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Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• A general description will be given on the use of the mixed, advective and waveTransmissive

boundary conditions.

The theory of it:

• A brief description of channel acoustics and reflections at boundaries will be given.

• An overview of Local One-Dimensional Inviscid (LODI) relations will be given together with
a new derivation of the boundary equations accounting for reflections.

How it is implemented:

• A description of mixed, advective and waveTransmissive boundary condition’s implemen-
tation and how their implementations refer to the characteristic equations derived through
LODI relations.

• A brief description of the changes implemented by Leandro Lucchese in his LODI2D and
mixedV2D codes.

• A comparison between these implementations and Leandro Lucchese’s LODI2D boundary con-
dition will be given.

• How these can be extended to 3D.

• How the partially reflecting conditions can be implemented.

How to modify it:

• The equations will be modified to accommodate for the new partially reflecting derivation from
the LODI-relations.

• The boundary condition will be extended to 3D.

• The optimal settings for the custom boundary condition is revised and compared to both
OpenFOAM’s waveTransmissive and Leandro Lucchese’s LODI2D boundary conditions.

• The standard waveTransmissive, Leandro Lucchese’s LODI2D, [1], and the new 3D boundary
condition’s are tested on a simple 3D non-reacting bluff-body case to check the transmission
of inherently 3D structures.
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• In-depth knowledge regarding numerical methods for solving fluid dynamical problems.

• A basic understanding of usage and top-level programming in OpenFOAM.

• Basic understanding of C++ programming.

• Preferably the reader has read Lucchese, L. report [1] as this can be seen as a continuation of
his work.

2



Contents

1 Theoretical Background 7
1.1 Channel Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Navier-Stokes Characteristic Boundary Conditions . . . . . . . . . . . . . . . . . . . 8

1.2.1 LODI Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Partially Reflecting Boundary Condition . . . . . . . . . . . . . . . . . . . . . 10

2 Boundary Conditions in OpenFOAM 12
2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 mixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 advective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 waveTransmissive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 LODI2D versus modifiedLODI2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Implementation of the New Boundary Condition 19
3.1 Initial modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 modifiedMixedV3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 modifiedLODI3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 modifiedLODI3DPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Unconfined Bluff Body 27
4.1 Case Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3



Nomenclature

Acronyms
CFD Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
DNS Direct Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
FFT Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
LES Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
NSCBC Navier-Stokes Characteristic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
TDE Time-Delay Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

English symbols
Li Characteristic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A Coefficient matrix to the linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
S Source term to the linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
a∇· Contribution to A in the divergence term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
a∇2 Contribution to A in the laplacian term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
c Speed of Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
Cp Specific heat capacity at constant pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(kg ·K)
Cv Specific heat capacity at constant volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(kg ·K)
E Total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
f Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
f Value fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
K Relaxation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
L, l Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m
M Mach number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
p Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .N/m2

q Heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J/(m
2
s)

R Reflection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Sf Surface normal vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
s∇· Contribution to S in the divergence term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
s∇2 Contribution to S in the laplacian term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
T Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T Transmission coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m/s
w Wave speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
xi Cartesian coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols
α Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
∆ A small difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
δ Kronecker delta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
γ Ratio of specific heats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4



Nomenclature Nomenclature

λ Eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
ϕ Transported variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
ψ Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s2/m2

ρ Fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

τ Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .N/m2

Superscripts
n previous time-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
n+1 current time-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Subscripts
∞ far-field value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
+ positive direction propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
- negative direction propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
c cell center value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
f face center value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
in inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
L longitudinal wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
n normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
out outlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
ref reference value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
t transverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5



Introduction

When performing high-fidelity simulations such as Large Eddy Simulations (LES) or Direct Numer-
ical Simulations (DNS) [2], precise boundary conditions become all the more important. This is due
to the decreased numerical diffusion allowing numerical waves to exist without significant damping.
Once these numerical waves interact with e.g. a boundary condition, these may turn into physical
waves, altering the final convergence of the simulations solution, which may lead to triggering a
limit-cycle behavior which is otherwise not present [3], [4]. One way to mitigate this issue is to
simulate a larger domain, until there exists a well-defined boundary. However, regarding acoustic
wave propagation, such an approach require sufficiently large domains to be simulated until such a
boundary is found. To reduce the computational cost, it is favorable to introduce a more advanced,
but still well-defined boundary condition. Such boundary conditions are generally derived from the
so-called Navier-Stokes Characteristic Boundary Conditions (NSCBC), which, together with Local
One-Dimensional Inviscid (LODI) relations, form a powerful tool [5]. Previously, a wave-transmissive
boundary condition was derived by Rudy and Strikwerda [6], and improved by Poinsot and Lele [3].
However, the original definition is based on Perfectly Non-Reflecting waves, which resulted in issues
of pressure-drifting. Therefore, even though neglected in the derivations, information from outside
of the domain was included in the equations through a term, L1 = K(p − p∞), to preserve the
information regarding the atmospheric pressure outside of the domain [6]. As described by Rudy
and Strikwerda [6], this term is meant to result in a perfectly non-reflecting boundary which main-
tains the mean pressure in the system, and the determination of K is defined as such to converge
to this state in as few iterations as possible. Since this is a dynamic boundary condition which will
actively change depending on p, it is essentially modulating the reflected waves to maintain the mean
pressure. As will be described in the chapter Theoretical Background, there exists systems for
which reflections naturally occur at the boundary without the intent to maintain a mean pressure.

In channel acoustics, a phenomenon where traveling waves reflect at the boundaries may result
in constructive interference with a specific frequency. This is called resonance, and strong standing
waves are present in these cases. These are very important in capturing to determine the stability
of a wide amount of fluid-dynamical problems. This is due to the nature of such an instability,
which is classified as an absolute instability. It grows everywhere and does not dissipate spatially
like a convective instability. Therefore, an alternative formulation which is derived based on the
assumption of Partially Reflecting waves is reasonable. It should be noted that this is nothing
new, but the author was not able to find any active implementation in OpenFOAM regarding this.
Furthermore, to make the boundary condition more realistic, a continuation of Leandro Lucchese’s
work [1] on extending the wave-transmissive boundary condition from 1D to 2D is continued to
3D. The 3D formulation is preferable due to the inherent 3D nature of vorticle structures. As
these interact with the boundary, it is optimal to treat all three velocity components to make sure
substantial numerical waves are prevented. Finally, the 1D, 2D and 3D formulations are compared
with the Perfectly Non-Reflecting assumption, followed by a comparison between the 3D case for
Perfectly Non-Reflecting and Partially Reflecting assumptions to reveal their differences.
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Chapter 1

Theoretical Background

1.1 Channel Acoustics

The propagation of a traveling wave may be greatly affected by the boundaries it interacts with.
An example of the interactions can be seen in e.g. channel acoustics. Imagine a rectangular channel
with an open inlet- and outlet boundary such as in Fig. 1.1. At the outlet, there is a discontinuity
jump in the cross-sectional area. Based on the characteristics of the discontinuity, the interaction
between the traveling wave and the boundary will change. Assume there are two waves, one traveling
in the positive x-direction, p+, and one in the negative x-direction, p−. The latter is an effect of the
traveling wave interacting with the boundary, that is, a reflected wave. This is represented in the
zoomed in region in Fig. 1.1. The pressure inside the domain will thus be p(x, t) = p+(x, t)+p−(x, t).
This highlights the importance of accurately capturing the proportion of the traveling wave which
is reflected. Due to these reflections, the system may enter a resonance mode and exhibit standing
waves [7].

Standing waves are not physical waves, but the interference of two or more traveling waves. To
characterize the properties of a standing wave, one needs to first determine the speed of sound in
the medium which is

c =
√
γ/ψ,

for perfect gases, where γ = Cp/Cv is the ratio of specific heats where Cp and Cv are the specific
heats at constant pressure and volume respectively, and ψ = ρ/p is the compressibility, where ρ
and p are the density and pressure, respectively. To calculate approximately at what frequencies
resonance will occur, e.g. for the first mode of the previously defined open-inlet-open-outlet domain,

f2L = c/(2L),

where L is the characteristic length of the domain. This is known as a half-wave [7].

Figure 1.1: Illustration of down- and upstream propagating waves in a confined chamber with a
zoom at the boundary showing the origin of the upstream propagating wave.
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1.2 Navier-Stokes Characteristic Boundary Conditions

Defining boundary conditions which are realistic is not always trivial. Poinsot and Lele [3] emphasizes
that, for well-posedness, it is necessary to base the boundary conditions on a version of the Navier-
Stokes equations, such as the Euler equations where viscous effects are neglected. They start from
the compressible Navier-Stokes equations

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (1.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+

∂p

∂xi
=
∂τij
∂xj

, (1.2)

∂ρE

∂t
+
∂(ρE + p)ui

∂xi
=
∂(uiτij)

∂xi
− ∂qi
∂xi

, (i = 1 to 3), (1.3)

where

ρE =
1

2
ρukuk +

p

γ − 1
, and (1.4)

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

)
, (1.5)

where τij is the viscous shear stress tensor with µ which is the dynamic viscosity. Using these set of
equations together with the perfect gas law p = ρRT , one can derive a set of equations called the
Local One-Dimensional Inviscid (LODI) relations.

1.2.1 LODI Relations

The LODI relations can be derived from the Navier-Stokes equations by using characteristic anal-
ysis to reformulate the hyperbolic terms and reformulating the system as done by Thompson [8].
From the characteristic analysis, equations connecting the characteristic waves and the reformulated
Navier-Stokes equations are obtained. Lastly, these characteristic waves, Li, are accompanied with
characteristic velocities, λi [8]. The LODI relations presented by Poinsot and Lele [3] are

L1 = λ1

(
∂p

∂x1
− ρc

∂u1
∂x1

)
, (1.6)

L2 = λ2

(
c2
∂ρ

∂x1
− ∂p

∂x1

)
, (1.7)

L3 = λ3
∂u2
∂x1

, (1.8)

L4 = λ4
∂u3
∂x1

, (1.9)

L5 = λ5

(
∂p

∂x1
+ ρc

∂u1
∂x1

)
, (1.10)

where Li is the information the characteristic waves carry, and λi, i = 1 to 5 are the eigenvalues
corresponding to the characteristic speeds of information traveling in the domain. An illustration of
these waves within a computational domain is presented in Fig. 1.2.
Considering the 1D NSE, a formulation with the characteristic waves may be derived as

∂ρ

∂t
+

1

c2

(
L2 +

1

2
(L5 + L1)

)
= 0, (1.11)

∂p

∂t
+

1

2
(L5 + L1) = 0, (1.12)

8
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Figure 1.2: Characteristic waves with their respective directions adjusted for subsonic flows.

∂u1
∂t

+
1

2ρc
(L5 − L1) = 0, (1.13)

∂u2
∂t

+ L3 = 0, (1.14)

∂u3
∂t

+ L4 = 0. (1.15)

Furthermore, these equations may be written in terms of gradients normal to the boundary,

∂ρ

∂x1
=

1

c2

(
L2

un
+

1

2

(
L5

un + c
+

L1

un − c

))
, (1.16)

∂p

∂x1
=

1

2

(
L5

un + c
+

L1

un − c

)
, (1.17)

∂u1
∂x1

=
1

2ρc

(
L5

un + c
− L1

un − c

)
, (1.18)

∂T

∂x1
=

T

ρc2

(
−L2

un
+

1

2
(γ − 1)

(
L5

un + c
+

L1

un − c

))
. (1.19)

By remembering that Li for i = 2 to 5 correspond to information leaving the domain (for subsonic
outlets), and L1 is the information entering the domain, recall Fig. 1.2, one can realize that for
perfectly non-reflecting boundary conditions, L1 = 0. Taking this into account in Eq. (1.12) together
with Eq. (1.17) results in

∂p

∂t
+ (un + c)

∂p

∂x1
= 0, and (1.20)

∂u1
∂t

+ (un + c)
∂u1
∂x1

= 0 (1.21)

A modified version of these equations is used in OpenFOAM in their waveTransmissive boundary
condition. The modification is based on what is discussed in Poinsot and Lele’s work [3]. The
justifications for these modifications are due to the lack of information regarding the atmospheric
pressure outside of the domain, and the inlets are generally mass flow or velocity driven inlets, the
pressure drifts towards zero. In light of this, the solved equations have an extra term,

9
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L1 = K(p− p∞), (1.22)

which corresponds to ingoing information regarding the atmospheric conditions outside of the do-
main. Here, the coefficient K = (u1 + c)/l∞ based on OpenFOAM’s implementation, where p is the
pressure on the boundary-face and p∞ is the condition set at a distance l∞ from the boundary1.
Putting K’s definition aside for now, and focusing on the rest of the derivations we get

∂p

∂t
+ (un + c)

∂p

∂x1
+K(p− p∞) = 0. (1.23)

A simple discretization using implicit Euler time and upwind spatial discretization was presented
by Lucchese [1]

ϕn+1
f = (ϕnf + kϕ∞)

1

1 + α+ k
+

α

1 + α+ k
ϕn+1
c , (1.24)

where α = Un∆t/∆, and k = K∆t.

1.2.2 Partially Reflecting Boundary Condition

To obtain the partially reflecting boundary condition equations, the derivation needs to include L1

from the start. This will be illustrated using the velocity, but both pressure and velocity equations
will be presented. Starting from Eq. (1.10) and (1.13) one can derive

∂u1
∂t

+
1

2ρc

[
(u1 + c)

(
∂p

∂x1
+ ρc

∂u1
∂x1

)
− L1

]
= 0, (1.25)

where we may insert a rearranged version of Eq. (1.6) as well as Eq. (1.22) to retrieve

∂u1
∂t

+ (u1 + c)
∂u1
∂x1

+
1

2ρc

[(
u1 + c

u1 − c

)
− 1

]
K(p− p∞) = 0. (1.26)

As seen in Eq. (1.26), the pressure is needed. Here we assume linear acoustics such that we can
express u′ = p′/(ρc) which results in

∂u1
∂t

+ (u1 + c)
∂u1
∂x1

+
1

2

[(
u1 + c

u1 − c

)
− 1

]
K(u− u∞) = 0. (1.27)

Comparing this to the perfectly non-reflecting formulation

∂u1
∂t

+ (u1 + c)
∂u1
∂x1

+K(u− u∞) = 0, (1.28)

we can see that there is an additional term. This can be reformulated using the Mach number,
Ma = u1/c, to obtain

1

2

(
Ma+ 1

Ma− 1
− 1

)
,

which can be understood as a transmission or reflection coefficient which varies for different types
of subsonic flows, based on acoustics in moving media.

When discretized using implicit Euler for time and upwind for space, the current time-step for
velocity becomes

ϕn+1
f =

1

1 + αuc +Rk
ϕnf +

αuc

1 + αuc +Rk
ϕn+1
c +

Rk

1 + αuc +Rk
ϕ∞, (1.29)

1The coefficient K is used to relax the incoming waves and originally, it was proposed that its definition should be
K = σ(1−Ma2)c/L by Rudy and Strikwerda [6]. Here, σ is a constant, usually set to 0.25, but will be the constant
which one may tune to get the desired behavior (even for reflections), M is the maximum Mach number in the flow,
and L is the characteristic size of the domain [3].

10
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where αuc = (u1 + c)∆t/∆x, k = K∆t and R = (u1 + c)/(u1 − c)− 1. Similarly, for pressure

ϕn+1
f =

1

1 + αuc + Tk
ϕnf +

αuc

1 + αuc + Tk
ϕn+1
c +

Tk

1 + αuc + Tk
ϕ∞, (1.30)

where T = −R due to the phase difference between velocity and pressure fluctuations.
The difference in the transport equation in comparison to Eq. (1.24) is small. The extra scaling

term indicates an impact of the amount reflected/transmitted depending on what Mach number flows
are exiting the boundary which is reasonable. However, the assumption regarding the treatment L1

is the same as previous implementations, which may be unreasonable since this formulation is not
only supposed to maintain the mean pressure, but introduce physical reflections as well. Thus it is
proposed to have a formulation as L1 = a+K(p−p∞), which is similar to the formulation proposed
by Yoo et al.2 [9]. By choosing this, the previous derivation can be split into

∂p

∂t
+

1

2ρc

(
λ5

(
∂p

∂x
+ ρc

∂u

∂x

)
− λ1

(
∂p

∂x
− ρc

∂u

∂x

)
inside

− λ1

(
∂p

∂x
− ρc

∂u

∂x

)
outside

)
(1.31)

and modeling the outside term by K(p−p∞). However, the author is unknown of the impacts of this
assumption at this moment. The motivation to this splitting of the L1 term is based on a 2nd order
central differencing approach, where it is between the cell center, face center and a point outside of
the domain (at distance l∞). This is left for future work but kept here to keep the reader critical to
any assumptions used in such derivations as these.

2Yoo et al. [9] proposed to calculate L1 = β1(u−u∞)+T1, where T1 is the transverse contribution to the incoming
information.
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Chapter 2

Boundary Conditions in
OpenFOAM

2.1 General

In general, boundary conditions are divided into two subsections, Dirichlet and Neumann boundary
conditions. These refer to zeroth-order term (fixed value) and the first order term (fixed gradient)
being fixed, respectively. In OpenFOAM there is an option to use a so-called mixed boundary
condition1. In this case, a mixture of zeroth- and first-order terms are used. Boundary conditions
affect the system of equations differently as they can either affect the divergence (denoted with
subscript ∇·) or laplacian term (denoted with subscript ∇2) in the equations, as well as impacting
the solution explicitly, or implicitly. An explicit implementation refers to an alteration of the source
terms, whilst an implicit one affects the coefficient matrix (A) of the linear system. The mem-
ber functions to look out for regarding this include valueInternalCoeffs, valueBoundaryCoeffs,
gradientInternalCoeffs, and gradientBoundaryCoeffs. Their importance include:

• valueInternalCoeffs implicitly affects the equations through the diagonal elements in the
coefficient matrix for the divergence term, a∇·.

• valueBoundaryCoeffs explicitly affects the equations through the source term in the diver-
gence term, s∇·.

• gradientInternalCoeffs implicitly affects the equations through the diagonal elements in
the coefficient matrix for the laplacian term, a∇2 .

• gradientBoundaryCoeffs explicitly affects the equations through the source term in the lapla-
cian term, s∇2 .

These terms are introduced in Eq.’s (2.1), (2.2), (2.3), and (2.4).

2.1.1 mixed

The mixed boundary condition folder includes templated functions which are used for all mixed
boundary conditions. The main member functions of interest in this ”base” class includes: value-
InternalCoeffs, valueBoundaryCoeffs, gradientInternalCoeffs, gradientBoundaryCoeffs, e-
valuate, and snGrad. A list is presented in order to assign an alias to these variables and their
dependent variables and parameters for the sake of brevity,

• valueFraction, f ,

1This is a generic boundary condition which will be explained more in the mixed section.

12



2.1. General Chapter 2. Boundary Conditions in OpenFOAM

• refValue, ϕref ,

• refGrad, ∇ϕref ,

• this->patch().deltaCoeffs, d,

• evaluate, e, and

• snGrad, ∇⊥
f (ϕ), where ϕ is a general field variable.

These member functions are defined mathematically as

a∇· = 1− f, (2.1)

s∇· = fϕref + (1− f)∇ϕrefd, (2.2)

a∇2 = −fd, (2.3)

s∇2 = fdϕref + (1.0− f)∇ϕref , (2.4)

e = fϕref + (1.0− f)(ϕn+1
c +∇ϕref/d), (2.5)

∇⊥
f ϕ = f(ϕref − ϕn+1

c ) ∗ d+ (1.0− f)∇ϕref . (2.6)

From these equations we can see three undefined terms, namely, f , ϕref , and ∇ϕref . The aim of
the classes advective and waveTransmissive will be to help define these undefined terms, which
will then be used as input variables to the mixed class.

2.1.2 advective

An example of a mixed boundary condition is the advective boundary condition. The former
undefined terms are determined in the member function updateCoeffs() seen in Listing 2.1 where
for Euler or Crank Nicolson time discretization, f is defined on line 31.

Listing 2.1: Definition of updateCoeffs in advective

1 template<class Type>

2 void Foam::advectiveFvPatchField<Type>::updateCoeffs()

3 .

4 .

5 .

6 // Calculate the advection speed of the field wave

7 // If the wave is incoming set the speed to 0.

8 const scalarField w(Foam::max(advectionSpeed(), scalar(0)));

9

10 // Calculate the field wave coefficient alpha (See notes)

11 const scalarField alpha(w*deltaT*this->patch().deltaCoeffs());

12 .

13 .

14 .

15 if (lInf_ > 0)

16 {

17 // Calculate the field relaxation coefficient k (See notes)

13
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18 const scalarField k(w*deltaT/lInf_);

19

20 if

21 (

22 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

23 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

24 )

25 {

26 this->refValue() =

27 (

28 field.oldTime().boundaryField()[patchi] + k*fieldInf_

29 )/(1.0 + k);

30

31 this->valueFraction() = (1.0 + k)/(1.0 + alpha + k);

32 }

33 .

34 .

35 .

This can be written as

f = (1.0 + k)/(1.0 + α+ k). (2.7)

For ϕref it is seen in Listing 2.1 on line 26 to 29 which may be recast into

ϕref = (ϕnf + kϕ∞)/(1.0 + k). (2.8)

The term, ∇ϕref , remains unchanged after initialization which occurs in Listing 2.2 on line 15.

Listing 2.2: Initialization of refGrad in advective

1 template<class Type>

2 Foam::advectiveFvPatchField<Type>::advectiveFvPatchField

3 (

4 const fvPatch& p,

5 const DimensionedField<Type, volMesh>& iF

6 )

7 :

8 mixedFvPatchField<Type>(p, iF),

9 phiName_("phi"),

10 rhoName_("rho"),

11 fieldInf_(Zero),

12 lInf_(-GREAT)

13 {

14 this->refValue() = Zero;

15 this->refGrad() = Zero;

16 this->valueFraction() = 0.0;

17 }

Thus the gradient of the reference value of the generic variable remains

∇ϕref = 0, and (2.9)

not altered anywhere in the code. Furthermore, there is an important member function called
advectionSpeed(), wu, which calculates the velocity normal to the boundary patch, either by
considering the mass flux, or simply the velocity face flux. This can be seen in Listing 2.3 on line
23 considering mass flux and line 27 considering the velocity face flux.

Listing 2.3: Definition of advectionSpeed() in advective

1 template<class Type>

2 Foam::tmp<Foam::scalarField>

3 Foam::advectiveFvPatchField<Type>::advectionSpeed() const

4 {

5 const surfaceScalarField& phi =

6 this->db().objectRegistry::template lookupObject<surfaceScalarField>

14
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7 (phiName_);

8

9 fvsPatchField<scalar> phip =

10 this->patch().template lookupPatchField<surfaceScalarField, scalar>

11 (

12 phiName_

13 );

14

15 if (phi.dimensions() == dimDensity*dimVelocity*dimArea)

16 {

17 const fvPatchScalarField& rhop =

18 this->patch().template lookupPatchField<volScalarField, scalar>

19 (

20 rhoName_

21 );

22

23 return phip/(rhop*this->patch().magSf());

24 }

25 else

26 {

27 return phip/this->patch().magSf();

28 }

29 }

The latter is defined as

wu = U · Sf , (2.10)

where U is the velocity vector, and Sf is the surface normal vector, effectively projecting the ve-
locity onto the surface normal vector. The parameters α and k are introduced as a function of w,
corresponding to the wave speed. The wave speed is determined as a scalar field by

wmax = max(w, 0), (2.11)

whilst

α = (wmax∆t)/d, and (2.12)

k = (wmax∆t)/l∞, (2.13)

which can be seen in Listing 2.1 on lines 11 and 18, respectively.

2.1.3 waveTransmissive

An extension to the definition of the advectionSpeed() member function is provided by the
waveTransmissive boundary condition which can be seen in Listing 2.4 on line 29.

Listing 2.4: Definition of advectionSpeed() in waveTransmissive

1 template<class Type>

2 Foam::tmp<Foam::scalarField>

3 Foam::waveTransmissiveFvPatchField<Type>::advectionSpeed() const

4 {

5 // Lookup the velocity and compressibility of the patch

6 const fvPatchField<scalar>& psip =

7 this->patch().template

8 lookupPatchField<volScalarField, scalar>(psiName_);

9

10 const surfaceScalarField& phi =

11 this->db().template lookupObject<surfaceScalarField>(this->phiName_);

12

13 fvsPatchField<scalar> phip =

14 this->patch().template

15 lookupPatchField<surfaceScalarField, scalar>(this->phiName_);

15



2.2. LODI2D versus modifiedLODI2D Chapter 2. Boundary Conditions in OpenFOAM

16

17 if (phi.dimensions() == dimDensity*dimVelocity*dimArea)

18 {

19 const fvPatchScalarField& rhop =

20 this->patch().template

21 lookupPatchField<volScalarField, scalar>(this->rhoName_);

22

23 phip /= rhop;

24 }

25

26 // Calculate the speed of the field wave w

27 // by summing the component of the velocity normal to the boundary

28 // and the speed of sound (sqrt(gamma_/psi)).

29 return phip/this->patch().magSf() + sqrt(gamma_/psip);

30 }

Simply put, it alters the advectionSpeed() to that of the wave speed

wuc = U · Sf +
√
γ/ψ. (2.14)

This enters Eq. 2.11 to obtain the maximum value, which results in new definitions for α and k which
will be noted with the subscript ”uc”, whilst the advective version corresponds to the subscript
”u”.

2.2 LODI2D versus modifiedLODI2D

A previous student to the CFD with Open Source Software, Lucchese [1], developed a code called
LODI2D with its generic boundary condition mixedV2D. This boundary condition is based on the
combination of mixed, advective, and waveTransmissive boundary condition. He implemented
the advective boundary condition directly in the LODI2D together with the waveTransmissive

parts. In order to extend the formulation from 1D to 2D, a necessary change in mixed was needed
as well, therefore a part of his implementation is included in mixedV2D code. The changes were
specifically related to the transportation of velocity at the boundary. A link to Leandros report and
files is found in [1].

In the code, Lucchese [1] generalised the boundary condition such that the normal and transverse
direction in the 2D case did not need to align with the x-, and y-coordinates. This generalization
was performed by implementing a rotation after the velocity components were calculated in the
normal and transverse directions. The difference in constructor can be seen as in the following two
Listings 2.5 and 2.6, comparing mixedV2DFvPatchVectorField.C by Lucchese [1] with the simplified
version modifiedMixedV2DFvPatchVectorField.C with the assumption that the boundary-normal
vector aligns with the x-direction.

Listing 2.5: Definition of the first constructor in mixedV2DFvPatchVectorField.C

1 Foam::mixedV2DFvPatchVectorField::mixedV2DFvPatchVectorField

2 (

3 const fvPatch& p,

4 const DimensionedField<vector, volMesh>& iF

5 )

6 :

7 fvPatchVectorField(p, iF),

8 Un_(p.size()),

9 Ut_(p.size()),

10 n_(p.size()),

11 refValueU_(p.size()),

12 refValueUC_(p.size()),

13 refGrad_(p.size()),

14 valueFractionU_(p.size()),

15 valueFractionUC_(p.size()),

16 source_(p.size(), Zero),

17 vector1_(p.size()),

18 vector2_(p.size()),
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19 vector3_(p.size())

20 {

21 n_ = this->patch().nf();

22 forAll(vector1_, i)

23 {

24 vector1_[i][0] = n_[i][0];

25 vector1_[i][1] = n_[i][1];

26 vector1_[i][2] = n_[i][2];

27 }

28 forAll(vector2_, i)

29 {

30 vector2_[i][0] = -n_[i][1];

31 vector2_[i][1] = n_[i][0];

32 vector2_[i][2] = n_[i][2];

33 }

34 forAll(vector3_, i)

35 {

36 vector3_[i][0] = 0.0;

37 vector3_[i][1] = 0.0;

38 vector3_[i][2] = 1.0;

39 }

Listing 2.6: Definition of the first constructor in modifiedMixedV2DFvPatchVectorField.C

1 Foam::modifiedMixedV2DFvPatchVectorField::modifiedMixedV2DFvPatchVectorField

2 (

3 const fvPatch& p,

4 const DimensionedField<vector, volMesh>& iF

5 )

6 :

7 refValueU1_(p.size()),

8 refValueU2_(p.size()),

9 refValueUC_(p.size()),

10 refGrad_(p.size()),

11 valueFractionU1_(p.size()),

12 valueFractionU2_(p.size()),

13 valueFractionUC_(p.size()),

14 source_(p.size(), Zero)

15 {

16 }

The motivation to this simplification is based on the assumption which is presented in Lucch-
ese [1], that the characteristic waves are derived based on assuming a boundary with a normal
vector parallel to x1, such that the only non-conservative Jacobian matrix which needs to be diag-
onalized corresponds to the one in the x1-direction. It can be seen that with this simplification al-
lows a direct extraction of the velocities through vectorField U = this->patchInternalField(),
vectorField Uold = field.oldTime().boundaryField()[patchi], and vectorField Uoold =

field.oldTime().oldTime().boundaryField()[patchi]. This also implies that, when return-
ing the contributions of the different velocity components to the coefficient matrix, A, or source
term, S, a simple unit vector multiplication is performed as seen in Listing 2.7.

Listing 2.7: Returning the contributions to the linear equation to be solved

1 .

2 .

3 .

4 Foam::tmp<Foam::vectorField>

5 Foam::modifiedMixedV2DFvPatchVectorField::valueInternalCoeffs

6 (

7 const tmp<scalarField>&

8 ) const

9 {

10 scalarField valueU =

11 (1.0 - valueFractionU_);

12

13 scalarField valueUC =

17
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14 (1.0 - valueFractionUC_);

15

16 return valueUC*vector(1.0, 0.0, 0.0) + valueU*vector(0.0, 1.0, 0.0);

17 }

2.2.1 Comparison

To verify that this is a reasonable simplification for the given test case which is schematically
illustrated in Fig. 2.1 which consists of an open domain with a square cylinder bluff-body which
sheds vortices. The probe location is chosen such that the periodicity of the vortex-shedding is
analyzed between the cases and its time-series of the transverse (y) velocity behind a bluff body
is tracked, compared and shown in Fig. 2.2. These are shown to completely overlap and thus the
simplification is valid for this specific test case. An example when this simplification no longer is
valid would be when the boundary normal vector is a linear combination of your base coordinate
system, (x, y, z). If the boundary-normal vector is perpendicular to x, then it is recommended to
switch the coordinate system such that it aligns with the x-direction.

Figure 2.1: Schematic illustration of the computational domain and probe location.
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Figure 2.2: A comparison between the time-series of the y-component of velocity behind the square
cylinder bluff body, between LODI2D and modifiedLODI2D.
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Chapter 3

Implementation of the New
Boundary Condition

DISCLAIMER: Note that parts the code is identical to Leandro Lucchese’s version [1], which
inherits its structure from waveTransmissive, advective and mixed classes. Strictly, the reduction
in complexity, introduction of the third components and the inclusion of the additional reflection
coefficient were extended from the author’s work.

3.1 Initial modifications

Since the complexity of rotations increases with an extension from 2D to 3D, it is assumed that
the boundary normal vector is always parallel with the x-direction. This is also a part of the
derivations of the LODI-relations making it a reasonable assumption. This greatly simplifies the
code as there is no need to construct member data such as the normal and transverse velocities
amongst other member data, since they are directly accessible through the patchInternalField()
member function from the fvPatch class.

3.2 modifiedMixedV3D

The implementation of the third transported velocity component is included as a simple extension
by inserting an extra component for the member functions refValue, and valueFraction.

The transverse components of the velocity, corresponding to the y- and z-components, are trans-
ported by the characteristic waves defined in Eqs. (1.8) and (1.9). Therefore, these are transported
with the convective speed wu. This results in an additional ϕ, thus we have ϕu,1, ϕu,2 and ϕuc in
lines 7, 8, and 9 in Listing 3.1. Similarly, f needs to be modified, which is seen on lines 11, 12, and
13.

Listing 3.1: Definition of the first constructor in modifiedMixedV3DFvPatchVectorField.C

1 Foam::modifiedMixedV3DFvPatchVectorField::modifiedMixedV3DFvPatchVectorField

2 (

3 const fvPatch& p,

4 const DimensionedField<vector, volMesh>& iF

5 )

6 :

7 refValueU1_(p.size()),

8 refValueU2_(p.size()),

9 refValueUC_(p.size()),

10 refGrad_(p.size()),

11 valueFractionU1_(p.size()),

12 valueFractionU2_(p.size()),

13 valueFractionUC_(p.size()),
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14 source_(p.size(), Zero)

Next, the definition of ϕu,1, ϕu,2, and ϕuc are given as

ϕu,1 = fu,1ϕ
u,1
ref + (1− fu,1)u2, (3.1)

ϕu,2 = fu,2ϕ
u,2
ref + (1− fu,2)u3, (3.2)

ϕuc = fucϕ
uc
ref + (1− fuc)u1, (3.3)

in lines 11-18, 20-27, and 29-36 respectively, in Listing 3.2. Lastly, the x-, y- and z-components are
multiplied by their respective directional unit vector and added to create the boundaries velocity
vector which is returned by the evaluate() member function on line 40.

Listing 3.2: Definition of the evaluate member function in
modifiedMixedV3DFvPatchVectorField.C

1

2 void Foam::modifiedMixedV3DFvPatchVectorField::evaluate(const Pstream::commsTypes)

3 {

4 if (!this->updated())

5 {

6 this->updateCoeffs();

7 }

8

9 vectorField U = this->patchInternalField();

10

11 Foam::scalarField valueU1 =

12 (

13 valueFractionU1_*refValueU1_

14 + (1.0 - valueFractionU1_)

15 *(

16 U.component(1)

17 )

18 );

19

20 Foam::scalarField valueU2 =

21 (

22 valueFractionU1_*refValueU2_

23 + (1.0 - valueFractionU2_)

24 *(

25 U.component(2)

26 )

27 );

28

29 Foam::scalarField valueUC =

30 (

31 valueFractionUC_*refValueUC_

32 + (1.0 - valueFractionUC_)

33 *(

34 U.component(0)

35 )

36 );

37

38 vectorField::operator=

39 (

40 valueUC*vector(1.0, 0.0, 0.0) + valueU1*vector(0.0, 1.0, 0.0) + valueU2*vector(0.0, 0.0, 1.0)

41 );

42

43 fvPatchVectorField::evaluate();

44 }

The contributions of the different velocity components to the aforementioned key member functions,
a∇·, s∇·, a∇2 , and s∇2 are shown in Listing 3.3. On lines 17, 36, 52, and 68, it is seen that the
contributions from the x-, y-, and z-directions are multiplied by a unit vector in each respective
direction.
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Listing 3.3: How the coefficient and source term contributions are returned in
modifiedMixedV3DFvPatchVectorField.C

1

2 Foam::tmp<Foam::vectorField>

3 Foam::modifiedMixedV3DFvPatchVectorField::valueInternalCoeffs

4 (

5 const tmp<scalarField>&

6 ) const

7 {

8 scalarField valueU1 =

9 (1.0 - valueFractionU1_);

10

11 scalarField valueU2 =

12 (1.0 - valueFractionU2_);

13

14 scalarField valueUC =

15 (1.0 - valueFractionUC_);

16

17 return valueUC*vector(1.0, 0.0, 0.0) + valueU1*vector(0.0, 1.0, 0.0) + valueU2*vector(0.0, 0.0,

1.0);

18 }

19

20

21 Foam::tmp<Foam::vectorField>

22 Foam::modifiedMixedV3DFvPatchVectorField::valueBoundaryCoeffs

23 (

24 const tmp<scalarField>&

25 ) const

26 {

27 scalarField valueU1 =

28 valueFractionU1_*refValueU1_;

29

30 scalarField valueU2 =

31 valueFractionU2_*refValueU2_;

32

33 scalarField valueUC =

34 valueFractionUC_*refValueUC_;

35

36 return valueUC*vector(1.0, 0.0, 0.0) + valueU1*vector(0.0, 1.0, 0.0) + valueU2*vector(0.0, 0.0,

1.0);

37 }

38

39

40 Foam::tmp<Foam::vectorField>

41 Foam::modifiedMixedV3DFvPatchVectorField::gradientInternalCoeffs() const

42 {

43 scalarField valueU1 =

44 -valueFractionU1_*this->patch().deltaCoeffs();

45

46 scalarField valueU2 =

47 -valueFractionU2_*this->patch().deltaCoeffs();

48

49 scalarField valueUC =

50 -valueFractionUC_*this->patch().deltaCoeffs();

51

52 return valueUC*vector(1.0, 0.0, 0.0) + valueU1*vector(0.0, 1.0, 0.0) + valueU2*vector(0.0, 0.0,

1.0);

53 }

54

55

56 Foam::tmp<Foam::vectorField>

57 Foam::modifiedMixedV3DFvPatchVectorField::gradientBoundaryCoeffs() const

58 {

59 scalarField valueU1 =

60 valueFractionU1_*this->patch().deltaCoeffs()*refValueU1_;

61

62 scalarField valueU2 =
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63 valueFractionU2_*this->patch().deltaCoeffs()*refValueU2_;

64

65 scalarField valueUC =

66 valueFractionUC_*this->patch().deltaCoeffs()*refValueUC_;

67

68 return valueUC*vector(1.0, 0.0, 0.0) + valueU1*vector(0.0, 1.0, 0.0) + valueU2*vector(0.0, 0.0,

1.0);

69 }

3.2.1 modifiedLODI3D

The next part of the implementations lies in modifiedLODI3DFvPatchVectorField.*, where refValue
and valueFraction member data need to be initialized. Since the additional contributions from
the 3D extension are present, these are also added to the code, which is seen in Listing 3.4, lines 15
through to 21.

Listing 3.4: Definition of the first constructor in modifiedLODI3DFvPatchVectorField.C

1 Foam::modifiedLODI3DFvPatchVectorField::modifiedLODI3DFvPatchVectorField

2 (

3 const fvPatch& p,

4 const DimensionedField<vector, volMesh>& iF

5 )

6 :

7 modifiedMixedV3DFvPatchVectorField(p, iF),

8 phiName_("phi"),

9 rhoName_("rho"),

10 fieldInf_(Zero),

11 lInf_(-GREAT),

12 psiName_("thermo:psi"),

13 gamma_(0.0)

14 {

15 this->refValueU1() = Zero;

16 this->refValueU2() = Zero;

17 this->refValueUC() = Zero;

18 this->refGrad() = Zero;

19 this->valueFractionU1() = 0.0;

20 this->valueFractionU2() = 0.0;

21 this->valueFractionUC() = 0.0;

22 }

These member data are then updated in updateCoeffs(), simply by calling the field.oldTime().-
boundaryField() member function (corresponding to the previous time-step) to the fvPatch class
and updating it according to their respective definitions. Similarly, to obtain the fields from two
time-steps ago, an extra oldTime() is included. This is seen in Listing 3.5, lines 37 and 38 for the
assigning velocity vector fields, and lines 54 through to 67.

Listing 3.5: A piece of the member function updateCoeffs() in modifiedLODI3DFvPatchField.C

1 void Foam::modifiedLODI3DFvPatchVectorField::updateCoeffs()

2 {

3 if (this->updated())

4 {

5 return;

6 }

7

8 const fvMesh& mesh = this->internalField().mesh();

9

10

11 word ddtScheme

12 (

13 mesh.ddtScheme(this->internalField().name())

14 );

15 scalar deltaT = this->db().time().deltaTValue();

16

22
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17 const GeometricField<vector, fvPatchField, volMesh>& field =

18 this->db().objectRegistry::template

19 lookupObject<GeometricField<vector, fvPatchField, volMesh>>

20 (

21 this->internalField().name()

22 );

23

24 // Calculate the advection speed of the field wave

25 // If the wave is incoming set the speed to 0.

26 // advection speed U

27 const scalarField wU(Foam::max(advectionSpeed(), scalar(0)));

28 // advection speed U +- C

29 const scalarField wUC(Foam::max(advectionSpeedWT(), scalar(0)));

30

31 // Calculate the field wave coefficient alpha with U and U+-C(See notes)

32 const scalarField alphaU(wU*deltaT*this->patch().deltaCoeffs());

33 const scalarField alphaUC(wUC*deltaT*this->patch().deltaCoeffs());

34

35 label patchi = this->patch().index();

36

37 vectorField Uold = field.oldTime().boundaryField()[patchi];

38 vectorField Uoold = field.oldTime().oldTime().boundaryField()[patchi];

39

40 // Non-reflecting outflow boundary

41 // If lInf_ defined setup relaxation to the value fieldInf_.

42 if (lInf_ > 0)

43 {

44 // Calculate the field relaxation coefficient k (See notes)

45 // K calculated with the advection speed U +- C (not U)

46 const scalarField k(wUC*deltaT/lInf_); // was calculated with wU initially

47

48 if

49 (

50 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

51 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

52 )

53 {

54 this->refValueU1() = Uold.component(1);

55

56 this->refValueU2() = Uold.component(2);

57

58 this->refValueUC() =

59 (

60 Uold.component(0) + k*fieldInf_.component(0)

61 )/(1.0 + k);

62

63 this->valueFractionU1() = 1.0/(1.0 + alphaU);

64

65 this->valueFractionU2() = 1.0/(1.0 + alphaU);

66

67 this->valueFractionUC() = (1.0 + k)/(1.0 + alphaUC + k);

68 }

The latter set of lines correspond to Eqs. (2.8) and 2.7 for the UC -components on lines 58 - 61 and
67, respectively. The other components correspond to advected components. When f and ϕref are
multiplied, the first term in Eq. (1.24) is obtained for the UC component, similarly U1 and U2
components result in the first term for the advected component at the speed Un, u2/(1.0+αU ) and
u3/(1.0 + αU ).

3.2.2 modifiedLODI3DPR

To further extend the code to the partially reflecting definition, the transmission/reflection coefficient
needs to be implemented. This is done by creating a new scalarField which is denoted as PR for
”Partially Reflecting”. This is illustrated in Listing 3.6, on line 43. We can note here that there
is a new const scalarField wUC2 on line 41, which collects the minimum advection speed from
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the member function advectionSpeedWT2(). The definition of this member function is presented
in the same listing in lines 1-29 and returns Un − c, corresponding to the wave speed of the waves
traveling back into the domain from the outlet. This is needed to describe the new coefficient which
is shown in Eq. (1.27), and the minimum value is collected to be consistent with the definition of
advectionSpeedWT1() which collects the maximum value.

Listing 3.6: Definition of advectionSpeedWT2() in modifiedLODI3DPRFvPatchVectorField.C

and PR

1 Foam::tmp<Foam::scalarField>

2 Foam::modifiedLODI3DPRFvPatchVectorField::advectionSpeedWT2() const

3 {

4 // Lookup the velocity and compressibility of the patch

5 const fvPatchField<scalar>& psip =

6 this->patch().template

7 lookupPatchField<volScalarField, scalar>(psiName_);

8

9 const surfaceScalarField& phi =

10 this->db().template lookupObject<surfaceScalarField>(this->phiName_);

11

12 fvsPatchField<scalar> phip =

13 this->patch().template

14 lookupPatchField<surfaceScalarField, scalar>(this->phiName_);

15

16 if (phi.dimensions() == dimDensity*dimVelocity*dimArea)

17 {

18 const fvPatchScalarField& rhop =

19 this->patch().template

20 lookupPatchField<volScalarField, scalar>(this->rhoName_);

21

22 phip /= rhop;

23 }

24

25 // Calculate the speed of the field wave w

26 // by summing the component of the velocity normal to the boundary

27 // and the speed of sound (sqrt(gamma_/psi)).

28 return phip/this->patch().magSf() - sqrt(gamma_/psip); // U - C

29 }

30

31 void Foam::modifiedLODI3DPRFvPatchVectorField::updateCoeffs()

32 .

33 .

34 .

35 // Calculate the advection speed of the field wave

36 // If the wave is incoming set the speed to 0.

37 // advection speed U

38 const scalarField wU(Foam::max(advectionSpeed(), scalar(0)));

39 // advection speed U +- C

40 const scalarField wUC1(Foam::max(advectionSpeedWT1(), scalar(0)));

41 const scalarField wUC2(Foam::min(advectionSpeedWT2(), scalar(0)));

42 // partially reflecting factor

43 const scalarField PR(0.5*(wUC1/wUC2 - 1.0));

44 // Calculate the field wave coefficient alpha with U and U+-C(See notes)

45 const scalarField alphaU(wU*deltaT*this->patch().deltaCoeffs());

46 const scalarField alphaUC(wUC1*deltaT*this->patch().deltaCoeffs());

The transmission/reflection coefficient, PR, is then added to the transport Eq. (1.29), which is seen
in Listing 3.7, on lines 20-29, where it is only added to the transportation of u1, where u2 and
u3 remain implemented the same as in LODI3D. It can be clearly seen that this term will affect the
weighting of how much u1 will be based on the old boundary value (Uold.component(0)), versus the
feedback from outside the domain with a prescribed value by the user (fieldInf .component(0)).

Listing 3.7: Placement of PR in modifiedLODI3DPRFvPatchVectorField.C

1

2 // Non-reflecting outflow boundary
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3 // If lInf_ defined setup relaxation to the value fieldInf_.

4 if (lInf_ > 0)

5 {

6 // Calculate the field relaxation coefficient k (See notes)

7 // K calculated with the advection speed U +- C (not U)

8 const scalarField k(wUC1*deltaT/lInf_); // was calculated with wU initially

9

10 if

11 (

12 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

13 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

14 )

15 {

16 this->refValueU1() = Uold.component(1);

17

18 this->refValueU2() = Uold.component(2);

19

20 this->refValueUC() =

21 (

22 Uold.component(0) + PR*k*fieldInf_.component(0)

23 )/(1.0 + PR*k);

24

25 this->valueFractionU1() = 1.0/(1.0 + alphaU);

26

27 this->valueFractionU2() = 1.0/(1.0 + alphaU);

28

29 this->valueFractionUC() = (1.0 + PR*k)/(1.0 + alphaUC + PR*k);

30 }

3.3 Compiling

The compilation is identical to Lucchese [1], with the tree structure

Make

linux64GccDPInt32Opt

fields

fvPatchFields

fields

fvPatchFields

basic

modifiedMixedV2D

modifiedMixedV3D

derived

modifiedLODI2D

modifiedLODI3D

modifiedLODI3DPR

lnInclude

where the Make/files and Make/options are shared such that all the boundary conditions from
both basic and derived folders compile with the same wmake command. The lnInclude folder is
created and collects symbolic links to the respective files to be compiled. The upstream structure
(or where to place this tree structure) is done like mentioned in [1], where we follow the consistancy
of OpenFOAM’s structure where it is placed in src/finiteVolume directory. The files and options

files are shown in Listing 3.8 and 3.9, respectively.

Listing 3.8: The files file

1 fvPatchFields = fields/fvPatchFields

2 derivedFvPatchFields = $(fvPatchFields)/derived
3 basicFvPatchFields = $(fvPatchFields)/basic
4
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5 $(basicFvPatchFields)/modifiedMixedV2D/modifiedMixedV2DFvPatchVectorField.C
6 $(derivedFvPatchFields)/modifiedLODI2D/modifiedLODI2DFvPatchVectorField.C
7 $(basicFvPatchFields)/modifiedMixedV3D/modifiedMixedV3DFvPatchVectorField.C
8 $(derivedFvPatchFields)/modifiedLODI3D/modifiedLODI3DFvPatchVectorField.C
9 $(derivedFvPatchFields)/modifiedLODI3DPR/modifiedLODI3DPRFvPatchVectorField.C

10 LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume

Listing 3.9: The options file

1 EXE_INC = \

2 -I$(LIB_SRC)/fileFormats/lnInclude \

3 -I$(LIB_SRC)/surfMesh/lnInclude \

4 -I$(LIB_SRC)/meshTools/lnInclude \

5 -I$(LIB_SRC)/dynamicMesh/lnInclude \

6 -I$(LIB_SRC)/finiteVolume/lnInclude
7

8 LIB_LIBS = \

9 -lOpenFOAM \

10 -lfileFormats \

11 -lmeshTools \

12 -lfiniteVolume
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Chapter 4

Unconfined Bluff Body

In this chapter the test case will be presented. The test case is based on the 2D flow over a bluff
body presented in Lucchese’s work, [1], which was inspired by Pirozzoli and Colonius article,[10]. The
modifications made are to enable a 3D simulation, which, according to Lucchese, is very important
due to the inherently 3D nature of turbulence and vortices. This case is used for this analysis
due to the strong vorticity generated at high Reynolds numbers (≈ 40000) behind a bluff body.
Furthermore, the outlet is place close to the bluff-body’s trailing edge, resulting in strong vorticle
structures which need to be transmitted, presenting a difficult case for a wave-transmissive boundary
condition. Furthermore, a benefit of this case is that the 2D-version was performed by Lucchese [1]
which adds to the discussion when expanding to a 3D space.

4.1 Case Set-up

The case is set up with a characteristic length of the bluff body L = 0.1 m, length of the domain is
LD = 115L, with a free-stream Mach number ofMa∞ = 0.34, which are all identical to Lucchese, [1].
The 3D extension is kept small to t = 0.1 m to reduce the computational cost. An illustration of
the mesh is shown in Fig. 4.1, which consists of 200 000 cells, with 10 cells in the spanwise direction
to have cells with aspect ratio of approximately 1 in proximity to the bluff body. This implies 20
000 cells on the x-y plane.

Figure 4.1: An illustration of the bluff body test case’s mesh. A dashed zone is included to demon-
strate the clip used for the result section.
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The boundary condition for the front and back boundaries are set to cyclic as seen in Listing 4.1.

Listing 4.1: Modification of the blockMeshDict

1 .

2 .

3 .

4 front

5 {

6 type cyclic;

7 separationVector (0 0 1);

8 neighbourPatch back;

9 faces

10 (

11 (0 1 2 3)

12 (3 2 20 16)

13 (16 20 21 17)

14 (1 8 9 2)

15 (20 24 25 21)

16 (8 12 13 9)

17 (9 13 28 24)

18 (24 28 29 25)

19 );

20 }

21 back

22 {

23 type cyclic;

24 separationVector (0 0 -1);

25 neighbourPatch front;

26 faces

27 (

28 (7 6 5 4)

29 (19 23 6 7)

30 (18 22 23 19)

31 (6 10 11 5)

32 (22 26 27 23)

33 (10 14 15 11)

34 (27 31 14 10)

35 (26 30 31 27)

36 );

37 }

38 );

The main variables such as pressure, velocity and temperature are described as seen in List-
ings 4.2, 4.3, and 4.4. The freeStreamPressure and freeStreamVelocity are inlet/outlet type
boundary conditions that blend a zero-gradient inlet condition with a fixed value outlet condition.
It matches the matches the boundary values to the undisturbed free-stream flow condition which
allows it to minimize numerical reflections and artefacts [11].

Listing 4.2: Pressure settings in the 0/ directory

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object p;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 dimensions [1 -1 -2 0 0 0 0];
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18

19 internalField uniform 101325;

20

21 boundaryField

22 {

23 inlet

24 {

25 type zeroGradient;

26 }

27

28 outlet

29 {

30 type waveTransmissive;

31 gamma 1.4;

32 fieldInf 101325;

33 lInf 10;

34 value $internalField;
35 }

36

37 upperAndLower

38 {

39 type freestreamPressure;

40 freestreamValue $internalField;
41 }

42

43 obstacle

44 {

45 type zeroGradient;

46 }

47 front

48 {

49 type cyclic;

50 }

51 back

52 {

53 type cyclic;

54 }

55

56 }

57

58

59 // ************************************************************************* //

In Listing 4.3, line 31, the type of outlet boundary condition is varied between the settings mentioned
in Table 4.1.

Listing 4.3: Velocity settings in the 0/ directory

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 object U;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 dimensions [0 1 -1 0 0 0 0];

18

19 internalField uniform (120 0 0);

20
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21 boundaryField

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform (120 0 0);

27 }

28

29 outlet

30 {

31 type LODI2D; // modifiedLODI3D; // modifiedLODI3DPR; // waveTransmissive;

32 value $internalField;
33 field U;

34 gamma 1.4;

35 rho rho;

36 lInf 10;

37 fieldInf (120 0 0);

38 }

39

40 upperAndLower

41 {

42 type freestreamVelocity;

43 freestreamValue $internalField;
44 }

45

46 obstacle

47 {

48 type noSlip;

49 }

50 front

51 {

52 type cyclic;

53 }

54 back

55 {

56 type cyclic;

57 }

58

59 }

60

61

62 // ************************************************************************* //

Listing 4.4: Temperature settings in the 0/ directory

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object T;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 dimensions [0 0 0 1 0 0 0];

18

19 internalField uniform 300;

20

21 boundaryField

22 {

23 inlet
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24 {

25 type zeroGradient;

26 }

27

28 outlet

29 {

30 type advective;

31 fieldInf 300;

32 lInf 10;

33 value $internalField;
34 }

35

36 upperAndLower

37 {

38 type zeroGradient;

39 }

40

41 obstacle

42 {

43 type zeroGradient;

44 }

45 front

46 {

47 type cyclic;

48 }

49 back

50 {

51 type cyclic;

52 }

53

54 }

55

56

57 // ************************************************************************* //

The controlDict is shown in Listing 4.5, where the time-step is controlled by the Courant
number such that CFL < 0.3 to ensure numerical stability and better pressure-velocity coupling.
To reduce computational cost, the PISO loop is used, instead of PIMPLE loop (PISO but with
multiple nOuterCorrector loops). The statistics are gathered after 0.1 s for 0.3 s, corresponding to
approximately three flow-through times. Additionally, a probe located 0.3 m behind the bluff body
is used to analyze the vortex-shedding behavior.

Listing 4.5: Settings in the controlDict directory

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object controlDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 application rhoPimpleFoam;

18

19 startFrom latestTime;

20

21 startTime 0;

22

23 stopAt endTime;
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24

25 endTime 0.4;

26

27 deltaT 2e-6;

28

29 writeControl adjustableRunTime;

30

31 writeInterval 0.01;

32

33 purgeWrite 0; // was 10

34

35 writeFormat ascii;

36

37 writePrecision 8;

38

39 writeCompression off;

40

41 timeFormat general;

42

43 timePrecision 6;

44

45 runTimeModifiable true;

46

47 adjustTimeStep yes;

48

49 maxCo 0.3;

50

51 maxDeltaT 1;

52

53 functions

54 {

55 fieldAverage

56 {

57 type fieldAverage;

58 libs (fieldFunctionObjects);

59 enabled true;

60 timeStart 0.10;

61 timeEnd 1;

62 writeControl writeTime;

63 fields

64 (

65 U

66 {

67 mean on;

68 prime2Mean on;

69 base time;

70 }

71

72 p

73 {

74 mean on;

75 prime2Mean on;

76 base time;

77 }

78 );

79 }

80 probes

81 {

82 type probes;

83 functionObjectLibs ("libsampling.so");

84 name probes;

85 probeLocations

86 (

87 ( 10.2 5 0 )

88

89 );

90 fields ( p T U );

91 writeControl timeStep;
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92 writeInterval 1;

93 }

94 }

95

96 libs ("libmyFiniteVolume.so");

97

98 // ************************************************************************* //

A table with all of the cases are presented in Table 4.1, where all the cases share the same
boundary conditions for p, T , and the same setting for l∞, which stays consistent with Lucchese’s
work [1], such that they can be compared and used together. The influence of l∞ is not investigated,
however, as described in Eqs. (1.28) and (2.13), k may be interpreted as a spring stiffness constant
which is decreased with increasing l∞ which affects the boundary’s feedback amplitude.q

Table 4.1: Boundary conditions of 3D-bluff body test-case

Case 1 Case 2 Case 3 Case 4
p waveTransmissive waveTransmissive waveTransmissive waveTransmissive
U waveTransmissive LODI2D LODI3D LODI3DPR
T advective advective advective advective
lInf 10 10 10 10

4.2 Results and Discussion

In this section the results will be presented and discussed, including mean and root-mean-squared
(rms) statistics on the velocity and pressure fields, fast Fourier transform of the y-velocity component
behind the bluff body to analyze the vortex-shedding behavior, time-delay embedding and lastly,
the computational costs are compared. The mean and rms values are used to give an overview of
the time-averaged differences between the cases as the instantaneous ones may differ simply due to a
slight phase change between each other. The phase changes and temporal differences are illustrated
with time-delay embedding which indicates the trajectories of a 1D-data-series over time in a phase
space. A frequency analysis is performed to reveal difference in the underlying vortex-shedding
behavior based on outlet boundary conditions.

The mean and rms pressure are presented in Fig. 4.2 and show that the statistical fields are
very similar to each other. The main differences are seen in the rms fields, where Case 1 with
waveTransmissive boundary condition leads to the largest at 5.64 kPa, and Case 3 with LODI3D

the lowest rms amplitude of 5.3 kPa in the wake region in comparison to 5.61 kPa, 5.59 kPa, for
Case 2 and 4, respectively.

Moving over to Fig. 4.3, all the cases’ mean values except for Case 3 with LODI3D are slightly
bottom favored, which is confirmed when analysing the rms values where Case 3 shows very sym-
metric mean velocity fluctuations. This does not mean the other cases will not converge to a similar
result, but within the same physical time it indicates LODI3D helps converge the solution faster.

The statistics on the y-component of velocity seen in Fig. 4.4 are very similar as well, and
difficult to comment. But when moving over to the z-component of velocity in Fig. 4.5, Case
2 with LODI2D show numerical artifacts by the boundary, which is not seen in the other cases.
The numerical artifacts are expected as LODI2D is made for 2D- and not 3D-cases. Note that the
amplitudes are very small. It is peculiar that this occurs in Case 2 but not Case 1 which also
neglects transporting the z-velocity component, indicating an unknown influence, potentially due to
a stiffness issue when one transverse component is treated, whilst one is left untreated. If both are
left untreated, the conservational properties of the finite volume method could potentially use both
transverse components to negate their errors. Another possibility which could be in conjunction
with the aforementioned explanation is if there is a default treatment to the transverse components,
such as zeroGradient which could lead to a more well-behaved scenario, than one component
zeroGradient and another being treated as advective. This does however show some resilience
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Figure 4.2: Mean (left group of panels) and rms (right group of panels) pressure-fields. The panels
correspond to a) LODI2D, b) LODI3D, c) waveTransmissive, and d) LODI3DPR.

Figure 4.3: Mean (left group of panels) and rms (right group of panels) x-velocity-fields. The panels
correspond to a) LODI2D, b) LODI3D, c) waveTransmissive, and d) LODI3DPR.
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in the established waveTransmissive boundary condition. Cases 1 and 3 are quite similar in their
mean and rms values here, and an increased amount of fluctuations and mean values are present
for Cases 2 and 4 which indicates a portion of the incident z-velocity is reflected. In the latter
case, this is exactly what is expected due to the partially reflecting derivation. It should also be
noted that it is done without the presence of numerical artifacts in the same magnitude, successfully
mimicking a partially reflective boundary. The same observations are made when analyzing the
other z-dependent components of the rms velocity in Fig. 4.6.

Figure 4.4: Mean (left group of panels) and rms (right group of panels) y-velocity-fields. The panels
correspond to a) LODI2D, b) LODI3D, c) waveTransmissive, and d) LODI3DPR.

A common way to analyze bluff-body flows is to check the frequency of vortex-shedding. In
Fig. 4.7, the FFT of each case time-series1 for the y-component of the velocity behind the bluff
body is performed. The FFT indicates that all cases share the same maximum peak, but there is
a spreading of the shedding frequency for Case 4, a double peak for Case 1, a triple peak for Case
2 and a clear peak for Case 3. The spreading of the shedding frequency for Case 4 is expected due
to the increased amplitude of the perturbations which interact with the hydrodynamic instability,
slightly knocking the dynamical system off its stable trajectory which later begins to approach back
to.

Another note is that some of these may be artifacts of the signal length as an FFT approach
assumes a periodic signal, and stitches the beginning with the end of the supplied dataseries. The
stitching is done using a window operator, which in this case, is the Kaiser window.

Furthermore, Case 3 shows the clearest vortex-shedding frequency peak which is also connected to
the highest amplitude. This is a good indication of the effectiveness with the 3D implementation. The
vortex-shedding faces less perturbations which would otherwise be present in the case of reflections
at the boundary.

For nonlinear dynamical system, a popular theory to apply is the Koopman theory. It implies
that, for Hamiltonian systems, you may inflate your data into a larger dimensional space, which
eventually leads to a linear instead of nonlinear system [12]. In conjunction with such a theory,
a common method of analysis is the so-called Time-Delay Embedding (TDE) (based on Taken’s

1This time-series is obtained from the probe which is shown in Listing 4.5, between lines 80 to 93.
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Figure 4.5: Mean (left group of panels) and rms (right group of panels) z-velocity-fields. The panels
correspond to a) LODI2D, b) LODI3D, c) waveTransmissive, and d) LODI3DPR.

Figure 4.6: The rms values of the xz (left) and yz (right) components. The panels correspond to a)
LODI2D, b) LODI3D, c) waveTransmissive, and d) LODI3DPR.
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Theorem2), which consists of constructing a Hankel matrix where you superimpose a new column
corresponding to the same time-series but time-delayed by a factor τ . This is repeated until the
prescribed number of dimensions are reached [13]. In this case it is done until the basis functions
are simple sinusoidals, indicating linear basis functions. The settings correspond to τ = 20 and
expanding the 1D signal to IR100. The Hankel matrix, H, is decomposed using Singular Value
Decomposition (SVD), into

H = USV T ,

where V T is right singular vectors which are ordered from most to least contribution to the system.
Thus the three most dominant modes are plotted which is seen in Fig. 4.8. These can e.g. represent
different terms such as how the pressure affects velocity, or quadratic velocity terms etc. The
trajectories of Cases 1, 2, 3 and 4 are all very similar, leading to a limit-cycle with some intermittency
disrupting the limit-cycle behavior which is seen in Fig. 4.8 in the panel to the right. The initial
starting point of the trajectory differs from each case, indicating an influence on the initial condition
by the outlet boundary condition.
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Figure 4.7: Fast Fourier transform of the y-velocity component behind the bluff body for Cases 1,
2, 3, and 4.

Figure 4.8: Time-delay embedding of the y-velocity components behind the bluff body for Cases 1,
2, 3, and 4. Left panel includes a 3D view and the right panel reveals the 2D view of a limit-cycle
type of behavior.

2The fundamental assumption of Taken’s Theorem is such that the reconstruction of the dynamical system preserves
diffeomorphism, however, it does not preserve the geometric shape of the structures in space. This leads to an
optimisation problem where we need to find the best parameters to make the reconstruction interpretable [13].
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A last note regarding the results for the different boundary conditions is that the computational
cost corresponds to 5 and 32 core hours for Case 1, and Case 2, 3, and 4, respectively. This
difference, similarly to the lack of reflections and numerical artifacts in Case 1 indicates a difference
in the implementation which optimizes the implementation and reduces reflections. This begs the
question, ”how do these boundary conditions scale?”. This is left for a future analysis.
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Conclusion

In this work, two new boundary conditions were created: LODI3D and LODI3DPR with the basic
boundary condition implemented in mixedV3D. These correspond to 3D implementation of the
waveTransmissive, advective, mixed class combinations, as well as an extension to include a
reflection coefficient based on a derivation from the LODI relations. A guide to how and where to
compile the code was given, together with a test case using an unconfined bluff-body simulation
which compared the existing boundary conditions, waveTransmissive and LODI2D, with the new
LODI3D and LODI3DPR boundary conditions. The comparison led to the following conclusions:

• The mean and root-mean-squared values are similar to a large extent between all the boundary
conditions, indicating only a small change on the overall statistics for the given case. It is
worth noting that, for the same physical time elapsed, LODI3D’s statistics seemed to converge
the earliest.

• The boundary condition by Lucchese [1], LODI2D, show numerical artifacts in the z-velocity field
which are removed once extending the boundary condition to 3D. These numerical artifacts
were not present in the waveTransmissive boundary condition, which is not understood.

• The frequency contents are similar in all cases, but a cleaner peak is present for Case 3
with LODI3D than the others, which may be due to less reflections, leading to less nonlinear
interactions. Furthermore, the time-delay embedding based on Taken’s theorem was performed
and the trajectories were very similar, but phase-delayed resulting in a slight nudge in the
trajectories between cases as well as indicating a limit-cycle behavior with a certain intermittent
disruption which was seen for all cases.

• Lastly, the computational cost for the simulations based on regular classes such as LODI2D

and LODI3D, was 32 core hours, whilst the templated class, waveTransmissive, only cost 5
core hours. The reason for this difference in not understood, and their scaling with increased
resolution is not yet known either.
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Study questions

1. How is the coefficient K defined, and what does it do to the solution?

2. What is the benefit of using a wave transmissive boundary condition?

3. Why is it so important to generate boundary conditions based on the NSCBC principal?

4. What is the purpose of valueInternalCoeffs, valueBoundaryCoeffs, gradientInternalCoeffs,
and gradientBoundaryCoeffs? What makes them differ from one another?

5. What is the purpose of the waveTransmissive class?

6. How would you implement the partially reflecting code for the pressure? What would you
need to change?
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