematic Viscosity))

34 dimensionedScalar nu

35 (

36 "nu", // Name: kinematic viscosity

37 dimensionSet(0, 2, -1, 0, 0, 0, 0), // Units: m^2/s

38 transportProperties // Read from dictionary

39);

41

4.2. Modifications to gPCBurgersFoam Chapter 4. Solvers Modifications

4.2 Modifications to gPCBurgersFoam

4.2.1 Creating myGPCBurgersFoam

The procedure for creating myGPCBurgersFoam is similar to that described for myBurgersFoam in
Section 4.1.1, involving renaming folders, updating references, and modifying the Make/files file
accordingly. As before, no changes are required for the options file.

cd $WM_PROJECT_USER_DIR

cd applications/solvers/1D_ViscousBurgersEquation

cp -r /path/to/downloaded/files/gPCBurgersFoam myGPCBurgersFoam

cd myGPCBurgersFoam

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

find . -type f -exec sed -i 's/gPCBurgersFoam/myGPCBurgersFoam/g' {} +

mv gPCBurgersFoam.C myGPCBurgersFoam.C

4.2.2 Modifying Solver File myGPCBurgersFoam.C

Similar to the modifications described in Section 4.1.2 for myBurgersFoam.C, the key changes in
Listing 4.3 include the introduction of a 0.5 factor (Listing 4.3 line 89 and 93) in the nonlinear term.
Additionally, the computation of phi using fvc::flux(U), and the incorporation of UEqn.relax()
has been included for code flexibility.

Listing 4.3: myGPCBurgersFoam.C(simple.loop)

67 Info<< "\nCalculating gPC 1D-Burgers Equation\n" << endl;
68 while (simple.loop())
69 {
70 Info<< "Time = " << runTime.timeName() << nl << endl;
71

72 while (simple.correctNonOrthogonal())
73 {
74 forAll(Uhat, k)
75 {
76 fvVectorMatrix UhatEqn
77 (
78 fvm::ddt(Uhat[k])
79 -
80 fvm::laplacian(nu, Uhat[k])
81);
82

83 forAll(Uhat, i)
84 {
85 forAll(Uhat, j)
86 {
87 if(j == k)
88 {
89 UhatEqn += (*e)[i][j][k] * 0.5 * fvm::div(phihat[i], Uhat[j]);
90 }
91 else
92 {
93 UhatEqn += (*e)[i][j][k] * 0.5 * fvc::div(phihat[i], Uhat[j]);
94 }
95 }
96 }
97 UhatEqn.relax();
98 UhatEqn.solve();
99 phihat[k] = fvc::flux(Uhat[k]);

100 }
101

102 }
103 runTime.write();
104 runTime.printExecutionTime(Info);
105 }

42

4.2. Modifications to gPCBurgersFoam Chapter 4. Solvers Modifications

4.2.3 Modifying createFields.H File of myGPCBurgersFoam.C

The required modifications to the createFields.H file in the myGPCBurgersFoam solver, to ensure
correct field initialisation and handling for stochastic simulations, are detailed in this section. These
modifications include dynamically allocating the Galerkin tensor values, reading pre-computed co-
efficients, and correctly reading transport properties, such as kinematic viscosity in this case. Each
change ensures flexibility, adaptability to varying polynomial orders, and alignment with the re-
quirements of the gPC framework. The UQProperties dictionary (Listing 3.7) and Mode Fields
Initialisation (Listing 3.9) remain unmodified. These components are already configured appropri-
ately for the solver’s functionality and do not require changes.

Initialisation and Reading of the Galerkin Tensor Values

The following lines of code that are required to be implemented in createFields.H file, initialise
and populate the Galerkin tensor with precomputed coefficients required for the stochastic solver.
This tensor is a key term for coupling the system of deterministic equations (Eq. (2.35)) throughout
the nonlinear convection term in the viscous Burgers’ equation.

Dynamic Allocation of the Tensor e[i][j][k]

The entire array e[3][3][3] precomputed triple product (hardcoded) in Listing 3.8 should be
removed and substituted for a much more flexible line of code (see Listing 4.4 and 4.5) that will not
require re-compilation of the solver when changing polynomial type or expansion order by initialising
the tensor and reading the non-zero coefficients from gPCCoeff dictionary file generated by a Python
script, described in Section 4.3.

Listing 4.4: myGPCBurgersFoam (createFields.H (Tensor Coeff. Initialisation))

21 Info<< "Initialize Galerkin Tensor based on order\n" << endl;

22 autoPtr<Foam::List<Foam::List<Foam::List<scalar>>>> e(

23 new Foam::List<Foam::List<Foam::List<scalar>>>(

24 order + 1,

25 Foam::List<Foam::List<scalar>>(

26 order + 1,

27 Foam::List<scalar>(

28 order + 1, 0.0

29)

30)

31)

32);

– The template class autoPtr (Listing 4.4 in line 22) is a smart pointer designed to manage
and control memory allocation and deallocation automatically, ensuring proper cleanup of
dynamically allocated objects. This ensure automatic memory management to prevent leaks.
This approach is concise, OpenFOAM-compliant, and avoids the complexity of manual memory
allocation.

– To ensure flexibility and scalability, the tensor structure (e[i][j][k]) is dynamically allocated
based on the polynomial expansion order using nested Foam::List constructors. The tensor
values are initialized to zero (Listing 4.4, line 28) to prevent arbitrary default values that may
otherwise be assigned by OpenFOAM.

43

4.2. Modifications to gPCBurgersFoam Chapter 4. Solvers Modifications

Reading Precomputed Galerkin Coefficients

The IOdictionary object gPCCoeff (Listing 4.5 lines 37-47) is used to read the precomputed
Galerkin coefficients from a file named gPCCoeff, that is automatically created during pre-processing
steps and saved to the constant directory.

Listing 4.5: myGPCBurgersFoam (createFields.H (Reading Precomputed Coeff.))

58 Info<< "Reading gPCCoeff\n" << endl;
59 IOdictionary gPCCoeff
60 (
61 IOobject
62 (
63 "gPCCoeff",
64 runTime.constant(),
65 mesh,
66 IOobject::MUST_READ,
67 IOobject::NO_WRITE
68)
69);
70

71 for (int i = 0; i <= order; ++i)
72 {
73 for (int j = 0; j <= order; ++j)
74 {
75 for (int k = 0; k <= order; ++k)
76 {
77 word entryName = "e[" + Foam::name(i) + "][" +
78 Foam::name(j) + "][" + Foam::name(k) + "]";
79 if (gPCCoeff.found(entryName))
80 {
81 // Assign value to the tensor
82 (*e)[i][j][k] = readScalar(gPCCoeff.lookup(entryName));
83 // Verification: Print the entry name and value
84 Info << "Loaded coefficient " << entryName << ": "
85 << (*e)[i][j][k] << endl;
86 }
87 // else
88 // {
89 // // Debugging: Warn if the entry is missing
90 // // Warning << "Coefficient " << entryName
91 // // << " not found in gPCCoeff!" << endl;
92 // }
93 }
94 }
95 }

The IOobject configuration specifies:

– IOobject::MUST READ: Ensures the file is mandatory for the solver to read.

– IOobject::NO WRITE: Prevents modification of the file.

Nested loops (Listing 4.5 lines 71-95) iterate over all combinations of indices i, j, k up to the poly-
nomial order:

– For each combination, an entry name (e.g., e[0][0][0]) is constructed.

– If the entry exists in gPCCoeff, its value is read using readScalar and stored in the tensor e.

Although alternative, more efficient implementations of this nested loop structure may exist,
the current approach was chosen for its practicality and clarity. This implemented method (see
Listing 4.5) dynamically reads the coefficients and populates the Galerkin tensor e[i][j][k] within
the specific constraints of this implementation. Future optimizations could focus on exploring more
compact or performance-oriented solutions.

Transport Properties (Read Kinematic Viscosity)

To eliminate compiler warnings, the code segment in Listing 4.2 must be replicated within the
myGPCBurgersFoam solver in the createFields.H file.

44

4.3. Pre-Processing Tools Chapter 4. Solvers Modifications

4.3 Pre-Processing Tools

The pre-processing tools1 automate the generation and verification of coefficients required for Un-
certainty Quantification (UQ) using generalised Polynomial Chaos (gPC) expansions. While the
tool comprises four main steps (in addition to handling input/output data), these steps are:

Input Data: Read UQProperties dictionary (Listing C.1).

Step 1: Generate Distribution and Polynomials (Listing C.1 or stand-alone script List-
ing C.2).

Step 2: Orthonormality Verification (Listing C.3).

Step 3: Calculate Tensor Coefficients (Listing C.1 or stand-alone script Listing C.2).

Step 4: Galerkin Coefficient Verification (Listing C.3).

Output Data: Write output file (gPCCoeff) and save to the constant directory (Listing C.1)

This section prioritises Steps 1 and 3, given their importance to the pre-processing workflow detailed
in this report. Steps 2 and 4 involve verification tasks that serve as manual ”sanity checks” to
ensure correctness during initial development, particularly given the author’s first experience with
Chaospy. These steps include orthonormality verification using the Gram matrix (a matrix of inner
products using the precomputed polynomials in Chaospy), which is compared against the identity
matrix, and the calculation of the triple product coefficients (eijk) using the Rodrigues’ formula (for
Legendre polynomial from Appendix A.1.3 in Ref. [18]) to create the orthogonal polynomials instead
of relying only on built-in polynomial functionalities of Chaospy libraries. Necessary for establishing
confidence in the implementation’s correctness, these elements are procedural and of supplementary
value. Conversely, the core functionality of the pre-processing tool, Steps 1 and 3, will be detailed
in this section.

4.3.1 Step 1: Generate Distribution and Polynomials

The function generate distribution and polynomials in Listing 4.6 creates a standardised uni-
form distribution over the interval [−1, 1] for the random variable (ξ) and generates the correspond-
ing Legendre polynomials (Φ) based on the specified polynomial order. The use of the standardised
uniform distribution ensures consistency with the orthogonality properties of Legendre polynomials
within this range. While the current implementation focuses on Legendre polynomials, the code is
designed to be extensible, allowing for the inclusion of other polynomial types, such as Hermite,
by extending the conditional logic. If an unsupported polynomial type is provided, the function
raises a ValueError. The generated distribution and polynomials are returned for further use in
the pre-processing workflow.

Listing 4.6: gPCCoeff v003.py(Function:generate distribution and polynomials)

16 # Function to get the distribution and polynomials based on type

17 # (always normalised)

18 def generate_distribution_and_polynomials(order, poly_type):

19 if poly_type.lower() == "legendre":

20 lower_std = -1 # standard lower bound

21 upper_std = 1 # standard upper bound

22 distribution = cp.Uniform(lower=lower_std, upper=upper_std)

23 polynomials = cp.expansion.legendre(order, lower=lower_std,

24 upper=upper_std,

25 physicist=False,

26 normed=True)

27 else:

28 raise ValueError("Unsupported polynomial type. Use 'legendre'.")
29 return distribution, polynomials

1Required Tools: pyFoam is NOT a part of the OpenFOAM distribution, users will have to install it separately
[32], to install use: pip install PyFoam. chaospy installation link[33], to install use: pip install chaospy.

45

4.3. Pre-Processing Tools Chapter 4. Solvers Modifications

4.3.2 Step 3: Calculate Tensor Coefficients

The function calculate triple product (Listing 4.7) computes the triple product coefficients eijk,
which are required for constructing the Galerkin tensor used in polynomial chaos expansions. As
derived in the report (Eq. (2.36)), the orthonormality of the polynomial basis simplifies the actual
Galerkin tensor coefficients to the triple product. These coefficients are calculated using Gaussian
quadrature, leveraging the orthogonality properties of the polynomials over the specified probability
distribution. The computed triple product coefficients form a critical input to the pre-processing
phase of the solver. For more details on Gauss-Legendre Quadrature, see Chapter 9, titled Stochastic
Projection and Collocation, on page 202 of Ref. [12].

Listing 4.7: gPCCoeff v003.py(Function:calculate triple product)

31 def calculate_triple_product(order, distribution, polynomials):

32 """

33 Calculate triple product coefficients e_ijk using Gaussian Quadrature.

34

35 Args:

36 order: polynomial order

37 distribution: probability density distribution

38 polynomials: polynomials expansion coefficients (e.g., Legendre).

39

40 Returns:

41 e_ijk: Triple product coefficients using Gauss Quadrature.

42 """

43 e_ijk = {}

44

45 num_polynomials = len(polynomials)

46 c = 1 # Classical Gauss Quadrature (c=1)

47 quadrature_order = math.ceil((3 * order + c)/2)

48 nodes, weights = cp.generate_quadrature(quadrature_order,

49 distribution, rule = "gaussian")

50 for i in range(num_polynomials):

51 for j in range(num_polynomials):

52 for k in range(num_polynomials):

53 # Using Quadrature

54 integrand = (polynomials[i](nodes)

55 * polynomials[j](nodes)

56 * polynomials[k](nodes))

57 e_ijk[(i, j, k)] = np.sum(weights * integrand)

58 return e_ijk

46

4.4. Post-Processing Tools Chapter 4. Solvers Modifications

4.4 Post-Processing Tools

4.4.1 Steady-State Burgers’ Equation Exact Solution

This section describes the computation of the exact solution for the steady-state Burgers’ equa-
tion under specified boundary conditions. The mathematical expressions for the exact solution are
described in Section 2.2.1 and implemented numerically in Python for verification purposes. This
solution depends on the boundary system defined by the hyperbolic tangent function and parameters
such as the kinematic viscosity (ν), transition layer location (zex), and perturbation (δ). The bound-
ary system is solved using numerical root-finding functionality is Python (see Listing 4.8 and 4.9).

Listing 4.8: burgersEqExactSolution v000.py (exact solution implementation)

20 def burgers_exact_solution(delta, nu, tol, initial_guess):
21 def boundary_system(vars):
22 A, z_ex = vars
23 u_left = A * np.tanh((A / (2 * nu)) * (1 + z_ex)) - (1 + delta)
24 u_right = A * np.tanh((A / (2 * nu)) * (1 - z_ex)) - 1
25 return [u_left, u_right]
26

27 solution = root(boundary_system, initial_guess, tol=tol)
28 return solution.x if solution.success else (None, None)
29

30 def exact_solution_u(x, A, z_ex, nu):
31 return -A * np.tanh((A / (2 * nu)) * (x - z_ex))

Listing 4.9: stochasticSolverVerification v000.py (input parameters)

70 #--Define parameters in this main script---------------------------------------
71 # nu = 0.05
72 exacSolTol = 1e-12
73 delta_unperturbed = case_1_lower # unperturbed case
74 delta_perturbed = case_2_upper # perturbed case
75 x_values = np.linspace(-1, 1, 10000) # Generate x-values for exact solution
76 #--Setup cases with delta and initial guess------------------------------------
77 casesData = {
78 cases[0]:
79 {"delta": delta_unperturbed, "initial_guess": [-1.0, 0.0],
80 "order": case_1_order, "nu": case_1_nu_value},
81 cases[1]:
82 {"delta": delta_perturbed, "initial_guess": [-1.0, 1.0],
83 "order": case_2_order, "nu": case_2_nu_value}
84 }

The script in Listing 4.10 calculates the exact velocity profile for given input parameters (δ, ν), by
executing the Python code in Listing 4.8, determines the transition layer location (zex) and output
the results to a .txt file (see Listing 4.10, line 175 and 178).

Listing 4.10: stochasticSolverVerification v000.py (function output)

174 #--Calculate exact solution parameters---------------------------------
175 A, z_ex = burgers_exact_solution(delta, nu, exacSolTol, initial_guess)
176

177 if A is not None and z_ex is not None:
178 u_values_exact = exact_solution_u(x_values, A, z_ex, nu)
179 output_file.write(f"\n{case_name} ('Exact Solution'): nu = {nu}, "
180 f"delta = {delta}, "
181 f"z_ex = {z_ex:.8f} (Transition Layer Location)\n")
182 print(f"\n{case_name} ('Exact Solution'): nu = {nu} , delta = {delta},"
183 f" z_ex = {z_ex:.8f} (Transition Layer Location)")
184 else:
185 print(f"Failed to compute exact solution for {case_name}.")
186 output_file.write(f"Failed to compute"
187 f" exact solution for {case_name}.\n")
188 continue

For the purpose of subsequent error analysis and solver verification, the exact solution is interpolated
to correspond with the mesh points (xfoam) of the case simulation results (see Listing 4.11).

47

4.4. Post-Processing Tools Chapter 4. Solvers Modifications

Listing 4.11: stochasticSolverVerification v000.py (Exact solution interpolation)

238 # Calculate exact_interpolated for the relative error calculation
239 interpolation_exact = interp1d(x_values, u_values_exact,
240 kind='linear')
241 U_exact_interpolated = interpolation_exact(x_foam)

4.4.2 Calculation of Transition Layer Location (zfoam)

The transition layer location, zfoam, is determined during the post-processing of the solvers’ simu-
lation results by analysing the velocity profile U(x). This location corresponds to the point where
U(x) = 0, marking the transition between two distinct flow regions. However, since the velocity pro-
file is represented by discrete data points, interpolation is required to refine the location of zfoam.
This procedure is implemented in the post-processing script Listing 4.12. This method guarantees
precise calculation of zfoam from discrete simulation data, thus offering a metric for verifying the
simulated transition layer location against the exact solution.

Note

The calculation of the transition layer location is performed in the same manner for both solvers, as
shown in the full code in Appendices C.7 and C.8. A key difference between the post-processing of
the deterministic and stochastic solver solutions lies in the approach to input information retrieval.
In the deterministic solver, u(x) is accessed directly, while in the stochastic solver, it requires the
special treatment of the modes to determine the statistical moments (µ and σ). Furthermore, the
objective is to maintain a clear distinction between the post-processing tools used for the different
solvers.

Listing 4.12: stochasticSolverVerification v000.py (Transition Layer Location (zfoam)

250 #--Calculate Transition Layer Location (z_foam)----------------
251 zero_crossings = np.where(np.diff(np.sign(U_x_foam)))[0]
252 if zero_crossings.size > 0:
253 idx = zero_crossings[0]
254 z_foam = interp1d(U_x_foam[idx:idx + 2],
255 x_foam[idx:idx + 2], kind='linear')(0)

4.4.3 Velocity Mean Value, Variance and Uncertainty Calculations

Listing 4.13: stochasticSolverUQ v002.py (statistical moments and UQ calculation)

170 if os.path.exists(sample_file):
171 foam_data = np.loadtxt(sample_file)
172

173 # Mean Value extraction from Uhat0-----------------------------
174 x_foam, U_x_foam = foam_data[:, 0], foam_data[:, 1]
175 Uhats_x = foam_data[:, 4::3] # Assuming Uhat coefficients are in columns [1, 4,

7,...] for x-components only
176

177 # Variance (sigma^2)---
178 # Square each mode to get the variance contribution along the spatial domain
179 U_x_modeVar_foam = Uhats_x**2 # Shape: (number of spatial points, number of

modes)
180

181 # Total Variance (Sum the variances along the spatial domain)
182 U_x_totalVar_foam = np.sum(U_x_modeVar_foam, axis=1)
183

184 # Standard Deviation (sigma)-----------------------------------
185 # Calculate the standard deviation based on higher-order terms
186 U_x_sd_foam = np.sqrt(U_x_totalVar_foam) # Sum squares of higher-order terms

only
187

188 # Calculate the uncentainty based on standard deviation--------
189 k = 1 #k coverage factor (k = 2 for 95% CI but this required normality

assumption, this need further analysis)
190 U_x_Unc = k * U_x_sd_foam

48

4.4. Post-Processing Tools Chapter 4. Solvers Modifications

The mean (µ) and variance (σ2) (see Listing 4.13 line 173–182) of the solution are calculated based
on the statistical moments derived from the gPC expansion, as described in Section 2.3.6. The mean
value corresponds to the first mode coefficient (û0), leveraging the orthonormality condition of the
basis functions, while the variance is computed as the sum of the squared higher-order coefficients
(û2

k) for k ≥ 1.
The uncertainty quantification (Listing 4.13, lines 188–190) in this implementation uses a cov-

erage factor of k = 1, which use a direct measure of the standard deviation (σ) as the standard
uncertainty bound. Considering that gPC is not inherently a statistical method, expanding the
uncertainty to a 95% confidence interval (CI) using k = 1.96 would require further analysis, as this
requires assuming that the solution at each position in the domain follows a normal distribution. If
the solution does not follow a normal distribution, additional methods would be needed to determine
the appropriate confidence interval. However, this falls beyond the scope of the analysis presented in
this report. For further details on standard and expanded uncertainties, see Section 2.5.7, Standard
and Expanded Uncertainties, in Ref. [34].

49

Chapter 5

Verification and Uncertainty
Quantification

This chapter presents a verification cases of the modified solvers by comparing the results with the
study “Supersensitivity due to Uncertain Boundary Conditions” by Xiu and Karniadakis, as refer-
enced in Ref. [17]. Their study provides a benchmark for verification through its well-defined and
detailed approach to uncertainty propagation. Moreover, the study by Xiu and Karniadakis incor-
porates a higher-order spectral method, yielding highly accurate results. It serves as an excellent
reference, particularly for assessing uncertainty quantification. The cases serve two distinct pur-
poses. Initially, they prioritise verification of the solvers’ implementation by comparing the results
against the exact solution. These case designs prioritise rapid computational performance. Con-
sequently, this verification should be considered as preliminary, since a comprehensive sensitivity
analysis—considering mesh size, time step size, and polynomial order sensitivity—has not yet been
conducted. The second objective is to describe the use of the stochastic solver in exploring uncer-
tainty quantification. By providing detailed comparisons with the reference study and highlighting
any potential deviation, this chapter not only supports solver verification but also acts as a practical
guide for users, reinforcing the reproducibility and accuracy of the implementation.

5.1 Case Studies: Structure and Insights

The studies and cases directory (1D ViscousBurgersEquation), available at [35] and illustrated in
Figure 5.1, is structured to support two primary types of studies: deterministic and stochastic. These
studies are designed to test the solver by simulating the supersensitivity phenomenon in the one-
dimensional viscous Burgers’ equation. Each study includes a set of two verification cases, enabling
a systematic analysis of the deterministic and stochastic behaviours of the equation. This structure
emphasises verification by comparing results with exact solutions and facilitates robust uncertainty
quantification (UQ). To streamline execution and management, each study incorporates its own
Allrun and Allclean scripts for automated execution and clean-up, respectively. Additionally, a
Results directory is included, organised into several subdirectories to ensure efficient and systematic
data storage and management.

50

5.2. Deterministic Study Chapter 5. Verification and Uncertainty Quantification

1D_ViscousBurgersEquation

userFoamFolder

postProcessingScripts

preProcessingScripts

run

deterministicBurgersBCs_Studyapplications

stochasticBurgersBCs_Study

Allrun

Allclean

Allrun

Allclean

Results

setups.orig Case_2_stocUBBCs_Verification

Case_3_stocBCs_UQ

Case_1_stocLBBCs_Verification

setups.orig

Case_1_detLBBCs_Verification

Case_2_detUBBCs_Verification

Results

Figure 5.1: Studies and Cases Directory Structure

Warning: Directory Structure and Naming Dependency

The functionality of the Allrun, Allclean, and all pre-processing and post-processing scripts relies
heavily on the directory structure and naming conventions presented in the diagram in Figure 5.1.
Any modifications to this directory structure, including changes to directory names, locations, or the
removal of empty directories (such as the Results directory), may cause the scripts to malfunction
or crash.

5.2 Deterministic Study Using myBurgersFoam

The configuration, execution steps, and presentation of verification results are discussed for the two
deterministic cases.The cases are designed, similarly as in Ref. [17], for verification (i.e., a comparison
against the steady-state exact solution) of the implemented solver myBurgersFoam. The results
analysis focus on the quantification of the transition layer location (z) at the lower-bound-boundary
(LBBCs) and upper-bound-boundary (UBBCs) conditions, whit a perturbation δ ∈ (0, 0.1) respectively
and a kinematic viscosity ν = 0.05. Both cases utilise an identical configuration, differing only in
the perturbation applied to the left boundary condition (x = −1).

5.2.1 Configuration and Execution of Deterministic Cases

This section presents two verification cases for the deterministic study of the 1D viscous Burgers’
equation using the myBurgersFoam solver. The reader is guided through running the provided scripts
(Allrun, Allclean) and understanding key settings. The following procedure offers a generalised

51

5.2. Deterministic Study Chapter 5. Verification and Uncertainty Quantification

description for both cases, outlining the main relevant files and highlighting the specific differences
between them.

Configuration

0.orig

U

Configuration the boundary conditions of the cases Case 2 detUBBCs Verification is the same
as for Case 1 detLBBCs Verification, except, that the perturbation delta $lower in Listing B.3
0.orig (U) is replaced by delta $upper.

constant

UQProperties

It should be noted that, to maintain consistency in the structure of all studies, a dictionary named
UQProperties (Listing B.5) has been created for each case located at the constant directory to
store information about the perturbation applied to the boundaries, and this directory is included
in Listing B.3 line 20 (#include "../constant/UQProperties").

System

blockMeshDict

To accurately capture the transition layer position (z), which is highly sensitive to boundary condi-
tion perturbations, the mesh in blockMeshDict employs a non-uniform distribution (as previously
noted in Section 2.2.2). The domain is divided into a coarse block (x = −1 to x = −0.2) with 5000
cells to minimise computational cost and a refined block (x = −0.2 to x = 1) with 25,000 cells to
ensure precise resolution of the transition dynamics. This setup balances computational efficiency
and solution accuracy, as shown in Listing B.6 (line 38-47).

controlDict

The controlDict (Listing B.7) file serves as the central configuration for running simulations in
OpenFOAM. A sampling functionality allowing the extraction of velocity information along a defined
line (lineX) within the computational domain has been added (see Listing B.7, lines 50–79). To
facilitate detailed post-processing analysis of the velocity field, the sampling will output 10,000
uniformly distributed points along the x-axis.

decomposeParDict

The configuration of domain decomposition for parallel computing in OpenFOAM relies on the
decomposeParDict file (Listing B.8). In this case setup, the domain is divided into 4 subdomains
using the hierarchical method, with the specified decomposition along the x-axis (n=(4 1 1)).
This configuration ensures efficient utilisation of computational resources during simulations.

fvSchemes

Numerical discretisation schemes are defined in the fvSchemes dictionary (Listing B.9). Time dis-
cretisation uses the Euler scheme (ddtSchemes, as previously noted in Section 2.2.2). Gradient cal-
culations (gradSchemes) apply a Gauss linear scheme, while divergence terms (divSchemes) utilise a
Gauss linearUpwind gradient scheme1. This second-order accurate approach improves accuracy

1For additional information on the OpenFOAM implementation, please consult [36]

52

5.2. Deterministic Study Chapter 5. Verification and Uncertainty Quantification

compared to first-order schemes, maintaining numerical stability through gradient-based correc-
tions. For Laplacian terms (laplacianSchemes), a Gauss linear orthogonal scheme is used, and
interpolation applies linear schemes (interpolationSchemes).

fvSolution

The fvSolution dictionary (Listing B.10) specifies the solver and algorithm settings for the sim-
ulation. The velocity field (U) uses the PBiCGStab solver (Preconditioned Bi-Conjugate Gradient
Stabilised for more details see Ref. [37] with a DILU preconditioner (see Ref. [38]) that has been
shown to be the most efficient option. A tight absolute tolerance (1e-12) is set to prioritise high
accuracy and ensure the steady-state solution is reached, with relTol set to zero. The SIMPLE al-
gorithm applies no non-orthogonal correctors (nNonOrthogonalCorrectors = 0) (while not strictly
necessary, for this simple case), and the relaxation factor for velocity is 1.0, indicating no under-
relaxation.

Execution

An automation script has streamlined the execution of deterministic cases, making it simpler for
users. The process involves executing Allclean and Allrun in the OpenFOAM environment for
version 2306, with prior installation of pyFoam2 and chaospy3.

Allrun

The Allrun script (Listing B.1) automates the execution of simulation cases and manages the
associated pre- and post-processing tasks in OpenFoam. It prepares the working directory by copying
setup files, generates and verifies the computational mesh using blockMesh and checkMesh, and
supports both serial and parallel execution modes. Simulation results, including time directories,
logs, and post-processing outputs, are collected into dedicated directories for each case. The script
also converts results to VTK format for visualisation and executes a Python post-processing script for
further analysis. After each case, temporary files are cleaned, ensuring consistency in the workflow.

Allclean

The Allclean script (Listing B.2) is designed to systematically clean up the working directory after
running simulations. It removes all temporary and intermediate files, including original case setups
(0.orig, constant, and system), VTK files, dynamic code, and simulation results for individual
cases, as well as sampled data, plots, and results stored in specific directories. By ensuring the
removal of unnecessary files, this script helps maintain a clean and organised directory structure,
making it ready for subsequent simulations or modifications.

2Installation command: pip install PyFoam
3Installation command: pip install chaospy

53

5.2. Deterministic Study Chapter 5. Verification and Uncertainty Quantification

5.2.2 Verification Results (myBurgersFoam)

Upon completion of cases execution, the post-processing tools will conduct the required calculations,
saving the results and their graphical visualisations to the Results directory. The results verify the
accuracy of the solver by demonstrating excellent agreement with the exact solution, as shown in
Figure 5.2, both the velocity profile u(x) (upper plot) and the relative error plots (lower plot).

x [m]

−1.0

−0.5

0.0

0.5

1.0

u
(x

)
[m

/s
]

Lower Bound (’Exact Solution’) (ν = 0.05, δ = 0)

Lower Bound (ν = 0.05, δ = 0)

Upper Bound (’Exact Solution’) (ν = 0.05, δ = 0.1)

Upper Bound (ν = 0.05, δ = 0.1)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x [m]

−0.03

−0.02

−0.01

0.00

R
el

at
iv

e
E

rr
or

[%
]

Lower Bound Relative Error. L2-norm error = 5.5e-06

Upper Bound Relative Error. L2-norm error = 2.8e-06

Figure 5.2: Deterministic supersensitivity simulation using myBurgersFoam

Table 5.1: Transition layer location, exact solution (zex) and myBurgersFoam solver (zdet) solution

δ zex zdet
0 0.00000000 -0.00000001

10−1 0.86161262 0.86161261

The results of the transition layer location are presented in Table 5.1 that provides a numerical
comparison of the computed transition layer locations (zdet) with the exact values (zex), highlighting
minimal discrepancies. The agreement with the exact solution is accurate up to the seventh decimal
digit, verifying the correct implementation of the solver subjected to two different deterministic
perturbation δ on the left boundary condition (x = −1) with ν = 0.05.

54

5.3. Stochastic Study Chapter 5. Verification and Uncertainty Quantification

5.3 Stochastic Study Using myGPCBurgersFoam

This section describes the configuration, execution steps, and presents the results for a stochastic
study using myGPCBurgersFoam solver. Its purpose is to verify the accuracy of the solver and quantify
the propagated uncertainty in the solution resulting from randomly perturbed boundary conditions.
The study is divided into three cases:

– Case 1 stocLBBCs Verification

– Case 2 stocUBBCs Verification

– Case 3 stocBCs UQ

In the verification cases 1 and 2, of the myGPCBurgersFoam solver, no uncertainty is introduced in
the polynomial chaos expansion beyond the zeroth mode (û0). This implies that all higher-order
coefficients (ûk for k ≥ 1) are set to zero, effectively reducing the solver to behave as a deterministic
solver. Consequently, the myGPCBurgersFoam solution should align with the results of the deter-
ministic myBurgersFoam solver when compared to the exact solution. This comparison ensures the
correctness of the stochastic solver in deterministic conditions. In contrast, Case 3 stocBCs UQ is a
stochastic case that propagates imposed random perturbation throughout the system using the gPC
framework that allows us to quantify the statistical moments of the solution.

5.3.1 Configuration and Execution of Stochastic Cases

The configuration and execution of the stochastic cases are largely similar to those for the deter-
ministic cases, with minor adjustments specific to the stochastic study. These differences include
modifications in the 0.orig directory (Uhat0 and Uhat1), where the initial conditions incorporate
uncertainty, and a slight change in the Allrun script (see Appendix B.11) to account for stochastic
settings (i.e., incorporating a flag (coeffCalc=true) to allow the user to select if the Galerkin coef-
ficients should be calculated or use the pre-computed values). This section will address only the
differences in configuration and execution to avoid unnecessary repetition, citing the deterministic
study design where relevant.

Configuration

0.orig

Uhat0

The Listing 5.1 represents the boundary condition for the deterministic mode Uhat0, where the
mean value of the perturbation (µδ) on the left boundary, with (δ ∼ U(a, b) = δ ∼ U(0, 0.1)) should
be set as follows depending on the stochastic case:

– Case 1 stocLBBCs Verification

→ deltaMean $a;

– Case 2 stocUBBCs Verification

→ deltaMean $b;

– Case 3 stocBCs UQ

→ deltaMean #calc "(($a + $b)/2.0)";

55

5.3. Stochastic Study Chapter 5. Verification and Uncertainty Quantification

Listing 5.1: 0.orig (Uhat0)

36 a $lower; // a 0.0;
37 b $upper; // b 0.1;
38 Ux_LBC $Ux_LBC; // Specify a fixed velocity at x = -1
39 Ux_RBC $Ux_RBC; // Specify a fixed velocity at x = 1
40 deltaMean #calc "(($a + $b)/2.0)"; // Uncomment for a real stochastic solver.
41

42 boundaryField
43 {
44 left
45 {
46 type fixedValue;
47 value uniform (#calc "($Ux_LBC + $deltaMean)" 0.0 0.0);
48 }
49

50 right
51 {
52 type fixedValue;
53 value uniform ($Ux_RBC 0.0 0.0);
54 }
55

56 other
57 {
58 type empty; // Ignore y and z directions for 1D simulation
59 }
60 }

Uhat1

The Listing 5.2, represents the boundary condition for the deterministic mode Uhat1, where the
standard deviation value of the perturbation (σδ) on the left boundary, with (δ ∼ U(a, b) = δ ∼
U(0, 0.1)) should be set as follows depending on the stochastic case:

– Case 1 stocLBBCs Verification

→ deltaMean 0;

– Case 2 stocUBBCs Verification

→ deltaMean 0;

– Case 3 stocBCs UQ

→ deltaSigma #calc "($b - $a) / (2.0 * sqrt(3.0))";

Listing 5.2: 0.orig (Uhat1)

36 #include "../constant/UQProperties"
37

38 a $lower; // a 0.0;
39 b $upper; // b 0.1;
40 deltaSigma #calc "($b - $a) / (2.0 * sqrt(3.0))";
41

42 boundaryField
43 {
44 left
45 {
46 type fixedValue;
47 value uniform ($deltaSigma 0.0 0.0);
48 }
49

50 right
51 {
52 type fixedValue;
53 value uniform (0.0 0.0 0.0);
54 }
55 other
56 {
57 type empty;
58 }
59 }

56

5.3. Stochastic Study Chapter 5. Verification and Uncertainty Quantification

5.3.2 Verification Results (myGPCBurgersFoam)

As noted earlier, during the verification process, the solver myGPCBurgersFoam should behave as a
deterministic solver, if no uncertainty is introduced in the polynomial chaos expansion of the initial
and boundary conditions. When all coefficients ûk = 0,∀k ≥ 1, reducing the required system to be
solved similar to the deterministic case (i.e., the system of equations is reduced to a single equation).
This particular scenario allows for the verification of the solver implementation by comparing it to
the exact solution.

x [m]

−1.0

−0.5

0.0

0.5

1.0

u
(x

)
[m

/s
]

Lower Bound (’Exact Solution’) (ν = 0.05, δ = 0.0)

Lower Bound (ν = 0.05, δ = 0.0)

Upper Bound (’Exact Solution’) (ν = 0.05, δ = 0.1)

Upper Bound (ν = 0.05, δ = 0.1)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x [m]

−0.075

−0.050

−0.025

0.000

0.025

R
el

at
iv

e
E

rr
or

[%
]

Lower Bound Relative Error. L2-norm error = 9.6e-06

Upper Bound Relative Error. L2-norm error = 6.9e-06

Figure 5.3: Cross-comparison of the exact solution and myGPCBurgersFoam results.

Figure 5.3 presents a comparison of the myGPCBurgersFoam solver’s steady-state Burgers’ equa-
tion solution with the exact solution. This comparison is only possible because the perturbation is
limited to û0, making the solver function as a pseudo-deterministic solver, thus excluding higher-
order term contributions. Upper and lower bounds correspond to the pseudo-deterministic solutions
for the extreme values of the perturbation input, δ = 0.1 and δ = 0, respectively, with a kinematic
viscosity of ν = 0.05. The velocity profile u(x) (Figure 5.3 upper plot) and the relative error [%]
(Figure 5.3 lower plot) are presented to visually compare the exact solution with the two different
solutions produced by the solver under the given boundary perturbation. The L2-norm error values,
for the lower and the upper bound, are relatively small, indicating a high level of agreement between
the exact solution and the myGPCBurgersFoam results. This agreement will be further examined and
corroborated at the transition layer location in the subsequent analysis.

Table 5.2: Transition layer (z) cross-comparison

δ zex zstoch
0 0.00000000 -0.00000003

10−1 0.86161262 0.86161260

TableFigure 5.2 shows the results of the transition layer cross-comparison between exact solution
in Eq. (2.5) (zex) and myGPCBurgersFoam solver (zstoch) solution with ν = 0.05, subject to two
different deterministic perturbations δ on left boundary condition (x = −1). The results shows high
level of agreement between the solver solution and the exact solution, within seven significant digits
for the given conditions.

57

5.3. Stochastic Study Chapter 5. Verification and Uncertainty Quantification

5.3.3 Uncertainty Quantification Results (myGPCBurgersFoam)

Figure 5.4 presents the stochastic solutions of the velocity profile u(x) for δ ∼ U(0, 0.1) obtained
using Legendre polynomial chaos with M = 3. The shaded region in Figure 5.4, representing the
uncertainty range (µ ± σ), illustrates the dispersion in the quantity of interest (u(x)) caused by
the propagation of boundary condition uncertainties. The assumed symmetry of the uncertainty
range (µ±σ) arises from the definition of the standard deviation, which is a measure of the average
dispersion of data points around the mean.
The impact of boundary conditions on the dispersion of the quantity of interest u(x), is effectively
illustrated in Figure 5.4. A comprehensive analysis of the solution’s PDF, including potential asym-
metries in its distribution, would be valuable but is beyond the scope of this work. The upper
and lower bounds correspond to the deterministic solutions for the extreme values of δ (0.1 and 0,
respectively). Figure 5.5 illustrates the contributions of individual modes uk(x), highlighting the
diminishing impact of higher-order terms beyond M = 3, scaled relative to the mean value û0(x).

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x [m]

−1.0

−0.5

0.0

0.5

1.0

u
(x

)
[m

/s
]

Polynomial Order M = 3

Lower Bound (ν = 0.05, δ = 0.0)

Upper Bound (ν = 0.05, δ = 0.1)

µ Mean Solution (ν = 0.05, δ ∼ U(0.0, 0.1))

σ Standard Deviation (ν = 0.05, δ ∼ U(0.0, 0.1))

µ ± σ

Figure 5.4: Stochastic solutions obtained using Legendre polynomial chaos for δ ∼ U(0, 0.1) and
ν = 0.05.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x [m]

−1.0

−0.5

0.0

0.5

1.0

û
k

[m
/s

]

Polynomial Order M = 3

û0(x)

2.5 û1(x)

6.3 û2(x)

13.4 û3(x)

Figure 5.5: Modes Contribution (scaled to mean value û0)

58

5.3. Stochastic Study Chapter 5. Verification and Uncertainty Quantification

Table 5.3: Results comparison of the mean transition layer location (zref ,z) and their corresponding
standard deviations (σzref , σz)

Polynomial Order (P) zref z σzref σz

P = 1 0.81459294 0.81459291 0.37660751 0.37660741
P = 2 0.81394090 0.81394087 0.41099350 0.41099333
P = 3 0.81390671 0.81390668 0.41382035 0.41382014

Table 5.3 presents the average transition layer location (z) and its standard deviation (σz) for
ν = 0.05, considering a uniform random perturbation δ ∼ U(0, 0.1) applied to the left boundary (x =
−1). These results are systematically compared to the reference values (zref , σzref) documented in
Table B1 of Ref. [17], across different polynomial orders up to P = 3 and spectral element orders
N = 20. The results highlight the ability of the myGPCBurgersFoam solver to accurately simulate
the mean (z̄) and standard deviation (σz) of the transition layer location under stochastic (i.e.,
random) boundary perturbations, δ ∼ U(0, 0.1), for varying polynomial orders (P). The comparison
between the computed mean and standard deviation (z̄ and σz) with reference values (zref and σzref)
demonstrates a high degree of agreement consistently within six significant digits.

59

Chapter 6

Conclusions and Future Work

6.1 Conclusion

Designed as a tutorial, this report not only guides readers through the methods in OpenFOAM but
also provides essential pre- and post-processing tools for the efficient implementation and analy-
sis of intrusive generalised polynomial chaos frameworks. The report details the implementation,
modification, and verification of the burgersFoam and gPCBurgersFoam solvers, with a focus on
uncertainty quantification within the context of the one-dimensional viscous Burgers equation. In
both deterministic and stochastic studies, the solvers were systematically verified against the exact
steady-state solution of the Burgers equation, demonstrating high accuracy. In summary, this report
aims to support other users in improving or expanding the current implementation, contributing to
integrating uncertainty quantification into computational fluid dynamics in OpenFOAM.

6.2 Future Work

To enhance the solver’s functionality and broaden its range of applications, several directions for
future research, building upon the present implementation, are proposed.

Generalised Polynomial Chaos Methods: Enhance the existing implementation to include
other orthogonal polynomial types, e.g., Hermite polynomials, thus broadening the scope of
uncertainty quantification (UQ) to various probability distributions.

Problem Complexity Expansion: Investigate the solver’s performance with increased di-
mensionality and more sophisticated governing equations.

Application to Hydrogen Deflagration: Explore the applicability of the framework to
hydrogen deflagration scenarios by introducing uncertainties in turbulence model parameters.
This could provide valuable insights into safety-critical hydrogen combustion simulations.

Further investigations could build upon this report by exploring the broader implications of UQ
methodologies in CFD applications to generate practical benefits.

60

Bibliography

[1] “pdesoft2016-burgers-uq,” https://github.com/robertsawko/pdesoft2016-burgers-uq, accessed:
2024-11-18.

[2] D. Xiu, Numerical methods for stochastic computations: A spectral method approach, ser.
Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton
University Press, 2010. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-84883987013&partnerID=40&md5=03ab957548352bae56469d22b2529ae7

[3] T. Sullivan, Introduction to Uncertainty Quantification. Springer, 2015. [Online]. Available:
https://link.springer.com/book/10.1007/978-3-319-23395-6

[4] G. E. Box and N. R. Draper, Empirical model-building and response surfaces. John Wiley &
Sons, 1987.

[5] ASME, “Standard for verification and validation in computational fluid dynamics and
heat transfer v v 20 - 2009(r2021),” 2009, aSME (American Society of Mechanical
Engineers). [Online]. Available: https://www.asme.org/codes-standards/find-codes-standards/
v-v-20-standard-verification-validation-computational-fluid-dynamics-heat-transfer/2009/
print-book

[6] ——, “Verification, validation, and uncertainty quantification terminology in computational
modeling and simulation vvuq 1 - 2022,” p. 24, 2022, iSBN: 9780791875506. [Online].
Available: https://www.asme.org/codes-standards/find-codes-standards

[7] P. J. Roache, Fundamentals of verification and validation. hermosa publ., 2009.
[Online]. Available: https://fenix.tecnico.ulisboa.pt/downloadFile/2815368242400390/FVV
Roache 2009.pdf

[8] S. Schlesinger, “Terminology for model credibility,” SIMULATION, vol. 32, no. 3, pp. 103–104,
1979. [Online]. Available: https://doi.org/10.1177/003754977903200304

[9] SUSANA-Project, “Report on verification and validation procedures,” EU Framework
Program, Report SUSANA Final Report D4.2 December 2016.p, 2016. [Online].
Available: https://www.h2fc-net.eu/app/download/10705642983/SUSANA+Final+Report+
D4.2+December+2016.pdf?t=1555511013

[10] R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611973228

[11] J. Warner, “Mini tutorial 6: An introduction to uncertainty quantification for modeling &
simulation,” 2023. [Online]. Available: https://youtu.be/7w-K EF2j64?t=418

[12] R. G. McClarren, Uncertainty Quantification and Predictive Computational Science. A
Foundation for Physical Scientists and Engineers. Springer Cham, 2018. [Online]. Available:
https://link-springer-com.ludwig.lub.lu.se/book/10.1007/978-3-319-99525-0

61

https://github.com/robertsawko/pdesoft2016-burgers-uq
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883987013&partnerID=40&md5=03ab957548352bae56469d22b2529ae7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883987013&partnerID=40&md5=03ab957548352bae56469d22b2529ae7
https://link.springer.com/book/10.1007/978-3-319-23395-6
https://www.asme.org/codes-standards/find-codes-standards/v-v-20-standard-verification-validation-computational-fluid-dynamics-heat-transfer/2009/print-book
https://www.asme.org/codes-standards/find-codes-standards/v-v-20-standard-verification-validation-computational-fluid-dynamics-heat-transfer/2009/print-book
https://www.asme.org/codes-standards/find-codes-standards/v-v-20-standard-verification-validation-computational-fluid-dynamics-heat-transfer/2009/print-book
https://www.asme.org/codes-standards/find-codes-standards
https://fenix.tecnico.ulisboa.pt/downloadFile/2815368242400390/FVV_Roache_2009.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/2815368242400390/FVV_Roache_2009.pdf
https://doi.org/10.1177/003754977903200304
https://www.h2fc-net.eu/app/download/10705642983/SUSANA+Final+Report+D4.2+December+2016.pdf?t=1555511013
https://www.h2fc-net.eu/app/download/10705642983/SUSANA+Final+Report+D4.2+December+2016.pdf?t=1555511013
https://epubs.siam.org/doi/abs/10.1137/1.9781611973228
https://youtu.be/7w-K_EF2j64?t=418
https://link-springer-com.ludwig.lub.lu.se/book/10.1007/978-3-319-99525-0

Bibliography Bibliography

[13] O. P. L. Mâıtre and O. M. Knio, Spectral Methods for Uncertainty Quantification With
Applications to Computational Fluid Dynamics, ser. Scientific Computation. Springer Dor-
drecht, 2010. [Online]. Available: https://link.springer.com/book/10.1007/978-90-481-3520-2#
bibliographic-information

[14] J. J. Keenan, D. V. Makarov, and V. V. Molkov, “Modelling and simulation of high-pressure
hydrogen jets using notional nozzle theory and open source code openfoam,” International
Journal of Hydrogen Energy, vol. 42, no. 11, pp. 7447–7456, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360319916301598

[15] T. Lu and J. Gong, “Affecting mechanism of partition boards on hydrogen dispersion in
confined space with symmetrical lateral openings,” International Journal of Hydrogen Energy,
vol. 46, no. 78, pp. 38 944–38 958, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0360319921036582

[16] S. I. f. Standarder and S.-E. I. 13943:2017, “Fire safety – vocabulary (iso 13943:2017),” 2017.
[Online]. Available: https://www.sis.se/produkter/terminologi-och-dokumentation/ordlistor/
miljo-och-halsoskydd/ss-en-iso-139432017/

[17] D. Xiu and G. E. Karniadakis, “Supersensitivity due to uncertain boundary conditions,”
International Journal for Numerical Methods in Engineering, vol. 61, no. 12, 2004. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1152

[18] ——, “The wiener–askey polynomial chaos for stochastic differential equations,” SIAM Journal
on Scientific Computing, vol. 24, no. 2, pp. 619–644, 2002, doi: 10.1137/S1064827501387826.
[Online]. Available: https://doi.org/10.1137/S1064827501387826

[19] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that
generalize Jacobi polynomials. American Mathematical Society, 1985. [Online]. Available:
https://www.ams.org/books/memo/0319/

[20] M. P. Bonkile, A. Awasthi, C. Lakshmi, V. Mukundan, and V. S.
Aswin, “A systematic literature review of burgers’ equation with recent ad-
vances,” Pramana - Journal of Physics, vol. 90, no. 6, 2018. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046302650&doi=10.1007%
2fs12043-018-1559-4&partnerID=40&md5=c29acd331cea3278444820cc9810b848

[21] A. E. Taigbenu, Burgers Equation. Boston, MA: Springer US, 1999, pp. 195–216. [Online].
Available: https://doi.org/10.1007/978-1-4757-6738-4 7

[22] C. B. Laney, Ed., Scalar Conservation Laws. Cambridge: Cambridge University
Press, 1998, pp. 48–70. [Online]. Available: https://www.cambridge.org/core/product/
114E78D6BC0FF6691B3CA280A0CF04A2

[23] L. J., “Nonlinear singular perturbation problems and the engquist–osher difference scheme,”
1981, technical Report 8115.

[24] “Openfoam guide/finite volume method (openfoam).” [Online]. Available: https://
openfoamwiki.net/index.php/OpenFOAM guide/Finite volume method (OpenFOAM)

[25] J.-L. Peube, Thermal Systems and Models. Wiley, 2009, pp. 405–475. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470611500.ch8

[26] P. Pettersson, G. Iaccarino, and J. Nordström, “Numerical analysis of the burgers’ equation
in the presence of uncertainty,” Journal of Computational Physics, vol. 228, no. 22,
pp. 8394–8412, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0021999109004471

62

https://link.springer.com/book/10.1007/978-90-481-3520-2#bibliographic-information
https://link.springer.com/book/10.1007/978-90-481-3520-2#bibliographic-information
https://www.sciencedirect.com/science/article/pii/S0360319916301598
https://www.sciencedirect.com/science/article/pii/S0360319921036582
https://www.sciencedirect.com/science/article/pii/S0360319921036582
https://www.sis.se/produkter/terminologi-och-dokumentation/ordlistor/miljo-och-halsoskydd/ss-en-iso-139432017/
https://www.sis.se/produkter/terminologi-och-dokumentation/ordlistor/miljo-och-halsoskydd/ss-en-iso-139432017/
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1152
https://doi.org/10.1137/S1064827501387826
https://www.ams.org/books/memo/0319/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046302650&doi=10.1007%2fs12043-018-1559-4&partnerID=40&md5=c29acd331cea3278444820cc9810b848
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046302650&doi=10.1007%2fs12043-018-1559-4&partnerID=40&md5=c29acd331cea3278444820cc9810b848
https://doi.org/10.1007/978-1-4757-6738-4_7
https://www.cambridge.org/core/product/114E78D6BC0FF6691B3CA280A0CF04A2
https://www.cambridge.org/core/product/114E78D6BC0FF6691B3CA280A0CF04A2
https://openfoamwiki.net/index.php/OpenFOAM_guide/Finite_volume_method_(OpenFOAM)
https://openfoamwiki.net/index.php/OpenFOAM_guide/Finite_volume_method_(OpenFOAM)
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470611500.ch8
https://www.sciencedirect.com/science/article/pii/S0021999109004471
https://www.sciencedirect.com/science/article/pii/S0021999109004471

Bibliography Bibliography

[27] R. J. LeVeque, Numerical methods for conservation laws, 2nd ed. Birkhäuser, 1992, vol. 214.
[Online]. Available: https://link.springer.com/book/10.1007/978-3-0348-8629-1

[28] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical
introduction, 3rd ed. Springer Science & Business Media, 2013. [Online]. Available:
https://link.springer.com/book/10.1007/b79761

[29] R. Ghanem, H. Owhadi, and D. Higdon, Handbook of uncertainty quantifica-
tion, ser. Handbook of Uncertainty Quantification. Springer International Pub-
lishing, 2017, export Date: 16 May 2023; Cited By: 58. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020310085&doi=10.1007%
2f978-3-319-12385-1&partnerID=40&md5=0fd5931878488a2bb56f1c7fcb55dfd6

[30] M. P. Pettersson, G. Iaccarino, and J. Nordstrom, Polynomial chaos methods for hyperbolic
partial differential equations, ser. Springer Math Eng. Springer, 2015, vol. 10. [Online].
Available: https://link-springer-com.ludwig.lub.lu.se/book/10.1007/978-3-319-10714-1

[31] C. Greenshields and H. Weller, Notes on Computational Fluid Dynamics: General Principles.
Reading, UK: CFD Direct Ltd, 2022. [Online]. Available: https://doc.cfd.direct/notes/
cfd-general-principles/

[32] “Pyfoam 2023.7,” accessed: 2024-11-18. [Online]. Available: https://pypi.org/project/PyFoam/

[33] “Chaospy — chaospy 4.3.13 documentation,” accessed: 2024-11-18. [Online]. Available:
https://chaospy.readthedocs.io/en/master/

[34] National Institute of Standards and Technology (NIST), Engineering Statistics Handbook,
U.S. Department of Commerce, 2023. [Online]. Available: https://www.itl.nist.gov/div898/
handbook/mpc/section5/mpc57.htm

[35] “CFD with OpenSource Software,” http://www.tfd.chalmers.se/∼hani/kurser/OS CFD/, ac-
cessed: 2020-07-21.

[36] “Linear-upwind divergence scheme,openfoam.” [Online]. Available: https://www.openfoam.
com/documentation/guides/latest/doc/guide-schemes-divergence-linear-upwind.html

[37] “Preconditioned bi-conjugate gradient (pbicgstab),openfoam.” [Online]. Available: https:
//www.openfoam.com/documentation/guides/latest/doc/guide-solvers-cg-pbicgstab.html

[38] “Dilu preconditioner,openfoam.” [Online]. Available: https://www.openfoam.com/
documentation/guides/latest/doc/guide-solvers-cg-preconditioner-dilu.html

63

https://link.springer.com/book/10.1007/978-3-0348-8629-1
https://link.springer.com/book/10.1007/b79761
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020310085&doi=10.1007%2f978-3-319-12385-1&partnerID=40&md5=0fd5931878488a2bb56f1c7fcb55dfd6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020310085&doi=10.1007%2f978-3-319-12385-1&partnerID=40&md5=0fd5931878488a2bb56f1c7fcb55dfd6
https://link-springer-com.ludwig.lub.lu.se/book/10.1007/978-3-319-10714-1
https://doc.cfd.direct/notes/cfd-general-principles/
https://doc.cfd.direct/notes/cfd-general-principles/
https://pypi.org/project/PyFoam/
https://chaospy.readthedocs.io/en/master/
https://www.itl.nist.gov/div898/handbook/mpc/section5/mpc57.htm
https://www.itl.nist.gov/div898/handbook/mpc/section5/mpc57.htm
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes-divergence-linear-upwind.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes-divergence-linear-upwind.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-solvers-cg-pbicgstab.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-solvers-cg-pbicgstab.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-solvers-cg-preconditioner-dilu.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-solvers-cg-preconditioner-dilu.html

Study questions

1. What is the difference between Verification and Validation (V&V)?

2. Which are the key steps in Uncertainty Quantification (UQ)?

3. What is the main difference between intrusive and non-intrusive UQ propagation methods?

4. What is the main significant aspect of generalised Polynomial Chaos (gPC)?

5. Why is normalising orthogonal polynomials relevant?

64

Appendix A

Solvers Source Code

A.1 myBurgersFoam Solver

A.1.1 myBurgersFoam.C

Listing A.1: myBurgersFoam.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2019-2020 OpenCFD Ltd.

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

myBurgersFoam

Group

grpBasicSolvers

Description

This implementation provides a solution to the one-dimensional viscous

Burgers' equation, a fundamental partial differential equation in fluid

mechanics modelling the behaviour of a viscous fluid. The equation, which

incorporates nonlinear convection and diffusion effects, constitutes a

fundamental model for investigating diverse physical phenomena, including

shock waves and turbulence.

The 1D viscous Burgers' equation is given by:

\f[

65

A.1. myBurgersFoam Solver Appendix A. Solvers Source Code

\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} =

\nu \frac{\partial^2 u}{\partial x^2}

\f]

where (u(x,t)) is the velocity field, (\nu) is the kinematic viscosity,

and (x) and (t) are the spatial and temporal coordinates, respectively.

SourceFiles

burgersFoam.C

SourceLiterature

- Book chapter 7 "Burgers Equation" "The Green Element Method" Taigbenu,

Akpofure E. (1999)

-UEqn from EQ.(1) "Supersensitivity due to uncertain boundary conditions"

Xiu, Dongbin Karniadakis, George Em (2004)

---/

#include "fvCFD.H"// Include the class declarations

#include "fvOptions.H"// Include the class declarations

#include "simpleControl.H"// Prepare to read the SIMPLE sub-dictionary

// * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"// Set the correct path

#include "createTime.H"// Create the time

#include "createMesh.H"// Create the mesh

simpleControl simple(mesh);

#include "createFields.H"

#include "createFvOptions.H"

// * //

Info<< "\nCalculating Deterministic 1D-Burgers Equation\n" << endl;

#include "CourantNo.H"

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

while (simple.correctNonOrthogonal())

{

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ 0.5 * fvm::div(phi, U)

- fvm::laplacian(nu, U)

==

fvOptions(U)

);

UEqn.relax();

UEqn.solve();

}

phi = fvc::flux(U);

runTime.write();

runTime.printExecutionTime(Info);

}

Info<< "End\n" << endl;

return 0;

}

66

A.1. myBurgersFoam Solver Appendix A. Solvers Source Code

// *** //

A.1.2 createFields.H

Listing A.2: myBurgersFoam.C (createFields.H)

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

Info<< "Reading viscosity nu\n" << endl;

// Define kinematic viscosity 'nu' (read from transportProperties)

dimensionedScalar nu

(

"nu", // Name: kinematic viscosity

dimensionSet(0, 2, -1, 0, 0, 0, 0), // Units: m^2/s

transportProperties // Read from dictionary

);

#include "createPhi.H"

A.1.3 Make Folder

Listing A.3: myBurgersFoam.C (files)

myBurgersFoam.C

EXE = $(FOAM_USER_APPBIN)/myBurgersFoam

Listing A.4: myBurgersFoam.C (options)

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/fvOptions/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude

67

A.2. myGPCBurgersFoam Solver Appendix A. Solvers Source Code

EXE_LIBS = \

-lfiniteVolume \

-lfvOptions \

-lmeshTools \

-lsampling

A.2 myGPCBurgersFoam Solver

A.2.1 myGPCBurgersFoam.C

Listing A.5: myGPCBurgersFoam.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2019-2020 OpenCFD Ltd.

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

myGPCBurgersFoam

Group

grpStochasticSolvers (there is no a group yet as far as I know)

Description

Solves Viscous Burgers Equation using General Polynomial Chaos Method

SourceFiles

myGPCBurgersFoam.C

SourceLiterature

- UhatEqn from EQ.(6.33) page 76 section 6.5 Nonlinear Problems

Book"Numerical methods for stochastic computations: A spectral method

approach" Xiu, D.(2010)

-"Supersensitivity due to uncertain boundary conditions"

Xiu, Dongbin Karniadakis, George Em (2004)

---/

#include "fvCFD.H" // Include the class declarations

#include "fvOptions.H" // Include the class declarations

#include "simpleControl.H" // Prepare to read the SIMPLE sub-dictionary

// * //

68

A.2. myGPCBurgersFoam Solver Appendix A. Solvers Source Code

int main(int argc, char *argv[])

{

#include "setRootCase.H" // Set the correct path

#include "createTime.H" // Create the time

#include "createMesh.H" // Create the mesh

simpleControl simple(mesh);// Read the SIMPLE sub-dictionary

#include "createFields.H"

#include "createFvOptions.H"

// * //

Info<< "\nCalculating gPC 1D-Burgers Equation\n" << endl;

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

while (simple.correctNonOrthogonal())

{

forAll(Uhat, k)

{

fvVectorMatrix UhatEqn

(

fvm::ddt(Uhat[k])

-

fvm::laplacian(nu, Uhat[k])

);

forAll(Uhat, i)

{

forAll(Uhat, j)

{

if(j == k)

{

UhatEqn += (*e)[i][j][k] * 0.5 * fvm::div(phihat[i], Uhat[j]);

}

else

{

UhatEqn += (*e)[i][j][k] * 0.5 * fvc::div(phihat[i], Uhat[j]);

}

}

}

UhatEqn.relax();

UhatEqn.solve();

phihat[k] = fvc::flux(Uhat[k]);

}

}

runTime.write();

runTime.printExecutionTime(Info);

}

Info<< "End\n" << endl;

return 0;

}

// *** //

69

A.2. myGPCBurgersFoam Solver Appendix A. Solvers Source Code

A.2.2 createFields.H

Listing A.6: myGPCBurgersFoam.C (createFields.H)

//---

Info<< "Reading UQProperties\n" << endl;

IOdictionary UQProperties

(

IOobject

(

"UQProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ,

IOobject::NO_WRITE

)

);

label order

(

readLabel(UQProperties.lookup("order")) //need readLabel!

);

//---

Info<< "Initialize Galerkin Tensor based on order\n" << endl;

autoPtr<Foam::List<Foam::List<Foam::List<scalar>>>> e(

new Foam::List<Foam::List<Foam::List<scalar>>>(

order + 1,

Foam::List<Foam::List<scalar>>(

order + 1,

Foam::List<scalar>(

order + 1, 0.0

)

)

)

);

// // Verification of the initialization of the tensor-------------------------

// Info << "Verifying Tensor e Initialization...\n" << endl;

// for (int i = 0; i <= order; ++i)

// {

// for (int j = 0; j <= order; ++j)

// {

// for (int k = 0; k <= order; ++k)

// {

// // Print the value of each element

// Info << "e[" << i << "][" << j << "][" << k << "] = "

// << (*e)[i][j][k] << endl;

// // Optional: Check if the value is zero

// if ((*e)[i][j][k] == 0.0)

// {

// Info << "Coefficient e[" << i << "][" << j << "]["

// << k << "] is correctly initialized to 0.0." << endl;

// }

// }

// }

// }

//---

Info<< "Reading gPCCoeff\n" << endl;

IOdictionary gPCCoeff

(

IOobject

(

"gPCCoeff",

runTime.constant(),

70

A.2. myGPCBurgersFoam Solver Appendix A. Solvers Source Code

mesh,

IOobject::MUST_READ,

IOobject::NO_WRITE

)

);

for (int i = 0; i <= order; ++i)

{

for (int j = 0; j <= order; ++j)

{

for (int k = 0; k <= order; ++k)

{

word entryName = "e[" + Foam::name(i) + "][" +

Foam::name(j) + "][" + Foam::name(k) + "]";

if (gPCCoeff.found(entryName))

{

// Assign value to the tensor

(*e)[i][j][k] = readScalar(gPCCoeff.lookup(entryName));

// Verification: Print the entry name and value

Info << "Loaded coefficient " << entryName << ": "

<< (*e)[i][j][k] << endl;

}

// else

// {

// // Debugging: Warn if the entry is missing

// // Warning << "Coefficient " << entryName

// // << " not found in gPCCoeff!" << endl;

// }

}

}

}

//---

PtrList<volVectorField> Uhat(order + 1);

PtrList<surfaceScalarField> phihat(order + 1);

forAll(Uhat, i)

{

Info<< "Reading field Uhat" << i <<endl;

Uhat.set(i, new volVectorField(

IOobject

(

"Uhat" + std::to_string(i),

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh));

phihat.set(i, new surfaceScalarField(

IOobject

(

"phihat" + std::to_string(i),

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

linearInterpolate(Uhat[i]) & mesh.Sf()));

}

//---

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties

(

IOobject

(

71

A.2. myGPCBurgersFoam Solver Appendix A. Solvers Source Code

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

//---

Info<< "Reading viscosity nu\n" << endl;

// Define kinematic viscosity 'nu' (read from transportProperties)

dimensionedScalar nu

(

"nu", // Name: kinematic viscosity

dimensionSet(0, 2, -1, 0, 0, 0, 0), // Units: m^2/s

transportProperties // Read from dictionary

);

//---

A.2.3 Make Folder

Listing A.7: myGPCBurgersFoam.C (files)

myGPCBurgersFoam.C

EXE = $(FOAM_USER_APPBIN)/myGPCBurgersFoam

Listing A.8: myBurgersFoam.C (options)

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/fvOptions/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude

EXE_LIBS = \

-lfiniteVolume \

-lfvOptions \

-lmeshTools \

-lsampling

72

Appendix B

Case Studies Files

B.1 deterministicBurgersBCs Study

B.1.1 Allrun

Listing B.1: Allrun

#!/bin/sh

#--

cd "${0%/*}" || exit # Run from this directory

. ${WM_PROJECT_DIR:?}/bin/tools/RunFunctions # Tutorial run functions

. ${WM_PROJECT_DIR:?}/bin/tools/CleanFunctions # Tutorial clean functions

#--Settings--

Cases

setups="

Case_1_detLBBCs_Verification

Case_2_detUBBCs_Verification

"

flag to enable computations in parallel mode

parallel=true

#--Functions---

Collect results into a given path

and clean the case for the next run

Arguments:

$1 = Path to move results

Outputs:

Writes info to stdout

collect()

{

[$# -eq 0] && { echo "Usage: $0 dir-model"; exit 1; }

collection="$1"

dirResult=./"$collection"
dirResultsSampledData=./Results/sampledData/"$collection"

if [! -d "$dirResult"]

then

echo " #--Collecting results and settings into $dirResult"

mkdir -p "$dirResult"
mkdir -p "$dirResultsSampledData"

73

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

endTime=$(foamListTimes -latestTime)

cp -rf postProcessing "$dirResultsSampledData"
mv -f $(foamListTimes) "$dirResult"
[-d postProcessing] && mv -f postProcessing "$dirResult"
[-d processor0] && mv -f processor* "$dirResult"
mv -f log.* "$dirResult"

#mv -f profiles.dat "$dirResult"
#cp -f system/{fv*,controlDict} constant/*Properties "$dirSettings"

cp -rf system/ "$dirResult"
cp -rf constant/ "$dirResult"
mv -f 0/ "$dirResult"
mv -f VTK/ "$dirResult"
#mv -f dynamicCode

runApplication paraFoam -builtin -touch -case "$dirResult"
echo " #--Cleaning up the case"

cleanTimeDirectories

cleanAuxiliary

cleanPostProcessing

else

echo " #--Directory $dirResult already exists"

echo " #--Skipping the computation"

fi

}

#--

for setup in $setups
do

#--Status Message--

echo ""

echo "#--Computations for Model: $setup--"
echo ""

dirSetup="setups.orig/$setup"
#---Alerts--

if [! -d "$dirSetup"]

then

echo "Setup directory: $dirSetup" \

"could not be found - skipping execution" 1>&2

exit 1

fi

#--Copy Files--

cp -rfL "$dirSetup/0.orig" .

cp -rfL "$dirSetup/constant" .

cp -rfL "$dirSetup/system" .

cp -rf 0.orig/ 0/

canCompile || exit 0 # Dynamic code

if [! -d constant/polyMesh]

then

#--Geometry & Mesh---

echo ""

echo "#--Geometry & Mesh Creation"

echo ""

runApplication blockMesh | tee log.blockMesh

echo ""

echo "#--Mesh Conversion & Check"

echo ""

runApplication checkMesh -allTopology -allGeometry -constant | tee log.checkMesh

74

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

fi

#--Parallel Mode---

if ["$parallel" = true]

then

echo ""

echo "#--Parallel Mode"

echo ""

runApplication decomposePar

runParallel -s parallel renumberMesh -overwrite

runParallel $(getApplication) | tee log.solver

runApplication reconstructPar

runApplication foamToVTK

else

#--Serial Mode---

echo ""

echo "#--Serial Mode"

echo ""

runApplication $(getApplication)
#runApplication pyFoamPlotRunner.py myBurgersFoam #with residual monitor

runApplication foamToVTK

fi

collect "$setup"

#--Clean Folder--

rm -rf system

rm -rf 0.orig

rm -rf constant

rm -rf dynamicCode

done

#--Run Plot Files--

chmod 755 ./../postProcessingScripts/deterministicSolverVerification_v003.py

python3 ./../postProcessingScripts/deterministicSolverVerification_v003.py

B.1.2 Allclean

Listing B.2: Allclean

#!/bin/sh

#--

Source the OpenFOAM environment

#source /OpenFOAM/OpenFOAM-v2112/etc/bashrc

Confirm the sourcing by printing OpenFOAM version

#foamVersion

#--

cd "${0%/*}" || exit # Run from this directory

. ${WM_PROJECT_DIR:?}/bin/tools/CleanFunctions # Tutorial clean functions

===

cleanCase0

#--

rm -rf 0.orig

rm -rf constant

rm -rf system

rm -rf VTK

rm -rf Case_1_detLBBCs_Verification

rm -rf Case_2_detUBBCs_Verification

rm -rf dynamicCode

rm -rf ./Results/sampledData/Case_1_detLBBCs_Verification

75

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

rm -rf ./Results/sampledData/Case_2_detUBBCs_Verification

rm -rf Results/plots/*.png

rm -rf Results/plots/*.eps

rm -rf Results/plots/*.pdf

rm -rf Results/resultsData/*.txt

rm -rf Py*

rm -rf Gn*

===

B.1.3 Case 1 detLBBCs Verification

Note

Implementation of Case 2 detUBBCs Verification is the same as for Case 1 detLBBCs Verification,
except, that the perturbation delta $lower in Listing B.3 0.orig (U) should replaced by delta

$upper. The source code, including the solver and accompanying case studies, is available to the
public at [35]

0.orig

Listing B.3: 0.orig (U)

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

location "0";

object U;

}

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

#include "../constant/UQProperties"

Ux 1;// Replace with your desired velocity value

delta $lower;

boundaryField

{

left

{

type fixedValue; // Specify a fixed velocity at x = -1

value uniform (#calc "($Ux + $delta)" 0 0);

}

right

{

type fixedValue; // Specify a fixed velocity at x = 1

value uniform (-1 0 0); // Replace with your desired velocity value

}

other

{

type empty; // Ignore y and z directions for 1D simulation

}

}

76

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

constant

Listing B.4: transportProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object transportProperties;

}

// * //

nu nu [0 2 -1 0 0 0 0] 0.05;// Replace with your desired viscosity value

// *** //

Listing B.5: UQProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object UQProperties;

}

// * //

//--Legendre Polynomial--

// Specify parameters

order 3; // Adjust as needed

poly_type legendre;

lower 0; // Adjust as needed "a" lower bound

upper 0.1; // Adjust as needed "b" upper bound

// Output "tensorCoeff" (3rd order tensor) to file "gPCCoeff".

calculation_type tensorCoeff;

// BCs

Ux_LBC 1; // Specify a fixed velocity at x = -1

Ux_RBC -1; // Specify a fixed velocity at x = 1

System

Listing B.6: blockMeshDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

77

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// Scaling factor applied to all coordinates

scale 1;

// Vertex definitions for the 1D domain along the x-axis.

// Transition refinement starts from x = -0.2 to cover the region of interest.

vertices

(

(-1 0 0) // Vertex 0: Start of the domain (left boundary)

(-0.2 0 0) // Vertex 1: Start of refined region based on the paper approach

(1 0 0) // Vertex 2: End of the domain (right boundary)

(-1 1 0) // Vertex 3: y-direction boundary for empty boundary

(-0.2 1 0) // Vertex 4

(1 1 0) // Vertex 5

(-1 0 1) // Vertex 6: z-direction boundary for empty boundary

(-0.2 0 1) // Vertex 7

(1 0 1) // Vertex 8

(-1 1 1) // Vertex 9

(-0.2 1 1) // Vertex 10

(1 1 1) // Vertex 11

);

// Block definitions:

// - Coarse mesh on the left side up to x = -0.2

// - Refined mesh from x = -0.2 to x = 1

blocks

(

// Coarse block from x = -1 to x = -0.2

hex (0 1 4 3 6 7 10 9) (5000 1 1) simpleGrading (1 1 1) // Adjust cell count as needed

for coarse mesh

// Refined block from x = -0.2 to x = 1

hex (1 2 5 4 7 8 11 10) (25000 1 1) simpleGrading (1 1 1) // Refined block covering the

transition region

);

// Edges section: Empty for this case, as there are no curved edges.

edges

(

);

// Boundary conditions for the mesh:

// - `left` and `right` patches define the physical boundaries at x = -1 and x = 1.

// - `other` boundary is set to empty to ignore y and z directions in a 1D simulation.

boundary

(

left

{

type patch;

faces

(

(0 3 9 6)

);

}

right

{

78

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

type patch;

faces

(

(2 5 11 8)

);

}

other

{

type empty;

faces

(

(0 1 4 3)

(1 2 5 4)

(0 1 7 6)

(1 2 8 7)

(3 4 10 9)

(4 5 11 10)

(6 7 10 9)

(7 8 11 10)

);

}

);

// No merging of patches specified

mergePatchPairs

(

);

Listing B.7: controlDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// * //

application myBurgersFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 1000;

deltaT 1e-4;

writeControl timeStep;

writeInterval 1e6;

purgeWrite 0;

writeFormat ascii;

79

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

writePrecision 10;

writeCompression off;

timeFormat general;

timePrecision 8;

runTimeModifiable true;

// *** //

functions

{

//U Sampling

Usample

{

libs (fieldFunctionObjects);

type sets;

libs (sampling);

writeControl writeTime;

result Usample;

setFormat raw;

interpolationScheme cellPoint;

sets

(

lineX // Sampling line along the x-axis

{

type uniform;

axis x;

start (-1 0 0); // Start point of the line

end (1 0 0); // End point of the line

nPoints 10000; // Number of points along the line

}

);

fields

(

U

);

}

}

Listing B.8: decomposeParDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object decomposeParDict;

}

// * //

numberOfSubdomains 4;

method hierarchical;

coeffs

80

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

{

n (4 1 1);

// delta 0.001; //< default value = 0.001

// order xyz; //< default order = xyz

}

// *** //

/*numberOfSubdomains 4;

method scotch;

// *** //

Listing B.9: fvSchemes

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;

}

// * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

}

divSchemes

{

default none;

"div(phi,U)" Gauss linearUpwind grad(U);

}

laplacianSchemes

{

default none;

"laplacian(nu,U)" Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

81

B.1. deterministicBurgersBCs Study Appendix B. Case Studies Files

// *** //

Listing B.10: fvSolution

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * //

solvers

{

U

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-12;

relTol 0;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 0;

residualControl

{

U 1e-12;

}

relaxationFactors

{

equations

{

U 1;

}

}

}

82

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

B.2 stochasticBurgersBCs Study

B.2.1 Allrun

Listing B.11: Allrun

#!/bin/sh

#--

cd "${0%/*}" || exit # Run from this directory

. ${WM_PROJECT_DIR:?}/bin/tools/RunFunctions # Tutorial run functions

. ${WM_PROJECT_DIR:?}/bin/tools/CleanFunctions # Tutorial clean functions

#--Settings--

Cases

setups="

Case_1_stocLBBCs_Verification

Case_2_stocUBBCs_Verification

Case_3_stocBCs_UQ

"

flag to enable computations in parallel mode

parallel=true

coeffCalc=true

#--Functions---

Collect results into a given path

and clean the case for the next run

Arguments:

$1 = Path to move results

Outputs:

Writes info to stdout

collect()

{

[$# -eq 0] && { echo "Usage: $0 dir-model"; exit 1; }

collection="$1"

dirResult=./"$collection"
dirResultsSampledData=./Results/sampledData/"$collection"

if [! -d "$dirResult"]

then

echo " #--Collecting results and settings into $dirResult"

mkdir -p "$dirResult"
mkdir -p "$dirResultsSampledData"

endTime=$(foamListTimes -latestTime)

cp -rf postProcessing "$dirResultsSampledData"
mv -f $(foamListTimes) "$dirResult"
[-d postProcessing] && mv -f postProcessing "$dirResult"
[-d processor0] && mv -f processor* "$dirResult"
mv -f log.* "$dirResult"

#mv -f profiles.dat "$dirResult"
#cp -f system/{fv*,controlDict} constant/*Properties "$dirSettings"

cp -rf system/ "$dirResult"
cp -rf constant/ "$dirResult"
mv -f 0/ "$dirResult"
mv -f VTK/ "$dirResult"
#mv -f dynamicCode

runApplication paraFoam -builtin -touch -case "$dirResult"
echo " #--Cleaning up the case"

cleanTimeDirectories

83

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

cleanAuxiliary

cleanPostProcessing

else

echo " #--Directory $dirResult already exists"

echo " #--Skipping the computation"

fi

}

#--

for setup in $setups
do

#--Status Message--

echo ""

echo "#--Computations for Model: $setup--"
echo ""

dirSetup="setups.orig/$setup"
#---Alerts--

if [! -d "$dirSetup"]

then

echo "Setup directory: $dirSetup" \

"could not be found - skipping execution" 1>&2

exit 1

fi

#--Copy Files--

cp -rfL "$dirSetup/0.orig" .

cp -rfL "$dirSetup/constant" .

cp -rfL "$dirSetup/system" .

cp -rf 0.orig/ 0/

canCompile || exit 0 # Dynamic code

if [! -d constant/polyMesh]

then

#--Geometry & Mesh---

echo ""

echo "#--Geometry & Mesh Creation"

echo ""

runApplication blockMesh | tee log.blockMesh

echo ""

echo "#--Mesh Conversion & Check"

echo ""

runApplication checkMesh -allTopology -allGeometry -constant | tee log.checkMesh

#--Generate gPCCoeff---

if ["$coeffCalc" = true]

then

echo ""

echo "#--Generating and Verfying gPCCoeff..."

echo ""

chmod 755 ./../preProcessingScripts/gPCCoeff_v003.py

python3 ./../preProcessingScripts/gPCCoeff_v003.py

else

echo ""

echo "#--Using Pre-Computed Values gPCCoeff"

echo ""

fi

fi

#--Parallel Mode---

if ["$parallel" = true]

then

84

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

echo ""

echo "#--Parallel Mode"

echo ""

runApplication decomposePar

runParallel -s parallel renumberMesh -overwrite

runParallel $(getApplication) | tee log.solver

runApplication reconstructPar

runApplication foamToVTK

else

#--Serial Mode---

echo ""

echo "#--Serial Mode"

echo ""

runApplication $(getApplication)
#runApplication pyFoamPlotRunner.py myGPCBurgersFoam #with residual monitor

runApplication foamToVTK

fi

collect "$setup"

#--Clean Folder--

rm -rf system

rm -rf 0.orig

rm -rf constant

rm -rf dynamicCode

done

#--Run Plot Files--

chmod 755 ./../postProcessingScripts/stochasticSolverVerification_v000.py

python3 ./../postProcessingScripts/stochasticSolverVerification_v000.py

chmod 755 ./../postProcessingScripts/stochasticSolverUQ_v002.py

python3 ./../postProcessingScripts/stochasticSolverUQ_v002.py

B.2.2 Allclean

Listing B.12: Allclean

#!/bin/sh

#--

Source the OpenFOAM environment

#source /OpenFOAM/OpenFOAM-v2112/etc/bashrc

Confirm the sourcing by printing OpenFOAM version

#foamVersion

#--

cd "${0%/*}" || exit # Run from this directory

. ${WM_PROJECT_DIR:?}/bin/tools/CleanFunctions # Tutorial clean functions

===

cleanCase0

#--

rm -rf 0.orig

rm -rf constant

rm -rf system

rm -rf VTK

rm -rf Case_1_stocLBBCs_Verification

rm -rf Case_2_stocUBBCs_Verification

rm -rf Case_3_stocBCs_UQ

rm -rf dynamicCode

rm -rf ./Results/sampledData/Case_1_stocLBBCs_Verification

rm -rf ./Results/sampledData/Case_2_stocUBBCs_Verification

85

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

rm -rf ./Results/sampledData/Case_3_stocBCs_UQ

rm -rf Results/plots/*.png

rm -rf Results/plots/*.eps

rm -rf Results/plots/*.pdf

rm -rf Results/resultsData/*.txt

rm -rf Py*

rm -rf Gn*

===

B.2.3 Case 3 stocBCs UQ

Note

Implementations of Case 1 stocLBBCs Verification and Case 2 stocUBBCs Verification is the
same as for Case 3 stocBCs UQ, except for the minor differences:

Case 1 stocLBBCs Verification

Uhat0: deltaMean is set deltaMean $a;

Uhat1,Uhat2,Uhat3:deltaSigma is set to deltaSigma 0;

Case 2 stocUBBCs Verification

Uhat0: deltaMean is set deltaMean $b;

Uhat1,Uhat2,Uhat3:deltaSigma is set to deltaSigma 0;

The source code, including the solver and accompanying case studies, is available to the public at
[35]

0.orig

.

Listing B.13: 0.orig (Uhat0)

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

location "0";

object Uhat0;

}

/*---

Note:

-Uniform Distributed Random Variable (mean and standard deviation)

delta approx. U(0,epsilon) is a uniform random variable in (0,epsilon)

delta(a,b) -> delta(0,0.1)-> a = 0, b = 0.1

deltaMean = (b - a)/2

delta_sigma = (b-a)/(2.0*sqrt(3.0)

source: Book page 333-334 (A.11 Uniform Distribution A.11.3 Properties)

86

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

"Uncertainty Quantification and Predictive Computational Science.

A Foundation for Physical Scientists and Engineers" Ryan G. McClarren (2018)

---*/

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0.0 0.0 0.0);

#include "../constant/UQProperties"

a $lower; // a 0.0;

b $upper; // b 0.1;

Ux_LBC $Ux_LBC; // Specify a fixed velocity at x = -1

Ux_RBC $Ux_RBC; // Specify a fixed velocity at x = 1

deltaMean #calc "(($a + $b)/2.0)"; // Uncomment for a real stochastic solver.

boundaryField

{

left

{

type fixedValue;

value uniform (#calc "($Ux_LBC + $deltaMean)" 0.0 0.0);

}

right

{

type fixedValue;

value uniform ($Ux_RBC 0.0 0.0);

}

other

{

type empty; // Ignore y and z directions for 1D simulation

}

}

Listing B.14: 0.orig (Uhat1)

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

location "0";

object Uhat1;

}

// * //

/*---

Note:

-Uniform Distributed Random Variable (mean and standard deviation)

delta approx. U(0,epsilon) is a uniform random variable in (0,epsilon)

delta(a,b) -> delta(0,0.1)-> a = 0, b = 0.1

deltaMean = (b - a)/2

delta_sigma = (b-a)/(2.0*sqrt(3.0)

source: Book page 333-334 (A.11 Uniform Distribution A.11.3 Properties)

"Uncertainty Quantification and Predictive Computational Science.

A Foundation for Physical Scientists and Engineers" Ryan G. McClarren (2018)

---*/

87

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0.0 0.0 0.0);

#include "../constant/UQProperties"

a $lower; // a 0.0;

b $upper; // b 0.1;

deltaSigma #calc "($b - $a) / (2.0 * sqrt(3.0))";

boundaryField

{

left

{

type fixedValue;

value uniform ($deltaSigma 0.0 0.0);

}

right

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

other

{

type empty;

}

}

// *** //

Listing B.15: 0.orig (Uhat2)

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

location "0";

object Uhat2;

}

/*---

Note:

-More Higher Order Polynomial Terms should be added if the order of the

polynomials are higher than 3rd order

-Higher Order Polynomial Terms set to zero at left BC.

source: Equation (16)"Supersensitivity due to uncertain boundary conditions"

Xiu, Dongbin Karniadakis, George Em (2004)

---*/

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0.0 0.0 0.0);

boundaryField

88

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

{

left

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

right

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

other

{

type empty;

}

}

/*---*/

Listing B.16: 0.orig (Uhat3)

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

location "0";

object Uhat3;

}

/*---

Note:

-More Higher Order Polynomial Terms should be added if the order of the

polynomials are higher than 3rd order

-Higher Order Polynomial Terms set to zero at left BC.

source: Equation (16)"Supersensitivity due to uncertain boundary conditions"

Xiu, Dongbin Karniadakis, George Em (2004)

---*/

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0.0 0.0 0.0);

boundaryField

{

left

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

right

{

type fixedValue;

value uniform (0.0 0.0 0.0);

}

89

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

other

{

type empty;

}

}

/*---*/

constant

Listing B.17: transportProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object transportProperties;

}

// * //

nu nu [0 2 -1 0 0 0 0] 0.05;// Replace with your desired viscosity value

// *** //

Listing B.18: UQProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object UQProperties;

}

// * //

//--Legendre Polynomial--

// Specify parameters

order 3; // Adjust as needed

poly_type legendre;

lower 0.0; // Adjust as needed "a" lower bound

upper 0.1; // Adjust as needed "b" upper bound

// Output "tensorCoeff" (3rd order tensor) to file "gPCCoeff".

calculation_type tensorCoeff;

// BCs

Ux_LBC 1.0; // Specify a fixed velocity at x = -1

90

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

Ux_RBC -1.0; // Specify a fixed velocity at x = 1

System

Listing B.19: blockMeshDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// Scaling factor applied to all coordinates

scale 1;

// Vertex definitions for the 1D domain along the x-axis.

// Transition refinement starts from x = -0.2 to cover the region of interest.

vertices

(

(-1 0 0) // Vertex 0: Start of the domain (left boundary)

(-0.2 0 0) // Vertex 1: Start of refined region based on the paper approach

(1 0 0) // Vertex 2: End of the domain (right boundary)

(-1 1 0) // Vertex 3: y-direction boundary for empty boundary

(-0.2 1 0) // Vertex 4

(1 1 0) // Vertex 5

(-1 0 1) // Vertex 6: z-direction boundary for empty boundary

(-0.2 0 1) // Vertex 7

(1 0 1) // Vertex 8

(-1 1 1) // Vertex 9

(-0.2 1 1) // Vertex 10

(1 1 1) // Vertex 11

);

// Block definitions:

// - Coarse mesh on the left side up to x = -0.2

// - Refined mesh from x = -0.2 to x = 1

blocks

(

// Coarse block from x = -1 to x = -0.2

hex (0 1 4 3 6 7 10 9) (5000 1 1) simpleGrading (1 1 1) // Adjust cell count as needed

for coarse mesh

// Refined block from x = -0.2 to x = 1

hex (1 2 5 4 7 8 11 10) (15000 1 1) simpleGrading (1 1 1) // Refined block covering the

transition region

);

// 2500 7500 coarse mesh

// 2500 12500 medium mesh

// 5000 15000 fine mesh

// 5000 15000 superfine mesh

// (

// // Coarse block from x = -1 to x = -0.2

// hex (0 1 4 3 6 7 10 9) (2500 1 1) simpleGrading (1 1 1) // Adjust cell count as

needed for coarse mesh

91

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

// // Refined block from x = -0.2 to x = 1

// hex (1 2 5 4 7 8 11 10) (5000 1 1) simpleGrading (1 1 1) // Refined block covering

the transition region

//);

// Edges section: Empty for this case, as there are no curved edges.

edges

(

);

// Boundary conditions for the mesh:

// - `left` and `right` patches define the physical boundaries at x = -1 and x = 1.

// - `other` boundary is set to empty to ignore y and z directions in a 1D simulation.

boundary

(

left

{

type patch;

faces

(

(0 3 9 6)

);

}

right

{

type patch;

faces

(

(2 5 11 8)

);

}

other

{

type empty;

faces

(

(0 1 4 3)

(1 2 5 4)

(0 1 7 6)

(1 2 8 7)

(3 4 10 9)

(4 5 11 10)

(6 7 10 9)

(7 8 11 10)

);

}

);

// No merging of patches specified

mergePatchPairs

(

);

Listing B.20: controlDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

92

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

class dictionary;

location "system";

object controlDict;

}

// * //

application myGPCBurgersFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 1000;

deltaT 5e-3;

writeControl timeStep;

writeInterval 1e7;

purgeWrite 0;

writeFormat ascii;

writePrecision 10;

writeCompression off;

timeFormat general;

timePrecision 8;

runTimeModifiable true;

// adjustTimeStep yes;

// maxCo 0.5;

// *** //

functions

{

//U Sampling

Usample

{

libs (fieldFunctionObjects);

type sets;

libs (sampling);

writeControl writeTime;

result Usample;

setFormat raw;

interpolationScheme cellPoint;

sets

(

lineX // Sampling line along the x-axis

{

type uniform;

// object lineX_Uhats;

axis x;

start (-1 0 0); // Start point of the line

end (1 0 0); // End point of the line

nPoints 10000; // Number of points along the line

}

);

fields

(

93

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

"Uhat0"

"Uhat1"

"Uhat2"

"Uhat3"

);

}

}

Listing B.21: decomposeParDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object decomposeParDict;

}

// * //

numberOfSubdomains 4;

method hierarchical;

coeffs

{

n (4 1 1);

// delta 0.001; //< default value = 0.001

// order xyz; //< default order = xyz

}

// *** //

/*numberOfSubdomains 4;

method scotch;

// *** //

Listing B.22: fvSchemes

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;

}

// * //

ddtSchemes

{

94

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

default Euler;

}

gradSchemes

{

default Gauss linear;

}

divSchemes

{

default none;

"div\(phihat.*,Uhat.*\)" Gauss linearUpwind grad(Uhat);

}

laplacianSchemes

{

"laplacian\(nu,Uhat.*\)" Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

// *** //

Listing B.23: fvSolution

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2306 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * //

solvers

{

"Uhat.*"

{

solver PBiCGStab;

preconditioner DILU;

tolerance 1e-12;

relTol 0;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 0;

residualControl

95

B.2. stochasticBurgersBCs Study Appendix B. Case Studies Files

{

"Uhat.*" 1e-12;

}

relaxationFactors

{

equations

{

"Uhat.*" 1;

}

}

}

// *** //

96

Appendix C

Processing Tools

C.1 Pre-processing Tools

C.1.1 Polynomial Triple Product Coefficients (eijk)

Listing C.1: gPCCoeff v003.py

import os

import chaospy as cp

import numpy as np

import math

from datetime import datetime

from read_UQProperties_v001 import read_UQProperties

from gPCVerification_v002 import (orthonormality_verification,

galerkin_coefficient_verification)

Locate UQProperties in the same directory as the script

script_dir = os.path.dirname(os.path.abspath(__file__))

Function to read properties from UQProperties using pyFoam

uqproperties_path = os.path.join(script_dir, "..", "stochasticBurgersBCs_Study",

"constant", "UQProperties")

Function to get the distribution and polynomials based on type

(always normalised)

def generate_distribution_and_polynomials(order, poly_type):

if poly_type.lower() == "legendre":

lower_std = -1 # standard lower bound

upper_std = 1 # standard upper bound

distribution = cp.Uniform(lower=lower_std, upper=upper_std)

polynomials = cp.expansion.legendre(order, lower=lower_std,

upper=upper_std,

physicist=False,

normed=True)

else:

raise ValueError("Unsupported polynomial type. Use 'legendre'.")
return distribution, polynomials

def calculate_triple_product(order, distribution, polynomials):

"""

Calculate triple product coefficients e_ijk using Gaussian Quadrature.

Args:

order: polynomial order

distribution: probability density distribution

polynomials: polynomials expansion coefficients (e.g., Legendre).

Returns:

e_ijk: Triple product coefficients using Gauss Quadrature.

"""

97

C.1. Pre-processing Tools Appendix C. Processing Tools

e_ijk = {}

num_polynomials = len(polynomials)

c = 1 # Classical Gauss Quadrature (c=1)

quadrature_order = math.ceil((3 * order + c)/2)

nodes, weights = cp.generate_quadrature(quadrature_order,

distribution, rule = "gaussian")

for i in range(num_polynomials):

for j in range(num_polynomials):

for k in range(num_polynomials):

Using Quadrature

integrand = (polynomials[i](nodes)

* polynomials[j](nodes)

* polynomials[k](nodes))

e_ijk[(i, j, k)] = np.sum(weights * integrand)

return e_ijk

Main function to calculate tensor coefficients and write output

def calculate_and_write_tensorCoeffs(order, poly_type, calculation_type,

output_path):

Step 1: Generate distribution and polynomials

distribution, polynomials = generate_distribution_and_polynomials(

order, poly_type)

Step 2: Orthonormality Verification

orthonormality_verif_message = orthonormality_verification(polynomials,

distribution,

tol=1e-10,

verbose=True)

Step 3: Calculate tensor coefficients

Calculate tensor coefficients directly due to normalisation

if calculation_type == "tensorCoeff":

tensorCoeffs = calculate_triple_product(order, distribution, polynomials)

else:

raise ValueError("Invalid calculation_type. Choose 'tensorCoeff'.")

Step 4: Galerkin Coefficient Verification

galerkin_coeff_verif_message = galerkin_coefficient_verification(tensorCoeffs, order,

tol=1e-10, verbose=True)

Write output to file in OpenFOAM-friendly format

with open(output_path, "w") as output_file:

output_file.write("/*--------------------------------*- C++

-*----------------------------------*\\\n")

output_file.write("| ========= |

|\n")

output_file.write("| \\\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox |\n")

output_file.write("| \\\\ / O peration | Version: v2306

|\n")

output_file.write("| \\\\ / A nd | Website: www.openfoam.com

|\n")

output_file.write("| \\\\/ M anipulation |

|\n")

output_file.write("

---/\n")

output_file.write("FoamFile\n{\n")

output_file.write(" version 2.0;\n")

output_file.write(" format ascii;\n")

output_file.write(" class dictionary;\n")

output_file.write(" location \"constant\";\n")

output_file.write(" object gPCCoeff;\n")

output_file.write("}\n")

output_file.write(f"// Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\
n")

output_file.write("//

*** //\n\n")

Append Verification Message

98

C.1. Pre-processing Tools Appendix C. Processing Tools

output_file.write(f"// {orthonormality_verif_message}\n\n")

output_file.write(f"// {galerkin_coeff_verif_message}\n\n")

Write computed tensor coefficients in OpenFOAM format

for (i, j, k), value in tensorCoeffs.items():

if not np.isclose(value, 0.0, rtol=1e-6, atol=1e-10):

output_file.write(f"e[{i}][{j}][{k}] {value};\n")

Execute the process by reading UQProperties and generating coefficients

order, poly_type, calculation_type, additional_params = read_UQProperties(uqproperties_path)

output_path = os.path.join(script_dir,"..","stochasticBurgersBCs_Study","constant","gPCCoeff

")

calculate_and_write_tensorCoeffs(order, poly_type, calculation_type, output_path)

C.1.2 Polynomial Triple Product Coefficients (eijk) (Stand-alone Script)

Listing C.2: gPCCoeff standalone v002.py

import os

import chaospy as cp

import numpy as np

import math

from datetime import datetime

from gPCVerification_v002 import (orthonormality_verification,

galerkin_coefficient_verification)

User-defined inputs

POLY_ORDER = 3 # Polynomial expansion order

POLY_TYPE = "legendre" # Polynomial type (e.g., "legendre")

Function to generate distribution and polynomials

def generate_distribution_and_polynomials(order, poly_type):

if poly_type.lower() == "legendre":

lower_std, upper_std = -1, 1 # Standard bounds for Legendre polynomials

distribution = cp.Uniform(lower=lower_std, upper=upper_std)

polynomials = cp.expansion.legendre(

order, lower=lower_std, upper=upper_std, physicist=False, normed=True

)

else:

raise ValueError("Unsupported polynomial type. Use 'legendre'.")
return distribution, polynomials

Function to calculate triple product coefficients

def calculate_triple_product(order, distribution, polynomials):

"""

Calculate triple product coefficients e_ijk using Gaussian Quadrature.

Args:

order: polynomial order

distribution: probability density distribution

polynomials: polynomials expansion coefficients (e.g., Legendre).

Returns:

e_ijk: Triple product coefficients using Gauss Quadrature.

"""

e_ijk = {}

num_polynomials = len(polynomials)

c = 1 # Classical Gauss Quadrature (c=1)

quadrature_order = math.ceil((3 * order + c) / 2)

nodes, weights = cp.generate_quadrature(

quadrature_order, distribution, rule="gaussian"

)

for i in range(num_polynomials):

for j in range(num_polynomials):

for k in range(num_polynomials):

integrand = (

polynomials[i](nodes)

* polynomials[j](nodes)

99

C.1. Pre-processing Tools Appendix C. Processing Tools

* polynomials[k](nodes)

)

e_ijk[(i, j, k)] = np.sum(weights * integrand)

return e_ijk

Main function for coefficient generation and file output

def generate_galerkin_coefficients(order, poly_type):

Step 1: Generate the distribution and polynomials

distribution, polynomials = generate_distribution_and_polynomials(order, poly_type)

Step 2: Orthonormality Verification

orthonormality_verif_message = orthonormality_verification(polynomials,

distribution,

tol=1e-10,

verbose=True)

Step 3: Calculate tensor coefficients

tensorCoeffs = calculate_triple_product(order, distribution, polynomials)

Determine output path in the same folder as this script

script_dir = os.path.dirname(os.path.abspath(__file__))

output_path = os.path.join(script_dir, "gPCCoeff")

Step 4: Galerkin Coefficient Verification

galerkin_coeff_verif_message = galerkin_coefficient_verification(tensorCoeffs, order,

tol=1e-10, verbose=True)

Step 5: Write output in OpenFOAM-friendly format

with open(output_path, "w") as output_file:

output_file.write("/*--------------------------------*- C++

-*----------------------------------*\\\n")

output_file.write("| ========= |

|\n")

output_file.write("| \\\\ / F ield | OpenFOAM: The Open Source CFD

Toolbox |\n")

output_file.write("| \\\\ / O peration | Version: v2306

|\n")

output_file.write("| \\\\ / A nd | Website: www.openfoam.com

|\n")

output_file.write("| \\\\/ M anipulation |

|\n")

output_file.write("

---/\n")

output_file.write("FoamFile\n{\n")

output_file.write(" version 2.0;\n")

output_file.write(" format ascii;\n")

output_file.write(" class dictionary;\n")

output_file.write(" location \"constant\";\n")

output_file.write(" object gPCCoeff;\n")

output_file.write("}\n")

output_file.write(f"// Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\
n")

output_file.write("//

*** //\n\n")

Append Verification Message

output_file.write(f"// {orthonormality_verif_message}\n\n")

output_file.write(f"// {galerkin_coeff_verif_message}\n\n")

Write computed tensor coefficients in OpenFOAM format

for (i, j, k), value in tensorCoeffs.items():

if not np.isclose(value, 0.0, rtol=1e-6, atol=1e-10):

output_file.write(f"e[{i}][{j}][{k}] {value};\n")

print(f"Galekin coefficients written to: {output_path}")

print("You can copy the file to your OpenFOAM case directory under 'constant/'.")

Automatically run the function

if __name__ == "__main__":

print(f"Generating Galerkin coefficients with order={POLY_ORDER} and type='{POLY_TYPE}'"
)

100

C.1. Pre-processing Tools Appendix C. Processing Tools

generate_galerkin_coefficients(POLY_ORDER, POLY_TYPE)

C.1.3 Auxiliary File Orthonormality and Galerkin Coefficient Verifica-
tion

Listing C.3: gPCVerification v002.py

"""

gPCVerification.py

This module provides verification functions for generalised Polynomial Chaos

(gPC) expansions. It combines functionality from Chaospy for precomputing

coefficients and orthonormal polynomials with manual verification methods

based on Rodrigues' formula.

Key Features:

1. Orthonormality Verification:

Verify the orthonormality of polynomial bases used in gPC expansions

(via Chaospy-generated polynomials and distributions). This includes the

computation of the **Gram matrix**, which is verifies against the

identity matrix to confirm orthonormality.

2. Galerkin Coefficient Verification:

Compare manually computed triple product coefficients (using Rodrigues'
formula) with precomputed coefficients (from Chaospy or other sources).

3. Simplified Polynomial Normalisation:

Directly normalise Legendre polynomials based on their known theoretical

properties to ensure properties like mean = 0 and variance = 1.

Key Functions:

- orthonormality_verification:

Computes the **Gram matrix** for the polynomial basis and verifies

its orthonormality against the distribution.

- galerkin_coefficient_verification:

Computes triple product coefficients manually and verifies them against

precomputed values for correctness.

Usage:

1. Use Chaospy to precompute coefficients in your main script.

2. Pass the precomputed coefficients as input to the verification functions.

3. Perform orthonormality checks (via the Gram matrix) and

Galerkin coefficient verification.

Example:

Precomputed coefficients can be generated using Chaospy:

>>> precomputed_coeffs = {...}

>>> galerkin_coefficient_verification(precomputed_coeffs, order=3, tol=1e-10, verbose=

True)

This module enables both numerical and manual verification for robust

gPC expansions, supporting higher polynomial orders and adaptability

to different orthogonal polynomial systems.

"""

import chaospy as cp

import numpy as np

from scipy.integrate import quad

from scipy.special import factorial

"Orthonormality Verification--"

Verify the orthonormality of the generated polynomials.

Checks that <Ii, Ij> = Deltaij (orthonormality).

def orthonormality_verification(polynomials, distribution, tol=1e-10,

verbose=False):

"""

Verify the orthonormality of the generated polynomials using the

101

C.1. Pre-processing Tools Appendix C. Processing Tools

Gram matrix.

Ensures that <Ii, Ij> = Deltaij (orthonormality).

Parameters:

- polynomials: List of Chaospy-generated polynomials to verificate.

- distribution: Chaospy distribution used to compute the inner products.

- verbose: If True, prints the Gram matrix and verification status.

Returns:

- A message indicating the result of the verification.

"""

Compute the Gram matrix

num_polys = len(polynomials)

G = np.zeros((num_polys, num_polys))

for i in range(num_polys):

for j in range(num_polys):

G[i, j] = cp.E(polynomials[i] * polynomials[j], distribution)

Optionally print the Gram matrix

if verbose:

print("Gram matrix (Gij):")

print(G)

Verify if Gram matrix is an identity matrix

tol = 1e-10 # Adjust this tolerance if needed

is_identity = np.allclose(G, np.eye(num_polys), atol=tol)

if not is_identity:

if verbose:

print("\nVerification failed: Gram matrix is"

"not an identity matrix.")

print("Deviation from identity matrix:")

print(G - np.eye(num_polys))

raise ValueError("Verification failed: Gram matrix is"

"not an identity matrix.")

if verbose:

print("\nVerification of OrthoNormality Passed.")

return "Verification of OrthoNormality Passed."

"Galerkin Coefficient Verification--"

Step 1: Define Legendre polynomials using Rodrigues' formula

def legendre_poly(n, x):

"""

Compute the nth Legendre polynomial using Rodrigues' formula.

"""

coeff = 1 / (2**n * factorial(n))

poly = coeff * np.polyder(np.poly1d([1, 0, -1])**n, n)

return np.polyval(poly, x)

Step 2: Directly normalise Legendre polynomials

def normalised_legendre_poly(n, x):

"""

Compute the normalised nth Legendre polynomial.

Uses theoretical properties to ensure variance=1 and mean=0 under

uniform distribution [-1, 1].

"""

P_n = legendre_poly(n, x) # Standard Legendre polynomial

return np.sqrt((2 * n + 1)) * P_n

Step 3: Compute triple product coefficients manually

def compute_triple_product(i, j, k):

"""

Compute the triple product coefficient M_ijk for manually normalised polynomials.

"""

def integrand(x):

102

C.1. Pre-processing Tools Appendix C. Processing Tools

return (normalised_legendre_poly(i, x) *

normalised_legendre_poly(j, x) *

normalised_legendre_poly(k, x)) * 0.5 # Weight function f(x) = 0.5

result, _ = quad(integrand, -1, 1)

return result

Step 4: Galerkin Coefficient verification

def galerkin_coefficient_verification(precomputed_coeffs, order, tol, verbose=False):

"""

Verify Galerkin coefficients using manually computed triple products and compare with

precomputed coefficients provided as input.

Args:

precomputed_coeffs (dict): Precomputed triple product coefficients.

order (int): Maximum polynomial order for verification.

tol (float): Tolerance for coefficient differences.

verbose (bool): If True, prints detailed results.

Returns:

dict: Manually computed tensor coefficients for the polynomials.

"""

num_polys = order + 1

if verbose:

print(f"Verifying Galerkin coefficients up to order {order}...")

Step 4.1: Compute all triple product coefficients manually

coefficients_manual = {}

for i in range(num_polys):

for j in range(num_polys):

for k in range(num_polys):

coefficients_manual[(i, j, k)] = compute_triple_product(i, j, k)

Step 4.2: Compare with precomputed coefficients

max_diff = 0

for key, manual_value in coefficients_manual.items():

Retrieve the corresponding precomputed coefficient

precomputed_value = precomputed_coeffs.get(key, 0.0)

Compute the difference

diff = abs(precomputed_value - manual_value)

Print detailed comparison if verbose

if verbose:

print(f"M_{key}: Manual = {manual_value:.12f},"

f"Chaospy-Precomputed = {precomputed_value:.12f}, Diff = {diff:.12e}")

Track the largest difference

if diff > tol:

max_diff = max(max_diff, diff)

Raise an error if the difference exceeds tolerance

if max_diff > tol:

raise ValueError(f"Galerkin Coefficients Verification failed: max_diff = {max_diff}

exceeds tolerance {tol}.")

if verbose:

print(f"Galerkin Coefficients Verification successful within tolerance {tol}.")

return coefficients_manual

return f"Galerkin Coefficients Verification successful within tolerance {tol}."

Example Usage--

if __name__ == "__main__":

Example: Precomputed coefficients for up to 2nd-order Legendre polynomials

Explicitly include all coefficients, setting zero coefficients to 0.0

precomputed_coeffs_example = {

(0, 0, 0): 1.0, # Triple product <P0, P0, P0>

(0, 1, 1): 1.0, # Triple product <P0, P1, P1>

103

C.1. Pre-processing Tools Appendix C. Processing Tools

(0, 2, 2): 1.0, # Triple product <P0, P2, P2>

(1, 0, 1): 1.0, # Triple product <P1, P0, P1>

(1, 1, 0): 1.0, # Triple product <P1, P1, P0>

(1, 1, 2): 0.894427190999916, # Triple product <P1, P1, P2>

(1, 2, 1): 0.894427190999916, # Triple product <P1, P2, P1>

(2, 0, 2): 1.0, # Triple product <P2, P0, P2>

(2, 2, 0): 1.0, # Triple product <P2, P2, P0>

(2, 1, 1): 0.894427190999916, # Triple product <P2, P1, P1>

(2, 2, 2): 0.6388765649999391, # Triple product <P2, P2, P2>

Coefficients that should theoretically be zero

(0, 0, 1): 0.0,

(0, 0, 2): 0.0,

(1, 1, 1): 0.0,

(1, 2, 2): 0.0,

}

Polynomial order and tolerance

max_order = 2 # Set maximum polynomial order to 2

tol = 1e-10 # Set a tolerance for verification

Verify manually computed coefficients against precomputed ones

verified_coefficients = galerkin_coefficient_verification(

precomputed_coeffs=precomputed_coeffs_example,

order=max_order,

tol=tol,

verbose=True

)

Print verified coefficients

print("\n=== Verified Coefficients ===")

for key, value in verified_coefficients.items():

if not np.isclose(value, 0.0, rtol=1e-6, atol=1e-10):

print(f"M_{key} = {value:.12f}")

C.1.4 Auxiliary File Read UQProperties from OpenFOAM

Listing C.4: read UQProperties v001.py

import os

import chaospy as cp

import numpy as np

from datetime import datetime

from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

Locate UQProperties in the same directory as the script

script_dir = os.path.dirname(os.path.abspath(__file__))

uqproperties_path = os.path.join(script_dir, "..", "stochasticBurgersBCs_Study", "constant

", "UQProperties")

Function to read properties from UQProperties using pyFoam

def read_UQProperties(uqproperties_path):

properties = ParsedParameterFile(uqproperties_path)

order = properties["order"]

poly_type = properties["poly_type"]

calculation_type = properties["calculation_type"]

additional_params = {}

if poly_type.lower() == "legendre":

if "lower" not in properties or "upper" not in properties:

raise KeyError("Legendre polynomials require 'lower' and 'upper' in UQProperties

.")

additional_params["lower"] = properties["lower"]

additional_params["upper"] = properties["upper"]

else:

raise ValueError("Unsupported polynomial type. Use 'legendre'.")

104

C.1. Pre-processing Tools Appendix C. Processing Tools

return order, poly_type, calculation_type, additional_params

C.1.5 Auxiliary File Read Transport Properties from OpenFOAM

Listing C.5: read transportProperties v000.py

import os

from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

Locate transportProperties in the same directory as the script

script_dir = os.path.dirname(os.path.abspath(__file__))

transportProperties_path = os.path.join(script_dir, "transportProperties")

Function to read properties from transportProperties using pyFoam

def read_transportProperties(transportProperties_path):

try:

Check if the file exists

if not os.path.exists(transportProperties_path):

raise FileNotFoundError(f"File not found: {transportProperties_path}")

Read the file using ParsedParameterFile

properties = ParsedParameterFile(transportProperties_path)

Check if 'nu' is in the properties

if "nu" not in properties:

raise KeyError("'nu' not found in transportProperties")

Extract only the numeric value of 'nu'
nu = properties["nu"][-1] # Access the last element which is the value (0.05 in

this case)

print(f"Extracted 'nu' value: {nu}")

return nu

except Exception as e:

print(f"Error reading transportProperties: {e}")

return None

Call the function

nu_value = read_transportProperties(transportProperties_path)

if nu_value is not None:

print(f"Successfully extracted 'nu': {nu_value}")

else:

print("Failed to extract 'nu'.")

105

C.2. Post-processing Tools Appendix C. Processing Tools

C.2 Post-processing Tools

C.2.1 Burgers Equation Steady-state Exact Solution

Listing C.6: burgersEqExactSolution v000.py

import numpy as np

from scipy.optimize import root

#--Note on Burgers' Exact Solution---

source: from section 2.1 "Exact Solution" on "Supersensitivity due to

uncertain boundary conditions" by Xiu, Dongbinand Karniadakis, George Em 2004

This function `burgers_exact_solution` finds values of A (slope) and

z_ex (transition layer location)

that satisfy the steady-state boundary conditions of the viscous Burgers'
equation.

Specifically, it solves the two boundary equations for u(-1) = (1 + delta)

and u(1) = -1.

These boundary conditions are implemented as equations (u_left and u_right)

in the inner function `boundary_system`.
The scipy `root` function then finds values of A and z_ex that make both

equations true, ensuring that the solution meets the boundary conditions

specified in the problem.

#--

def burgers_exact_solution(delta, nu, tol, initial_guess):

def boundary_system(vars):

A, z_ex = vars

u_left = A * np.tanh((A / (2 * nu)) * (1 + z_ex)) - (1 + delta)

u_right = A * np.tanh((A / (2 * nu)) * (1 - z_ex)) - 1

return [u_left, u_right]

solution = root(boundary_system, initial_guess, tol=tol)

return solution.x if solution.success else (None, None)

def exact_solution_u(x, A, z_ex, nu):

return -A * np.tanh((A / (2 * nu)) * (x - z_ex))

C.2.2 Deterministic Solver Verification

Listing C.7: deterministicSolverVerification v003.py

import re

import os

import sys

import numpy as np

from scipy.interpolate import interp1d

import matplotlib.pyplot as plt

from burgersEqExactSolution_v000 import burgers_exact_solution, exact_solution_u

#--Get the directory where the script is located-------------------------------

script_dir = os.path.dirname(os.path.abspath(__file__))

preprocessing_dir = os.path.join(script_dir, "..","preProcessingScripts")

sys.path.append(os.path.abspath(preprocessing_dir))

#--Import External Modules---

from read_UQProperties_v001 import read_UQProperties

from read_transportProperties_v000 import read_transportProperties

#--Get the directory containing the cases--------------------------------------

study = "deterministicBurgersBCs_Study"

cases_dir = os.path.join(script_dir, "..", study)

#--Function to extract the numeric part from case names and sort them accordingly

def get_case_names(cases_dir):

List all directories that start with "Case"

case_names = [

106

C.2. Post-processing Tools Appendix C. Processing Tools

name for name in os.listdir(cases_dir)

if os.path.isdir(os.path.join(cases_dir, name))

and name.startswith("Case")

]

Sort case names by extracting the numeric part after "Case_"

sorted_case_names = sorted(case_names,

key=lambda x: int(re.search(r'\d+', x).group()))

return sorted_case_names

Automatically get the case names from the folder

cases = get_case_names(cases_dir)

#--UQProperties--

#--Function to read UQ properties for a given case-----------------------------

def get_UQProperties(case_name, cases_dir):

uqproperties_path = os.path.join(cases_dir, case_name, "constant",

"UQProperties")

return read_UQProperties(uqproperties_path)

#--transportProperties---

def get_transportProperties(case_name, cases_dir):

transportProperties_path = os.path.join(cases_dir, case_name, "constant",

"transportProperties")

return read_transportProperties(transportProperties_path)

#--Accessing the properties for a specific case--------------------------------

#--Case-All--

(here the Case 1 Properties are used for all of the cases)

UQProperties = get_UQProperties(cases[0], cases_dir)

order = UQProperties[0] # Polynomial order

bounds = UQProperties[3] # Lower and upper bounds

lower = bounds ['lower']
upper = bounds ['upper']
#--transportProperties

nu_value = get_transportProperties(cases[0], cases_dir)

#--Define parameters in this main script---------------------------------------

nu = nu_value

delta_lower = lower # unperturbed case

delta_upper = upper # perturbed case

exacSolTol = 1e-12

x_values = np.linspace(-1, 1, 10000) # Generate x-values for exact solution

#--Setup cases with delta and initial guess------------------------------------

cases = {

"Case_1_detLBBCs_Verification":

{"delta": delta_lower, "initial_guess": [-1.0, 0.0]},

"Case_2_detUBBCs_Verification":

{"delta": delta_upper, "initial_guess": [-1.0, 1.0]}

}

#--Plot Configuration

fontSize = 10

fontSizeLegend = 11

fontsizeAxisLabel = 11

lineWidth = 1.0

tickPad = 5

labelPadY = 4

labelPadX = 4

boxPad = 2

tickLength = 2

markerSize = 4

#--HTML code for colours---

black = '#000000'
grey = '#555555'
greyLight = '#B0B0B0'
blue = '#011231'

107

C.2. Post-processing Tools Appendix C. Processing Tools

blueLight = '#cddefd'
red = '#E50037'
redLight = '#FCC8CF'

#--Enable LaTeX rendering in Matplotlib for consistency------------------------

plt.rcParams['text.usetex'] = True

plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Computer Modern Roman'] # LaTeX's default font

plt.rcParams['axes.linewidth'] = lineWidth

#--Create a figure with controlled aspect ratio--------------------------------

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(11, 5), gridspec_kw={'height_ratios': [1.5,

1]},sharex=True)

fig.subplots_adjust(hspace=0.1)

#--Get the directory where the script is located-------------------------------

script_dir = os.path.dirname(os.path.abspath(__file__))

#--Prepare output directory for results data-----------------------------------

results_data_dir = os.path.join(script_dir, "..",

"deterministicBurgersBCs_Study", "Results", "resultsData")

os.makedirs(results_data_dir, exist_ok=True) # Ensure directory exists

output_file_path = os.path.join(results_data_dir, "

deterministicBurgers_BCs_Study_Verification.txt")

#--Open the output file in write mode--

with open(output_file_path, "w") as output_file:

#--Define colour and linestyle dictionaries for each case------------------

case_styles = {

"Case_1_detLBBCs_Verification": {"exact_color": greyLight,"exact_line": "-"

, "foam_color": black, "foam_line": ":"},

"Case_2_detUBBCs_Verification": {"exact_color": greyLight , "exact_line" :"-",

"foam_color": black,"foam_line": "--"}

}

#--

case_labels = {

"Case_1_detLBBCs_Verification": {"exactSol_label":

f"Lower Bound ('Exact Solution')", "foamSol_label":

f"Lower Bound"},

"Case_2_detUBBCs_Verification": {"exactSol_label":

f"Upper Bound ('Exact Solution')", "foamSol_label":

f"Upper Bound"}

}

#--Loop through each case--

for case_name, params in cases.items():

delta = params["delta"]

initial_guess = params["initial_guess"]

Get colours for each case from the dictionary------------------------

exact_color = case_styles[case_name]["exact_color"]

exact_line = case_styles[case_name]["exact_line"]

foam_color = case_styles[case_name]["foam_color"]

foam_line = case_styles[case_name]["foam_line"]

Get labels for each case from the dictionary------------------------

exactSol_label = case_labels[case_name]["exactSol_label"]

foamSol_label = case_labels[case_name]["foamSol_label"]

#--Calculate exact solution parameters---------------------------------

A, z_ex = burgers_exact_solution(delta, nu, exacSolTol, initial_guess)

if A is not None and z_ex is not None:

u_values_exact = exact_solution_u(x_values, A, z_ex, nu)

output_file.write(f"\n{case_name} ('Exact Solution'): nu = {nu}, "

f"delta = {delta}, "

f"z_ex = {z_ex:.8f} (Transition Layer Location)\n")

print(f"\n{case_name} ('Exact Solution'): nu = {nu} delta = {delta},"

108

C.2. Post-processing Tools Appendix C. Processing Tools

f" z_ex = {z_ex:.8f} (Transition Layer Location)")

else:

print(f"Failed to compute exact solution for {case_name}.")

output_file.write(f"Failed to compute"

f" exact solution for {case_name}.\n")

continue

#--Construct post-processing path--------------------------------------

post_process_dir = os.path.join(script_dir, "..",

"deterministicBurgersBCs_Study", "Results",

"sampledData", case_name, "postProcessing", "Usample")

#--Check if the directory exists---------------------------------------

if not os.path.isdir(post_process_dir):

print(f"Directory not found for {case_name}: {post_process_dir}")

output_file.write(f"Directory not found for "

f"{case_name}: {post_process_dir}\n")

continue

#--Locate latest time folder in Usample--------------------------------

time_dirs = [d for d in os.listdir(post_process_dir)

if d.replace(".", "", 1).replace("e-", "", 1).isdigit()]

if time_dirs:

latest_time = sorted(time_dirs, key=lambda x: float(x))[-1]

sample_file = os.path.join(post_process_dir,

latest_time, "lineX_U.xy")

if os.path.exists(sample_file):

foam_data = np.loadtxt(sample_file)

x_foam, U_x_foam = foam_data[:, 0], foam_data[:, 1]

#--Plot the exact solution and simulation results--------------

ax1.plot(x_values, u_values_exact, label=f"{exactSol_label} ($\\nu$ = {nu},

$\\delta$ = {delta})",

linestyle=exact_line, color=exact_color,

linewidth=2)

ax1.plot(x_foam, U_x_foam, label=f"{foamSol_label} ($\\nu$ = {nu}, $\\delta$
= {delta})", linestyle=foam_line,

color=foam_color, linewidth=1)

ax1.grid(color=grey, linewidth=lineWidth, alpha=0.3)

ax1.tick_params(which='both', direction='in', length=tickLength, width=

lineWidth, pad=tickPad, color=grey)

ax1.yaxis.set_ticks_position('both')
ax1.xaxis.set_ticks_position('both')
ax1.spines['bottom'].set_color(grey)
ax1.spines['top'].set_color(grey)
ax1.spines['right'].set_color(grey)
ax1.spines['left'].set_color(grey)
#--

Calculate exact_interpolated for the relative error calculation

interpolation_exact = interp1d(x_values, u_values_exact, kind='linear')
U_exact_interpolated = interpolation_exact(x_foam)

#--Calculate and plot L2 norm and relative error---------------

L2_norm = np.sqrt(np.sum((U_exact_interpolated - U_x_foam) ** 2))

relative_error = ((U_x_foam - U_exact_interpolated) / U_exact_interpolated)

*100

ax2.plot(x_foam, relative_error, label=f"{foamSol_label} Relative Error. "

f"L_2-norm error = {L2_norm:.1e}",

linestyle=foam_line, linewidth=1, color=foam_color)

#--Calculate Transition Layer Location (z_foam)----------------

zero_crossings = np.where(np.diff(np.sign(U_x_foam)))[0]

if zero_crossings.size > 0:

idx = zero_crossings[0]

z_foam = interp1d(U_x_foam[idx:idx + 2],

x_foam[idx:idx + 2], kind='linear')(0)

109

C.2. Post-processing Tools Appendix C. Processing Tools

#--Format & output the OpenFOAM solver transition layer data

output_text = (f"\n{case_name} ('myBurgersFoam' Simulation):"

f" nu = {nu}, delta = {delta}, "

f"z_foam = {z_foam:.8f} "

"(Transition Layer Location)\n")

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"{case_name} ('myBurgersFoam' Simulation):"

f"No transition layer (zero-crossing) found.\n"

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"Sample file {sample_file} not found.\n"

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"No time directories found in: {post_process_dir}\n"

print(output_text)

output_file.write(output_text) # Write to file

#--Plotting Data---

ax1.axhline(y=0, color='grey', linestyle='-', linewidth=0.5)

ax1.set_xlabel("x [m]", fontsize=fontsizeAxisLabel)

ax1.set_ylabel(r"$u(x)$ [m/s]", fontsize=fontsizeAxisLabel)

ax1.legend()

ax1.grid(False)

ax1.tight_layout()

fig.tight_layout(pad=boxPad)

#--Configure the subplot (relative error)--------------------------------------

ax2.set_xlabel("x [m]", fontsize=fontsizeAxisLabel)

ax2.set_ylabel("Relative Error [$\%$]", fontsize=fontsizeAxisLabel)

ax2.legend(loc='lower left', fontsize=fontSizeLegend)

ax2.grid(color=grey, linewidth=lineWidth, alpha=0.3)

ax2.grid(False)

ax2.tick_params(which='both', direction='in', length=tickLength, width=lineWidth, pad=

tickPad, color=grey)

ax2.yaxis.set_ticks_position('both')
ax2.xaxis.set_ticks_position('both')
ax2.spines['bottom'].set_color(grey)
ax2.spines['top'].set_color(grey)
ax2.spines['right'].set_color(grey)
ax2.spines['left'].set_color(grey)

#--Construct Plots path--

plot_dir = os.path.join(script_dir, "..",

"deterministicBurgersBCs_Study", "Results", "plots")

os.makedirs(plot_dir, exist_ok=True) # Ensure directory exists

#--Show and Save Plot--

filename = 'myBurgersFoam_Verification.pdf'
plt.savefig(os.path.join(plot_dir, filename), dpi=600, format='pdf')

plt.show()

C.2.3 Stochastic Solver Verification

Listing C.8: stochasticSolverVerification v000.py

import re

import os

import sys

import numpy as np

from scipy.interpolate import interp1d

import matplotlib.pyplot as plt

110

C.2. Post-processing Tools Appendix C. Processing Tools

from burgersEqExactSolution_v000 import burgers_exact_solution, exact_solution_u

#--Get the directory where the script is located-------------------------------

script_dir = os.path.dirname(os.path.abspath(__file__))

preprocessing_dir = os.path.join(script_dir, "..","preProcessingScripts")

sys.path.append(os.path.abspath(preprocessing_dir))

#--Import External Modules---

from read_UQProperties_v001 import read_UQProperties

from read_transportProperties_v000 import read_transportProperties

#--Get the directory containing the cases--------------------------------------

study = "stochasticBurgersBCs_Study"

cases_dir = os.path.join(script_dir, "..", study)

#--Function to extract the numeric part from case names and sort them accordingly

def get_case_names(cases_dir):

List all directories that start with "Case"

case_names = [

name for name in os.listdir(cases_dir)

if os.path.isdir(os.path.join(cases_dir, name))

and name.startswith("Case")

]

Sort case names by extracting the numeric part after "Case_"

sorted_case_names = sorted(case_names,

key=lambda x: int(re.search(r'\d+', x).group()))

return sorted_case_names

Automatically get the case names from the folder

cases = get_case_names(cases_dir)

#--UQProperties--

#--Function to read UQ properties for a given case-----------------------------

def get_UQProperties(case_name, cases_dir):

uqproperties_path = os.path.join(cases_dir, case_name, "constant",

"UQProperties")

return read_UQProperties(uqproperties_path)

#--transportProperties---

def get_transportProperties(case_name, cases_dir):

transportProperties_path = os.path.join(cases_dir, case_name, "constant",

"transportProperties")

return read_transportProperties(transportProperties_path)

#--Accessing the properties for a specific case--------------------------------

#--Case-1--

case_1_UQProperties = get_UQProperties(cases[0], cases_dir)

case_1_order = case_1_UQProperties[0] # Polynomial order

case_1_bounds = case_1_UQProperties[3] # Lower and upper bounds

case_1_lower = case_1_bounds ['lower']
case_1_upper = case_1_bounds ['upper']
#--transportProperties

case_1_nu_value = get_transportProperties(cases[0], cases_dir)

#--Case-2--

case_2_UQProperties = get_UQProperties(cases[1], cases_dir)

case_2_order = case_2_UQProperties[0] # Polynomial order

case_2_bounds = case_2_UQProperties[3] # Lower and upper bounds

case_2_lower = case_2_bounds ['lower']
case_2_upper = case_2_bounds ['upper']
#--transportProperties

case_2_nu_value = get_transportProperties(cases[1], cases_dir)

#--Define parameters in this main script---------------------------------------

nu = 0.05

exacSolTol = 1e-12

delta_unperturbed = case_1_lower # unperturbed case

delta_perturbed = case_2_upper # perturbed case

111

C.2. Post-processing Tools Appendix C. Processing Tools

x_values = np.linspace(-1, 1, 10000) # Generate x-values for exact solution

#--Setup cases with delta and initial guess------------------------------------

casesData = {

cases[0]:

{"delta": delta_unperturbed, "initial_guess": [-1.0, 0.0],

"order": case_1_order, "nu": case_1_nu_value},

cases[1]:

{"delta": delta_perturbed, "initial_guess": [-1.0, 1.0],

"order": case_2_order, "nu": case_2_nu_value}

}

#--Prepare output directory for results data-----------------------------------

results_data_dir = os.path.join(script_dir, "..",

"stochasticBurgersBCs_Study", "Results",

"resultsData")

os.makedirs(results_data_dir, exist_ok=True) # Ensure directory exists

output_file_path = os.path.join(results_data_dir,

"stochasticBurgers_BCs_Study_Verification.txt")

#--Prepare input file name---

def generate_filename(base_name, order, extension):

Create the filename dynamically based on the polynomial order

variable_parts = [f"Uhat{i}" for i in range(order + 1)]

filename = f"{base_name}_" + "_".join(variable_parts) + f".{extension}"

return filename

#--Plot Configuration--

fontSize = 10

fontSizeLegend = 11

fontsizeAxisLabel = 11

lineWidth = 1.0

tickPad = 5

labelPadY = 4

labelPadX = 4

boxPad = 2

tickLength = 2

markerSize = 4

#--HTML code for colours---

black = '#000000'
grey = '#555555'
greyLight = '#B0B0B0'
blue = '#011231'
blueLight = '#cddefd'
red = '#E50037'
redLight = '#FCC8CF'

#--Enable LaTeX rendering in Matplotlib for consistency------------------------

plt.rcParams['text.usetex'] = True

plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Computer Modern Roman'] # LaTeX's default font

plt.rcParams['axes.linewidth'] = lineWidth

#--Create a figure with controlled aspect ratio--------------------------------

Create figure and subplots

fig, (ax1, ax2) = plt.subplots(2, 1,

figsize=(12, 5),

gridspec_kw={'height_ratios': [1.5, 1]},

sharex=True)

fig.subplots_adjust(hspace=0.15)

#--Open the output file in write mode--

with open(output_file_path, "w") as output_file:

#--Define colour and linestyle dictionaries for each case------------------

case_styles = {

"Case_1_stocLBBCs_Verification":

{"exact_color": greyLight,"exact_line": "-"

, "foam_color": black, "foam_line": ":"},

112

C.2. Post-processing Tools Appendix C. Processing Tools

"Case_2_stocUBBCs_Verification": {"exact_color": greyLight ,

"exact_line" :"-",

"foam_color": black,"foam_line": "--"}

}

#--

case_labels = {

"Case_1_stocLBBCs_Verification": {"exactSol_label":

f"Lower Bound ('Exact Solution')", "foamSol_label":

f"Lower Bound"},

"Case_2_stocUBBCs_Verification": {"exactSol_label":

f"Upper Bound ('Exact Solution')", "foamSol_label":

f"Upper Bound"}

}

#--Loop through each case--

for case_name, params in casesData.items():

delta = params["delta"]

initial_guess = params["initial_guess"]

order = params["order"]

nu = params["nu"]

Get colours and linestyle for each case from the dictionary----------

exact_color = case_styles[case_name]["exact_color"]

exact_line = case_styles[case_name]["exact_line"]

foam_color = case_styles[case_name]["foam_color"]

foam_line = case_styles[case_name]["foam_line"]

Get labels for each case from the dictionary------------------------

exactSol_label = case_labels[case_name]["exactSol_label"]

foamSol_label = case_labels[case_name]["foamSol_label"]

#--Calculate exact solution parameters---------------------------------

A, z_ex = burgers_exact_solution(delta, nu, exacSolTol, initial_guess)

if A is not None and z_ex is not None:

u_values_exact = exact_solution_u(x_values, A, z_ex, nu)

output_file.write(f"\n{case_name} ('Exact Solution'): nu = {nu}, "

f"delta = {delta}, "

f"z_ex = {z_ex:.8f} (Transition Layer Location)\n")

print(f"\n{case_name} ('Exact Solution'): nu = {nu} , delta = {delta},"

f" z_ex = {z_ex:.8f} (Transition Layer Location)")

else:

print(f"Failed to compute exact solution for {case_name}.")

output_file.write(f"Failed to compute"

f" exact solution for {case_name}.\n")

continue

#--Construct post-processing path--------------------------------------

post_process_dir = os.path.join(script_dir, "..",

"stochasticBurgersBCs_Study", "Results",

"sampledData", case_name, "postProcessing", "Usample")

#--Check if the directory exists---------------------------------------

if not os.path.isdir(post_process_dir):

print(f"Directory not found for {case_name}: {post_process_dir}")

output_file.write(f"Directory not found for "

f"{case_name}: {post_process_dir}\n")

continue

#--Locate latest time folder in Usample--------------------------------

inputFilename = generate_filename("lineX", order, "xy")

time_dirs = [d for d in os.listdir(post_process_dir)

if d.replace(".", "", 1).replace("e-", "", 1).isdigit()]

if time_dirs:

latest_time = sorted(time_dirs, key=lambda x: float(x))[-1]

sample_file = os.path.join(post_process_dir,

latest_time, inputFilename)

113

C.2. Post-processing Tools Appendix C. Processing Tools

if os.path.exists(sample_file):

foam_data = np.loadtxt(sample_file)

x_foam, U_x_foam = foam_data[:, 0], foam_data[:, 1]

#--Plot the exact solution and simulation results--------------

ax1.plot(x_values, u_values_exact,

label=f"{exactSol_label} ($\\nu$ = {nu},"

f" $\\delta$ = {delta})",

linestyle=exact_line, color=exact_color,

linewidth=2)

ax1.plot(x_foam, U_x_foam,

label=f"{foamSol_label} ($\\nu$ = {nu},"

f" $\\delta$ = {delta})", linestyle=foam_line,

color=foam_color, linewidth=1, markeredgewidth=1,

markeredgecolor=exact_color)

ax1.grid(color=grey, linewidth=lineWidth, alpha=0.3)

ax1.tick_params(which='both', direction='in',
length=tickLength, width=lineWidth,

pad=tickPad, color=grey)

ax1.yaxis.set_ticks_position('both')
ax1.xaxis.set_ticks_position('both')
ax1.spines['bottom'].set_color(grey)
ax1.spines['top'].set_color(grey)
ax1.spines['right'].set_color(grey)
ax1.spines['left'].set_color(grey)
#--

Calculate exact_interpolated for the relative error calculation

interpolation_exact = interp1d(x_values, u_values_exact,

kind='linear')
U_exact_interpolated = interpolation_exact(x_foam)

#--Calculate and plot L2 norm and relative error---------------

L2_norm = np.sqrt(np.sum((U_exact_interpolated - U_x_foam) ** 2))

relative_error = ((U_x_foam - U_exact_interpolated) / U_exact_interpolated)

*100

ax2.plot(x_foam, relative_error,

label=f"{foamSol_label} Relative Error. "

f"L_2-norm error = {L2_norm:.1e}",

linestyle=foam_line, linewidth=1, color=foam_color)

#--Calculate Transition Layer Location (z_foam)----------------

zero_crossings = np.where(np.diff(np.sign(U_x_foam)))[0]

if zero_crossings.size > 0:

idx = zero_crossings[0]

z_foam = interp1d(U_x_foam[idx:idx + 2],

x_foam[idx:idx + 2], kind='linear')(0)
#--Format & output the OpenFOAM solver transition layer data

output_text = (f"\n{case_name} ('myGPCBurgersFoam' Simulation):"

f" nu = {nu}, delta = {delta}, "

f"z_foam = {z_foam:.8f} "

"(Transition Layer Location)\n")

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"{case_name} ('myGPCBurgersFoam' Simulation):"

f"No transition layer (zero-crossing) found.\n"

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"Sample file {sample_file} not found.\n"

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"No time directories found in: {post_process_dir}\n"

print(output_text)

output_file.write(output_text) # Write to file

#--Plotting Data---

114

C.2. Post-processing Tools Appendix C. Processing Tools

ax1.axhline(y=0, color='grey', linestyle='-', linewidth=0.5)

ax1.set_xlabel("x [m]", fontsize=fontsizeAxisLabel)

ax1.set_ylabel(r"$u(x)$ [m/s]", fontsize=fontsizeAxisLabel)

ax1.set_suptitle("Burger's Equation", fontsize=14)

ax1.set_title(r"Stochastic Solver 'myGPCBurgersFoam' Verification", fontsize=10)

ax1.legend(loc='lower left', fontsize=fontSizeLegend)

ax1.grid(False)

ax1.tight_layout()

fig.tight_layout(pad=boxPad)

#--Configure the subplot (relative error)--------------------------------------

ax2.set_xlabel("x [m]", fontsize=fontsizeAxisLabel)

ax2.set_ylabel("Relative Error [$\%$]", fontsize=fontsizeAxisLabel)

ax2.set_yscale('log')
ax2.set_title(r"Stochastic Solver 'myGPCBurgersFoam' Relative Error [$\%$]", fontsize=10)

ax2.legend(loc='lower left', fontsize=fontSizeLegend)

ax2.grid(color=grey, linewidth=lineWidth, alpha=0.3)

ax2.grid(False)

ax2.tick_params(which='both', direction='in', length=tickLength, width=lineWidth,

pad=tickPad, color=grey)

ax2.yaxis.set_ticks_position('both')
ax2.xaxis.set_ticks_position('both')
ax2.spines['bottom'].set_color(grey)
ax2.spines['top'].set_color(grey)
ax2.spines['right'].set_color(grey)
ax2.spines['left'].set_color(grey)

#--Construct Plots path--

plot_dir = os.path.join(script_dir, "..",

"stochasticBurgersBCs_Study", "Results", "plots")

os.makedirs(plot_dir, exist_ok=True) # Ensure directory exists

#--Show and Save Plot--

filename= 'myGPCBurgersFoam_Verification.pdf'
plt.savefig(os.path.join(plot_dir, filename), dpi=600, format='pdf')

plt.show()

115

C.2. Post-processing Tools Appendix C. Processing Tools

C.2.4 Stochastic Solver Uncertainty Quantification

Listing C.9: stochasticSolverUQ v002.py

import re

import os

import sys

import numpy as np

from scipy.interpolate import interp1d

import matplotlib.pyplot as plt

#--Get the directory where the script is located-------------------------------

script_dir = os.path.dirname(os.path.abspath(__file__))

preprocessing_dir = os.path.join(script_dir, "..","preProcessingScripts")

sys.path.append(os.path.abspath(preprocessing_dir))

#--Import External Modules---

from read_UQProperties_v001 import read_UQProperties

from read_transportProperties_v000 import read_transportProperties

#--Get the directory containing the cases--------------------------------------

study = "stochasticBurgersBCs_Study"

cases_dir = os.path.join(script_dir, "..", study)

#--Function to extract the numeric part from case names and sort them accordingly

def get_case_names(cases_dir):

List all directories that start with "Case"

case_names = [

name for name in os.listdir(cases_dir)

if os.path.isdir(os.path.join(cases_dir, name))

and name.startswith("Case")

]

Sort case names by extracting the numeric part after "Case_"

sorted_case_names = sorted(case_names,

key=lambda x: int(re.search(r'\d+', x).group()))

return sorted_case_names

Automatically get the case names from the folder

cases = get_case_names(cases_dir)

#--UQProperties--

#--Function to read UQ properties for a given case-----------------------------

def get_UQProperties(case_name, cases_dir):

uqproperties_path = os.path.join(cases_dir, case_name, "constant",

"UQProperties")

return read_UQProperties(uqproperties_path)

#--transportProperties---

def get_transportProperties(case_name, cases_dir):

transportProperties_path = os.path.join(cases_dir, case_name, "constant",

"transportProperties")

return read_transportProperties(transportProperties_path)

#--Accessing the properties for a specific case--------------------------------

#--Case-All--

(here the Case 3 Properties are used for all of the cases)

UQProperties = get_UQProperties(cases[2], cases_dir)

order = UQProperties[0] # Polynomial order

bounds = UQProperties[3] # Lower and upper bounds

lower = bounds ['lower']
upper = bounds ['upper']
#--transportProperties

nu_value = get_transportProperties(cases[0], cases_dir)

#--Define parameters in this main script---------------------------------------

nu = nu_value

delta_lower = lower # unperturbed case

delta_upper = upper # perturbed case

116

C.2. Post-processing Tools Appendix C. Processing Tools

order = order

#--Setup cases with delta and initial guess------------------------------------

cases = {

"Case_1_stocLBBCs_Verification":

{"delta": delta_lower},

"Case_2_stocUBBCs_Verification":

{"delta": delta_upper},

"Case_3_stocBCs_UQ":

{"delta": (delta_lower, delta_upper)}

}

#--Plot Configuration--

fontSize = 10

fontSizeLegend = 11

fontsizeAxisLabel = 11

lineWidth = 1.0

tickPad = 5

labelPadY = 4

labelPadX = 4

boxPad = 2

tickLength = 2

markerSize = 4

#--HTML code for colours---

black = '#000000'
grey = '#555555'
greyLight = '#B0B0B0'
blue = '#011231'
blueLight = '#cddefd'
red = '#E50037'
redLight = '#FCC8CF'

#--Enable LaTeX rendering in Matplotlib for consistency------------------------

plt.rcParams['text.usetex'] = True

plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Computer Modern Roman'] # LaTeX's default font

plt.rcParams['axes.linewidth'] = lineWidth

plt.rcParams['mathtext.fontset'] = 'cm'

#--Create a figure with controlled aspect ratio--------------------------------

figUQ = plt.figure(figsize=(12, 5)) # Adjust width and height to control aspect ratio

axUQ = figUQ.add_subplot(111)

Create a new figure for the mode contributions and a subplot for the percentage

contribution of each mode

figModes, (axModes) = plt.subplots(1, 1, figsize=(12, 5), gridspec_kw={'height_ratios':
[1]})

#--Get the directory where the script is located-------------------------------

script_dir = os.path.dirname(os.path.abspath(__file__))

#--Prepare output directory for results data-----------------------------------

results_data_dir = os.path.join(script_dir, "..",

"stochasticBurgersBCs_Study", "Results", "resultsData")

os.makedirs(results_data_dir, exist_ok=True) # Ensure directory exists

output_file_path = os.path.join(results_data_dir, f"stochasticBurgers_BCs_Study_UQ_M{order}.

txt")

#--Prepare input file name---

def generate_filename(base_name, order, extension):

Create the filename dynamically based on the polynomial order

variable_parts = [f"Uhat{i}" for i in range(order + 1)]

filename = f"{base_name}_" + "_".join(variable_parts) + f".{extension}"

return filename

inputFilename = generate_filename("lineX", order, "xy")

#--Open the output file in write mode--

with open(output_file_path, "w") as output_file:

117

C.2. Post-processing Tools Appendix C. Processing Tools

#--Define colour and linestyle dictionaries for each case------------------

case_styles = {

"Case_1_stocLBBCs_Verification": {"foam_color": black, "foam_line": ":"},

"Case_2_stocUBBCs_Verification": {"foam_color": black, "foam_line": "--"},

"Case_3_stocBCs_UQ": {"foam_color": black, "foam_line": "-"}

}

case_labels = {

"Case_1_stocLBBCs_Verification": {"foamSol_label": "Lower Bound"},

"Case_2_stocUBBCs_Verification": {"foamSol_label": "Upper Bound"},

"Case_3_stocBCs_UQ": {"foamSol_label": "μ Mean Solution"}

}

#--Loop through each case--

for case_name, params in cases.items():

delta = params["delta"]

Get colors and linestyles for each case from the dictionaries

foam_color = case_styles[case_name]["foam_color"]

foam_line = case_styles[case_name]["foam_line"]

foamSol_label = case_labels[case_name]["foamSol_label"]

#--Construct post-processing path--------------------------------------

post_process_dir = os.path.join(script_dir, "..",

"stochasticBurgersBCs_Study", "Results",

"sampledData", case_name, "postProcessing", "Usample")

#--Check if the directory exists---------------------------------------

if not os.path.isdir(post_process_dir):

print(f"Directory not found for {case_name}: {post_process_dir}")

output_file.write(f"Directory not found for {case_name}: {post_process_dir}\n")

continue

#--Locate latest time folder in Usample--------------------------------

time_dirs = [d for d in os.listdir(post_process_dir)

if d.replace(".", "", 1).replace("e-", "", 1).isdigit()]

if time_dirs:

latest_time = sorted(time_dirs, key=lambda x: float(x))[-1]

sample_file = os.path.join(post_process_dir, latest_time, inputFilename)

if os.path.exists(sample_file):

foam_data = np.loadtxt(sample_file)

Mean Value extraction from Uhat0-----------------------------

x_foam, U_x_foam = foam_data[:, 0], foam_data[:, 1]

Uhats_x = foam_data[:, 4::3] # Assuming Uhat coefficients are in columns [1,

4, 7,...] for x-components only

Variance (sigma^2)---

Square each mode to get the variance contribution along the spatial domain

U_x_modeVar_foam = Uhats_x**2 # Shape: (number of spatial points, number of

modes)

Total Variance (Sum the variances along the spatial domain)

U_x_totalVar_foam = np.sum(U_x_modeVar_foam, axis=1)

Standard Deviation (sigma)-----------------------------------

Calculate the standard deviation based on higher-order terms

U_x_sd_foam = np.sqrt(U_x_totalVar_foam) # Sum squares of higher-order

terms only

Calculate the uncentainty based on standard deviation--------

k = 1 #k coverage factor (k = 2 for 95% CI but this required normality

assumption, this need further analysis)

U_x_Unc = k * U_x_sd_foam

#--Plot the mean solution 'U_x_foam'---------------------------
if case_name != "Case_3_stocBCs_UQ":

118

C.2. Post-processing Tools Appendix C. Processing Tools

axUQ.plot(x_foam, U_x_foam, label=f"{foamSol_label} ($\\nu$ = {nu}, $\\
delta$ = {delta})",

linestyle=foam_line, color=foam_color, linewidth=1)

axUQ.grid(color=grey, linewidth=lineWidth, alpha=0.3)

axUQ.tick_params(which='both', direction='in', length=tickLength, width=

lineWidth, pad=tickPad, color=grey)

axUQ.yaxis.set_ticks_position('both')
axUQ.xaxis.set_ticks_position('both')
axUQ.spines['bottom'].set_color(grey)
axUQ.spines['top'].set_color(grey)
axUQ.spines['right'].set_color(grey)
axUQ.spines['left'].set_color(grey)

else:

#--Plot the mean solution 'U_x_foam'---------------------------
axUQ.plot(x_foam, U_x_foam, label=f"{foamSol_label} ($\\nu$ = {nu}, $\\

delta$ $\\sim$ U{delta})",

linestyle=foam_line, color=foam_color, linewidth=lineWidth)

Additional plot for standard deviation in 'Case_3_stocBCs_UQ'
axUQ.plot(x_foam, U_x_sd_foam, label=r"σ" f" Standard Deviation (

$\\nu$ = {nu}, $\\delta$ $\\sim$ U{delta})", linestyle="-.", color=foam_color,

linewidth=1)

Plot mean solution +- standard deviation as a shaded region

axUQ.fill_between(x_foam, U_x_foam - U_x_Unc, U_x_foam + U_x_Unc, color=

foam_color, alpha=0.2, label="μ \pm σ")

#--

#--Calculate maximum absolute value for U_x_foam (Uhat_0)------

max_Uhat0 = np.max(np.abs(U_x_foam))

Calculate maximum absolute values for each higher mode in Uhats_x

max_values = np.max(np.abs(Uhats_x), axis=0)

Define scaling factors for each higher mode relative to Uhat_0

scaling_factors = max_Uhat0 / max_values # Scaling all higher modes

based on Uhat_0

scaling_factors = [1, 1, 1]

Plot Uhat_0 without scaling

axModes.plot(x_foam, U_x_foam, label=r"$\hat{u}_0(x)$", linestyle='-',
color='black', linewidth=lineWidth)

Plot each higher mode with its calculated scaling factor

Define a list of linestyles for each mode

linestyles = ['--', '-.', ':', (0, (3, 1, 1, 1)), (0, (5, 5))] # Add

more if you have more modes

Plot each higher mode with its calculated scaling factor and different

linestyles, all in black

for mode_index in range(Uhats_x.shape[1]): # Iterate through each

higher mode

mode_contribution = scaling_factors[mode_index] * Uhats_x[:,

mode_index]

axModes.plot(x_foam, mode_contribution, linewidth=lineWidth,

label=f"{scaling_factors[mode_index]:.1f} " r"$\hat{u}_"
f"{mode_index + 1}(x)$",

color='black', linestyle=linestyles[mode_index % len(

linestyles)]) # Cycle through linestyles

Customize the plot appearance

axModes.grid(color=grey, linewidth=lineWidth, alpha=0.3)

axModes.tick_params(which='both', direction='in', length=tickLength,

width=lineWidth, pad=tickPad, color=grey)

axModes.yaxis.set_ticks_position('both')
axModes.xaxis.set_ticks_position('both')
axModes.spines['bottom'].set_color(grey)
axModes.spines['top'].set_color(grey)
axModes.spines['right'].set_color(grey)
axModes.spines['left'].set_color(grey)

#--

119

C.2. Post-processing Tools Appendix C. Processing Tools

#--Calculate transition layer location using zero crossing-----

zero_crossings = np.where(np.diff(np.sign(U_x_foam)))[0]

if zero_crossings.size > 0:

idx = zero_crossings[0]

z_foam = interp1d(U_x_foam[idx:idx + 2], x_foam[idx:idx + 2], kind='
linear')(0)

Calculate the standard deviation at the transition layer location

sd_interpolation = interp1d(x_foam, U_x_sd_foam, kind='linear')
sd_at_transition = sd_interpolation(z_foam)

Write transition location and standard deviation to file

output_text = (f"\n{case_name} ('myGPCBurgersFoam' Simulation):"

f" nu = {nu}, delta = {delta}, "

f"z_foam = {z_foam:.8f}, "

f"SD at Transition Layer = {sd_at_transition:.8f}\n")

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"{case_name} ('myGPCBurgersFoam' Simulation): No

transition layer (zero-crossing) found.\n"

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"Sample file {sample_file} not found.\n"

print(output_text)

output_file.write(output_text) # Write to file

else:

output_text = f"No time directories found in: {post_process_dir}\n"

print(output_text)

output_file.write(output_text) # Write to file

#--Plotting Data---

#--UQ--

axUQ.axhline(y=0, color='grey', linestyle='-', linewidth=0.5)

axUQ.set_xlabel("x [m]", fontsize=fontsizeAxisLabel)

axUQ.set_ylabel(r"$u(x)$ [m/s]", fontsize=fontsizeAxisLabel)

axUQ.set_title(r"Stochastic Solver 'myGPCBurgersFoam' Solution (Legendre-Chaos Expansion)

", fontsize=10)

axUQ.legend(loc='lower left', fontsize=fontSizeLegend)

Include the polynomial order in the legend

axUQ.legend(title=f"Polynomial Order M = {order}")

axUQ.grid(False)

#--Modes---

axModes.set_xlabel("x [m]", fontsize=fontsizeAxisLabel)

axModes.set_ylabel(r"\hat{u}_k [m/s]", fontsize=fontsizeAxisLabel)

axModes.set_title(r"Mode Contributions in Stochastic Solution (Scaled Relative to $\hat{U}
_0(x)$)", fontsize=10)

axModes.axhline(y=0, color='grey', linestyle='-', linewidth=0.5)

axModes.legend(loc='lower left', fontsize=fontSizeLegend)

Include the polynomial order in the legend

axModes.legend(title=f"Polynomial Order M = {order}")

axModes.grid(False)

#--Construct Plots path--

plot_dir = os.path.join(script_dir, "..",

"stochasticBurgersBCs_Study", "Results", "plots")

os.makedirs(plot_dir, exist_ok=True) # Ensure directory exists

#--Show and Save Plot--

#--UQ--

filename = f'myGPCBurgersFoam_UQ_M{order}.pdf'
figUQ.savefig(os.path.join(plot_dir, filename), dpi=600,format='pdf')
plt.show()

#--Modes---

filename = f'myGPCBurgersFoam_ModeContributionsScaled_M{order}.pdf'

120

C.2. Post-processing Tools Appendix C. Processing Tools

figModes.savefig(os.path.join(plot_dir, filename), dpi=600,format='pdf')
plt.show()

121

	Introduction
	Verification and Validation (V&V)
	Uncertainty Quantification in CFD
	What is Uncertainty Quantification?
	Uncertainty Propagating Methods (Intrusive vs Non-Intrusive)
	A Word of Caution: Challenges in UQ Theory

	Illustrative Scenario for UQ Potential Application
	Simulation Input Parameters
	Sequential Modelling Stages
	Propagation of Uncertainty
	QoI Analysis

	Objective, Scope, and Report Structure
	Objectives
	Scope
	Report Structure

	Background
	The Burgers' Equation: An Important Tool in CFD
	Modelling Versatility of Burgers’ Equation
	Burgers' Equation with Perturbed Boundary Conditions

	Deterministic Supersensitivity
	Exact Solution
	Finite Volume Method Formulation

	Stochastic Supersensitivity
	Procedure Overview
	Generalised Polynomial Chaos
	Random Differential Equation
	Galerkin Projection
	Boundary Conditions Expansion (Pre-Processing Phase)
	Statistical Moments of the Solution (Post-Processing Phase)

	Some Advantages and Limitations of gPC
	Advantages
	Limitations
	Recommendations for the Reader

	Existing Solvers
	Solvers Structure Overview
	Directory Structure of Repository Files
	Base Solver Structure

	Numerical Implementation of the Deterministic Solver
	Description of Solver File burgersFoam.C
	Description of createFields.H File
	Make Folder Files
	Modifications for burgersFoam: Critical and Optional

	Numerical Implementation of the Stochastic Solver
	Description of Solver File gPCBurgersFoam.C
	Description of createFields.H File
	Make Folder Files
	Modifications for gPCBurgersFoam: Critical and Optional

	Solvers Modifications
	Modifications to burgersFoam
	Creating myBurgersFoam
	Modifying Solver File myBurgersFoam.C
	Modifying createFields.H File of myBurgersFoam.C

	Modifications to gPCBurgersFoam
	Creating myGPCBurgersFoam
	Modifying Solver File myGPCBurgersFoam.C
	Modifying createFields.H File of myGPCBurgersFoam.C

	Pre-Processing Tools
	Step 1: Generate Distribution and Polynomials
	Step 3: Calculate Tensor Coefficients

	Post-Processing Tools
	Steady-State Burgers' Equation Exact Solution
	Calculation of Transition Layer Location TEXT
	Velocity Mean Value, Variance and Uncertainty Calculations

	Verification and Uncertainty Quantification
	Case Studies: Structure and Insights
	Deterministic Study
	Configuration and Execution of Deterministic Cases
	Verification Results (myBurgersFoam)

	Stochastic Study
	Configuration and Execution of Stochastic Cases
	Verification Results (myGPCBurgersFoam)
	Uncertainty Quantification

	Conclusions and Future Work
	Conclusion
	Future Work

	Solvers Source Code
	myBurgersFoam Solver
	myBurgersFoam.C
	createFields.H
	Make Folder

	myGPCBurgersFoam Solver
	myGPCBurgersFoam.C
	createFields.H
	Make Folder

	Case Studies Files
	deterministicBurgersBCs_Study
	Allrun
	Allclean
	Case_1_detLBBCs_Verification

	stochasticBurgersBCs_Study
	Allrun
	Allclean
	Case_3_stocBCs_UQ

	Processing Tools
	Pre-processing Tools
	Polynomial Triple Product Coefficients (TEXT)
	Polynomial Triple Product Coefficients (TEXT) (Stand-alone Script)
	Auxiliary File Orthonormality and Galerkin Coefficient Verification
	Auxiliary File Read UQProperties from OpenFOAM
	Auxiliary File Read Transport Properties from OpenFOAM

	Post-processing Tools
	Burgers Equation Steady-state Exact Solution
	Deterministic Solver Verification
	Stochastic Solver Verification
	Stochastic Solver Uncertainty Quantification

