
Cite as: Chen, W.: Radiative heat transfer in OpenFOAM and its non-grey implementation. In
Proceedings of CFD with OpenSource Software, 2023, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS_CFD#YEAR_2023

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Radiative heat transfer in OpenFOAM and
its non-grey implementation

Developed for OpenFOAM-v2112

Author:
Wei Chen
Shanghai Jiao Tong University
duanwu.chen@sjtu.edu.cn

Peer reviewed by:
Tao Ren

Saeed Salehi
Chit Yan Toe

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 14, 2024

http://dx.doi.org/10.17196/OS_CFD#YEAR_2023


Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to use the radiation model in OpenFOAM with a focus on the combustion application.

• How to choose the radiation model in OpenFOAM.

The theory of it:

• The theory of radiative heat transfer.

• The theory of the radiative transfer equation (RTE) solution methods.

• The theory of the spectral models.

How it is implemented:

• How the radiation model is implemented in OpenFOAM.

• How the greyMeanAbsorptionEmission model cooperates with the RTE solver.

How to modify it:

• How to model the non-grey radiative heat transfer in OpenFOAM.
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• How to run standard document tutorials like SandiaD_LTS tutorial.

• Radiative Heat Transfer, Book by M. F. Modest and S. Mazumder

• How to customize a solver and do top-level application programming.
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Chapter 1

Introduction

Radiative heat transfer plays a crucial role in a multitude of engineering and scientific applications,
ranging from combustion processes [1, 2, 3] and heating, ventilation, and air conditioning (HVAC)
systems [4, 5] to atmospheric studies [6, 7, 8] and astrophysics [9]. In these scenarios, understanding
and accurately predicting the behavior of radiative heat transfer is vital for effective design and
analysis of the reseraching objects. This report presents a brief exploration of radiative heat transfer
within the realm of computational fluid dynamics (CFD), focusing on the integration and validation
of advanced radiative transfer models in OpenFOAM.

1.1 Background
Radiative heat transfer, a mechanism of energy transfer through electromagnetic radiation, is distinct
from conduction and convection as it does not require a medium and can occur in a vacuum. Its
significance is especially pronounced at high temperatures, where radiation becomes the dominant
mode of heat transfer. In participating media, defined as media that can emit, absorb, and scatter
radiation, the complexity of modeling radiative heat transfer increases substantially.

The challenge in simulating radiative heat transfer in participating media lies in the inherent
high dimensionality of the Radiative Transfer Equation (RTE). Traditional CFD solvers, often opti-
mized for three-dimensional problems, may struggle with the intricacies of the RTE. Moreover, the
variability of the absorption coefficient across different wavelengths adds another layer of complexity,
necessitating advanced modeling techniques.

Modeling radiative heat transfer within the CFD context can be divided into two main parts:
solving the RTE and decreasing the RTE solution times in the wavenumber dimension. The models
for the former are referred to as RTE solvers, and for the latter as spectral models. This study
focuses on spectral models, which could enable us to address the problem with a limited number of
RTE evaluations. They are discussed in detail in Chapter 2.

Modest and his research group [10, 11, 12, 13, 14] have developed a compact radiative heat
transfer library in OpenFOAM 2.2x. This library has been extensively tested, validated, and utilized
in various publications. However, their code, developed in an older version of OpenFOAM and
not open-source, requires modifications on the solvers’ source code if radiative heat transfer is to
be included, which largely limits its applicability. Recently, Sun et al. [15] have implemented the
weighted-sum-of-grey-gases (WSGG) model within the OpenFOAM framework. However, this model
is designed for the homogeneous mixture and may be inaccurate in non-homogeneous applications.

Guo et al. [16] implemented one of the state-of-the-art spectral models, the full-spectrum cor-
related k distribution (FSCK), in ANSYS Fluent 16.0 using the user-defined function. However,
limitations in ANSYS Fluent user-defined functions and the corresponding macro posed challenges
in accurately implementing the model and in handling boundary conditions. Recently, Tao Ren’s
research group [17] implemented this model in ANSYS Fluent 2022, encountering similar limitations.
However, as a commercial software, ANSYS Fluent is not open-source and requires a license to use.
The close-source nature makes model development difficult or even limited in this software.
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1.2 Objectives
This report is structured to guide the reader through several aspects of radiative heat transfer within
the context of CFD and implement an advanced spectral model, namely FSCK, into OpenFOAM.

Initially, the focus is on explaining the fundamentals of radiative heat transfer. This includes an
exploration of the underlying principles and mechanisms that govern this mode of heat transfer, with
particular emphasis on its relevance and application in CFD scenarios. Following this foundational
understanding, the report delves into the specifics of OpenFOAM’s built-in radiation models. This
segment aims to provide an in-depth look at the existing models within this open-source CFD
toolbox, detailing their features, capabilities, and typical use cases. The next objective is to show
the process of utilizing the radiation models in OpenFOAM. This includes a step-by-step guide
on how to implement these models in various CFD simulations, highlighting the procedural and
technical aspects of their application.

Building upon the existing framework, the report introduces and detail the integration of the
spectral model FSCK into the OpenFOAM library. This section offers a comprehensive explanation
of the model, its theoretical basis, implementation strategies, and expected enhancements in sim-
ulation accuracy and efficiency. Lastly, the report aims to validate the newly implemented model
through multiple cases. This validation process involves comparing the performance and results of
the newly implemented FSCK model with those of the pre-existing in-house codes in OpenFOAM
and ANSYS Fluent. The comparison is based on various metrics and simulation scenarios to ensure
a robust evaluation of the new model’s accuracy and validity.

In essence, this report endeavors to provide an overview of radiative heat transfer modeling in
OpenFOAM, from basic principles to advanced model implementation and validation.

1.3 Report Structure
This report is organized into six chapters, each focusing on a distinct aspect of radiative heat transfer
and its modeling in OpenFOAM.

Chapter 1: Introduction. This chapter sets the foundation for the report by outlining its
purpose and scope. It introduces the main themes and objectives, providing the reader with a clear
understanding of what the report aims to achieve and the significance of its content in the field of
CFD and radiative heat transfer.

Chapter 2: Fundamentals of radiative heat transfer. Here, the fundamental concepts and
principles governing radiative heat transfer are discussed. This chapter is essential for establishing
a theoretical basis that supports the understanding of the models and simulations discussed in later
chapters.

Chapter 3: Existing radiation models in OpenFOAM. In this chapter, the focus shifts
to a detailed examination of the radiation models currently available in OpenFOAM. It includes a
walk through of the source code and a practical tutorial section that guides the reader through the
process of utilizing these existing models in CFD simulations.

Chapter 4: Developing a non-grey radiation model in OpenFOAM. This chapter delves
into the integration of the FSCK model into OpenFOAM. It provides the implementation of the
FSCK model and the nongrey P1 model, enhancing the capabilities of OpenFOAM in handling
complex radiative heat transfer scenarios.

Chapter 5: Model validation. The fifth chapter presents a comprehensive validation of the
newly implemented model. It compares the results of the newly developed code for the FSCK model
with two existing codes, offering a critical assessment of its accuracy and reliability.

Chapter 6: Conclusion and future work. The final chapter concludes the report by sum-
marizing the key findings and contributions. It also discusses potential avenues for future research,
suggesting ways to build upon the work presented in this report and exploring emerging trends and
challenges in the field.

Through these chapters, the report aims to provide a thorough and insightful exploration of
radiative heat transfer modeling in OpenFOAM, from basic principles to advanced implementations
and validations.
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Chapter 2

Fundamentals of radiative heat
transfer

This chapter introduces key concepts and methodologies in radiative heat transfer relevant to the
subsequent analysis and discussions. It aims to provide readers with essential terminologies and
principles that form the foundation of the computational approaches used in this study.

2.1 Radiative heat transfer in participating media
The maximum emissive power of an object is a function of its surface temperature, raised to
the fourth power. This relationship involves the Stefan-Boltzmann constant, σ, which is 5.67 ×
10−8W/(m2K4) [18]. Typically, the radiative heat transfer between surfaces is modeled using the
concept of a view factor, as implemented in the viewFactor function in OpenFOAM. However,
in participating media, where the medium itself can emit and absorb radiation, this approach is
insufficient. Thus, we introduce the Radiative Transfer Equation (RTE) to model these interactions.

2.1.1 Radiative transfer equation
The RTE, essential in modeling radiative heat transfer in participating media, is expressed as fol-
lows [19]:

dIη
ds

= ŝ · ∇Iη = κηIbη − βηIη +
σsη
4π

∫
4π

Iη (̂si)Φη (̂si, ŝ)dΩi, (2.1)

where Iη denotes the spectral intensity of radiation in direction ŝ at wavenumber η. The term κη,
representing the absorption coefficient, quantifies the medium’s propensity to absorb radiation at
wavenumber η. The extinction coefficient, βη = κη + σsη, accounts for the total diminishment of
radiation due to both absorption and scattering. Here, σsη is the scattering coefficient, indicating
the proportion of radiation being scattered at wavenumber η. The phase function Φη describes
the angular distribution of scattering, effectively representing the probability of radiation changing
direction from ŝi to ŝ upon scattering.

The first term on the right-hand side of the equation corresponds to the emission of radiation,
which is the energy radiated by the medium. The second term represents the absorption of radiation,
reflecting the medium’s attenuation of radiative intensity. The third term is the scattering of radi-
ation, a mechanism where radiation deviates from its path due to interactions within the medium.
This scattering term is integrated over all possible directions ŝi, with each contribution weighted
by the phase function Φη to account for the directional dependence of scattering. Additionally, the
term is modulated by the scattering coefficient σsη, which quantifies the rate of scattering from ŝi
into any other direction.
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2.1.2 Challenges in solving the RTE
Solving the Radiative Transfer Equation (RTE) presents three primary challenges: high dimension-
ality, and the significant variability of the absorption coefficient across different wavenumbers.

The high dimensionality of the RTE arises from the directional dependence of radiation inten-
sity. Since the intensity varies with both spatial position and radiation direction, the RTE essentially
becomes a Partial Differential Equation (PDE) in both spatial and directional domains. This mul-
tidimensional nature significantly complicates the analytical and numerical solutions.

These aspects—non-linearity and high dimensionality—present significant challenges to conven-
tional CFD solvers, which are typically optimized for linear or less complex non-linear systems.
Consequently, direct application of standard CFD techniques to solve the RTE may not be feasible.

Additionally, the variability in the absorption coefficient, which depends on the radiation wavenum-
ber, adds another layer of complexity. As illustrated in Fig. 2.1, the absorption coefficient varies
significantly across different wavenumbers. This variation necessitates solving the RTE as a PDE in
the wavenumber domain as well. Without simplifying assumptions or approximations, it would re-
quire solving the RTE independently for each wavenumber, a task that is computationally intensive
and often impractical in CFD computations.
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Figure 2.1: Absorption coefficient of H2O, CO2, and CO at 1 bar, 2400 K, and 25% volume fraction.

2.2 Solution Methods for the radiative heat transfer
Modeling radiative heat transfer mainly consists of two parts, solving the RTE and ensuring minimal
times of RTE solving. The former one represents the RTE solver and the latter one represents the
spectral model. Solving the Radiative Transfer Equation (RTE) is typically approached through two
principal methodologies: statistical or deterministic models. The statistical method, particularly
the Photon Monte Carlo Method, is highly regarded for its precision but is also known for being
computationally intensive, often serving as a benchmark for other methods [20, 21]. This study,
however, primarily focuses on deterministic models, which comprise two key components: the RTE
solver and the spectral model. The RTE solver tackles the equation directly, utilizing specific
algorithms and techniques for efficient computation. On the other hand, the spectral model plays an
indispensable role in reformulating the RTE solving process within the wavenumber domain. This
approach significantly reduces the computational burden, transforming what would typically require
millions of RTE evaluations at each wavenumber into a process that necessitates only a few such
calls. These two models will be discussed in detail in the following parts.
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2.2.1 RTE Solver
The objective of numerical RTE solvers is to mitigate the strong directional dependency charac-
teristic of the RTE, transforming it into a single or a set of Partial Differential Equations (PDEs)
with only spatial dependence. This goal is achievable through two primary methods: the discrete
ordinates method (DOM) [22, 23] and the spherical harmonics method (PN) [14, 24]. The DOM,
implemented as fvDOM in OpenFOAM, discretizes the radiation intensity into a finite number of
discrete directions. This discretization allows the integral term in the RTE to be approximated by
summation, effectively converting the RTE into a set of PDEs solvable by the Finite Volume Method
(FVM).

Conversely, the PN method, a type of spectral method, expands the radiation intensity into a
series of spherical harmonics. The orthogonality of these functions simplifies the RTE, leading to
its transformation into a single PDE or a set of PDEs, contingent on the expansion order. Due
to the mathematical intricacies of PN, most CFD software, including OpenFOAM’s P1, typically
implement only the first-order PN method.

For optically thick scenarios, where the absorption coefficient is high and the spatial scale is large,
resulting in gradual spatial variation in intensity, low-order methods like P1 and DOM can accurately
predict radiative heat transfer at a limited computational cost. The term “optically thick” refers to
media in which radiation is significantly absorbed or scattered, reducing its transmission distance.
In such cases, the P1 method, involving only one PDE solution, is particularly advantageous, as seen
in applications like combustion simulation. However, in optically thin situations—where radiation
travels further due to lower absorption—higher-order RTE solvers are required. Yet, these higher-
order PN methods often encounter numerical oscillation issues, presenting a challenge in accurately
modeling radiative transfer in such conditions [25].

2.2.2 Spectral Model
Spectral models in radiative heat transfer can be broadly categorized into four types: Line-by-Line
model (LBL), narrow-band model (NB), wide-band model (WB), and global model (GM) [26]. The
LBL model, true to its name, solves the RTE for each spectral line, yielding highly accurate results
at the cost of significant computational resources, often serving as a benchmark. The NB and
WB models, however, are becoming less favored in CFD applications for heat transfer due to their
respective drawbacks in either efficiency or accuracy.
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Figure 2.2: Illustration of the FSCK model
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In CFD contexts, the global model is typically preferred, particularly for applications focused
on spectrally integrated total radiative heat flux. One of the most widely used global models is the
weighted-sum-of-grey gases model [27]. This model simplifies the problem by approximating non-grey
gases with a set of grey gases, each having a constant absorption coefficient. Independent calculations
for each grey gas are summed to estimate the total radiative heat flux. Despite its simplicity and
reasonable accuracy, making it a choice in commercial CFD software like ANSYS Fluent and ANSYS
CFX, the model’s foundational principle lacks rigor, which can lead to inaccuracies, especially in
non-homogeneous applications.

Enhancing the global model approach, Denison et al. [28, 29] introduced the spectral-line-based
weighted sum of grey gases (SLW) model, which operates similarly to the WSGG model but utilizes
a high-resolution spectral database to calculate the weights of the grey gases. Ongoing refinements
by researchers [30, 31] have made the SLW model one of the state-of-the-art spectral models for
CFD applications.

Another advanced model is the full-spectrum correlated k distribution model (FSCK), developed
by Modest and his team [13, 32, 33, 34]. As illustrated in Fig. 2.2, this model reorders the spectrum
based on the absorption coefficient and Planck function. Mathematical induction allows the RTE
to be solved just a few times, with the number of solutions depending on desired accuracy levels.

After discussing the FSCK and SLW models, it is noteworthy to mention that these two state-of-
the-art spectral models are mathematically equivalent. This equivalence, as detailed in [13], suggests
that despite their different methodological approaches, both models converge to similar theoretical
foundations when applied to solving the RTE

2.3 Radiative heat transfer models in this study
In this project, we have implemented the non-grey P1 model and the Full-Spectrum Correlated k
(FSCK) spectral model into OpenFOAM. This section is dedicated to discussing these models, with
an emphasis on their practical implementation aspects within the OpenFOAM framework. While
the focus here is on implementation strategies and computational considerations, a comprehensive
exploration of the theoretical foundations of these models can be found in Chapters 15 and 19 of
"Radiative Heat Transfer" by Michael Modest [14, 13]. The decision to implement these particular
models was driven by their relevance and applicability to the specific challenges and objectives of
our study, which will be detailed in the following sections.

2.3.1 The P1 model
The P1 model is a subset of the PN method, which expands the radiation intensity into spherical
harmonics in the first order. The spherical harmonics can be written as,

Y ml (θ, ψ) =
(−1)l

2ll!

√
(2l + 1)(l +m)!

4π(l −m)!
eimψPml (cos θ), (2.2)

where θ is the polar angle, ψ is the azimuthal angle, l is the order of the spherical harmonics, m is the
degree of the spherical harmonics, and Pml is the associated Legendre polynomial. The polynomial
is given by,

Pmn (µ) = (−1)m
(1− µ2)|m|/2

2nn!

dn+|m

dµn+|m| (µ
2 − 1)n. (2.3)

The Legendre polynomial has two important properties: orthogonality and recursion relation. For
the orthogonality, we have,

∫ 1

−1

Pl(µ)Pm(µ)dµ =
2δlm

2m+ 1
=


0 for m ̸= l,

2

2m+ 1
for m = l,

(2.4)
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where δij is the Kronecker Tensor. For the recursion relation, we have,

(2l + 1)µPl(µ) = lPl−1(µ) + (l + 1)Pl+1(µ), (2.5)

where P0(x) = 1 and P1(x) = x are the first two Legendre polynomials. These two properties are
very important in the equation simplification but are not discussed in this report. By expressing the
radiative intensity in terms of spherical harmonics,

I(r, ŝ) =

∞∑
l=0

l∑
m=−l

Iml (r)Y ml (̂s), (2.6)

where the Iml (r) are position-dependent coefficients, the directional dependence of the RTE can be
eliminated.

The first-order expansion of the radiative intensity is given by,

I(r, θ, ψ) = I00 + I01 cos θ − I−1
1 sin θ sinψ − I11 sin θ cosψ. (2.7)

By defining the incident radiation as the integration of the radiative intensity over the hole sphere,

G(r) =

∫
4π

I(r, ŝ)dΩ, (2.8)

the approximated RTE can be written as,

∇ · (Γ∇G)− aG = −4ϵσT 4 − E, (2.9)

with some mathematical manipulation, where Γ = 1
3a+σs+a0

is the diffusivity of the equation, a is
the absorption coefficient, σs is the linear scattering factor, ϵ is the emission coefficient, andE is the
emision coefficient. The a0 in Γ is a small value to make sure the division by zero error will not
happen. Eq. (2.9) is formulated in OpenFOAM as below,

Formulation of the P1 model in OpenFOAM ($FOAM_RADIATION/radiationModels/P1/P1.C)
1 void Foam::radiation::nonGreyP1::calculate()
2 {
3 absorptionEmission_->correct(G_, Gg_);
4

5 const dimensionedScalar a0("a0", a_.dimensions(), ROOTVSMALL);
6 // ...
7 solve
8 (
9 fvm::laplacian(gamma, G_)

10 - fvm::Sp(a_, G_)
11 ==
12 - 4.0*(e_*physicoChemical::sigma*pow4(T_)) - E_
13 );
14 // ...
15 }

It will be discussed in detail in the following sections. For the FOAM_RADIATION, it is defined as
export FOAM_RADIATION=$FOAM_SRC/thermophysicalModels/radiation. This system variable is
used in the following sections.

The generalized boundary condition for the PN model is the Marshak’s boundary condition,
which is given by,∫

n̂·̂s>0

I(rw, ŝ)Ȳ
m
2i−1(̂s)dΩ =

∫
n̂·̂s>0

Iw (̂s)Ȳ
m
2i−1(̂s)dΩ, i = 1, 2, . . .

1

2
(N + 1), (2.10)

where the Ȳ m2i−1(̂s) are expressed in terms of a local coordinate system. That can be simplified as,

−2(2− ϵ)

ϵ
Γ(n̂ · ∇G) +G = 4σT 4, (2.11)

for the P1 approximation. This boundary conditions have two implementations in OpenFOAM,
namely

12
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1. MarshakRadiationFvPatchScalarField

2. MarshakRadiationFixedTemperatureFvPatchScalarField

The first one is for the general case, where the temperature is not fixed. The second one is for
the case where the temperature is fixed. Both of them inherit from the mixedFvPatchScalarField
class, which is a mixed boundary condition. Taking the first one as an example, the updateCoeffs
function is shown below.

Formulation of the Marshak boundary condition in OpenFOAM
1 void Foam::radiation::MarshakRadiationFvPatchScalarField::updateCoeffs()
2 {
3 // ...
4 // Re-calc reference value
5 refValue() = 4.0*constant::physicoChemical::sigma.value()*pow4(Tp);
6

7 // ...
8

9 // Set value fraction
10 valueFraction() = 1.0/(1.0 + gamma*patch().deltaCoeffs()/Ep);
11

12 // ...
13

14 mixedFvPatchScalarField::updateCoeffs();
15 }

2.3.2 The full-spectrum correlated k-distribution Model
The full-spectrum correlated k-distribution (FSCK) model transfers the RTE from wavenumber
space into the so-called g space, which can largely reduce the times of RTE evaluation. Detailed
induction and procedure can be found in the reference [13]. For the implementation, it is pretty
simple, it involves replacing the standard absorption coefficient a in the RTE with the k value from
the FSCK model. Similarly, the emission coefficient e is substituted with the non-grey stretching
coefficient (also denoted as a) from the FSCK model, adapting the RTE for FSCK computations.

This adaptation enables solving the RTE at designated FSCK quadrature points, selected using
the Gauss-Chebyshev integration method for optimized spectral integral computation. At each
quadrature point, the incident radiation (Ggn) is calculated and then aggregated, with each Ggn
weighted by a factor wn. This process is expressed as:

RTE(k, a,Ggn) = 0, (n ∈ [1, nq]), (2.12)

G =

nq∑
n=1

wnGgn , (2.13)

where nq is the number of FSCK quadrature points. This technique effectively captures the overall
radiative behavior, enhancing computational efficiency.

The source term in the energy equation is:

∇ · q =
nq∑
n=1

wn∇ · qgn =

nq∑
n=1

wn(4πaIb −Ggn). (2.14)

The k values, which depend on pressure p, temperature T , reference temperature Tref , and
species’ volume fraction x, are computationally intensive to calculate. To reduce this cost, Wang et
al. developed a 12.45 GB FSCK lookup table for interpolating k values [12, 10, 35]. Later, Zhou
et al. introduced a machine learning-based FSCK model, significantly reducing the model size to
less than 50 MB [33, 32]. In this study, we utilize Zhou et al.’s machine learning-based model for
predicting k values. The a array can be derived from the k array.

13
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The reference temperature mentioned above can be derived from the following implicit equations,

xref =
1

V

∫
V

xdV (2.15)

k(p, T, Tref ,xref)Ib(Tref) =
1

V

∫
V

k(p, T, T,x)Ib(T )dV. (2.16)
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Chapter 3

Existing radiation models in
OpenFOAM

This chapter provides an in-depth exploration of the implementation and application of radiation
models within OpenFOAM. The discussion encompasses the integration of the radiation model as
source terms in energy equations, detailing both the structure and functionality of the model. Special
emphasis is placed on the radiationModel class and its subclasses, focusing on their roles in solving
the RTE and calculating relevant source terms. Furthermore, practical aspects concerning the usage
of the radiation model are elaborated, including configuration details and example applications.
This chapter may contain many code snippets. If you can not find them, please use the grep -r
command under the $FOAM_SRC/thermophysicalModels/radiation to find the corresponding files.

3.1 Overview
OpenFOAM currently does not have an individual radiation solver. Instead, the radiation model is
implemented as a source term for solver’s energy equation in fvOptions, as shown below.

Energy equation in the reactingFoam solver
1 fvScalarMatrix EEqn
2 (
3 fvm::ddt(rho, he) + mvConvection->fvmDiv(phi, he)
4 // ...
5 ==
6 Qdot
7 + fvOptions(rho, he)
8 );

Then the radiation class is defined in radiation.H, which inherits from fv:option.

The definition of radiation class ($FOAM_RADIATION/fvOptions/radiation/radiation.C)
1 class radiation
2 :
3 public fv::option
4 {
5 // Private Data
6 // ..
7 };

However, this class is just a wrapper of the radiation model. The latter one is constructed in the
constructor of radiation.

The constructor of radiation class
1 Foam::fv::radiation::radiation
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2 (
3 // ...
4 )
5 :
6 fv::option(sourceName, modelType, dict, mesh)
7 {
8 // ...
9 radiation_ = Foam::radiation::radiationModel::New(thermo.T());

10 }

The radiation model overrides the addSup method in fv::option, which is called in the
fvOptions method in the energy equation and serves as the source term. In addSup method,
the correct is called to solve the RTE and the Sh method in radiationModel is called to calculate
the source term.

The addSup method in radiation class
1 void Foam::fv::radiation::addSup
2 (
3 const volScalarField& rho,
4 fvMatrix<scalar>& eqn,
5 const label fieldi
6 )
7 {
8 const auto& thermo = mesh_.lookupObject<basicThermo>(basicThermo::dictName);
9

10 radiation_->correct();
11

12 eqn += radiation_->Sh(thermo, eqn.psi());
13 }

3.2 Detailed analysis
Following the overview of the radiation model’s integration in OpenFOAM as a source term for energy
equations, this section goes deeper into the specifics of the radiationModel class. It explores the
functionalities and interactions of radiationModel with its essential subclasses.

3.2.1 The radiationModel class: RTE solver
The radiationModel class is a fundamental component in OpenFOAM’s radiation model frame-
work, involving tasks such as spectral coefficient evaluations, solving the Radiative Transfer Equation
(RTE), and calculating source terms. This class interfaces with three essential radiation sub-models:
absorptionEmissionModel, scatterModel, and sootModel. The absorptionEmissionModel cal-
culates absorption and emission coefficients and the emission contribution. The scatterModel is
responsible for computing the scattering coefficient, while the sootModel predicts the spatial distri-
bution of soot.

The RTE is solved in the correct method, by calling the virtual method calculate. The source
term is calculated in the Sh or the ST methods depending on the energy equation, which in turn
both call two virtual members, Ru and Rp. As with other CFD solvers, linearization of the source
term is necessary, hence the use of Ru and Rp. These methods should be overloaded by subclasses
of radiationModel.

The Sh method in radiationModel class
1 Foam::tmp<Foam::fvScalarMatrix> Foam::radiation::radiationModel::Sh
2 (
3 const basicThermo& thermo,
4 const volScalarField& he
5 ) const
6 {
7 const volScalarField Cpv(thermo.Cpv());
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8 const volScalarField T3(pow3(T_));
9

10 return
11 (
12 Ru()
13 - fvm::Sp(4.0*Rp()*T3/Cpv, he)
14 - Rp()*T3*(T_ - 4.0*he/Cpv)
15 );
16 }

radiationModel serves as a base class and has six subclasses, representing different RTE solver
models in OpenFOAM:

• fvDOM

• noRadiation

• opaqueSolid

• P1

• solarLoad

• viewFactor

Taking P1 as an example, the calculate method in P1 initially utilizes the absorptionEmission_
object to obtain absorption and emission coefficients, and the emission contribution. This object is
a pointer to the absorptionEmissionModel. The scattering coefficient is then obtained from the
pointer object scatter_.

Getting spectral coefficient in P1::calculate() method
1 void Foam::radiation::P1::calculate()
2 {
3 a_ = absorptionEmission_->a();
4 e_ = absorptionEmission_->e();
5 E_ = absorptionEmission_->E();
6 const volScalarField sigmaEff(scatter_->sigmaEff());
7 // ...

Subsequently, gamma is calculated, incorporating a minimal value a0 to prevent division by zero
errors.

Defining equation parameter in P1::calculate() method
1 // ...
2 const dimensionedScalar a0("a0", a_.dimensions(), ROOTVSMALL);
3

4 // Construct diffusion
5 const volScalarField gamma
6 (
7 IOobject
8 (
9 "gammaRad",

10 G_.mesh().time().timeName(),
11 G_.mesh(),
12 IOobject::NO_READ,
13 IOobject::NO_WRITE
14 ),
15 1.0/(3.0*a_ + sigmaEff + a0)
16 );
17 // ...

Equation (2.9) is then formulated and solved.

17
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Solving equation in P1::calculate() method
1 // ...
2 // Solve G transport equation
3 solve
4 (
5 fvm::laplacian(gamma, G_)
6 - fvm::Sp(a_, G_)
7 ==
8 - 4.0*(e_*physicoChemical::sigma*pow4(T_)) - E_
9 );

10 // ...

Radiative heat flux on boundaries is calculated at the conclusion of the calculate method.

Getting radiative heat flux on boundaries in P1::calculate() method
1 // ...
2 // Calculate radiative heat flux on boundaries.
3 volScalarField::Boundary& qrBf = qr_.boundaryFieldRef();
4 const volScalarField::Boundary& GBf = G_.boundaryField();
5 const volScalarField::Boundary& gammaBf = gamma.boundaryField();
6

7 forAll(mesh_.boundaryMesh(), patchi)
8 {
9 if (!GBf[patchi].coupled())

10 {
11 qrBf[patchi] = -gammaBf[patchi]*GBf[patchi].snGrad();
12 }
13 }
14 }

The Rp() method is overloaded to represent 4eσ, and Ru() is formulated as aG− E, indicating
the source terms for the energy equation.

3.2.2 The absorptionEmissionModel class: spectral model
The absorptionEmissionModel class serves as the foundational class for spectral models in Open-
FOAM. This class is simple, providing virtual methods that can be overloaded to acquire or adjust
spectral coefficients. It has eight subclasses, each tailored for specific spectral modeling scenarios.

One simple subclass is greyMeanAbsorptionEmission. This class operates under the assumption
that the participating gases are grey, meaning their absorption coefficients are constant. The ab-
sorption coefficient is modeled as a temperature-dependent polynomial, and the emission coefficient
is set equal to the absorption coefficient.

The code snippet below illustrates the process of evaluating the absorption coefficient in the
greyMeanAbsorptionEmission class:

Absorption Coefficient Evaluation in greyMeanAbsorptionEmission class
1 Foam::tmp<Foam::volScalarField>
2 Foam::radiation::greyMeanAbsorptionEmission::aCont(const label bandI) const
3 {
4 // ...
5

6 scalar Ti = T[celli];
7 // Adjust for negative temperature exponents
8 if (coeffs_[n].invTemp())
9 {

10 Ti = 1.0/T[celli];
11 }
12 // Polynomial calculation for absorption coefficient
13 a[celli] +=
14 Xipi
15 *(
16 ((((b[5]*Ti + b[4])*Ti + b[3])*Ti + b[2])*Ti + b[1])*Ti
17 + b[0]
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18 );
19 }
20 }
21 ta.ref().correctBoundaryConditions();
22 return ta;

3.3 Usage of radiation models
There is only one case in the OpenFOAM tutorial that uses the radiation model, which is the
SandiaD_LTS case. However, the radiation model can be coupled with any solver that has an energy
equation. To use the model, one may need first create a fvOptions file under the constant folder,

fvOptions dictionary for radiation model
1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2112 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object fvOptions;
14 }
15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
16

17 radiation
18 {
19 type radiation;
20 libs (radiationModels);
21 }
22

23

24 // ************************************************************************* //

Then, radiationProperties and boundaryRadiationProperties are required to specify the ra-
diation model’s properties. The radiationProperties is a dictionary that specifies the RTE solver
and the spectral model under the constant folder, while the boundaryRadiationProperties is a
dictionary that specifies the radiation model’s properties on the boundary. The radiationProperties
is defined as below, which shows how to select P1 as the RTE solver and the grey mean absorption
emission model as the spectral model. The absorption coefficient for each gas is the function of
temperature and is described as a polynomial.

radiationProperties dictionary for radiation model
1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2112 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object radiationProperties;
14 }
15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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16

17 radiation on;
18

19 radiationModel P1;
20

21 P1Coeffs
22 {
23 C C [0 0 0 0 0 0 0] 0;
24 }
25

26 // Number of flow iterations per radiation iteration
27 solverFreq 1;
28

29 absorptionEmissionModel greyMeanAbsorptionEmission;
30

31 greyMeanAbsorptionEmissionCoeffs
32 {
33 lookUpTableFileName none;
34

35 EhrrCoeff 0.0;
36

37 CO2
38 {
39 Tcommon 200; //Common Temp
40 invTemp true; //Is the polynomio using inverse temperature.
41 Tlow 200; //Low Temp
42 Thigh 2500; //High Temp
43

44 loTcoeffs //coefss for T < Tcommon
45 (
46 0 // a0 +
47 0 // a1*T +
48 0 // a2*T^(+/-)2 +
49 0 // a3*T^(+/-)3 +
50 0 // a4*T^(+/-)4 +
51 0 // a5*T^(+/-)5 +
52 );
53 hiTcoeffs //coefss for T > Tcommon
54 (
55 18.741
56 -121.31e3
57 273.5e6
58 -194.05e9
59 56.31e12
60 -5.8169e15
61 );
62

63 }
64

65 // Rest of the gas...
66 }
67

68 scatterModel none;
69

70 sootModel none;
71

72 transmissivityModel none;
73

74

75 // ************************************************************************* //
76

For the boundaryRadiationProperties, a lookup model is selected, which assumes the bound-
ary is grey. This assumption can be taken in most of the combustion cases.

boundaryRadiationProperties dictionary for radiation model
1 /*--------------------------------*- C++ -*----------------------------------*\
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2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2112 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object boundaryRadiationProperties;
14 }
15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
16

17 ".*"
18 {
19 type lookup;
20 emissivity 1;
21 absorptivity 0;
22 }
23

24

25 // ************************************************************************* //
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Chapter 4

Developing a non-grey radiation
model in OpenFOAM

As outlined in the preceding chapter, the grey gas model provides a simplified approach for modeling
radiative heat transfer, and its implementation in OpenFOAM is well-established. However, this
model’s accuracy is significantly limited by the assumption of a constant absorption coefficient
across different wavenumbers. This grey global spectral model can sometimes lead to greater errors
than those incurred by neglecting radiative heat transfer altogether. Consequently, developing a
non-grey radiation model within OpenFOAM is crucial.

In this study, the FSCK model is implemented in OpenFOAM. Firstly, the reference temperature
is determined based on the current computational field. Subsequently, the k and a values are calcu-
lated considering the pressure, temperature, reference, and species’ volume fraction, as per Zhou’s
model [32]. Additionally, the existing P1 model in OpenFOAM, a grey RTE solver as described
in Subsection. 3.2.1, solves the RTE only once per iteration. In contrast, a non-grey RTE solver
requires multiple RTE solutions per iteration. Hence, there is also a need to develop a non-grey P1
model. Similarly, a non-grey version of the Marshak boundary condition, used by the P1 model,
should be developed.

To integrate with the existing OpenFOAM framework, a support class named fsckMLP is created.
This class calculates the reference temperature Tref , computes k and a values, and stores the k and
a fields. The singleton pattern is employed to facilitate interaction with the rest of the model.

To summarize, the following parts have been developed in this study:

1. fsckMLP: Performs calculations for the FSCK model and stores fields related to it.

2. nonGreyMeanAbsorptionEmission: A non-grey version of the meanAbsorptionEmission class.

3. nonGreyP1: A non-grey version of the P1 class.

4. nonGreyMarshakRadiationFvPatchScalarField: A non-grey version of the Marshak bound-
ary condition.

5. nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField: A non-grey version of
the Marshak boundary condition with fixed temperature.

6. Rest classes and functions for the FSCK model, like deriving the a array from k array etc.

These classes are discussed in detail in the following sections.
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4.1 Developing the FSCK model

4.1.1 Obtaining the FSCK parameters
Zhou et al. [32, 33] employed three multilayer perceptrons (MLPs) to predict the FSCK parameters
across varying pressure ranges. In our study, an MLP class was developed to implement the MLP
model. This class utilizes a third-party, header-only JSON library [36] for reading the model param-
eters. These parameters are loaded within the constructor of the MLP class. Subsequently, several
methods are defined: normalize_input for input normalization, forward for conducting the forward
pass, denormalize_output for output denormalization, and preprocess and postprocess for pre-
and post-processing steps, respectively. Furthermore, an MLPManager class, acting as a wrapper for
the three MLP instances, was implemented. This class enables the prediction of FSCK parameters
across the entire pressure spectrum through a singular method invocation, get_prediction.

The computation and storage of the FSCK parameters, namely k and a, are managed within the
fsckMLP class. In this class’s constructor, an object of MLPManager is constructed. Then the array
for g and the weight array for w are computed using the quadgen2 function. Following this, two
PtrLists of volScalarField, named ki_ and ai_, are initialized through the initKA method, as
described below, used to store the k and a value across different quadrature points.

Initialzing fields for k and a
1 void Foam::radiation::fsckMLP::initKA()
2 {
3 ki_.setSize(nBands_);
4 ai_.setSize(nBands_);
5 for (label i=0; i<nBands_; i++)
6 {
7 Info << "Initialzing k and a for band" << i << endl;
8 ki_.set(i, new volScalarField
9 (

10 IOobject
11 (
12 "k" + std::to_string(i),
13 mesh_.time().timeName(),
14 mesh_,
15 IOobject::NO_READ,
16 IOobject::AUTO_WRITE
17 ),
18 mesh_,
19 dimensionedScalar(dimless/dimLength, ROOTVSMALL)
20 ));
21 ai_.set(i, new volScalarField
22 (
23 IOobject
24 (
25 "a" + std::to_string(i),
26 mesh_.time().timeName(),
27 mesh_,
28 IOobject::NO_READ,
29 IOobject::AUTO_WRITE
30 ),
31 mesh_,
32 dimensionedScalar(dimless/dimLength, ROOTVSMALL)
33 ));
34 }
35 }

The reference temperature computation is implemented by the updateTref method. This process
involves iterating over the fields to determine the average values of x and k(p, T, T,x)Ib(T ), under
Eqs (2.15) and (2.16). Since OpenFOAM stores the species density by the mass fractions, the
corresponding volume fractions are supposed to be computed. Subsequently, Equation (2.16) is
solved using an implicit approach.
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Caculating volume fractions
1 scalar invWt = 0.0;
2 scalar xco2_cell, xh2o_cell, xco_cell;
3 forAll(mixture.Y(), s)
4 {
5 invWt += mixture.Y(s)[celli]/mixture.W(s);
6 }
7 xco2_cell = mixture.Y("CO2")[celli]/(mixture.W(mixture.species()["CO2"])*invWt);
8 xh2o_cell = mixture.Y("H2O")[celli]/(mixture.W(mixture.species()["H2O"])*invWt);
9 xco_cell = mixture.Y("CO")[celli]/(mixture.W(mixture.species()["CO"])*invWt);

10

11 xco2 = xco2 + xco2_cell * mesh_.cellVolumes()[celli];
12 xh2o = xh2o + xh2o_cell * mesh_.cellVolumes()[celli];
13 xco = xco + xco_cell * mesh_.cellVolumes()[celli];

It is noteworthy that reduce function should be called at the end of the loop to ensure that the values
of xco2, xh2o, xco, etc. are consistent across all processors make the model can be ran parallelly.

To update the k and a values for each quadrature point, the updateKA method is invoked. The
loop in fields is performed to iterate over all internal cells at first. In the loop, the cell’s pressure,
temperature and volume fraction are obtained. Then the MLPManager instance is used to predict k
array with a size of 32. And then the a array is calculated using the afun function. Depending on
the user’s demand on the number of quadrature points, k and a array would be interpolated to the
corresponding size. Finally, the k and a values are stored in the volScalarField array.

Update k and a for internal field
1 forAll(T, celli)
2 {
3 //...
4 double a[NqDB];
5 afun(gNqDB, k_Tref.data(), k_T.data(), wNqDB, a);
6 double k_new[nBands_], a_new[nBands_];
7 simple_interp(NqDB, nBands_, gNqDB, k_Tref.data(), gNq, k_new);
8 simple_interp(NqDB, nBands_, gNqDB, a, gNq, a_new);
9

10 forAll(ki_, bandI)
11 {
12 ki_[bandI][celli] = k_new[bandI]*100.0;
13 ai_[bandI][celli] = a_new[bandI];
14 }
15 }

We should also obtain the FSCK parameters for boundary cells.

Update k and a for boundaries
1 forAll(T.boundaryField(), patchi)
2 {
3 forAll (T.boundaryField()[patchi], facei)
4 {
5 // ...
6

7 forAll(ai_, bandI)
8 {
9 ai_[bandI].boundaryFieldRef()[patchi][facei] = a_new[bandI];

10 ki_[bandI].boundaryFieldRef()[patchi][facei] = k_new[bandI]*100.0;
11 }
12 }
13 }

We must use T.boundaryField(), or a comparable method, for iterating over each patch, rather
than employing mesh_.boundary() directly. This approach is essential to avoid accessing boundaries
with the empty type, which would otherwise result in an error.
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4.1.2 Providing the FSCK parameters
The nonGreyMeanAbsorptionEmission class is implemented to build a bridge between fsckMLP and
nonGreyP1. In the constructor of this class, the number of bands is obtained from the dictionary as
follows.

Getting the number of bands
1 // read the number of bands
2 if(coeffsDict_.found("nBands"))
3 {
4 nBands_ = coeffsDict_.get<label>("nBands");
5 }
6 else
7 {
8 nBands_ = 4;
9 }

10 Info << "nBands: " << nBands_ << endl;

In the correct method, the fsckMLP instance is obtained through the singleton pattern. Then
the updateTref and updateKA methods are invoked to update the reference temperature. Finally,
the k and a fields are updated. Since the correct method is a virtual method from the parent
class, it has to take two inputs. However, these two inputs are not used in the correct method of
nonGreyMeanAbsorptionEmission, so they are named as dummy and dummyj.

Updating the k and a fields
1 void Foam::radiation::nonGreyMeanAbsorptionEmission::correct
2 (
3 volScalarField& dummy,
4 PtrList<volScalarField>& dummyj
5 ) const
6 {
7 Foam::radiation::fsckMLP* fsck = Foam::radiation::fsckMLP::getInstance();
8 fsck->updateTref();
9 fsck->updateKA();

10 }

After that, the k and a value at different quadrature points can be obtained by overloading the the
existing aCont and eCont methods.

Providing k and a values
1 Foam::tmp<Foam::volScalarField>
2 Foam::radiation::nonGreyMeanAbsorptionEmission::aCont(const label bandI) const
3 {
4 Foam::radiation::fsckMLP* fsck = Foam::radiation::fsckMLP::getInstance();
5 return fsck->get_k(bandI);
6 }
7

8

9 Foam::tmp<Foam::volScalarField>
10 Foam::radiation::nonGreyMeanAbsorptionEmission::eCont(const label bandI) const
11 {
12 Foam::radiation::fsckMLP* fsck = Foam::radiation::fsckMLP::getInstance();
13 return fsck->get_a(bandI);
14 }

4.2 Developing the non-grey P1 model

4.2.1 Solving the RTE
At the beginning of the calculate method, the correct method within the absorptionEmission_
object is called to update the k and a fields. The loop of solving the RTE on different quadrature
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points is performed. In every iteration, the spectral parameters are obtained from this object by
invoking the a, e, and E methods. The diffusion factor Γ is derived analogously to the grey P1 model,
but the non-grey model uses different spectral parameters on different quadrature points. Following
this, the P1 equation is formulated, for the incident radiation at various quadrature points. The
solve method is then employed to solve the P1 equation.

In the context of Marshak’s boundary condition integrated with the non-grey P1 model, a non-
grey stretching factor is multiplied by the reference value, as illustrated below, to fulfill the FSCK
model’s requirement.

Non-grey Marshak boundary condition
1 fsckMLP* fsck = fsckMLP::getInstance();
2

3 const word& aName_("a" + std::to_string(fsck->getBandI()));
4

5 // Nongrey streching factor field
6 const scalarField& ap =
7 patch().lookupPatchField<volScalarField, scalar>(aName_);
8

9 // Temperature field
10 const scalarField& Tp =
11 patch().lookupPatchField<volScalarField, scalar>(TName_);
12

13 // Re-calc reference value
14 refValue() = 4.0*constant::physicoChemical::sigma.value()*pow4(Tp)*ap;

4.2.2 Collecting the results
The incident radiation in the whole spectrum G_ is collected by the summation of incident radiation
on each quadrature point with a weight factor wn as described in Eq. (2.13).

Collecting the incident radiation
1 forAll(Gg_, bandI)
2 {
3 G_ += Gg_[bandI]*wNq[bandI];
4 forAll(mesh_.boundaryMesh(), patchi)
5 {
6 G_.boundaryFieldRef()[patchi] == G_.boundaryFieldRef()[patchi] +
7 Gg_[bandI].boundaryField()[patchi]*wNq[bandI];
8 }
9 }

Collecting the source term components follows a similar pattern to that of the incident radiation.
For the source term component for T 4, we implement,

Collecting the source term component for T 4

1 Foam::tmp<Foam::volScalarField> Foam::radiation::nonGreyP1::Rp() const
2 {
3 tmp<volScalarField> tRp
4 (
5 new volScalarField
6 (
7 IOobject
8 (
9 "Rp",

10 mesh_.time().timeName(),
11 mesh_,
12 IOobject::NO_READ,
13 IOobject::NO_WRITE
14 ),
15 4.0*absorptionEmission_->eCont()*physicoChemical::sigma*0.0
16 )
17 );
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18

19 fsckMLP* fsck = fsckMLP::getInstance();
20

21 forAll(Gg_, bandI)
22 {
23 tRp = tRp + fsck->getwNq()[bandI] * absorptionEmission_->a(bandI) *
24 4*physicoChemical::sigma * absorptionEmission_->e(bandI) *
25 dimensionedScalar(dimLength, 1);
26 }
27

28 return tRp;
29 }

For the constant source term component, we implement,

Collecting the constant source term component
1 Foam::tmp<Foam::DimensionedField<Foam::scalar, Foam::volMesh>>
2 Foam::radiation::nonGreyP1::Ru() const
3 {
4 tmp<DimensionedField<scalar, volMesh>> tRu
5 (
6 new volScalarField
7 (
8 IOobject
9 (

10 "Ru",
11 mesh_.time().timeName(),
12 mesh_,
13 IOobject::NO_READ,
14 IOobject::NO_WRITE
15 ),
16 mesh_,
17 dimensionedScalar(dimMass/dimLength/pow3(dimTime), Zero)
18 )
19 );
20

21 fsckMLP* fsck = fsckMLP::getInstance();
22

23 forAll(Gg_, bandI)
24 {
25 DimensionedField<scalar, volMesh> tRui
26 (
27 fsck->getwNq()[bandI] * absorptionEmission_->a(bandI) *
28 (
29 Gg_[bandI]// -
30 // 4*physicoChemical::sigma *
31 // absorptionEmission_->e(bandI) * pow4(T_) *
32 // dimensionedScalar(dimLength, 1)
33 )
34 );
35 tRu = tRu + tRui;
36 }
37

38 return tRu;
39 }
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Chapter 5

Model validation

In this chapter, the model’s validity is assessed by comparing its results with those obtained from
two distinct codes. Modest’s research group has developed a compact radiative heat transfer model
in OpenFOAM 2.2x. This model has undergone extensive verification, as documented in several
publications [10, 11, 12, 13, 14]. However, they develop the radiative heat transfer model in their
framework. To couple with the existing solver in OpenFOAM, modification on the source code of the
solver is necessary. Ren’s research group [17] has successfully implemented an in-house FSCK model
within ANSYS Fluent, which has been validated against Modest’s code. However, due to limitations
in ANSYS Fluent’s user-defined function (UDF), the boundary treatment in Ren’s model is not
entirely accurate, potentially leading to errors in highly non-homogeneous cases. The subsequent
sections present a comparative analysis of the results from these three codes to ascertain the accuracy
of the newly developed model.

All simulations discussed herein are termed as ‘snapshot simulations’. This approach means
solving the RTE once, under fixed conditions of temperature, pressure, and species volume fractions,
which remain constant over time. The OpenFOAM solver thermoFoam is employed.

5.1 1D slab
The model’s initial validation is conducted using a one-dimensional (1D) homogeneous slab. This
slab, measuring 1 m in length, encompasses a uniformly distributed internal temperature field of
1200 K. It contains a mixture of gases, consisting of 27.32% CO2, 3.477% CO, and 6.298% H2O,
at a pressure of 1 bar. To assess the model’s performance under varying conditions, two subcases
are simulated, each characterized by distinct wall temperatures of 300 K and 600 K, respectively.
The comparative results, as demonstrated in Fig. 5.1, are derived from simulations conducted with
the newly developed code (hereafter ‘new code’) and the established OpenFOAM code developed
by Modest’s group. The simulations correspond to wall temperatures set at 300 K and 600 K. It
is evident that the computational outcomes from both codes are identical for the incident radiation
and the radiative heat source terms across the two cases. Notably, the case with the elevated wall
temperature of 1200 K results in a higher level of incident radiation. However, the variations in the
radiative heat source term for both cases are minimal and can be considered negligible.

Temperature distribution and species’ volume fractions are prescribed following Gaussian distri-
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Figure 5.1: Incident radiation (left) and radiative heat source (right) for 1D homogeneous slab
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Fig. 5.2 illustrates the incident radiation and radiative heat source terms as predicted by the new
code (denoted with dots) and the benchmark code (denoted with lines) under varying pressure
conditions, ranging from 0.5 bar to 20 bar. The disparity in predictions made by the two models is
minimal.
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Figure 5.2: Incident radiation (left) and radiative heat source (right) for a 1D non-homogeneous
slab at different pressures.

To sum up, the validation cases in this section demonstrate the correctness of the newly developed
model. The model is capable of predicting the radiative heat transfer in a 1D slab with non- or
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homogeneous cases with varying pressure, temperature, and species’ volume fractions. The results
from the new code are in good agreement with those from the benchmark code.

5.2 2D square enclosure
A 2D homogeneous square enclosure, with dimensions of 1 m × 1 m, is established to evaluate the
performance of the newly developed code against the in-house FSCK model implemented through
the ANSYS Fluent User-Defined Function (UDF). The internal conditions of the enclosure are set
to a pressure of 1 bar and a temperature of 1200 K, with a gas composition of 30% CO2, 20% CO,
and 50% H2O. The wall is set to be cold and black (0 K, blackbody). The results obtained from the
newly developed code are presented in Fig. 5.3, while a comparative analysis with the results from
the existing Fluent UDF is illustrated in Fig. 5.4.

Figure 5.3: Incident radiation (left) and radiative heat source (right) for 2D homogeneous enclosure
predicted by the new code
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Figure 5.4: Incident radiation for 2D homogeneous enclosure predicted by the in-house UDF code
(left) and the comparison with the new code sampling at the middle white line (right)

In the non-homogeneous two-dimensional (2D) case, the same square enclosure of dimensions 1
m × 1 m is employed. The internal pressure is maintained at 1 bar, while the temperature and
species concentration distributions are governed by a spatially varying profile. This profile is defined
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by the equation:

ϕ(x, y) = max

(
0, 1− ∥pos(x, y)− c∥

r

)
, (5.5)

where ϕ(x, y) represents the scaling factor for temperature and concentrations, pos(x, y) is the po-
sition vector within the enclosure, c = (0.5, 0.5) m is the center of the distribution, and r = 0.5 m
is the radius of influence. Accordingly, the temperature varies from 0 to 1200 K, CO2 concentration
from 0 to 0.1, H2O from 0 to 0.05, and CO from 0 to 0.03, all scaled by ϕ(x, y). This spatial dis-
tribution introduces a gradient in both thermal and compositional fields, providing a more complex
scenario for the evaluation of the computational model.

The results obtained from the new code for the 2D nonhomogeneous enclosure case are depicted
in Fig. 5.5, showcasing the incident radiation and radiative heat source distributions. For compar-
ative analysis, results from the existing in-house UDF code are presented in the subsequent figure,
highlighting the incident radiation predicted by the UDF and a detailed comparison along a specific
line within the enclosure, as shown in Fig 5.6.

Figure 5.5: Incident radiation (left) and radiative heat source (right) for 2D nonhomogeneous en-
closure predicted by the new code
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Figure 5.6: Incident radiation for 2D nonhomogeneous enclosure predicted by the in-house UDF
code (left) and the comparison with the new code sampling at the middle white line (right)

It is observed that in the non-homogeneous case with a cold wall, the predictions made by the
newly developed code demonstrate high consistency with the results obtained using the in-house
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Figure 5.7: Variation of the non-grey stretching factor a in 1D nonhomogeneous cases at 1 bar
(Number in the legend denotes the quadrature index).

ANSYS Fluent User-Defined Function (UDF). However, in the homogeneous case with a strong
temperature gradient from the internal field to the boundary (1200 K to 0 K), the incident radiation
predictions near the boundary exhibit slight discrepancies between the two codes. This variation
is attributed to the UDF’s lack of a suitable macro for boundary condition treatment, leading to
minor differences in the incident radiation near the boundary (see Fig. 5.4), which means that the
non-grey stretching factor at the boundary in the UDF code is constrained to be a constant value
of 1.

5.3 Discussion
It is noteworthy that the radiative heat loss in the 1D nonhomogeneous case exhibits minor oscil-
lations, as illustrated in Fig. 5.2. This phenomenon is not attributable to stability issues with the
numerical solver. Instead, it arises from the method employed to derive a values from k values, which
is an approximation technique and may introduce additional errors. Figure 5.7 clearly demonstrates
that the a values themselves oscillate spatially, particularly at larger quadrature points, which is not
usual.

5.4 Summary
This chapter conducted several validation cases to assess the accuracy of the newly developed model.
I compared the results from my new code with those from existing codes, specifically those developed
by Modest’s group (in OpenFOAM 2.2x) and Ren’s group (in ANSYS Fluent UDF). This compar-
ison demonstrates that my code effectively implements the FSCK model across non-homogeneous
and homogeneous scenarios at varying pressures, temperatures, and species volume fractions. The
results from my new code show strong agreement with the benchmark results from Modest’s code
in OpenFOAM 2.2x.

One significant advantage of my newly developed code is its ability to integrate with any Open-
FOAM solver or third-party solver that includes thermodynamic models, without requiring modifi-
cations to the source code of the solver. This feature offers a distinct benefit over the model from
Modest’s group. Additionally, the flexibility of the OpenFOAM framework allows my code to accu-
rately handle boundary conditions. In contrast, Tao’s group’s model (in ANSYS Fluent UDF) can
only set the non-grey stretching factor as a constant value of 1 at the boundaries, which may bring
additional error.
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Chapter 6

Conclusion and future work

In this report, I have explored the fundamentals of radiative heat transfer and its modeling in Open-
FOAM. I have discussed the underlying principles and mechanisms that govern this mode of heat
transfer, with particular emphasis on its relevance and application in CFD scenarios. I have also ex-
amined the radiation models currently available in OpenFOAM, detailing their features, capabilities,
and typical use cases. Furthermore, I have provided a step-by-step guide on how to implement these
models in various CFD simulations. Building upon the existing framework, I have introduced and
detailed the integration of an advanced spectral model - the full-spectrum correlated k distribution
model - into the OpenFOAM library. I have provided an in-depth explanation of the model, its
theoretical basis, implementation strategies, and expected enhancements in simulation accuracy and
efficiency. Lastly, I have validated the newly implemented model through multiple cases, compar-
ing its performance and results with those of the pre-existing in-house codes for OpenFOAM and
ANSYS Fluent. The comparison was based on various metrics and simulation scenarios to ensure a
robust evaluation of the new model’s accuracy and validity.

Future research will focus on several key areas to enhance the FSCK model’s performance and
applicability. Firstly, the development of Multilayer Perceptrons (MLPs) to accurately predict both
k and a values is a priority. This initiative aims to address the errors in calculating a values from
correlation patterns, a challenge identified in Section 5.3. By employing advanced machine learning
techniques, I expect a significant improvement in the predictive accuracy of these parameters. Sec-
ondly, it is imperative to improve the newly implemented FSCK model’s compatibility with other
radiation solvers in OpenFOAM. Currently, the model integrates exclusively with the nonGreyP1
solver and is not compatible with the built-in fvDOM. Enhancing this compatibility will broaden the
model’s utility across various simulation scenarios within OpenFOAM. Lastly, applying the FSCK
model to more practical cases, such as combustion scenarios, is essential. This application will
include comparing simulation outcomes with experimental data to validate the model’s efficacy in
real-world settings, thereby reinforcing its value in addressing practical engineering challenges.
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Study questions

How to use it:

• Which RTE solver is preferred for combustion when the case is sensitive to the computational
cost?

• How to use the existing radiation model in OpenFOAM?

The theory of it:

• What is the optically thin? What is the optically thick?

• Is combustion optically thin or thick?

• When will the P1 model be inaccurate?

How it is implemented:

• Why there is no stand-alone radiative heat transfer solver in OpenFOAM?

• Why is the radiative heat transfer model coupled with the energy equation?

How to modify it:

• What is the meaning of nonGrey in the nonGreyP1 model?

• What is the difference between nonGreyP1 and P1 in the governing equation (hint: the FSCK
model)?

• Why can’t we use the mesh_.boundary() to iterate through the boundary patches to set values
for some fields?
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Appendix A

Guide for this model

Before running the Allwmake script to compile the model, it is necessary to modify the last line
of EXE_INC and LIB_LIBS in the options file of radiation. This modification should reflect the
correct path to the source code of fsckMLPModel and the compiled library. Subsequently, execute the
Allwmake script to initially compile the pure cpp library libmlpmanager.so under fsckMLPModel.
Following this, compile the OpenFOAM library libmyradiationModels.so under radiation.

The process of integrating the newly developed non-grey model with the existing OpenFOAM
solvers involves a few key steps. Initially, create a radiationProperties file within the constant
folder of your project.

radiationProperties for the non-grey model
1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2112 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object radiationProperties;
14 }
15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
16

17 radiation on;
18

19 radiationModel nonGreyP1;
20

21 nonGreyP1Coeffs
22 {
23 C C [0 0 0 0 0 0 0] 0;
24 }
25

26 // Number of flow iterations per radiation iteration
27 solverFreq 1;
28

29 absorptionEmissionModel nonGreyMeanAbsorptionEmission;
30

31 nonGreyMeanAbsorptionEmissionCoeffs
32 {
33 nBands 16; // Number of bands
34 EhrrCoeff 0.0;
35 }
36

37 scatterModel none;
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38

39 sootModel none;
40

41 transmissivityModel none;
42

43

44 // ************************************************************************* //

Adjust the nBands parameter as per the accuracy requirements of the model. The default setting is
16, but it can be configured to 4, 8, 16, or 32, depending on the desired level of precision.

For the non-grey model, a boundaryRadiationProperties file is also necessary. Below is an
example of the boundaryRadiationProperties configuration for the non-grey model.

boundaryRadiationProperties for the non-grey model
1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2112 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object boundaryRadiationProperties;
14 }
15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
16

17 ".*"
18 {
19 type nonGreyLookup;
20 emissivity 1;
21 absorptivity 1;
22 }
23

24

25 // ************************************************************************* //

Additionally, it is essential to specify both the initial and boundary values for the incident
radiation field, as demonstrated in the following sections.

radiationProperties for the non-grey model
1 /*--------------------------------*- C++ -*----------------------------------* \
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v2112 |
5 | \\ / A nd | Website: www.openfoam.com |
6 | \\/ M anipulation | |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class volScalarField;
13 object G;
14 }
15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
16

17 dimensions [1 0 -3 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
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23 ".*"
24 {
25 type MarshakRadiation;
26 T T;
27 value uniform 0;
28 }
29

30 frontAndBack
31 {
32 type empty;
33 }
34 }
35

36

37 // ************************************************************************* //

The recommended solver settings for managing the incident radiation are largely in line with
those provided in the standard OpenFOAM tutorials, as detailed below.

fvSolution for the non-grey model
1 "(G.*)"
2 {
3 solver PCG;
4 preconditioner DIC;
5 tolerance 1e-9;
6 relTol 0.0;
7 }

This model is designed to be compatible with any OpenFOAM solver that includes a predefined
energy equation. Don’t forget to include the library in your controlDict file.
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Validation cases

Several cases are set up to validate the newly implemented FSCK model with the results run by two
existing codes, as mentioned in Chapter 5. They are also handed in as support files. There are five
folders.

1. 1d_homo: 1D homogeneous case

2. 1d_nonhomo: 1D nonhomogeneous case

3. 2d_homo: 2D homogeneous case

4. 2d_nonhomo: 2D nonhomogeneous case

5. validation_data: Results run by the existing codes

Two Python scripts, plot.py and contour.py, are also given to plot the results. You may need
numpy, matplotlib, and pandas to run these scripts. A proper conda environment is recommended.

To run the simulation and plot the results, you just need to execute Allrun script. The plotted
images are stored under the img folder. You can also use the Allclean script to clean the case.
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Developed codes

C.1 FSCK model

C.1.1 MLPManager class

MLPManager.h
#ifndef MLPMANAGER_H
#define MLPMANAGER_H

#include "mlp.h"
#include <vector>
#include <memory>

class MLPManager {
public:

MLPManager(); // Constructor that loads all MLPs
std::vector<double> get_prediction(const std::vector<double>& input); // Public method to get
predictions

private:
std::vector<std::unique_ptr<MLP>> mlps; // Vector of unique_ptr to MLPs
void load_all_mlps(std::vector<std::string> mlp_names); // Private method to load all MLPs

};

#endif // MLPMANAGER_H

MLPManager.cpp
#include "MLPManager.h"
#include <stdexcept>
#include <dlfcn.h>
#include <string>

std::string GetLibraryPath() {
Dl_info dl_info;
dladdr((void*)&GetLibraryPath, &dl_info);
std::string fullPath(dl_info.dli_fname);

size_t pos = fullPath.find_last_of('/');
if (pos != std::string::npos) {

return fullPath.substr(0, pos);
} else {

return fullPath;
}

}

// Constructor implementation
MLPManager::MLPManager() {

42



C.1. FSCK model Appendix C. Developed codes

std::string dl_path = GetLibraryPath();
std::vector<std::string> mlp_names =

{dl_path + "/../../parameter/mlp_0.json",
dl_path + "/../../parameter/mlp_1.json",
dl_path + "/../../parameter/mlp_2.json"};

load_all_mlps(mlp_names); // Load all MLPs when the object is created
}

// load_all_mlps method implementation
void MLPManager::load_all_mlps(std::vector<std::string> mlp_names) {

for(int i = 0; i < 3; i++){
std::cout << "Loading MLP parameter from: " << mlp_names[i] << std::endl;
mlps.emplace_back(std::unique_ptr<MLP>(new MLP(mlp_names[i])));

}
}

// get_prediction method implementation
std::vector<double> MLPManager::get_prediction(const std::vector<double>& input) {

if (input.empty()) {
throw std::invalid_argument("Input vector is empty.");

}

double value = input[0];
MLP* mlp = nullptr;

if (value >= 0.0 && value < 1.0) {
mlp = mlps[0].get();

} else if (value >= 1.0 && value < 10.0) {
mlp = mlps[1].get();

} else if (value >= 10.0 && value < 80.0) {
mlp = mlps[2].get();

} else {
throw std::out_of_range("Input[0] is out of the expected range.");

}

return mlp->predict(input);
}

C.1.2 MLP class

mlp.h
#ifndef MLP_H
#define MLP_H

#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include "json.hpp"

using json = nlohmann::json;
using std::vector;

class MLP {
private:

struct Layer {
vector<vector<double>> weights;
vector<double> bias;
std::string activation;
int units;

};

vector<Layer> layers;
vector<double> input_mean;
vector<double> input_std;
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vector<double> output_mean;
vector<double> output_std;

// Activation function
inline double relu(double x) {

return x > 0 ? x : 0;
};

// Forward pass
vector<double> forward(const vector<double>& input);

// Function to normalize input
vector<double> normalize_input(const vector<double>& input);

// Function to denormalize output
vector<double> denormalize_output(const vector<double>& output);

// Preprocessing
vector<double> preprocess(const vector<double>& input);

// Postprocessing
vector<double> postprocess(const vector<double>& output);

public:
MLP(const std::string& json_file);

// Predict function
vector<double> predict(const vector<double>& input);

};

#endif

mlp.cpp
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include "json.hpp"
#include "mlp.h"

using json = nlohmann::json;
using std::vector;

vector<double> MLP::forward(const vector<double>& input) {
vector<double> a = input;
for (auto& layer : layers) {

vector<double> z(layer.units, 0.0);
for (int i = 0; i < layer.units; ++i) {

for (size_t j = 0; j < a.size(); ++j) {
z[i] += a[j] * layer.weights[j][i];

}
z[i] += layer.bias[i];
if (layer.activation == "relu") {

z[i] = relu(z[i]);
}

}
a = z;

}
return a;

}

// Normalized input
vector<double> MLP::normalize_input(const vector<double>& input) {

vector<double> normalized(input.size());
for (size_t i = 0; i < input.size(); ++i) {

normalized[i] = (input[i] - input_mean[i]) / input_std[i];
}
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return normalized;
}

// Denormalize output
vector<double> MLP::denormalize_output(const vector<double>& output) {

vector<double> denormalized(output.size());
for (size_t i = 0; i < output.size(); ++i) {

denormalized[i] = output[i] * output_std[i] + output_mean[i];
}
return denormalized;

}

// Preprocessing
vector<double> MLP::preprocess(const vector<double>& input) {

vector<double> preprocessed(input.size());
// perform log10 on the last element
preprocessed = input;
if(input.back()==0.0) {

preprocessed.back() = -10.0;
} else {

preprocessed.back() = log10(input.back());
}
return preprocessed;

}

// Postprocessing
vector<double> MLP::postprocess(const vector<double>& output) {

vector<double> postprocessed(output.size());
// perform 10^x on each element
for (size_t i = 0; i < output.size(); ++i) {

postprocessed[i] = pow(10, output[i]);
}
return postprocessed;

}

// Constructor
MLP::MLP(const std::string& json_file) {

std::ifstream file(json_file);
if (!file.is_open()) {

throw std::runtime_error("Unable to open JSON file.");
}

json j;
file >> j;

int n_layers = j["n_layers"];
for (int i = 0; i < n_layers; ++i) {

std::string layer_key = "layer_" + std::to_string(i);
auto& json_layer = j[layer_key];

Layer layer;
layer.units = json_layer["units"];
layer.activation = json_layer["activation"];

// Weights
auto& json_weights = json_layer["weights"];
for (auto& w : json_weights) {

layer.weights.push_back(w.get<vector<double>>());
}

// Bias
layer.bias = json_layer["bias"].get<vector<double>>();

layers.push_back(layer);
}

// Normalization parameters
input_mean = j["input_mean"].get<vector<double>>();
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input_std = j["input_std"].get<vector<double>>();
output_mean = j["output_mean"].get<vector<double>>();
output_std = j["output_std"].get<vector<double>>();

}

// Predict function
vector<double> MLP::predict(const vector<double>& input) {

auto preprocessed = preprocess(input);
auto normalized = normalize_input(preprocessed);
auto raw_output = forward(normalized);
auto denomalized = denormalize_output(raw_output);
return postprocess(denomalized);

}

C.1.3 fsckMLP class

fsckMLP.H
/*---------------------------------------------------------------------------*\
I will use singleton pattern to make sure that only one instance of the class
is created. Some common information like reference state can be shared among
RTE solver (P1), absorptionEmissionModel and boundary radiation properties.
\*---------------------------------------------------------------------------*/

#ifndef fsckMLP_H
#define fsckMLP_H

#include "volFields.H"
#include "fluidThermo.H"
#include "MLPManager.h"

namespace Foam
{
namespace radiation
{
class fsckMLP
{
private:

static fsckMLP* instance;

// number of selected bands
label nBands_;

// reference state
scalar Tref_;
scalar xco2_ref_;
scalar xh2o_ref_;
scalar xco_ref_;

const fvMesh& mesh_;

//- SLG thermo package
const fluidThermo& thermo_;

//- list of absorption ceofficient k
PtrList<volScalarField> ki_;

//- list of a
PtrList<volScalarField> ai_;
DimensionedField<scalar, volMesh> writeRu_;
volScalarField writeRp_;
label bandI_; // Just for Marshak

double* gNqDB;
double* wNqDB;
double* gNq;
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double* wNq;

MLPManager mlpManager_;

fsckMLP(label nBands, const fvMesh& mesh);

void initKA();
public:

static fsckMLP* getInstance();
static fsckMLP* getInstance(label nBands, const fvMesh& mesh);
label getNBands();
void updateTref();
void updateKA();
tmp<Foam::volScalarField> get_k(const label bandI);
tmp<Foam::volScalarField> get_a(const label bandI);
scalar getTref();
double* getwNq();
void updateRu(const DimensionedField<scalar, volMesh>& Ru);
void updateRp(const volScalarField Rp);

void setBandI(const label bandI);
label getBandI();

};

} // namespace radiation
} // namespace Foam

#endif

fsckMLP.C
#include "fsckMLP.H"
#include "MLPManager.h"
#include "kpl.h"
#include "basicSpecieMixture.H"
#include "extrapolatedCalculatedFvPatchFields.H"
#include "support_func.h"

Foam::radiation::fsckMLP* Foam::radiation::fsckMLP::instance = nullptr;

Foam::radiation::fsckMLP::fsckMLP(label nBands, const fvMesh& mesh)
:

nBands_(nBands),
mesh_(mesh),
thermo_(mesh.lookupObject<fluidThermo>(basicThermo::dictName)),
writeRu_
(

IOobject
(

"debug_Ru",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh_,
dimensionedScalar(dimMass/dimLength/pow3(dimTime), Zero)

),

writeRp_
(

IOobject
(

"debug_Rp",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
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),
mesh_,
dimensionedScalar(dimMass/dimLength/pow3(dimTime)/pow4(dimTemperature), Zero)

),
bandI_(0),
mlpManager_()

{
quadgen2(NqDB, 2.0, &gNqDB, &wNqDB);
quadgen2(nBands, 2.0, &gNq, &wNq);
Info << "kdist Information" << endl;
Info << "gNq :";
for(int i = 0; i < nBands; i++)
{

Info << gNq[i] << "\t";
}
Info << endl << "wNq :";
for(int i = 0; i < nBands; i++)
{

Info << wNq[i] << "\t";
}
Info << endl;
initKA();
Tref_ = 1000.0;
xco2_ref_ = 0.0;
xh2o_ref_ = 0.0;
xco_ref_ = 0.0;

}

void Foam::radiation::fsckMLP::initKA()
{

ki_.setSize(nBands_);
ai_.setSize(nBands_);
for (label i=0; i<nBands_; i++)
{

Info << "Initialzing k and a for band" << i << endl;
ki_.set(i, new volScalarField
(

IOobject
(

"k" + std::to_string(i),
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh_,
dimensionedScalar(dimless/dimLength, ROOTVSMALL)

));
ai_.set(i, new volScalarField
(

IOobject
(

"a" + std::to_string(i),
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh_,
dimensionedScalar(dimless/dimLength, ROOTVSMALL)

));
}

}

Foam::radiation::fsckMLP* Foam::radiation::fsckMLP::getInstance()
{

return instance;
}
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Foam::radiation::fsckMLP* Foam::radiation::fsckMLP::getInstance(label nBands, const fvMesh& mesh)
{

if (instance == nullptr)
{

instance = new fsckMLP(nBands, mesh);
}
return instance;

}

Foam::label Foam::radiation::fsckMLP::getNBands()
{

return nBands_;
}

void Foam::radiation::fsckMLP::updateTref()
{

const basicSpecieMixture& mixture =
dynamic_cast<const basicSpecieMixture&>(thermo_);

const volScalarField& T = thermo_.T();

// Calculate the reference temperature field
scalar volume = 0.0;

scalar xco2 = 0.0;
scalar xh2o = 0.0;
scalar xco = 0.0;
scalar Tmax = 0.0;
scalar Tmin = 5000.0;
scalar rhs = 0.0;

forAll(T, celli)
{

scalar invWt = 0.0;
scalar xco2_cell, xh2o_cell, xco_cell;
forAll(mixture.Y(), s)
{

invWt += mixture.Y(s)[celli]/mixture.W(s);
}
xco2_cell = mixture.Y("CO2")[celli]/(mixture.W(mixture.species()["CO2"])*invWt);
xh2o_cell = mixture.Y("H2O")[celli]/(mixture.W(mixture.species()["H2O"])*invWt);
xco_cell = mixture.Y("CO")[celli]/(mixture.W(mixture.species()["CO"])*invWt);

xco2 = xco2 + xco2_cell * mesh_.cellVolumes()[celli];
xh2o = xh2o + xh2o_cell * mesh_.cellVolumes()[celli];
xco = xco + xco_cell * mesh_.cellVolumes()[celli];

// Begin the reference temperature part
scalar Ti = T[celli];
int f;
if (Ti < kpT[0])

f = 0;
else if (Ti > kpT[125])

f = 124;
else

f = static_cast<int>((Ti - 300) / 20);
double wx = (Ti - kpT[f]) / 20;

double kp[4] = {0.0};

kp[0] = (wx * kpCO2[f + 1] + (1. - wx) * kpCO2[f]) * xco2_cell;
kp[1] = (wx * kpH2O[f + 1] + (1. - wx) * kpH2O[f]) * xh2o_cell;
kp[2] = (wx * kpCO[f + 1] + (1. - wx) * kpCO[f]) * xco_cell;
kp[3] = (wx * kpSoot[f + 1] + (1. - wx) * kpSoot[f]) * 0.0;

for (int i = 0; i < 4; i++)
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{
rhs += mesh_.cellVolumes()[celli] * kp[i] * pow(Ti, 4.);

}

Tmax = max(Tmax, Ti);
Tmin = min(Tmin, Ti);
volume = volume + mesh_.cellVolumes()[celli];

}

reduce(xco2, sumOp<scalar>());
reduce(xh2o, sumOp<scalar>());
reduce(xco, sumOp<scalar>());
reduce(volume, sumOp<scalar>());
reduce(rhs, sumOp<scalar>());
reduce(Tmax, maxOp<scalar>());
reduce(Tmin, minOp<scalar>());
xh2o = xh2o / volume;
xco2 = xco2 / volume;
xco = xco / volume;
rhs = rhs / volume;

Info << "Tmin, Tmax = " << Tmin << "\t" << Tmax << endl;

// Set the integrated Tref value to the fsckMLP object
Foam::radiation::fsckMLP* fsck = Foam::radiation::fsckMLP::getInstance();
double xmref[4] = {xco2, xh2o, xco, 0.0};

double Tref = 200.0;
double kpref[4][126], kpdata[126];
for (int i = 0; i < 126; i++)
{

kpref[0][i] = xmref[0] * kpCO2[i];
kpref[1][i] = xmref[1] * kpH2O[i];
kpref[2][i] = xmref[2] * kpCO[i];
kpref[3][i] = xmref[3] * kpSoot[i];

}
int imax = round((Tmax - 300) / 20 + 1);
int imin = max(2, round((Tmin - 300) / 20 + 1));
int ibgn = min(126, max(2, imin - 10)) - 1;
int iend = min(126, max(2, imax + 10)) - 1;
double lhs[126] = { 0. };
for (int id = ibgn; id < iend; id++)
{

for (int speciesid = 0; speciesid < 4; speciesid++)
lhs[id] = lhs[id] + kpref[speciesid][id] * pow(kpT[id], 4.);

if (lhs[id] >= rhs)
{

Tref = kpT[id - 1] + (kpT[id] - kpT[id - 1]) * (rhs - lhs[id - 1]) / (lhs[id] - lhs[id -
1] + 1e-25);

break;
}

}
Tref_ = Tref;
xco2_ref_ = xco2;
xh2o_ref_ = xh2o;
xco_ref_ = xco;
Info << "Newly calculated Tref: " << Tref << endl <<

"xco2: " << xco2 << endl <<
"xh2o: " << xh2o << endl <<
"xco: " << xco << endl;

}

void Foam::radiation::fsckMLP::updateKA()
{

const basicSpecieMixture& mixture =
dynamic_cast<const basicSpecieMixture&>(thermo_);
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const volScalarField& T = thermo_.T();
const volScalarField& p = thermo_.p();

forAll(T, celli)
{

scalar invWt = 0.0;
scalar xco2_cell, xh2o_cell, xco_cell;
forAll(mixture.Y(), s)
{

invWt += mixture.Y(s)[celli]/mixture.W(s);
}
xco2_cell = mixture.Y("CO2")[celli]/(mixture.W(mixture.species()["CO2"])*invWt);
xh2o_cell = mixture.Y("H2O")[celli]/(mixture.W(mixture.species()["H2O"])*invWt);
xco_cell = mixture.Y("CO")[celli]/(mixture.W(mixture.species()["CO"])*invWt);

std::vector<double> input_Tref = {p[celli]/1e5, Tref_, T[celli], xco2_cell, xh2o_cell,
xco_cell, 1e-10};

std::vector<double> k_Tref = mlpManager_.get_prediction(input_Tref);
std::vector<double> input_T = {p[celli]/1e5, T[celli], T[celli], xco2_cell, xh2o_cell,

xco_cell, 1e-10};
std::vector<double> k_T = mlpManager_.get_prediction(input_T);

double a[NqDB];
afun(gNqDB, k_Tref.data(), k_T.data(), wNqDB, a);
double k_new[nBands_], a_new[nBands_];
simple_interp(NqDB, nBands_, gNqDB, k_Tref.data(), gNq, k_new);
simple_interp(NqDB, nBands_, gNqDB, a, gNq, a_new);

forAll(ki_, bandI)
{

ki_[bandI][celli] = k_new[bandI]*100.0;
ai_[bandI][celli] = a_new[bandI];

}
}
forAll(T.boundaryField(), patchi)
{

forAll (T.boundaryField()[patchi], facei)
{

scalar invWt = 0.0;
scalar xco2_cell, xh2o_cell, xco_cell;
forAll(mixture.Y(), s)
{

invWt += mixture.Y(s).boundaryField()[patchi][facei]/mixture.W(s);
}
xco2_cell = mixture.Y("CO2").boundaryField()[patchi][facei]/(mixture.W(mixture.species()["

CO2"])*invWt);
xh2o_cell = mixture.Y("H2O").boundaryField()[patchi][facei]/(mixture.W(mixture.species()["

H2O"])*invWt);
xco_cell = mixture.Y("CO").boundaryField()[patchi][facei]/(mixture.W(mixture.species()["CO

"])*invWt);

std::vector<double> input_Tref = {p.boundaryField()[patchi][facei]/1e5, Tref_, T.
boundaryField()[patchi][facei], xco2_cell, xh2o_cell, xco_cell, 1e-10};

std::vector<double> k_Tref = mlpManager_.get_prediction(input_Tref);
std::vector<double> input_T = {p.boundaryField()[patchi][facei]/1e5, T.boundaryField()[

patchi][facei], T.boundaryField()[patchi][facei], xco2_cell, xh2o_cell, xco_cell, 1e-10};
std::vector<double> k_T = mlpManager_.get_prediction(input_T);

double a[NqDB];
afun(gNqDB, k_Tref.data(), k_T.data(), wNqDB, a);
double k_new[nBands_], a_new[nBands_];
simple_interp(NqDB, nBands_, gNqDB, k_Tref.data(), gNq, k_new);
simple_interp(NqDB, nBands_, gNqDB, a, gNq, a_new);

forAll(ai_, bandI)
{

ai_[bandI].boundaryFieldRef()[patchi][facei] = a_new[bandI];
ki_[bandI].boundaryFieldRef()[patchi][facei] = k_new[bandI]*100.0;
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}
}

}
}

Foam::tmp<Foam::volScalarField> Foam::radiation::fsckMLP::get_k(const label bandI)
{

ki_[bandI].correctBoundaryConditions();
return ki_[bandI];

}

Foam::tmp<Foam::volScalarField> Foam::radiation::fsckMLP::get_a(const label bandI)
{

ai_[bandI].correctBoundaryConditions();
return ai_[bandI];

}

Foam::scalar Foam::radiation::fsckMLP::getTref()
{

return Tref_;
}

double* Foam::radiation::fsckMLP::getwNq()
{

return wNq;
}

void Foam::radiation::fsckMLP::updateRu(const DimensionedField<scalar, volMesh>& Ru)
{

writeRu_ = Ru;
}

void Foam::radiation::fsckMLP::updateRp(const volScalarField Rp)
{

writeRp_ = Rp;
}

void Foam::radiation::fsckMLP::setBandI(const label bandI)
{

bandI_ = bandI;
}

Foam::label Foam::radiation::fsckMLP::getBandI()
{

return bandI_;
}

C.1.4 nonGreyMeanAbsorptionEmission class

nonGreyMeanAbsorptionEmission.H
/*---------------------------------------------------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
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(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam::radiation::nonGreyMeanAbsorptionEmission

Group
grpRadiationAbsorptionEmissionSubModels

Description
nonGreyMeanAbsorptionEmission radiation absorption and emission coefficients
for continuous phase

The coefficients for the species in the Look up table have to be specified
for use in moles x P [atm], i.e. (k[i] = species[i]*p*9.869231e-6).

The coefficients for CO and soot or any other added are multiplied by the
respective mass fraction being solved

All the species in the dictionary need either to be in the look-up table or
being solved. Conversely, all the species solved do not need to be included
in the calculation of the absorption coefficient

The names of the species in the absorption dictionary must match exactly the
name in the look-up table or the name of the field being solved

The look-up table ("speciesTable") file should be in constant

i.e. dictionary
\verbatim

LookUpTableFileName "speciesTable";

EhrrCoeff 0.0;

CO2
{

Tcommon 300.; // Common Temp
invTemp true; // Is the polynomial using inverse temperature?
Tlow 300.; // Low Temp
Thigh 2500.; // High Temp

loTcoeffs // coeffs for T < Tcommon
(

0 // a0 +
0 // a1*T +
0 // a2*T^(+/-)2 +
0 // a3*T^(+/-)3 +
0 // a4*T^(+/-)4 +
0 // a5*T^(+/-)5 +

);
hiTcoeffs // coeffs for T > Tcommon
(

18.741
-121.31e3
273.5e6
-194.05e9
56.31e12
-5.8169e15

);
}

\endverbatim
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SourceFiles
nonGreyMeanAbsorptionEmission.C

\*---------------------------------------------------------------------------*/

#ifndef nonGreyMeanAbsorptionEmission_H
#define nonGreyMeanAbsorptionEmission_H

#include "interpolationLookUpTable.H"
#include "absorptionEmissionModel.H"
#include "HashTable.H"
#include "absorptionCoeffs.H"
#include "fluidThermo.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace radiation
{

/*---------------------------------------------------------------------------*\
Class nonGreyMeanAbsorptionEmission Declaration

\*---------------------------------------------------------------------------*/

class nonGreyMeanAbsorptionEmission
:

public absorptionEmissionModel
{
public:

// Public data

// Maximum number of species considered for absorptivity
static const int nSpecies_ = 5;

// Absorption Coefficients
// absorptionCoeffs coeffs_[nSpecies_];

private:

// Private data

//- Absorption model dictionary
dictionary coeffsDict_;
label nBands_;

//- SLG thermo package
const fluidThermo& thermo_;

//- Emission constant coefficient
const scalar EhrrCoeff_;

public:

//- Runtime type information
TypeName("nonGreyMeanAbsorptionEmission");

// Constructors

//- Construct from components
nonGreyMeanAbsorptionEmission(const dictionary& dict, const fvMesh& mesh);

//- Destructor
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virtual ~nonGreyMeanAbsorptionEmission();

// Member Functions

// Access

// Absorption coefficient

//- Absorption coefficient for continuous phase
tmp<volScalarField> aCont(const label bandI = 0) const;

// Emission coefficient

//- Emission coefficient for continuous phase
tmp<volScalarField> eCont(const label bandI = 0) const;

// Emission contribution

//- Emission contribution for continuous phase
tmp<volScalarField> ECont(const label bandI = 0) const;

//- Get reference temperature

void correct
(

volScalarField& a,
PtrList<volScalarField>& aj

) const;

// Member Functions

inline bool isGrey() const
{

return false;
}

inline label nBands() const
{

return nBands_;
}

};

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace radiation
} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#endif

// ************************************************************************* //

nonGreyMeanAbsorptionEmission.C
/*---------------------------------------------------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
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Copyright (C) 2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

#include "nonGreyMeanAbsorptionEmission.H"
#include "addToRunTimeSelectionTable.H"
#include "unitConversion.H"
#include "extrapolatedCalculatedFvPatchFields.H"
#include "basicSpecieMixture.H"
#include "fsckMLP.H"
#include "MLPManager.h"
#include "kpl.h"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{

namespace radiation
{

defineTypeNameAndDebug(nonGreyMeanAbsorptionEmission, 0);

addToRunTimeSelectionTable
(

absorptionEmissionModel,
nonGreyMeanAbsorptionEmission,
dictionary

);
}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::radiation::nonGreyMeanAbsorptionEmission::nonGreyMeanAbsorptionEmission
(

const dictionary& dict,
const fvMesh& mesh

)
:

absorptionEmissionModel(dict, mesh),
coeffsDict_((dict.optionalSubDict(typeName + "Coeffs"))),
nBands_(coeffsDict_.get<label>("nBands")),
thermo_(mesh.lookupObject<fluidThermo>(basicThermo::dictName)),
EhrrCoeff_(coeffsDict_.get<scalar>("EhrrCoeff"))

{
if (!isA<basicSpecieMixture>(thermo_))
{

FatalErrorInFunction
<< "Model requires a multi-component thermo package"
<< abort(FatalError);

}
Foam::radiation::fsckMLP* fsck = Foam::radiation::fsckMLP::getInstance(nBands_, thermo_.T().mesh()
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);
}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::radiation::nonGreyMeanAbsorptionEmission::~nonGreyMeanAbsorptionEmission()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

Foam::tmp<Foam::volScalarField>
Foam::radiation::nonGreyMeanAbsorptionEmission::aCont(const label bandI) const
{

Foam::radiation::fsckMLP* fsck = Foam::radiation::fsckMLP::getInstance();
return fsck->get_k(bandI);

}

Foam::tmp<Foam::volScalarField>
Foam::radiation::nonGreyMeanAbsorptionEmission::eCont(const label bandI) const
{

Foam::radiation::fsckMLP* fsck = Foam::radiation::fsckMLP::getInstance();
return fsck->get_a(bandI);

}

Foam::tmp<Foam::volScalarField>
Foam::radiation::nonGreyMeanAbsorptionEmission::ECont(const label bandI) const
{

tmp<volScalarField> E
(

new volScalarField
(

IOobject
(

"ECont" + name(bandI),
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE

),
mesh_,
dimensionedScalar(dimMass/dimLength/pow3(dimTime), Zero)

)
);

const volScalarField* QdotPtr = mesh_.findObject<volScalarField>("Qdot");

if (QdotPtr)
{

const volScalarField& Qdot = *QdotPtr;

if (Qdot.dimensions() == dimEnergy/dimTime)
{

E.ref().primitiveFieldRef() = EhrrCoeff_*Qdot/mesh_.V();
}
else if (Qdot.dimensions() == dimEnergy/dimTime/dimVolume)
{

E.ref().primitiveFieldRef() = EhrrCoeff_*Qdot;
}
else
{

if (debug)
{

WarningInFunction
<< "Incompatible dimensions for Qdot field" << endl;

}
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}
}
else
{

// WarningInFunction
// << "Qdot field not found in mesh" << endl;

}

return E;
}

void Foam::radiation::nonGreyMeanAbsorptionEmission::correct
(

volScalarField& a,
PtrList<volScalarField>& aj

) const
{

Foam::radiation::fsckMLP* fsck = Foam::radiation::fsckMLP::getInstance();
fsck->updateTref();
fsck->updateKA();

}

// ************************************************************************* //

C.2 Nongrey P1 solver

C.2.1 nonGreyP1 class

nonGreyP1.H
/*---------------------------------------------------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam::radiation::nonGreyP1

Group
grpRadiationModels

Description
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Works well for combustion applications where optical thickness, tau is
large, i.e. tau = a*L > 3 (L = distance between objects)

Assumes
- all surfaces are diffuse
- tends to over predict radiative fluxes from sources/sinks

*** SOURCES NOT CURRENTLY INCLUDED ***

SourceFiles
nonGreyP1.C

\*---------------------------------------------------------------------------*/

#ifndef radiation_nonGreyP1_H
#define radiation_nonGreyP1_H

#include "radiationModel.H"
#include "volFields.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace radiation
{

/*---------------------------------------------------------------------------*\
Class nonGreyP1 Declaration

\*---------------------------------------------------------------------------*/

class nonGreyP1
:

public radiationModel
{

// Private data

//- Incident radiation / [W/m2]
volScalarField G_;

//- Total radiative heat flux [W/m2]
volScalarField qr_;

//- Absorption coefficient
volScalarField a_;

//- Emission coefficient
volScalarField e_;

//- Emission contribution
volScalarField E_;

//- internal calculation Gg_
PtrList<volScalarField> Gg_;

// Private Member Functions

//- No copy construct
nonGreyP1(const nonGreyP1&) = delete;

//- No copy assignment
void operator=(const nonGreyP1&) = delete;

void initGg();

public:

//- Runtime type information
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TypeName("nonGreyP1");

// Constructors

//- Construct from components
nonGreyP1(const volScalarField& T);

//- Construct from components
nonGreyP1(const dictionary& dict, const volScalarField& T);

//- Destructor
virtual ~nonGreyP1() = default;

// Member functions

// Edit

//- Solve radiation equation(s)
void calculate();

//- Read radiation properties dictionary
bool read();

// Access

//- Source term component (for power of T^4)
virtual tmp<volScalarField> Rp() const;

//- Source term component (constant)
virtual tmp<volScalarField::Internal> Ru() const;

//- Number of bands
label nBands() const;

};

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace radiation
} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#endif

// ************************************************************************* //

nonGreyP1.C
/*---------------------------------------------------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2019-2020 OpenCFD Ltd.

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
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the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

#include "nonGreyP1.H"
#include "fvmLaplacian.H"
#include "fvmSup.H"
#include "absorptionEmissionModel.H"
#include "extrapolatedCalculatedFvPatchFields.H"
#include "scatterModel.H"
#include "constants.H"
#include "addToRunTimeSelectionTable.H"
#include "fsckMLP.H"

using namespace Foam::constant;

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{

namespace radiation
{

defineTypeNameAndDebug(nonGreyP1, 0);
addToRadiationRunTimeSelectionTables(nonGreyP1);

}
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::radiation::nonGreyP1::nonGreyP1(const volScalarField& T)
:

radiationModel(typeName, T),
G_
(

IOobject
(

"G",
mesh_.time().timeName(),
mesh_,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh_

),
qr_
(

IOobject
(

"qr",
mesh_.time().timeName(),
mesh_,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE

),
mesh_,
dimensionedScalar(dimMass/pow3(dimTime), Zero)

),
a_
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(
IOobject
(

"a",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh_,
dimensionedScalar(dimless/dimLength, Zero)

),
e_
(

IOobject
(

"e",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE

),
mesh_,
dimensionedScalar(dimless/dimLength, Zero)

),
E_
(

IOobject
(

"E",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE

),
mesh_,
dimensionedScalar(dimMass/dimLength/pow3(dimTime), Zero)

),
Gg_ (absorptionEmission_->nBands())

{
initGg();

}

Foam::radiation::nonGreyP1::nonGreyP1(const dictionary& dict, const volScalarField& T)
:

radiationModel(typeName, dict, T),
G_
(

IOobject
(

"G",
mesh_.time().timeName(),
mesh_,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh_

),
qr_
(

IOobject
(

"qr",
mesh_.time().timeName(),
mesh_,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
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),
mesh_,
dimensionedScalar(dimMass/pow3(dimTime), Zero)

),
a_
(

IOobject
(

"a",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh_,
dimensionedScalar(dimless/dimLength, Zero)

),
e_
(

IOobject
(

"e",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE

),
mesh_,
dimensionedScalar(dimless/dimLength, Zero)

),
E_
(

IOobject
(

"E",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE

),
mesh_,
dimensionedScalar(dimMass/dimLength/pow3(dimTime), Zero)

),
Gg_ (absorptionEmission_->nBands())

{
initGg();

}

// * * * * * * * * * * * * * Private member Functions * * * * * * * * * * * //

void Foam::radiation::nonGreyP1::initGg()
{

forAll(Gg_, bandI)
{

string GgFileInit("Gg.");
OStringStream Convert; // num2str
Convert << bandI;
string iStr(Convert.str());
Gg_.set
(

bandI,
new volScalarField
(

IOobject
(

GgFileInit+=iStr,
G_.time().timeName(),
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//fileName("nongreyRadiation"),
G_.mesh(),
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE

),
G_

)
);

}
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

bool Foam::radiation::nonGreyP1::read()
{

if (radiationModel::read())
{

// nothing to read

return true;
}

return false;
}

void Foam::radiation::nonGreyP1::calculate()
{

Info << "Solving RTE on each bands" << endl;
absorptionEmission_->correct(G_, Gg_);
fsckMLP* fsck = fsckMLP::getInstance();
double* wNq = fsck->getwNq();
forAll(Gg_, bandI)
{

fsck->setBandI(bandI);
a_ = absorptionEmission_->a(bandI);
e_ = absorptionEmission_->e(bandI);
E_ = absorptionEmission_->E(bandI);
const volScalarField sigmaEff(scatter_->sigmaEff());

const dimensionedScalar a0("a0", a_.dimensions(), ROOTVSMALL);

// Construct diffusion
const volScalarField gamma
(

IOobject
(

"gammaRad",
G_.mesh().time().timeName(),
G_.mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE

),
1.0/(3.0*a_ + sigmaEff + a0)

);

// Solve G transport equation
solve
(

fvm::laplacian(gamma, Gg_[bandI])
- fvm::Sp(a_, Gg_[bandI])
==
- 4.0*(e_*a_*physicoChemical::sigma*pow4(T_)) * dimensionedScalar(dimLength, 1) - E_
);

}
G_ = 0.0*G_;
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forAll(Gg_, bandI)
{

G_ += Gg_[bandI]*wNq[bandI];
forAll(mesh_.boundaryMesh(), patchi)
{

G_.boundaryFieldRef()[patchi] == G_.boundaryFieldRef()[patchi] +
Gg_[bandI].boundaryField()[patchi]*wNq[bandI];

}
}

// !TODO: To calculate the heat flux on the wall

fsck->updateRu(Ru());
fsck->updateRp(Rp());

}

Foam::tmp<Foam::volScalarField> Foam::radiation::nonGreyP1::Rp() const
{

tmp<volScalarField> tRp
(

new volScalarField
(

IOobject
(

"Rp",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE

),
4.0*absorptionEmission_->eCont()*physicoChemical::sigma*0.0

)
);

fsckMLP* fsck = fsckMLP::getInstance();

forAll(Gg_, bandI)
{

tRp = tRp + fsck->getwNq()[bandI] * absorptionEmission_->a(bandI) *
4*physicoChemical::sigma * absorptionEmission_->e(bandI) *
dimensionedScalar(dimLength, 1);

}

return tRp;
}

Foam::tmp<Foam::DimensionedField<Foam::scalar, Foam::volMesh>>
Foam::radiation::nonGreyP1::Ru() const
{

tmp<DimensionedField<scalar, volMesh>> tRu
(

new volScalarField
(

IOobject
(

"Ru",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE

),
mesh_,
dimensionedScalar(dimMass/dimLength/pow3(dimTime), Zero)

)
);

65



C.2. Nongrey P1 solver Appendix C. Developed codes

fsckMLP* fsck = fsckMLP::getInstance();

forAll(Gg_, bandI)
{

DimensionedField<scalar, volMesh> tRui
(

fsck->getwNq()[bandI] * absorptionEmission_->a(bandI) *
(

Gg_[bandI]// -
// 4*physicoChemical::sigma *
// absorptionEmission_->e(bandI) * pow4(T_) *
// dimensionedScalar(dimLength, 1)

)
);
tRu = tRu + tRui;

}

return tRu;
}

Foam::label Foam::radiation::nonGreyP1::nBands() const
{

return absorptionEmission_->nBands();
}

// ************************************************************************* //

C.2.2 nonGreyMarshakRadiation class

nonGreyMarshakRadiationFvPatchScalarField.H
/*---------------------------------------------------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam::nonGreyMarshakRadiationFvPatchScalarField

Group
grpThermoBoundaryConditions

Description
A 'mixed' boundary condition that implements a Marshak condition for the
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incident radiation field (usually written as G)

The radiation temperature is retrieved from the mesh database, using a
user specified temperature field name.

Usage
\table

Property | Description | Required | Default value
T | temperature field name | no | T

\endtable

Example of the boundary condition specification:
\verbatim
<patchName>
{

type MarshakRadiation;
T T;
value uniform 0;

}
\endverbatim

See also
Foam::radiationCoupledBase
Foam::mixedFvPatchField

SourceFiles
nonGreyMarshakRadiationFvPatchScalarField.C

\*---------------------------------------------------------------------------*/

#ifndef radiation_nonGreyMarshakRadiationFvPatchScalarField_H
#define radiation_nonGreyMarshakRadiationFvPatchScalarField_H

#include "mixedFvPatchFields.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace radiation
{

/*---------------------------------------------------------------------------*\
Class nonGreyMarshakRadiationFvPatchScalarField Declaration

\*---------------------------------------------------------------------------*/

class nonGreyMarshakRadiationFvPatchScalarField
:

public mixedFvPatchScalarField
{

// Private data

//- Name of temperature field
word TName_;

public:

//- Runtime type information
TypeName("nonGreyMarshakRadiation");

// Constructors

//- Construct from patch and internal field
nonGreyMarshakRadiationFvPatchScalarField
(
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const fvPatch&,
const DimensionedField<scalar, volMesh>&

);

//- Construct from patch, internal field and dictionary
nonGreyMarshakRadiationFvPatchScalarField
(

const fvPatch&,
const DimensionedField<scalar, volMesh>&,
const dictionary&

);

//- Construct by mapping given MarshakRadiationFvPatchField onto a new
// patch
nonGreyMarshakRadiationFvPatchScalarField
(

const nonGreyMarshakRadiationFvPatchScalarField&,
const fvPatch&,
const DimensionedField<scalar, volMesh>&,
const fvPatchFieldMapper&

);

//- Construct as copy
nonGreyMarshakRadiationFvPatchScalarField
(

const nonGreyMarshakRadiationFvPatchScalarField&
);

//- Construct and return a clone
virtual tmp<fvPatchScalarField> clone() const
{

return tmp<fvPatchScalarField>
(

new nonGreyMarshakRadiationFvPatchScalarField(*this)
);

}

//- Construct as copy setting internal field reference
nonGreyMarshakRadiationFvPatchScalarField
(

const nonGreyMarshakRadiationFvPatchScalarField&,
const DimensionedField<scalar, volMesh>&

);

//- Construct and return a clone setting internal field reference
virtual tmp<fvPatchScalarField> clone
(

const DimensionedField<scalar, volMesh>& iF
) const
{

return tmp<fvPatchScalarField>
(

new nonGreyMarshakRadiationFvPatchScalarField(*this, iF)
);

}

// Member functions

// Access

//- Return the temperature field name
const word& TName() const
{

return TName_;
}

//- Return reference to the temperature field name to allow
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// adjustment
word& TName()
{

return TName_;
}

// Evaluation functions

//- Update the coefficients associated with the patch field
virtual void updateCoeffs();

// I-O

//- Write
virtual void write(Ostream&) const;

};

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace radiation
} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#endif

// ************************************************************************* //

nonGreyMarshakRadiationFvPatchScalarField.C
/*---------------------------------------------------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

-------------------------------------------------------------------------------
Copyright (C) 2011-2015 OpenFOAM Foundation
Copyright (C) 2016,2020 OpenCFD Ltd.

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

#include "nonGreyMarshakRadiationFvPatchScalarField.H"
#include "addToRunTimeSelectionTable.H"
#include "fvPatchFieldMapper.H"
#include "volFields.H"
#include "radiationModel.H"
#include "physicoChemicalConstants.H"
#include "boundaryRadiationProperties.H"
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#include "fsckMLP.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::radiation::nonGreyMarshakRadiationFvPatchScalarField::
nonGreyMarshakRadiationFvPatchScalarField
(

const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF

)
:

mixedFvPatchScalarField(p, iF),
TName_("T")

{
refValue() = 0.0;
refGrad() = 0.0;
valueFraction() = 0.0;

}

Foam::radiation::nonGreyMarshakRadiationFvPatchScalarField::
nonGreyMarshakRadiationFvPatchScalarField
(

const nonGreyMarshakRadiationFvPatchScalarField& ptf,
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const fvPatchFieldMapper& mapper

)
:

mixedFvPatchScalarField(ptf, p, iF, mapper),
TName_(ptf.TName_)

{}

Foam::radiation::nonGreyMarshakRadiationFvPatchScalarField::
nonGreyMarshakRadiationFvPatchScalarField
(

const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const dictionary& dict

)
:

mixedFvPatchScalarField(p, iF),
TName_(dict.getOrDefault<word>("T", "T"))

{
if (dict.found("value"))
{

refValue() = scalarField("value", dict, p.size());
}
else
{

refValue() = 0.0;
}

// zero gradient
refGrad() = 0.0;

valueFraction() = 1.0;

fvPatchScalarField::operator=(refValue());
}

Foam::radiation::nonGreyMarshakRadiationFvPatchScalarField::
nonGreyMarshakRadiationFvPatchScalarField
(

const nonGreyMarshakRadiationFvPatchScalarField& ptf
)
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:
mixedFvPatchScalarField(ptf),
TName_(ptf.TName_)

{}

Foam::radiation::nonGreyMarshakRadiationFvPatchScalarField::
nonGreyMarshakRadiationFvPatchScalarField
(

const nonGreyMarshakRadiationFvPatchScalarField& ptf,
const DimensionedField<scalar, volMesh>& iF

)
:

mixedFvPatchScalarField(ptf, iF),
TName_(ptf.TName_)

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::radiation::nonGreyMarshakRadiationFvPatchScalarField::updateCoeffs()
{

if (this->updated())
{

return;
}

// Since we're inside initEvaluate/evaluate there might be processor
// comms underway. Change the tag we use.
int oldTag = UPstream::msgType();
UPstream::msgType() = oldTag+1;

fsckMLP* fsck = fsckMLP::getInstance();

const word& aName_("a" + std::to_string(fsck->getBandI()));

// Nongrey streching factor field
const scalarField& ap =

patch().lookupPatchField<volScalarField, scalar>(aName_);

// Temperature field
const scalarField& Tp =

patch().lookupPatchField<volScalarField, scalar>(TName_);

// Re-calc reference value
refValue() = 4.0*constant::physicoChemical::sigma.value()*pow4(Tp)*ap;

// Diffusion coefficient - created by radiation model's ::updateCoeffs()
const scalarField& gamma =

patch().lookupPatchField<volScalarField, scalar>("gammaRad");

const boundaryRadiationProperties& boundaryRadiation =
boundaryRadiationProperties::New(internalField().mesh());

const tmp<scalarField> temissivity
(

boundaryRadiation.emissivity(patch().index(), fsck->getBandI())
);

const scalarField emissivity = temissivity.ref();

const scalarField Ep(emissivity/(2.0*(scalar(2) - emissivity)));

// Set value fraction
valueFraction() = 1.0/(1.0 + gamma*patch().deltaCoeffs()/Ep);

// Restore tag
UPstream::msgType() = oldTag;
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mixedFvPatchScalarField::updateCoeffs();
}

void Foam::radiation::nonGreyMarshakRadiationFvPatchScalarField::write
(

Ostream& os
) const
{

mixedFvPatchScalarField::write(os);
os.writeEntryIfDifferent<word>("T", "T", TName_);

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace radiation
{

makePatchTypeField
(

fvPatchScalarField,
nonGreyMarshakRadiationFvPatchScalarField

);
}
}

// ************************************************************************* //

nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField.H
/*---------------------------------------------------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField

Group
grpThermoBoundaryConditions

Description
A 'mixed' boundary condition that implements a Marshak condition for the
incident radiation field (usually written as G)
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The radiation temperature field across the patch is supplied by the user
using the \c Trad entry.

Usage
\table

Property | Description | Required | Default value
T | temperature field name | no | T

\endtable

Example of the boundary condition specification:
\verbatim
<patchName>
{

type MarshakRadiationFixedTemperature;
Trad uniform 1000; // radiation temperature field
value uniform 0; // place holder

}
\endverbatim

See also
Foam::radiationCoupledBase
Foam::mixedFvPatchField

SourceFiles
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField.C

\*---------------------------------------------------------------------------*/

#ifndef nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField_H
#define nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField_H

#include "mixedFvPatchFields.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace radiation
{
/*---------------------------------------------------------------------------*\

Class nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField Declaration
\*---------------------------------------------------------------------------*/

class nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
:

public mixedFvPatchScalarField
//public radiationCoupledBase

{

// Private data

//- Radiation temperature field
scalarField Trad_;

public:

//- Runtime type information
TypeName("nonGreyMarshakRadiationFixedTemperature");

// Constructors

//- Construct from patch and internal field
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const fvPatch&,
const DimensionedField<scalar, volMesh>&
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);

//- Construct from patch, internal field and dictionary
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const fvPatch&,
const DimensionedField<scalar, volMesh>&,
const dictionary&

);

//- Construct by mapping given MarshakRadiationFvPatchField onto a new
// patch
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField&,
const fvPatch&,
const DimensionedField<scalar, volMesh>&,
const fvPatchFieldMapper&

);

//- Construct as copy
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField&
);

//- Construct and return a clone
virtual tmp<fvPatchScalarField> clone() const
{

return tmp<fvPatchScalarField>
(

new nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField(*this)
);

}

//- Construct as copy setting internal field reference
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField&,
const DimensionedField<scalar, volMesh>&

);

//- Construct and return a clone setting internal field reference
virtual tmp<fvPatchScalarField> clone
(

const DimensionedField<scalar, volMesh>& iF
) const
{

return tmp<fvPatchScalarField>
(

new nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

*this,
iF

)
);

}

// Member functions

// Access

//- Return the radiation temperature
const scalarField& Trad() const
{

return Trad_;
}
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//- Return reference to the radiation temperature to allow
// adjustment
scalarField& Trad()
{

return Trad_;
}

// Mapping functions

//- Map (and resize as needed) from self given a mapping object
virtual void autoMap
(

const fvPatchFieldMapper&
);

//- Reverse map the given fvPatchField onto this fvPatchField
virtual void rmap
(

const fvPatchScalarField&,
const labelList&

);

// Evaluation functions

//- Update the coefficients associated with the patch field
virtual void updateCoeffs();

// I-O

//- Write
virtual void write(Ostream&) const;

};

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace radiation
} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#endif

// ************************************************************************* //

nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField.C
/*---------------------------------------------------------------------------*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |

-------------------------------------------------------------------------------
Copyright (C) 2011-2015 OpenFOAM Foundation
Copyright (C) 2016 OpenCFD Ltd.

-------------------------------------------------------------------------------
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
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OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

\*---------------------------------------------------------------------------*/

#include "nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField.H"
#include "addToRunTimeSelectionTable.H"
#include "fvPatchFieldMapper.H"
#include "volFields.H"
#include "radiationModel.H"
#include "physicoChemicalConstants.H"
#include "boundaryRadiationProperties.H"
#include "fsckMLP.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF

)
:

mixedFvPatchScalarField(p, iF),
Trad_(p.size())

{
refValue() = 0.0;
refGrad() = 0.0;
valueFraction() = 0.0;

}

Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField& ptf,
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const fvPatchFieldMapper& mapper

)
:

mixedFvPatchScalarField(ptf, p, iF, mapper),
Trad_(ptf.Trad_, mapper)

{}

Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const dictionary& dict

)
:

mixedFvPatchScalarField(p, iF),
Trad_("Trad", dict, p.size())

{
fsckMLP* fsck = fsckMLP::getInstance();

const word& aName_("a" + std::to_string(fsck->getBandI()));

// Nongrey streching factor field
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const scalarField& ap =
patch().lookupPatchField<volScalarField, scalar>(aName_);

// refValue updated on each call to updateCoeffs()
refValue() = 4.0*constant::physicoChemical::sigma.value()*pow4(Trad_)*ap;

// zero gradient
refGrad() = 0.0;

valueFraction() = 1.0;

fvPatchScalarField::operator=(refValue());
}

Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField& ptf
)
:

mixedFvPatchScalarField(ptf),
Trad_(ptf.Trad_)

{}

Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField
(

const nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField& ptf,
const DimensionedField<scalar, volMesh>& iF

)
:

mixedFvPatchScalarField(ptf, iF),
Trad_(ptf.Trad_)

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::
autoMap
(

const fvPatchFieldMapper& m
)
{

mixedFvPatchScalarField::autoMap(m);
Trad_.autoMap(m);

}

void Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::rmap
(

const fvPatchScalarField& ptf,
const labelList& addr

)
{

mixedFvPatchScalarField::rmap(ptf, addr);

const nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField& mrptf =
refCast<const nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField>(ptf);

Trad_.rmap(mrptf.Trad_, addr);
}

void Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::
updateCoeffs()
{
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if (this->updated())
{

return;
}

// Since we're inside initEvaluate/evaluate there might be processor
// comms underway. Change the tag we use.
int oldTag = UPstream::msgType();
UPstream::msgType() = oldTag+1;

fsckMLP* fsck = fsckMLP::getInstance();

const word& aName_("a" + std::to_string(fsck->getBandI()));

// Nongrey streching factor field
const scalarField& ap =

patch().lookupPatchField<volScalarField, scalar>(aName_);

// Re-calc reference value
refValue() = 4.0*constant::physicoChemical::sigma.value()*pow4(Trad_)*ap;

// Diffusion coefficient - created by radiation model's ::updateCoeffs()
const scalarField& gamma =

patch().lookupPatchField<volScalarField, scalar>("gammaRad");

//const scalarField temissivity = emissivity();
const boundaryRadiationProperties& boundaryRadiation =

boundaryRadiationProperties::New(internalField().mesh());

const tmp<scalarField> temissivity
(

boundaryRadiation.emissivity(patch().index(), fsck->getBandI())
);

const scalarField emissivity = temissivity.ref();

const scalarField Ep(emissivity/(2.0*(scalar(2) - emissivity)));

// Set value fraction
valueFraction() = 1.0/(1.0 + gamma*patch().deltaCoeffs()/Ep);

// Restore tag
UPstream::msgType() = oldTag;

mixedFvPatchScalarField::updateCoeffs();
}

void Foam::radiation::nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField::write
(

Ostream& os
) const
{

mixedFvPatchScalarField::write(os);
Trad_.writeEntry("Trad", os);

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam
{
namespace radiation
{

makePatchTypeField
(

fvPatchScalarField,
nonGreyMarshakRadiationFixedTemperatureFvPatchScalarField

78



C.2. Nongrey P1 solver Appendix C. Developed codes

);
}
}

// ************************************************************************* //
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