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Introduction

A simulation is generally performed on domains. These domains have boundaries.
How do we define the boundaries?

Lets assume we have a confined channel with a cross-section jump. We can only
afford to simulate the first cross-sections domain. What do we expect at the
boundary between the two cross-sections?

Confined Channel with a Cross-Sectional Jump
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Introduction

In Large Eddy Simulations (LES) or Direct Numerical Simulations (DNS), the
numerical dissipation is greatly reduced, leading to propagation and survival of
numerical waves

These numerical waves may originate at the boundaries. Therefore, well-posed
boundary conditions are needed.

To make sure we have well-posed boundary conditions, a method to create
boundary conditions was developed called Navier-Stokes Characteristic Boundary
Conditions (NSCBC) which is often combined with Local One-Dimensional
Inviscid (LODI) assumption.

This leads to obtain the so-called LODI-relations
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LODI

The LODI-relations correspond to
Characteristic Waves propagating in or
out of the domain.

Li corresponds to the information which
propagates at a speed λi which
corresponds to λ1 = u1 − c ,
λ2 = λ3 = λ4 = u1 and λ5 = u1 + c .
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LODI

From the reactive compressible Navier-Stokes equations
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Together with characteristic analysis to modify the hyperbolic terms we can obtain
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LODI

Recasting the LODI system in terms of primitive variables
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LODI

Or in terms of boundary normal gradients
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Deriving the current waveTransmissive Boundary
Condition

Take these two equations
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By assuming L1 = 0 (Perfectly
Non-Reflecting Condition) we can
get

∂p

∂t
+ (u1 + c)

∂p

∂x1
= 0.

Now we should all ask, ”is this a good boundary condition?”. Usually we have
mass-flow or velocity inlets with no pressure information. This condition, all
information regarding pressure leaves the domain. Therefore, even if we say
L1 = 0 in the derivation, we will add L1 = K (p−p∞) to maintain mean pressure.

∂p

∂t
+ (u1 + c)

∂p

∂x1
+ K (p − p∞) = 0.
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Discretizing

Now we wish to discretize

∂p

∂t
+ (u1 + c)

∂p

∂x1
+ K (p − p∞) = 0.

By setting α = u1∆t/∆x and k = K∆t as well as defining a generic variable ϕ,
we get

ϕn+1
f = (ϕnf + kϕ∞)

1

1 + α+ k
+

α

1 + α+ k
ϕn+1
c ,

where n + 1 is the current time-step, n the previous time-step, and f and c
correspond to the face- and cell-values, respectively.

In OpenFOAM k = (u1 + c)∆t/l∞, where the user specifies l∞. The user also
specifies ϕ∞. These correspond to the distance to the far-field and its value.
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Partially Reflecting Boundary Condition

Now lets say we do not assume L1 = 0 (but we still assume L1 = K (p − p∞)) in
the derivation of the boundary condition. Then we obtain
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)
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.
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OpenFOAM Boundary Conditions

In OpenFOAM we have fixed value and fixed gradient boundary conditions as well
as a mix between the two.

Furthermore, a boundary condition can either explicitly or implicitly affect your
solution. This is determined whether the boundary conditions contribution affects
the source term (explicit) or the diagonal of the coefficient matrix (implicit).
Furthermore, it can affect these terms in the linear solution of the divergence
(fvm::div) or laplacian ter (fvm::laplacian).

waveTransmissive is a mixed boundary condition based on the advective
boundary condition.

Both of these utilize a mixed class which is a general-purpose boundary condition
which requires input for valueFraction, refValue, and refGrad.
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The mixed Class

The member functions in the mixed class include

valueInternalCoeffs implicit contribution to the divergence term,
valueBoundaryCoeffs explicit contribution to the divergence term,
gradientInternalCoeffs implicit contribution to the laplacian term,
gradientBoundaryCoeffs explicit contribution to the laplacian term,

Listing 1: Definition of valueBoundaryCoeffs in mixed

1 template<class Type>

2 Foam::tmp<Foam::Field<Type>>

3 Foam::mixedFvPatchField<Type>::valueBoundaryCoeffs

4 (

5 const tmp<scalarField>&

6 ) const

7 {

8 return

9 valueFraction_*refValue_

10 + (1.0 - valueFraction_)*refGrad_/this->patch().deltaCoeffs();

11 }
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The mixed class

Other member functions to the mixed class include

evaluate, and

snGrad,

where evaluate checks if the coefficients (valueFraction, refValue, and
refGrad) are updated, else it calls the updateCoeffs member function in the
associated class (such as the advective class) to update the coefficients. If they
are updated, it calculates

f ϕref + (1.0− f )(ϕn+1
c +∇ϕrefd)1,

which corresponds to ϕn+1
f and can be directly compared to

ϕn+1
f = (ϕnf + kϕ∞)

1

1 + α+ k
+

α

1 + α+ k
ϕn+1
c ,

by setting ∇ϕnref = 0.

1Note that this->patch().deltaCoeffs(); corresponds to 1/d
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The advective class

As mentioned in the previous slide, evaluate calls on updateCoeffs in the
advective class. This looks like

Listing 2: Definition of updateCoeffs in advective

1 template<class Type>

2 void Foam::advectiveFvPatchField<Type>::updateCoeffs()

3 {

4 if (this->updated())

5 {

6 return;

7 }

8

9 const fvMesh& mesh = this->internalField().mesh();

10

11 word ddtScheme

12 (

13 mesh.ddtScheme(this->internalField().name())

14 );

15 scalar deltaT = this->db().time().deltaTValue();
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The advective class

Listing 3: Definition of updateCoeffs in advective

1 const GeometricField<Type, fvPatchField, volMesh>& field =

2 this->db().objectRegistry::template

3 lookupObject<GeometricField<Type, fvPatchField, volMesh>>

4 (

5 this->internalField().name()

6 );

7

8 // Calculate the advection speed of the field wave

9 // If the wave is incoming set the speed to 0.

10 const scalarField w(Foam::max(advectionSpeed(), scalar(0)));

11

12 // Calculate the field wave coefficient alpha (See notes)

13 const scalarField alpha(w*deltaT*this->patch().deltaCoeffs());

14

15 label patchi = this->patch().index();

where line 10 corresponds to max(U · Sf , 0) and line 13 corresponds to
α = u1∆t/∆x .

Björn Jarfors A partially reflecting 3D wave transmissive boundary condition January 19, 2025 15 / 47



Introduction OpenFOAM Custom Boundary Condition Unconfined Bluff-Body Test Case Conclusion

The advective class

Listing 4: Definition of updateCoeffs in advective

1 if (lInf_ > 0)

2 {

3 const scalarField k(w*deltaT/lInf_);

4 if

5 (

6 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

7 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

8 )

9 {

10 this->refValue() =

11 (

12 field.oldTime().boundaryField()[patchi] + k*fieldInf_

13 )/(1.0 + k);

14 this->valueFraction() = (1.0 + k)/(1.0 + alpha + k);

15 }

where we see k = (U · Sf )∆t/l∞ on line 4, and the definitions for
ϕref = (ϕnf + kϕ∞)/(1.0 + k) and f = (1.0 + k)/(1.0 + α+ k) on lines 10 and 14.
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The advective class

Listing 5: Definition of advectionSpeed in advective

1 template<class Type>

2 Foam::tmp<Foam::scalarField>

3 Foam::advectiveFvPatchField<Type>::advectionSpeed() const

4 {

5 const surfaceScalarField& phi =

6 this->db().objectRegistry::template lookupObject<surfaceScalarField>

7 (phiName_);

8 // Look up the patch field of phiName_

9 // Check dimension of phi and return advectionSpeed based on mass flow or

velocity. (omitted from presentation)

10 {

11 return phip/this->patch().magSf();

12 }

13 }

where we see w = (U · Sf ) on line 11.
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The waveTransmissive class

Listing 6: Definition of advectionSpeed in waveTransmissive

1 template<class Type>

2 Foam::tmp<Foam::scalarField>

3 Foam::waveTransmissiveFvPatchField<Type>::advectionSpeed() const

4 {

5 // Lookup the velocity and compressibility of the patch

6 const fvPatchField<scalar>& psip =

7 this->patch().template

8 lookupPatchField<volScalarField, scalar>(psiName_);

9

10 const surfaceScalarField& phi =

11 this->db().template lookupObject<surfaceScalarField>(this->phiName_);

12 // Look up the patch field of phiName_

13 // Check dimension of phi and divide psi by the density if it is based on

mass flow, else leave be. (omitted from presentation)

14

15 return phip/this->patch().magSf() + sqrt(gamma_/psip);

16 }

where we see w = (U · Sf +
√
γ/ψ) on line 15.
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So what are we solving now?

To summarize, we obtain valueFraction, refValue and refGrad from
advective and waveTransmissive class through

f = (1.0 + k)/(1.0 + α+ k)

ϕref = (ϕnf + kϕ∞)/(1.0 + k)

∇ϕref = 0

The evaluate member function in mixed class determines if these are up to date,
if they are, it returns ϕn+1

f based on

ϕn+1
f = ϕnref f + (1.0− f )(ϕn+1

c +∇ϕnrefd).
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The mixedV2D and LODI2D classes

Leandro Lucchese (a previous student in the OFCFD course) created a
2D-wave-transmissive boundary condition called LODI2D which includes the
general-purpose mixedV2D class.

A few initial differences include

merging of the advective and waveTransmissive classes into a LODI2D

class,

specifying that it is only for the purpose of a velocity vector, thus the
templated property of the previous classes are removed, and

specifying two different α such that the velocity components corresponding
to L1 have λ1(∆t/∆x) and similarly, L3 and L4 have λ3(∆t/∆x) and
λ4(∆t/∆x), respectively.

The latter components are thus advected out of the domain with an advection
speed of w = (U · Sf ). Since this is a 2D formulation, only one of L3 or L4 are
considered.
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The mixedV2D and LODI2D classes

This can be seen in

Listing 7: Some new additions to updateCoeffs in LODI2D

1 const scalarField wU(Foam::max(advectionSpeed(), scalar(0)));

2 const scalarField wUC(Foam::max(advectionSpeedWT(), scalar(0)));

3

4 const scalarField alphaU(wU*deltaT*this->patch().deltaCoeffs());

5 const scalarField alphaUC(wUC*deltaT*this->patch().deltaCoeffs());
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The mixedV2D class

Listing 8: Constructor in mixedV2D

1 Foam::mixedV2DFvPatchVectorField::mixedV2DFvPatchVectorField

2 (

3 const fvPatch& p,

4 const DimensionedField<vector, volMesh>& iF

5 )

6 :

7 fvPatchVectorField(p, iF),

8 Un_(p.size()),

9 Ut_(p.size()),

10 n_(p.size()),

11 refValueU_(p.size()),

12 refValueUC_(p.size()),

13 refGrad_(p.size()),

14 valueFractionU_(p.size()),

15 valueFractionUC_(p.size()),

16 source_(p.size(), Zero),

17 vector1_(p.size()),

18 vector2_(p.size()),

19 vector3_(p.size())
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The mixedV2D class

Listing 9: Constructor in mixedV2D

1 n_ = this->patch().nf();

2 forAll(vector1_, i)

3 {

4 vector1_[i][0] = n_[i][0];

5 vector1_[i][1] = n_[i][1];

6 vector1_[i][2] = n_[i][2];

7 }

8 forAll(vector2_, i)

9 {

10 vector2_[i][0] = -n_[i][1];

11 vector2_[i][1] = n_[i][0];

12 vector2_[i][2] = n_[i][2];

13 }

14 forAll(vector3_, i)

15 {

16 vector3_[i][0] = 0.0;

17 vector3_[i][1] = 0.0;

18 vector3_[i][2] = 1.0;

19 }

20

where we see w = (U · Sf +
√
γ/ψ) on line 15.
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The mixedV2D class

In the member functions; evaluate and snGrad, there exists a projection to the
normal and transverse directions

Listing 10: Constructor in mixedV2D

1 forAll(U, i)

2 {

3 Un[i] = U[i][0]*n[i][0] + U[i][1]*n[i][1]; //ucos+vsin

4 Ut[i] = -U[i][0]*n[i][1] + U[i][1]*n[i][0]; //-usin+vcos

5 }

which correspond to the rotation transformation matrix.

The old and oold time-steps were populated in an identical manner in the LODI2D
class.

To simplify the implementation of a 3D wave-transmissive boundary condition, the
generalization the rotation brings is removed due to the inclusion of pitch, yaw
and roll rotations needed, instead of simply only one of these (2D).

Björn Jarfors A partially reflecting 3D wave transmissive boundary condition January 19, 2025 24 / 47



Introduction OpenFOAM Custom Boundary Condition Unconfined Bluff-Body Test Case Conclusion

The modifiedMixedV2D class

Listing 11: Constructor in modifiedMixedV2D

1 Foam::modifiedLODI2DFvPatchVectorField::modifiedLODI2DFvPatchVectorField

2 (

3 const fvPatch& p,

4 const DimensionedField<vector, volMesh>& iF

5 )

6 :

7 modifiedMixedV2DFvPatchVectorField(p, iF),

8 phiName_("phi"),

9 rhoName_("rho"),

10 fieldInf_(Zero),

11 lInf_(-GREAT),

12 psiName_("thermo:psi"),

13 gamma_(0.0)

14 {

15 this->refValueU() = Zero;

16 this->refValueUC() = Zero;

17 this->refGrad() = Zero;

18 this->valueFractionU() = 0.0;

19 this->valueFractionUC() = 0.0;

20 }
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The modifiedMixedV2D class

Notice that no unit vector definitions were needed now for the rotation and the
velocity vector is simply obtained through

vectorField U = this->patchInternalField();.

Similarly, the old and oold values of U is obtained through

vectorField Uold = field.oldTime().boundaryField()[patchi];,
and

vectorField Uoold =

field.oldTime().oldTime().boundaryField()[patchi];
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Validation of the simplification

Take this unconfined bluff-body case, and we will track the vortex-shedding based
on the probe data of the y-velocity component just behind the bluff body.
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Which indicates a complete overlap in the time-series.
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Expanding to 3D

Since we have an extra component to transport, we need to include an extra
valueFraction and refValue corresponding to the third components
conditions2.
This results in the change in the evaluate member function in
modifiedMixedV3D to include an extra component in its return function

Definition of evaluate in modifiedMixedV3D

1 void Foam::modifiedMixedV3DFvPatchVectorField::evaluate(const Pstream::

commsTypes)

2 {

3 // Calculate valueU1

4 // Calculate valueU2

5 // Calculate valueUC

6 vectorField::operator=

7 (

8 valueUC*vector(1.0, 0.0, 0.0) + valueU1*vector(0.0, 1.0, 0.0) + valueU2*

vector(0.0, 0.0, 1.0)

9 );

10 fvPatchVectorField::evaluate();

11 }

2valueFraction is identical for transverse components, see definition of α and k for this.
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The modifiedMixedV3D class

modifiedMixedV3D

1 Foam::tmp<Foam::vectorField>

2 Foam::modifiedMixedV3DFvPatchVectorField

::valueBoundaryCoeffs

3 (

4 const tmp<scalarField>&

5 ) const

6 {

7 scalarField valueU1 =

8 valueFractionU1_*refValueU1_;

9 scalarField valueU2 =

10 valueFractionU2_*refValueU2_;

11 scalarField valueUC =

12 valueFractionUC_*refValueUC_;

13 return valueUC*vector(1.0, 0.0, 0.0)

+ valueU1*vector(0.0, 1.0, 0.0) +

valueU2*vector(0.0, 0.0, 1.0);

14 }

Listing 12: mixed

1 template<class Type>

2 Foam::tmp<Foam::Field<Type>>

3 Foam::mixedFvPatchField<Type>::

valueBoundaryCoeffs

4 (

5 const tmp<scalarField>&

6 ) const

7 {

8 return

9 valueFraction_*refValue_

10 + (1.0 - valueFraction_)*

refGrad_/this->patch().

deltaCoeffs();

11 }
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The modifiedMixedV3D and modifiedLODI3D classes

Similarly, extra components are used for the rest of the member functions which
handles calculations regarding the velocity components. This includes the
updateCoeffs in modifiedLODI3D which is

Listing 13: modifiedLODI3D

1 if (lInf_ > 0)

2 {

3 // Omitted code which remains unchanged

4 {

5 this->refValueU1() = Uold.component(1);

6 this->refValueU2() = Uold.component(2);

7 this->refValueUC() =

8 (

9 Uold.component(0) + k*fieldInf_.component(0)

10 )/(1.0 + k);

11 this->valueFractionU1() = 1.0/(1.0 + alphaU);

12 this->valueFractionU2() = 1.0/(1.0 + alphaU);

13 this->valueFractionUC() = (1.0 + k)/(1.0 + alphaUC + k);

14 }
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Partially reflecting boundary condition

To recap on what is needed to obtain the partially reflecting boundary condition,
we recall the discretized equation we have gone through so far as

ϕn+1
f = (ϕnf + kϕ∞)

1

1 + α+ k
+

α

1 + α+ k
ϕn+1
c ,

and when compared to the discretized partially reflecting equation for ϕn+1
f

ϕn+1
f = (ϕnf + Tkϕ∞)

1

1 + αuc + Tk
+

αuc

1 + αuc + Tk
ϕn+1
c ,

where T = 1
2

(
1− Ma+1

Ma−1

)
.

Observe that this was for pressure, and for velocity there is a phase change

resulting in a term 1
2

(
Ma+1
Ma−1 − 1

)
which is equal to −T and lets refer to this as R.

Thus we get

ϕn+1
f = (ϕnf + Rkϕ∞)

1

1 + αuc + Rk
+

αuc

1 + αuc + Rk
ϕn+1
c ,
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Partially reflecting boundary condition

To implement this in our existing modifiedLODI3D code, we identify that

R = 1
2

(
u1+c
u1−c − 1

)
where wUC corresponds to the numerator, and we need to

define a function to obtain the denominator. This is obtained simply by including

Listing 14: modifiedLODI3D, advectionSpeedWT2

1 Foam::tmp<Foam::scalarField>

2 Foam::modifiedLODI3DPRFvPatchVectorField::advectionSpeedWT2() const

3 {

4 // Lookup the velocity and compressibility of the patch

5 // Check dimensions and adjust if needed

6 return phip/this->patch().magSf() - sqrt(gamma_/psip); // U - C

7 }

and define

Listing 15: modifiedLODI3D, updateCoeffs

1 const scalarField wUC2(Foam::min(advectionSpeedWT2(), scalar(0)));

2 // partially reflecting factor

3 const scalarField PR(0.5*(wUC1/wUC2 - 1.0));
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Partially reflecting boundary condition

Observe that wUC is defined as the min(w−, 0) instead of the maximum, since we
expect a negative value for subsonic flows. Furthermore, PR corresponds to R.
This is later implemented where valueFraction and refValue are updated

Listing 16: modifiedLODI3D, updateCoeffs

1 if (lInf_ > 0)

2 {

3 const scalarField k(wUC1*deltaT/lInf_);

4 if

5 (

6 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

7 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

8 )

9 {

10 this->refValueU1() = Uold.component(1);

11 this->refValueU2() = Uold.component(2);

12 this->refValueUC() =

13 (

14 Uold.component(0) + PR*k*fieldInf_.component(0)

15 )/(1.0 + PR*k);
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Compiling

So in summary we have

modifiedMixedV2D,

modifiedMixedV3D,

modifiedLODI2D,

modifiedLODI3D, and

modifiedLODI3DPR.

The tree structure is

Make

fields

fvPatchFields

fields

fvPatchFields

basic

modifiedMixedV2D

modifiedMixedV3D

derived

modifiedLODI2D

modifiedLODI3D

modifiedLODI3DPR

lnInclude

The structure is kept the same as in OpenFOAM, following the basic and
derived boundary conditions. Place these in
$WM PROJECT USER DIR/src/finiteVolume.
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Compiling

The files file

Listing 17: The files file

1 fvPatchFields = fields/fvPatchFields

2 derivedFvPatchFields = $(fvPatchFields)/derived
3 basicFvPatchFields = $(fvPatchFields)/basic
4

5 $(basicFvPatchFields)/modifiedMixedV2D/modifiedMixedV2DFvPatchVectorField.C
6 $(derivedFvPatchFields)/modifiedLODI2D/modifiedLODI2DFvPatchVectorField.C
7 $(basicFvPatchFields)/modifiedMixedV3D/modifiedMixedV3DFvPatchVectorField.C
8 $(derivedFvPatchFields)/modifiedLODI3D/modifiedLODI3DFvPatchVectorField.C
9 $(derivedFvPatchFields)/modifiedLODI3DPR/modifiedLODI3DPRFvPatchVectorField.C

10 LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume
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Compiling

The options file

Listing 18: The options file

1 EXE_INC = \

2 -I$(LIB_SRC)/fileFormats/lnInclude \

3 -I$(LIB_SRC)/surfMesh/lnInclude \

4 -I$(LIB_SRC)/meshTools/lnInclude \

5 -I$(LIB_SRC)/dynamicMesh/lnInclude \

6 -I$(LIB_SRC)/finiteVolume/lnInclude
7

8 LIB_LIBS = \

9 -lOpenFOAM \

10 -lfileFormats \

11 -lmeshTools \

12 -lfiniteVolume
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Case Description

The test-case consists of an unconfined bluff body as previously introduced. The
mesh is
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Case Description

Case 1 Case 2 Case 3 Case 4
p wT wT wT wT
U wT LODI2D LODI3D LODI3DPR

T advective advective advective advective

lInf 10 10 10 10

wT - waveTransmissive

rhoPimpleFoam

maxCo 0.3

200 000 cells (10 cells in the spanwise direction)

Re ≈ 40000 (based on bluff-body size)
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Simulation Results - Pressure
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Simulation Results - x Velocity
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Simulation Results - y Velocity
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Simulation Results - z Velocity
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Simulation Results - xz and yz UPrime2Mean
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Simulation Results - FFT

The main frequency peak remains the same, however the amplitude is slightly
different from case to case. The sharpest peak corresponds to modifiedLODI3D,
whilst the largest spread, modifiedLODI3DPR. Stronger reflections naturally affect
the vortex-shedding more.
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Simulation Results - TDE

The Time-Delay Embedding shows similar trajectories for all cases. The
limit-cycle is found in all cases with different amounts of intermittent behaviors
where waveTransmissive corresponds to the case which has the most
intermittent events.
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Summary and Conclusion

To create well-posed boundary conditions, we can use NSCBC to obtain
LODI relations.
mixed is a general-purpose boundary condition class which requires input
regarding f , ϕref , and ∇ϕref . These are obtained through the updateCoeffs
member function in the advective class.
The waveTransmissive class alters the definition of the member function
advectionSpeed in the advective class.
The evaluate member function in mixed calls the updateCoeffs member
function in advective class to obtain f , ϕref , and ∇ϕref in order to
calculate ϕn+1

f .
A simplified version of LODI2D and mixedV2D was created in order to make
the transition to 3D simpler. This included neglecting the rotation
transformation.
A 3D non-reflecting boundary condition was developed corresponding to
modifiedMixedV3D and modifiedLODI3D.
This 3D non-reflecting boundary condition was slightly altered to make it a
3D partially-reflecting boundary condition through a constant PR. This
corresponds to modifiedLODI3DPR.
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Thank you for listening!

People take the longest possible paths, digress to numerous dead ends, and make
all kinds of mistakes. Then historians come along and write summaries of this

messy, nonlinear process and make it appear like a simple, straight line.

- Dean Kaman
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