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Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:
e How to use laminarSPBM combustion model with reactingFoam

e How to configure a case to employ SPBM aerosol model for simulating the formation and
evolution of soot particles

The theory of it:
e How Sectional Population Balance Models (SPBM) simulates soot formation and evolution
e How SPMB employs source/sink terms to provide Particle Size Distribution
How it is implemented:
e How to define sections to consider the particle size distribution
e How to make the chemical source term section-specific
e How to model collision between particles from different sizes
How to modify it:

e How to distribute chemical source terms between sections to model soot evolution in each
section



Prerequisites

This is an example for the prerequisites. The reader is expected to know the following in order to
get maximum benefit out of this report:

e Basic knowledge of fluid mechanics, combustive systems, chemistry, and soot formation process

e Fundamentals of computational methods for fluid dynamics, chemistry solvers, and solving
transport equations

Basic knowledge of OpenFOAM solvers and libraries and how to modify them

A good familiarity with C+4 programming language

e Some experiences in using reactive simulation cases in OpenFOAM



Contents

1 Introduction

1.1 Background . . . . . . . .. e e e
1.2 Laminar Combustion Model . . . . . . . . ... ... L
1.3 Objectives . . . . . . . o e
Theory
2.1 Soot particle . . . . . L
2.2 Transport equations for soot agglomerates . . . . . . . ... ... ... ...
2.3 Monodisperse Population Balance Model (MPBM) . . . . . ... .. ... ......
2.4 Sectional Population Balance Model (SPBM) . . . . ... ... ... ... ......
2.4.1 Inception . . . . . . . . e e
24.2 Surface growth . . . . . ...
24.3 Oxidation . . . . . ... e
24.4 Coagulation . . . . . . . . L e
2.5 Overall source terms . . . . . . . . .. Lo
2.6 Total properties . . . . . . . ..
Implementation
3.1 Overview . . . ..
3.2 Creating the base library . . . . . . . . .. .
3.3 Particle size sections . . . . . ... Lo
3.4 Tracked and Derived Fields . . . . . . .. ... . . oo
3.4.1 Sections definition function . . . . . . ... .. ... L
3.4.2 Tracked field functions . . . . . . . . . ... L
3.5 Gas properties . . . ...
3.6 PAH Characteristics . . . . . . . . . . . .
3.7 Modifying R(Y) and Qdot () functions . . . . . . .. ... ... L.
3.8 Modifying correct() function . . . . . . . .. ...
3.9 Resetting scrubbing rates by resetSR(O) . . . . . . ... L.
3.10 updateMorphology() function . . . . . . . ... .. ...
3.11 Updating Inception Source Term . . . . . . . . .. . .. . . o
3.11.1 updatelInception() fuction . . . . . . ... ... ..o
3.12 Updating soot growth rates . . . . . . . . . . . . .
3.12.1 HACAGrowthRate(sec) function . . . . . . . . . ... .. .. ... .. .....
3.12.2 PAHAdsorptionRate(sec, id) function . . . . ... .. ... ... ... ...
3.13 Updating oxidation rates . . . . . . . . . . . L L
3.13.1 updateOxidation() function . . . . .. ... ... ... ... ... .
3.13.2 HACAD20xidationRate(sec) and HACAOHOxidationRate(sec) function . . .
3.14 Updating coagulation rate . . . . . . . . . ... L Lo
3.15 Updating source terms . . . . . . . . . ..
3.16 Solving the transport equations . . . . . . . .. ... L o
3.17 Overall values calculation . . . . . . . ... . L

o 0o N

10
11
11
12
12
13
13
14
14



Contents Contents

4 Tutorial 33
4.1 Physics and Geometry . . . . . ..o e 33
4.2 Time Directory . . . . . . . . oL 33

421 GasPhase. . . . . . . e 33
4.2.2 Solid Phase . . . . . . . . 36
4.3 Constant Directory . . . . . . . . . L 37
4.4 System Directory . . . . . . . .. 39
4.5 Running the case . . . . . . . . . L e 42

A Chemical Source Terms 47
Al Inception . . . .. . o e 47
A2 Surface growth via HACA . . . . . . . . o 48
A.3 Surface growth via PAH adsorption . . . . . . ... ... ... L 49
A4 Oxidation via HACA . . . . . . . . o e 50



Nomenclature

Acronyms

DEM Discrete Element Modelling

HACA Hydrogen abstraction carbon addition
MPBM Monodisperse Population Balance Model
PAH Polycyclic Aromatic Hydrocarbons

PSD  Particle Size Distribution

SPBM Sectional Population Balance Model

English symbols

Av Avogadro’s number. . ... 6.02214076 x10%31/mol
Cuagg carbon content of soot agglomerates................. ... mol/kg
Ciot total carbon content of soot particles ............. i mol/kg
D diffusion coefficient .. ... ...t e m?/s
d AIAINEOT . . o oo m
dg gyration diameter ... ... ... .. m
dm mobility diameter ..........o m
dy primary particle diameter . ........ ... e m
I soot formation/destruction rate ............. ..ol mol/kg — s
k reaction rate constant .......... ... .. m?/mol — s
kp Boltzmann constant .......... ... .. i 1.3806488 x 10723 m?kg /s>~ K
m TTEASS - .t e ettt et e e e e e e e e e e e e e e e e e e e e kg
MS  number of sections

Ny number of primary particles

Nagg number density of agglomerates.................... o i mol/kg
Npri  number density of primary particles.............. . ... . mol/kg
ROP rate of production ......... ... mol/m?—s
S SOUICE DEITIL ..ttt ittt e e e ettt et e e e e e e e e e mol/kg — s
SF progression factor

T TEIMPETATUTE . . . .ttt ettt ettt ettt e et e e e K
t BIILE e S
U number of carbon atoms in each agglomerate ........... ... . .. . it mol
u VELOCIEY « . m/s
w molecular weight . . ... ... kg
f ITICEION fACTOT .ottt kg — m/s?

Greek symbols

I} COIlISION fTeQUENCY . . .\ttt e m3 /s
) Kronecker delta

A mean free path. .. ... m
u gas dynamic VISCOSITY ...ttt e kg/m-s
P €AS deIISIEY .« o vttt kg/m?



Nomenclature Nomenclature
Psoot  SOOL AOIISIEY . .o\ttt e e e kg/m?
£ coagulation efficiency

Subscripts

agg agglomerate

carbon carbon material

co coagulation

g gyration

gas gas phase

inc inception

m mobility

ox oxidation

pri primary particle

Sg

surface growth



Chapter 1

Introduction

1.1 Background

Each year, approximately 9.5 million tons of soot are released into the environment, ranking it
as the third-largest contributor to climate change, following carbon dioxide and methane. Carbon
Black, having an identical chemical and physical structure as soot, stands as the most significant
flame-made nanoparticle in terms of both worth and quantity. Annually, approximately 15 million
tons of Carbon Black, valued at 17 billion USD [1], are manufactured and employed across a range
of industries. Its applications span from reinforcing rubber products (notably tires) [2] to uses in
paint, toner [3], and lithium-ion batteries [4]. The environmental impacts of soot and the extensive
industrial applications of Carbon Black have rendered studying these carbonaceous nanoparticles
highly appealing, attracting researchers from various disciplines in recent years [5].

Carbon Black formation is a complex process characterized by multiple steps with different time
and length scales [6]. The formation process starts with the inception of particles from the gas or
vapor phase [7], followed by mass growth through particle surface reactions [8, 9] and coalescence [10].
In the meantime, particles collide, forming fractal-like particles conventionally called agglomerates.
Under specific conditions, the presence of oxidative agents can lead to mass reduction in Carbon
Black particles due to oxidation, and in some cases, even fragmentation can occur [11]. These various
steps in the Carbon Black formation pathway govern the process yield, Carbon Black composition
(i.e, particle carbon to hydrogen ratio), and the morphology of the particles, including aspects like
polydispersity, primary particle diameter, specific surface area, effective density, etc [12, 13].

Researchers have utilized various modeling approaches to simulate the formation and evolution
of Carbon Black under different pyrolysis conditions. These models constitute a wide spectrum,
from the computationally efficient Monodisperse Population Balance Model (MPBM) [14] to the
most accurate but computationally demanding one, Discrete Element Models (DEM) [15]. MPBM is
capable of accurately simulating the evolution of particles while maintaining low computational costs,
particularly when the particles have achieved a self-preserving morphology and size distribution [16].
Nevertheless, a significant drawback of the MPBM is its failure to incorporate the particle size
distribution (PSD) which can lead to loss of accuracy in some cases [17]. Sitting between the
two extremes is the Sectional Population Balance Model (SPBM), which has garnered attention
within the soot modeling community. The SPBM is known for providing acceptable accuracy in
simulating soot formation processes while maintaining a computationally affordable approach [18].
Additionally, its ease of implementation makes it a practical choice for researchers working in the field
of soot modeling. The SPBM follows a similar formulation as the MPBM, but it addresses the most
significant weakness of the MPBM by incorporating particle size distribution (PSD) predictions [19].
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1.2 Laminar Combustion Model

The reactingFoam solver employs combustion models to calculate the rate of production/destruction
of the chemical species, providing the source/sink terms in the transport equations of mass fractions,
and the heat released/adsorbed by the chemical reactions, which appear as source/sink terms in the
enthalpy (he) equation. Previously, the laminar combustion model (which neglects the effect of
turbulence on the reaction rates, R, and the heat released/adsorbed by the chemical reactions, Qdot)
was extended to model soot formation in the Eulerian framework. The implemented soot model
in laminarSoot was based on the Monodisperse Population Balance model (MPBM) [20]. This
report aims to further develop laminarSoot to consider particle polydispersity by implementing the
Sectional Population Balance Model (SPBM).

1.3 Objectives

This project aims to enhance the capabilities of the existing library, laminarSoot, which was orig-
inally built upon the laminar combustion model for simulating soot formation with the Monodis-
persed Population Balance Model (MPBM). The objective involves the incorporation of the Sectional
Population Balance Model (SPMB), achieved through

e Defining new fields for doing calculations for each particle size based on the particle sections

e Modifying existing methods that are responsible for calculating source terms to make them
size-dependent

e Implementing new methods to re-distribute source terms between particle sections

e Implementing new methods to model particle agglomeration through collision between different
sections

e Modifying the set of the transport equations to solve them for each section

At the end, a simple zero-dimensional case will be set up to investigate the performance of the
laminarSPBM library.



Chapter 2

Theory

This chapter begins with an introduction to the properties of soot particles and the concept of
population balance models, aiming to familiarize the reader with the approach to modeling soot
particle formation and evolution within the Eulerian framework. Subsequently, a comprehensive
overview of the theoretical background of the Sectional Population Balance Model (SPMB) will
be presented. For additional insights into the chemical and physical mechanisms contributing to
soot formation, the reader is directed to relevant sections in the appendix to ensure the report’s
self-sufficiency.

2.1 Soot particle

Soot agglomerates are composed of spherical carbonaceous particles attached by either chemical or
physical bonds. The fractal-like structure of these agglomerates is characterized by key parameters
such as the number of primary particles, denoted as ny, as well as the diameters of primary particles,
dpri, mobility diameter, dy,, and gyration diameter, d,. Figure 2.1 depicts a schematic of different
soot diameters on a soot agglomerate consisting of 16 primary particles. The following outlines the
definitions of these parameters and provides the corresponding formulas for their calculation.

Figure 2.1: Schematic of a soot agglomerate with n, = 16 spherical primary particles

For each agglomerate, n, is the number of the primary particles which can be easily calculated by

N, pri
Ny, = —-. 2.1
1% Nagg ( )
The diameter of primary particles is assumed to be identical in each agglomerate and can be deter-
mined based on the total carbon content of the agglomerate using
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1/3

o 9 Cagg . Wcarbon 1 /

dy = . (2.2)
s Psoot Npri - Av

The mobility diameter of a soot agglomerate is the diameter of a sphere exhibiting the same trans-
lational behaviors as the agglomerate and it is given by

Ay = dp, - 00", (2.3)

Similarly, the gyration diameter of a soot agglomerate is the diameter of a sphere with the same
rotational properties as the agglomerate and it is determined by

_Jdw/ny%? 404 ifn, > 1.5 (2.4)
& ) dm/1.29 ifn, <1.5° '

Finally, the total carbon, Cit, can be derived based on the number density of agglomerates, Nagg,
and the carbon content of each agglomerate, Cl,ge, using

Ctot = NaggA’UCagg- (25)

2.2 Transport equations for soot agglomerates

Population balance models adopt the Eulerian description of particles, wherein specific physical
properties representative of the particle population—such as number densities, total carbon, or
surface area—are treated as continuous quantities. These properties are described by solving scalar
transport equations. The soot model utilized in this project adheres to the SPBM framework which
is based on the number density of primary particles, NVp,i, number density of agglomerates, Nuge, and
total carbon content, Cyot [21]. These quantities can be extended as needed for specific applications.
However, in order to maintain computational cost affordable, this project focuses on tracking only
three aforementioned variables using two transport equations

0 i i i i
ot (pNagg) +V- (pUNagg) +V? (pDNagg) =p (Sagg) (2.6)

o ) . . )
57 (PNosi) + V- (pulp) + V? (pDNl,,) = p (Shs) - (2.7)

Where superscript i denotes the particle size section, and source term, S, is the total source term
that is determined by various chemical processes. The way that the source terms are calculated will
be discussed in Sections 2.4-2.5. It is noteworthy that in SPBM the total carbon content, C{ ., is
indirectly determined after obtaining particle number densities.

The diffusion coefficient of soot particle, D, used in Egs. (2.6)—(2.7) is calculated as

p_ kel
f

where f is the friction factor of particles in gas, and it is calculated for free molecular to continuum
regimes as

(2.8)

3rud:,
f= g ; (2.9)
2\ —0.78d"
where A is the mean free path of gas given as
M 7ﬂ/vga»s
A==y —0——. 2.11
p \ 2kg AvT (2.11)

10
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2.3 Monodisperse Population Balance Model (MPBM)

The main simplification of Monodisperse Population Balance Models is the omission of polydispersity
in soot particles. Thus, for simulating soot formation and evolution, at each time step, all transport
equations (refer to Section 2.2) are solved only for one particle size. Subsequently, all soot particle
properties (including mass, size, etc.) are updated, and the computations in the next step are
performed using the updated properties. The primary advantage of MPBM is to keep computational
costs low by solving all transport equations only once in each time step, but in many circumstances,
this can lead to inaccurate results.

2.4 Sectional Population Balance Model (SPBM)

This section aims to present the formulation required to implement a two-equation sectional popu-
lation balance model using the class methods in laminarSoot library that calculate chemical source
terms (refer to Appendix A for more details about source term calculations). Therefore, it is as-
sumed that the models that determine the contribution of different mechanisms (e.g., inception,
coagulation, surface growth by HACA or PAHs, and fragmentation.) in the soot formation process
are available and can be employed in the new soot library—laminarSPBM-with some modifications.

Despite MPBM, SPBM considers particle polydispersity, which means particles are divided into
different fixed sections based on their size. In the SPBM scheme, soot particles transfer between
different sections as they gain or lose mass during their evolution. As a result, at each moment,
there are soot particles with different sizes, each exhibiting different behaviors as many of the derived
models are size-dependent.

It is assumed that soot particles will be distributed among M S size sections as they evolve. The
first section is assigned to soot particles with specific moles of carbon atoms, while the other sections
are defined using an arbitrary fixed geometric progression factor. Therefore, if the first bin has U
number of moles of carbon atoms and the progression factor is SF', the number of moles of carbon
atoms of the i*" section can be calculated by

U =USF'~1. (2.12)

The schematic of section distribution is illustrated in figure 2.2.

Figure 2.2: Schematic of soot particle sections

Evidently, for each variable tracked during the simulation, there is a conservation equation for
each section. Therefore, for the tracking number density of primary particles, N* ., the number den-

. . pri’
sity of agglomerates, N,,,, and total number of carbon atoms Cf,; there would be 2M S conservation

equations to solve. To be more specific, two conservation equations should be solved for N}i and

ri
Nigg. Then the total number of carbon atoms would be obtained by having the size of each bin and
the number of particles in it (C},, = N;’ngUi). It is important to note that the conservation equations
for each section in SPBM are identical to the one implemented in laminarSoot. However, overall

source terms may vary due to their size-dependent nature (e.g., HACA) or because the phenomenon
is more complex in a polydisperse system (e.g., agglomeration). In what follows, the source terms
that should be used in SPBM will be explained.

11
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2.4.1 Inception

The inception process describes the birth of the incipient particles from the chemical species in the
gas phase. Inception occurs in exactly the same way as MPBM and only affects the variables in the
first section. Therefore, the number of moles of carbon added to the first section can be calculated
by

ROP”

Pgas

Iinc = Z Cl][l]

where Cj; is the total number of carbons in it" and j** PAHs and ROP;; is the rate of production
of chemically bonded dimers. Note that Sc,, ;,ccpnion 15 identical to the source term calculated in
laminarSoot as the inception process does not depend on the size of soot particles. For more
information about the inception source term please refer to Section A.1. The number of particles
added to the first section would be

ON!L. ON]} L. 1
1 pri _ agg _ linc

Therefore, all equations should be solved like MPBM for the first section. Then, the number of
added particles is calculated using Eq. (2.14).

= SCuot inception? (2.13)

2.4.2 Surface growth

Various pathways can be considered for the surface growth mechanism, such as PAH addition and
HACA. The surface growth processes do not affect the total number of agglomerates or primary
particles, but they alter the number of agglomerates and primary particles in each section by moving
them into bins with higher mass. Again, the source term calculated in laminarSoot can be employed
in laminarSPBM after some modifications, as they depend on the particle properties

8Cmt ‘ actot ’
I = = . 2.1
sg, Sctot,growth,b ( < ot ) HACA + < ot > PAH> ( 5)

Where i € {1,2,3,..., MS}. The first term on the right-hand side of Eq. (2.15) is the source term
due to the HACA surface growth process and is calculated by Eq. (A.16). The latter one is the
contribution of PAH adsorption and determined by Eq. (A.32). The mass gained by surface growth
at each section should be transferred to the next bins as the mass of the bins is constant. For the
number density of agglomerate, determining source terms is done by

I e
— Uz‘i[lh , ifi=1
. 1] .
3 _ sg,i—1 _ sg,1 3 ;o _
Shggsg = T\ Tt T T ifi=2,...,MS—1. (2.16)
I, _ e
—emMS-1 ifi=MS

Uvs—Ums-1’

For the number density of primary particles, source terms are given by

I, e
fUQf’llh, ifi=1
Sim et L e S (2.17)
pri;sg — Av U;—U;_1 "Psi—1 Uip1-U; ""P:Y S : .
Tsg,Ms5—1 ) e
Tl psi—1 ifi=MS

In the above expression, np = Npyi/Nage is the number of primary particles per agglomerate.

12
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2.4.3 Oxidation

Despite surface growth which increases the mass of particles and pushes them to bins representing
larger particles, the oxidation process partially destroys particles and transfers them to the previous
sections. The rate of oxidation is available from laminarSoot based on Eq. (A.36). Thus, the mass
destruction due to oxidation would be

OC ot ) (2.18)

IOX,Z' = SCtot,ox,i = ( ot

Again, as the mass of each section is fixed, the effect of the oxidation on the particle size distribution
is given by

ox

Tox,2  Tox e
Tt T ifi=1
S o = e { et loci _ifi=2,...,MS—1 2.19
Y rox = —— ot — i if i =2,..., —-1. (2.19)
gg, Av Uiv1—-U; U;—U;—1

Tox, M5 e
Trrs s pyi—1s ifi=MS

Similarly, for the number density of primary particles, the source terms are

on,2 on,l 3 N
T2 — T ifi=1
Sioe = e e Je g MS -1 2.20
pri;ox = 4 Ui —Us Npitl — T—p, 5 s L1 =2,..., . (2.20)
Iox e
M5 ifi=MS

Ums—1—Unms Tp,MS s

2.4.4 Coagulation

Coagulation is the process during which solid and hard soot particles collide and attach at the
point of contact leading to larger agglomerates. The contribution of coagulation in SPBM differs
significantly from what occurs in MPBM, as particles from various size categories can coagulate in
a polydisperse system. It should be noted that coagulation increases the size of an agglomerate and
moves it into the upper sections while reducing the total number of agglomerates. Additionally,
coagulation does not affect the total number of primary particles, but it alters the primary particle
and agglomerate number density in each section. The following algorithm takes care of the source
terms

MS
i Ok i i m
Sagg,co = Avpgas(z Z (1 - ;) nijkﬂjkgjkNgggNa]fgg - Nagg Z ﬁimgimNagg) (2'21)
ik m=1
i 5jk j k i = m
Spri,co = Avpgas(z Z 1- 7 nP7ijknijk6jk§jkNaggNagg - Npri Z ﬁim&imNagg) (222)
i k m=1

{Vk S [1,1] NjE [k,l] | U,_1 < Uj + U < Ui+1}.
Where 03, is Kronecker delta, 3;, and ;i are collision kernel and coagulation efficiency of two
agglomerates from the j** and the k. In this report, it is assumed that the collision kernel, Bk,
has a constant value. For each pair of sections, n, ;i is given by

U;
Npijk = m (np; +npk) - (2.23)

The newly formed agglomerate should be transferred into two consecutive sections. That is the
reason for including 7;;; in the source term formulas above. The term 7;;; is calculated by

13
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Ui =WitU) -5 7, < Uj 4 Up < Usgq

Uit1-U;
Mg = § LUt S Uy < Uy + U < U (2.24)
0, else

2.5 Overall source terms

The source terms on the right-hand side of Equations (2.6) and (2.7) are determined by summing
the source terms of each mechanism.

Saes = Sage,inc + Saga g T Saggox T Sagyco (2.25)
S;i)ri = Spl)ri,inc + S[i)ri,sg + S[i)ri,ox + Sli)ri,co (2.26)
2.6 Total properties
Intensive properties of the soot particles, such as d,,, dg, np, etc., should be calculated by
performing arithmetic averaging over all soot particles in all sections using
Xpop = 2 sections XiNai»gg. (2.27)

)
Zsections Nagg

Extensive properties, like total carbon content, total surface area, etc., are computed through
summation across all sections by

Xiot = Z XN, (2.28)

sections

14
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Chapter 3

Implementation

3.1 Overview

This chapter aims to describe the transformation of the laminarSoot combustion model, previously
developed for modeling soot formation in a monodisperse manner [20], into a new combustion model
named laminarSPBM which adopts a sectional aerosol modeling approach. This report primarily
focuses on the modifications required in different parts of the existing code, providing minimal
explanations about the role of each part. Therefore, it is highly recommended that readers first
familiarize themselves with the fundamentals of soot modeling by referring to the documentation
of the laminarSoot! model and understand how different parts of that library work together to
simulate various soot formation processes.

The sections in this chapter are ordered to enable readers to easily follow and comprehend the
necessary modifications. Explanations are provided in some places to clarify why certain modifica-
tions are unnecessary, aiding readers in understanding the procedure. However, for a comprehensive
understanding of the modifications and the ability to replicate them, readers should refer to the
publicly available code provided in the supplementary materials.

It is important to note that laminarSPBM has been tested, compiled, and run without any issues
at the time of writing this report. Nevertheless, it may encounter problems over time, as the
OpenFOAM package itself may undergo variations.

3.2 Creating the base library

Here, the implementation of laminarSPBM is carried out based on the existing combustion model
called laminarSoot, which was previously developed using the laminar combustion model [20].
Therefore, the implementation starts with copying and renaming laminarSoot. After downloading
the project file of laminarSoot into any directory, one should open a terminal within that directory
and execute the following commands.

Instruction for copying the new library

foam

cp -r ./laminarSoot $WM_PROJECT_USER_DIR/src/laminarSPBM
cd $WM_PROJECT_USER_DIR/src/laminarSPBM

mv laminarSoot.H laminarSPBM.H

mv laminarSoot.C laminarSPBM.C

mv laminarSoots.C laminarSPBMs.C

sed -i s/"laminarSoot"/"laminarSPBM"/g *.*

There is no need to modify the Make/options file as it already includes all the required libraries.
However, the Make/files file should be updated to include the following content.

mplementation of a Monodisperse Population Balance Model in laminar combustion model.

15
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Make/files

laminarSPBMs.C

[

LIB = $(FOAM_USER_LIBBIN)/liblaminarSPBM

w

3.3 Particle size sections

The particle size sections should be defined before starting the simulation, and based on Eq. (2.12)
two inputs are required (the number of sections and the progression factor) from the user. These
two inputs are received in sootProperties file through the following code:

laminarSPBM.C

152 n_secs_
153 (

154 "numberOfSections",

155 dimensionSet(0,0,0,0,0,0,0),
156 sootProps_

157 Do

158 spacing_

159 (

160 "spacingFactor",

161 dimensionSet(0,0,0,0,0,0,0),
162 sootProps_

163 ),

Two additional functions are called in the constructor to create the fields and size sections for the
sectional model.

laminarSPBM.C

296 if (integrateReactionRate_)

297 {

298 Info<< " using integrated reaction rate" << endl;
299 }

300 else

301 {

302 Info<< " using instantaneous reaction rate" << endl;
303 }

304

305 create_fields();

306 build_C_agg_sec();

307 createPAHProps () ;

308 createDimerProps() ;

309 createSpeciesProps();

Note that, these two functions must be declared in the header file like other functions that are called
in the class constructor.

laminarSPBM.H

229 virtual void create_fields();

230 virtual void build_C_agg_sec();
231

232 virtual bool createPAHProps();

233 virtual void createDimerProps();
234 virtual void createSpeciesProps();

3.4 Tracked and Derived Fields

For all sections, we declare and initialize the required fields. These fields include fields for three

tracked variables, N{;, Ni,,, and C{,;, as well as fields for source terms plus fields needed for source
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terms calculations. Since solving transport equations in SPBM necessitates a list of volScalarField
for each variable, the type of declared data is PtrList<volScalarField>. The only exception is
the inception source terms that only impact the first section of the particle size, so their type is
volScalarField. Note that in the laminarSoot, the type of variables are volScalarField because
only one field is needed for each variable.

laminarSPBM.H

// Soot tracked fields - sectional
PtrList<volScalarField> N_agg_sec_;
PtrList<volScalarField> N_pri_sec_;
PtrList<volScalarField> C_tot_sec_;

// Morphology - sectional
PtrList<volScalarField> n_p_sec_;
PtrList<volScalarField> m_agg_sec_;
PtrList<volScalarField> d_p_sec_;
PtrList<volScalarField> d_m_sec_;
PtrList<volScalarField> d_g_sec_;
PtrList<volScalarField> A_tot_sec_;

// Source Terms - sectional

// Inception

volScalarField I_inc_C_tot_;

// Surface growth

PtrList<volScalarField> I_grow_C_tot_sec_;

// Oxidation

PtrList<volScalarField> I_ox_C_tot_sec_;

// Coagulation

PtrList<volScalarField> I_coag_N_agg_sec_;
PtrList<volScalarField> I_coag_N_pri_sec_;
volScalarField suml_inside_; //for coagulation calculations
volScalarField sum2_all_; //for coagulation calculations

// Source terms
PtrList<volScalarField> S_N_agg_sec_;
PtrList<volScalarField> S_N_pri_sec_;

// Total variables
volScalarField N_agg_;
volScalarField N_pri_;
volScalarField C_tot_;
volScalarField d_m_;

The initialization fields are included in a separate file named createSectionalFields.H. Because
the number of sections is specified by the user, and its value is usually greater than 25, it is not
feasible to read the initial values from the zero time directory. Therefore, the keyword NO_READ is
used in the initialization and the initial value is specified in the code. To have a list of fields for
each variable forAll command is used, and the number of iterations is specified by the number of
sections, secNum.

The important point to note is that for variables solved by transport equations, Nage and Npyi,
one should specify boundary conditions. However, due to the large number of fields, which is usually
unknown, reading boundary conditions from the time directories is not feasible. The solution for
this is to group the field for all sections together. In these situations, the solver refers to the default
boundary condition if the field file is not located in the time directory. The code below defines the
variable N_agg_sec for tracking N,q, in each section, as well as C_agg_sec for the section creation.

createSectionalFields.H

tmp<volScalarField> tNPridefault;
tmp<volScalarField> tNAggdefault;

secNum_ = 0;

forAll (secNum_, sec)
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{
C_agg_sec_.set
(
sec,
new volScalarField
(
I0object
(
"C_agg_sec" + std::to_string(sec),
this->mesh() .time() .timeName (),
this->mesh(),
IOobject::NO_READ,
IOobject: :AUTO_WRITE
),

this->mesh() ,dimensionedScalar("C_agg_sec" + std::to_string(sec), dimensionSet
(0,0,0,0,1,0,0),0.0)

)

)8

I0object timeOAggIO

(
I0object: :groupName ("N_agg", ""),
this->mesh() .time() .timeName (0),
this->mesh(),
I0object: :MUST_READ,
I0object::NO_WRITE

)8

tNAggdefault = new volScalarField(timeOAggIO, this->mesh());

N_agg_sec_.set

(
sec,
new volScalarField
(
I0object
(
I0object: :groupName( "N_agg_sec" + std::to_string(sec), ""),
this->mesh() .time() .timeName(),
this->mesh(),
I0object::NO_READ,
I0object::AUTO_WRITE
),
tNAggdefault ()
)
)3

As seen in the above piece of code, C_agg_sec is initialized with a value of 0, and no further
actions are required during the setup of the simulation case. For N_agg_sec, instead of specifying
boundary conditions for individual instances like N_agg_secO, N_agg_secl, N_agg_sec2, ..., one
should only specify the default boundary condition using the group name N_agg.

Because the number of fields depends on the secNum which is specified by the user, it is not
possible to initialize the fields in the class constructor. Thus, only declaration is done in the class
constructor and the initialization is performed by a class function named create_fields() that
only includes createSectionalFields.H.

laminarSPBM.C

// Creating sectional fields
template<class ReactionThermo>
void Foam: :combustionModels: :laminarSPBM<ReactionThermo>: :create_fields()
{
#include "createSectionalFields.H"

}

The declaration in the class constructor is shown in the following piece of code:
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laminarSPBM.C

C_agg_sec(n_secs_.value()),
secNum(n_secs_.value()),

// Fields for tracked variables
N_agg_sec(n_secs_.value()),
N_pri_sec(n_secs_.value()),
C_tot_sec(n_secs_.value()),

// Fields for soot morphology
n_p_sec(n_secs_.value()),
m_agg_sec(n_secs_.value()),
d_p_sec(n_secs_.value()),
d_m_sec(n_secs_.value()),
d_g_sec(n_secs_.value()),
A_tot_sec(n_secs_.value()),

// Fields for source terms
I_grow_C_tot_sec(n_secs_.value()),
I_ox_C_tot_sec(n_secs_.value()),
I_coag_N_agg_sec(n_secs_.value()),
I_coag_N_pri_sec(n_secs_.value()),
// Fields for overall source terms
S_N_agg_sec(n_secs_.value()),
S_N_pri_sec(n_secs_.value()),

3.4.1 Sections definition function

For defining particle size sections, PtrList<volScalarField> data named C_agg_sec has been
declared. The function blow uses Eq. (2.12) to calculate its value just once:

laminarSPBM.C

// Building sections
template<class ReactionThermo>

void Foam::combustionModels: :laminarSPBM<ReactionThermo>: :build_C_agg_sec()

C_agg_sec_[sec] = C_min_ / Av_ * pow(spacing_, sec);

{
forAll (secNum_, sec)
{
¥

}

Additionally, some variables should be declared in the header file to be used in the section definition

and looping over all sections.

laminarSPBM.H

// Number of sections

Foam: :dimensionedScalar n_secs_;

// Spacing factor of sections

Foam::dimensionedScalar spacing_;
// Carbon per agglomerate in mole/#
PtrList<volScalarField> C_agg_sec_;

// list for forAll() loops
List<label> secNum_;

3.4.2 Tracked field functions

Four functions were implemented in laminarSoot.H to return the tracked fields named N_agg(),
N_pri(), C_tot (), and H_tot (). Since they are no longer needed, they have been removed. Instead,
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3.5. Gas properties Chapter 3. Implementation

the updateSootVariables() function will be implemented and added to the correct () function to
calculate the overall fields at each time step. The definition of the updateSootVariables() function
will be provided in Section 3.17.

3.5 (Gas properties

Functions responsible for calculating gas properties (W(index), C(index), and lambda_gas()) are
independent of the size of the soot particles and should remain unchanged. The only identified
issue pertains to a bug in the lambda_gas() function due to unit inconsistency, which is resolved
by dividing W() by 1000 as shown in the below code.

laminarSPBM.H

virtual tmp<volScalarField> lambda_gas() const
{
return tmp<volScalarField>
(
new volScalarField
(
max
(
this->thermo() .mu() / this->thermo().rho() * pow(pi_ * this->thermo().W()
/1000.0 / (2.0% kB_ * Av_ * this->thermo().T()), 0.5),
dimensionedScalar(dimensionSet(0,1,0,0,0,0,0), SMALL)

3.6 PAH Characteristics

Similar to the gas functions, the functions that determine PAH properties (m_PAH(id) and d_PAH(id))
do not need modification, as they solely depend on PAH parameters.

3.7 Modifying R(Y) and Qdot () functions

Both R(Y) and Qdot () are default functions of the laminar combustion model that calculate the
consumption/production rate of species and the rate of energy change due to the consumption,/pro-
duction of gas species through chemical reactions, respectively. However, the soot formation process
involves the adsorption or release of certain chemical species into the gas phase. Therefore, in
laminarSoot, some modifications have been made to incorporate the impact of adding/removing
species by introducing a new variable, SR_, which represents the gas scrubbing rate. Fortunately,
since all soot formation processes are identical in both MPBM and SPBM, the SR_ values for all
size sections are combined during the soot formation simulation. The resulting SR_ can be used in
R(Y) and Qdot () functions without any modification.

3.8 Modifying correct () function

Two additional functions should be included in the correct () function of laminarSoot. The first
one, updateSourceTerms (), calculates the final source terms necessary for solving the transport
equations (refer to Section 3.15 for implementation). The other one, updateSootVariables(),
is called at the end of each time step to compute the overall values of various soot parameters
(implementation in Section 3.17).
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3.9. Resetting scrubbing rates by resetSR() Chapter 3. Implementation

laminarSPBM.C

resetSR();
updateMorphology () ;
updateInception();
updateGrowth() ;
updateOxidation() ;
updateCoagulation() ;
updateSourceTerms () ;
updateSoot () ;
updateSootVariables() ;

Both of these two functions should be declared in the header file.

laminarSPBM.H

virtual void resetSR();

virtual void updateMorphology() ;
virtual void updateInception();
virtual void updateGrowth();
virtual void updateOxidation();
virtual void updateCoagulation();
virtual void updateSourceTerms() ;
virtual void updateSoot();

virtual void updateSootVariables();

3.9 Resetting scrubbing rates by resetSR()

The resetSR () function in laminarSoot sets the scrubbing rate of all species to zero at the beginning
of each time step, and it can function in the same manner for laminarSPBM.

3.10 updateMorphology() function

Two functions implemented in the laminarSoot.H file to calculate the volume and the mass of
the agglomerates (V_agg() and m_agg()) should be removed as the calculation of mass and volume
should be done for each section if needed. In laminarSPBM, updating morphology of the soot particles
is performed by updateMorphology functions to determine morphological variables ni,, d;, di,, and
dé for all section sizes. The calculations are based on the equations provided in Section 2.1.

laminarSPBM.C

// Updating morphology - Sectional
template<class ReactionThermo>
void Foam::combustionModels: :laminarSPBM<ReactionThermo>: :updateMorphology ()

{
forAll(secNum_, i)
{
// Mobility diameter
d_m_sec_[i] = max(d_p_sec_[i], d_p_sec_[i] * pow(n_p_sec_[i], 0.45));
// Gyration Diameter
volScalarField n_p_lowerlimit (n_p_sec_[i]*0.0+1.5);
d_g_sec_[i] = (n_p_sec_[i] <= n_p_lowerlimit) * (d_m_sec_[i] / 1.29) + \
(n_p_sec_[i] > n_p_lowerlimit) * (d_m_sec_[i] / (pow(n_p_sec_[i], -0.2)+0.4));
// Surface area of each primary particle
A_tot_sec_[i] = N_pri_sec_[i] * Av_ * pi_ * d_p_sec_[i] * d_p_sec_[i];
// Primary particle diameter
d_p_sec_[i] = pow ((6.0 / pi_) * (C_agg_sec_[i] * W_carbon_) / (rho_soot_ * n_p_sec_[i]),
1.0/3.0);

// number of primary particles
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662 n_p_sec_[i] = min(max(N_pri_sec_[i] / N_agg_sec_[i], 1.0), C_agg_sec_[i] / C_agg_sec_[0]);
663

664 // mass of each agglomerate

665 m_agg_sec_[i] = rho_soot_ * n_p_sec_[i] * (pi_ / 6.0) * pow(d_p_sec_[i], 3.0);

666 ¥

667

668| }

3.11 Updating Inception Source Term

3.11.1 updatelnception() fuction

Inception was modeled using the reactive dimerization method in laminarSoot. This implies that
the rate of production of chemically-bonded dimers is calculated, and various source terms can
be determined based on the rate of production and other corresponding parameters. However, in
SPBM, the inception source term only affects the first section, and its contribution to Nag, and
N,y is determined by Eq. (2.14). Therefore, the updateInception() function should be slightly
modified by removing S_inc_N_ and S_inc_H_tot_. Please note that although laminarSPBM does
not track hydrogen, the removal of hydrogen atoms is considered in the scrubbing rate variable, SR_.

laminarSPBM.C

670| // Updating inception source terms

671| template<class ReactionThermo>

672| void Foam::combustionModels: :laminarSPBM<ReactionThermo>: :updateInception()
673| {

674 I_inc_C_tot_ *= 0.0;

675 if (inception_enabled_){

676 volScalarField rho = this->thermo().rho();

677 forAll(dimer_names_, i)

678 {

679 // PAH Index and Id

680 label idl = dimer_PAH_1_id_[i];

681 label id2 = dimer_PAH_2_id_[i];

682 volScalarField dimerROPField(dimerROP(id1l, id2));
683 // C_tot Source Term

684 I_inc_C_tot_ += dimer_n_C_[i] * dimerROPField / rho;
685

686 if (scrubbing_enabled_){

687 // PAHs

688 // species id

689 label spidl = speciesIds_[PAH_names_[id1]];

690 label spid2 = speciesIds_[PAH_names_[id2]];

691 // species index

692 label spindexl = speciesIndicies_[PAH_names_[id1]];
693 label spindex2 = speciesIndicies_[PAH_names_[id2]];
694 SR_[spidl] -= dimerROPField * W(spindex1);

695 SR_[spid2] -= dimerROPField * W(spindex2);

696

697 // H2

698 label H2_id = speciesIds_["H2"];

699 label H2_index = speciesIndicies_["H2"];

700 SR_[H2_id] += dimerROPField * W(H2_index) ;

701 }

702 }

703 X

704| }

Because dimerization is independent of particle size and only depends on the properties of PAHs and
the reaction rates, all functions related to the inception process (dimerROP(id1, id2),k_FWD(idl, id2),
k_REV(id1, id2), and k_REAC()) should remain unchanged.
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3.12 Updating soot growth rates

For calculating the growth source term for each section, first HACAGrowthRate (sec) calculates the
HACA rates, and then the contribution of the HACA is determined based on Eq. (A.16). Next, for
each section, updateGrowth() loops over all PAHs and computes the adsorption rate for each PAH
(using PAHAdsorptionRate(sec, id) function) and adds it to the growth source terms. After each
loop, if scrubbing is enabled, SR_ is updated to consider the consumption or production of the gas
species. Please note that Both HACA and PAH adsorption mechanisms depend on the particle size;
thus, they should be updated for each section. Again, the removal of hydrogen is taken into account
while updating the scrubbing rate.

laminarSPBM.C

// Updating growth source terms
template<class ReactionThermo>
void Foam::combustionModels: :laminarSPBM<ReactionThermo>: :updateGrowth()

{
forAll (secNum_, sec)
{
I_grow_C_tot_sec_[sec] *= 0.0;
if (HACA_growth_enabled_)
{
volScalarField rho = this->thermo().rho();
volScalarField HACAGrowthRateField (HACAGrowthRate(sec));
I_grow_C_tot_sec_[sec] += 2 *x HACAGrowthRateField / rho;
if (scrubbing_enabled_){
// C2H2
label C2H2_id = speciesIds_["C2H2"];
label C2H2_index = speciesIndicies_["C2H2"];
SR_[C2H2_id] -= HACAGrowthRateField * W(C2H2_index);
// H
label H_id = speciesIds_["H"];
label H_index = speciesIndicies_["H"];
SR_[H_id] += HACAGrowthRateField * W(H_index) * (1.75 / 2.00);
}
}
if (PAH_growth_enabled_)
{
volScalarField rho = this->thermo().rho();
forAll (PAH_names_, id)
{
volScalarField PAHAdsorptionRateField(PAHAdsorptionRate(sec, id));
I_grow_C_tot_sec_[sec] += PAH_n_C_[id] * PAHAdsorptionRateField / rho;
if (scrubbing_enabled_){
// PAH
// species id
label spid = speciesIds_[PAH_names_[id]];
// species index
label spindex = speciesIndicies_[PAH_names_[id]];
SR_[spid] -= PAHAdsorptionRateField * W(spindex);
// H
label H_id = speciesIds_["H"];
label H_index = speciesIndicies_["H"];
SR_[H_id] += PAHAdsorptionRateField * W(H_index) * 2;
}
}
}
}
}
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3.12.1 HACAGrowthRate(sec) function

Below code is the implemented HACAGrowthRate (sec) that calculates the rate of acetylene addition
through the HACA mechanism for each section. For more information refer to Section A.2.

laminarSPBM.H

511 virtual tmp<volScalarField> HACAGrowthRate(label sec)

512 {

513 label C2H2_i = speciesIndicies_["C2H2"];

514 return tmp<volScalarField>

515 (

516 new volScalarField

517 (

518 max

519 (

520 alpha(sec) * k_4_HACA() * C(C2H2_i) * C_soot_O(sec),
521 dimensionedScalar(dimensionSet(0,-3,-1,0,1,0,0), scalar(0.0))
522 )

523 )

524 );

525 }

As can be seen in the above piece of code, alpha(sec) and C_soot_0(sec) functions are section-
specific. Thus, some minor modifications are needed to perform for these two functions.
For the C_soot_0(sec) function:

laminarSPBM.H

474 return tmp<volScalarField>

475 (

476 new volScalarField

477 (

478 "C_soot_0",

479 (A_tot_sec_[sec] / Av_ * chi_soot_0) * rho

481 )
482 }

For the alpha(sec) function:

laminarSPBM.H

484 virtual tmp<volScalarField> alpha(label sec)

485 {

486 dimensionedScalar oneKelvin(dimTemperature, scalar(1.0));

487 dimensionedScalar alpha_min(dimless, scalar(0.0));

488 dimensionedScalar alpha_max(dimless, scalar(1.0));

489 const volScalarField& T = this->thermo().T(Q);

490 return tmp<volScalarField>

191 (

492 new volScalarField

493 (

494 min

495 (

496 max

497 (

498 tanh

499 (

500 (12.56 - 0.00563 * T / oneKelvin) / logl0 ( rho_soot_ * pi_ / 6.0 *
pow(d_p_sec_[sec], 3.0) *x Av_ / W_carbon_ ) -

501 1.38 + 0.00068 * T / oneKelvin

502 ),

503 alpha_min

504 ),

505 alpha_max

506 )

507 )
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509 }

3.12.2 PAHAdsorptionRate(sec, id) function

Below code is the implemented PAHAdsorptionRate(sec, id) that calculates the rate of PAH
adsorption for a given PAH and particle section. For more information refer to Section A.3.

laminarSPBM.H

565 virtual tmp<volScalarField> PAHAdsorptionRate(label sec, label id)

566 {

567

568 // PAH Index and Id

569 label index = PAH_indicies_[id];

570 // Temperature

571 const volScalarField& T = this->thermo().T();

572 // Density

573 const volScalarField rho = this->thermo().rho();

574 // Viscosity of gas

575 volScalarField mu = this->thermo().mu();

576 // beta fm coag PAH-soot

577 volScalarField beta_fm_soot_PAH

578 (

579 2.2 * pow(pi_ * kB_ * T / 2.0 * (1.0/m_agg_sec_[sec] + 1.0/m_PAH(id)), 0.5) * pow(
d_g_sec_[sec] + d_PAH(id), 2.0)

580 )

581 // beta cont coag PAH-soot

582 volScalarField C_s_soot_d_m

583 (

584 1.0 + (2.0 * lambda_gas() / d_m_sec_[sec] ) * (1.21 + 0.4*exp(-0.78 * d_m_sec_[sec] /
lambda_gas()))

585 g

586 volScalarField C_s_soot_d_PAH

587 (

588 1.0 + (2.0 * lambda_gas() / d_PAH(id)) * (1.21 + 0.4%exp(-0.78 * d_PAH(id) /
lambda_gas()))

589 )

590 volScalarField beta_cont_soot_PAH

591 (

592 2.0 *x kB_ * T / (3.0 * mu) * (C_s_soot_d_m / d_g_sec_[sec] + C_s_soot_d_PAH / d_PAH(id
)) * (d_g_sec_[sec] + d_PAH(id))

593 )

594 // Forward reaction rate

595 volScalarField k_FWD_soot_PAH

596 (

597 beta_fm_soot_PAH * beta_cont_soot_PAH / (beta_fm_soot_PAH + beta_cont_soot_PAH) * Av_

598 )

599 // W reduced

600 // Constants

601 dimensionedScalar a_k_REV_soot_PAH(dimensionSet(0,0,0,0,0,0,0), scalar(0.115));

602 dimensionedScalar b_k_REV_soot_PAH(dimensionSet(0,0,0,0,0,0,0), scalar(1.8));

603 dimensionedScalar c_k_REV_soot_PAH(dimensionSet(0,2,-2,0,0,0,0), scalar(933420.0));

604 dimensionedScalar d_k_REV_soot_PAH(dimensionSet(1,2,-2,0,-1,0,0),scalar(34053.0));

605 // W soot

606 volScalarField W_soot(C_agg_sec_[sec] * W_carbon_ * Av_);//W_soot(C_tot() * W_carbon_ /
N_agg());

607 volScalarField epsilon_soot_PAH

608 (

609 c_k_REV_soot_PAH * (W(index) * W_soot) / (W(index) + W_soot) - d_k_REV_soot_PAH

610 N

611 // The reverse rate of physical dimerization

612 volScalarField k_REV_soot_PAH

613 (

614 k_FWD_soot_PAH * pow(10.0, -b_k_REV_soot_PAH) * exp(-a_k_REV_soot_PAH *
epsilon_soot_PAH * 2.3025851/(Ru_ * T))
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615 N

616

617 // Chemical adsorption rate

618 dimensionedScalar Ea_k_REAC_soot_PAH(dimensionSet(1,2,-2,0,-1,0,0), scalar(96232.0));

619 dimensionedScalar A_k_REAC_soot_PAH(dimensionSet(0,3,-1,0,-1,0,0), scalar(2.0e10));

620 volScalarField k_REAC_soot_PAH

621 (

622 A_k_REAC_soot_PAH * exp(-Ea_k_REAC_soot_PAH / (Ru_ * T))

623 )

624 return tmp<volScalarField>

625 (

626 new volScalarField

627 (

628 max

629 (

630 k_REAC_soot_PAH * k_FWD_soot_PAH * C(index) * (N_agg_sec_[sec] * rho) / (
k_REAC_soot_PAH + k_REV_soot_PAH),

631 dimensionedScalar(dimensionSet(0,-3,-1,0,1,0,0), scalar(0.0))

632 )

633 )

634 )

635 }

3.13 Updating oxidation rates

3.13.1 updateOxidation() function

The following piece of code shows updateOxidation() function that determines the rate of oxidation
of soot particles in each section based on HACAO20xidationRate (sec) and HACAOHOxidationRate (sec)
functions. Finally, if scrubbing is enabled, the addition and removal of the involved chemical species
are included in SR_. The detailed formulation of the oxidation process is presented in Section A.4.

laminarSPBM.C

761| template<class ReactionThermo>

762| void Foam::combustionModels::laminarSPBM<ReactionThermo>: :updateOxidation()
763| {

764 forAll (secNum_, sec)

765 {

766 I_ox_C_tot_sec_[sec] *= 0.0;

767 if (HACA_oxidation_enabled_){

768 volScalarField rho(this->thermo().rho());

769 volScalarField HACAO20xidationRateField (HACAO20xidationRate(sec));
770 volScalarField HACAOHOxidationRateField (HACAOHOxidationRate(sec));
771 I_ox_C_tot_sec_[sec] += -1 * (HACAD20xidationRateField + HACAOHOxidationRateField) / rho;
772

773 if (scrubbing_enabled_){

774 // 02

775 label 02_id = speciesIds_["02"];

776 label 02_index = speciesIndicies_["02"];

777 SR_[02_id] -= 0.5 * HACAO20xidationRateField * W(02_index);
778

779 // C02

780 label CO_id = speciesIds_["C0"];

781 label CO_index = speciesIndicies_["C0"];

782 SR_[CO_id] += (HACAD20xidationRateField + HACAOHOxidationRateField) * W(CO_index);
783

784 // OH

785 label OH_id = speciesIds_["OH"];

786 label OH_index = speciesIndicies_["OH"];

787 SR_[0H_id] -= HACAOHOxidationRateField * W(OH_index);

788 }

789 }

790 }

791| }

26



527
528
529

531

794
795
796
797
798

800
801
802
803
804
805

807
808
809
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3.13.2 HACAD20xidationRate(sec) and HACAOHOxidationRate(sec) function

HACA oxidation rates by O2 and OH are determined by the following code which shows implemen-
tation of HACAO20xidationRate (sec) and HACAOHOxidationRate(sec) functions.

laminarSPBM.H

virtual tmp<volScalarField> HACAO20xidationRate(label sec)
{
label 02_i = speciesIndicies_["02"];
volScalarField rho (this->thermo().rho());
return tmp<volScalarField>
(
new volScalarField
(

max

2 * alpha(sec) * k_5_HACA() * C(02_i) * C_soot_O(sec),
dimensionedScalar (dimensionSet(0,-3,-1,0,1,0,0), scalar(0.0))

N
}

virtual tmp<volScalarField> HACAOHOxidationRate(label sec)
{
label OH_i = speciesIndicies_["OH"];
volScalarField rho (this->thermo().rho());
return tmp<volScalarField>
(
new volScalarField
(

max

k_6_HACA() * C(OH_i) * N_agg_sec_[sec] * rho, // Mo
dimensionedScalar (dimensionSet(0,-3,-1,0,1,0,0), scalar(0.0))

3.14 Updating coagulation rate

As discussed in Section 2.4.4, coagulation alters the number of primary particles and agglomerates
in each section. The source terms that apply the impact of coagulation in the transport equations
are computed by updateCoagulation().

laminarSPBM.C

template<class ReactionThermo>
void Foam::combustionModels: :laminarSPBM<ReactionThermo>: :updateCoagulation()

{
volScalarField rho (this->thermo().rho());

// Coagulation source term

if (coagulation_enabled_)

{

volScalarField C_agg_sec_curr (C_agg_sec_[0]*0.0);
volScalarField C_agg_sec_next (C_agg_sec_[0]*0.0);
volScalarField C_agg_sec_prev (C_agg_sec_[0]*0.0);
volScalarField eta_ijk (n_p_sec_[0]*0.0);
volScalarField eta_p_ijk (n_p_sec_[0]*0.0);

double coag_prefactor = 0.0;
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dimensionedScalar beta("beta", dimensionSet(0, 3, -1, 0, 0, 0, 0), scalar(le-15));

forAll(secNum_, sec)

{

// Resetting suml variables
volScalarField suml_N_agg (suml_inside_x0.0);
volScalarField suml_N_pri (suml_inside_x0.0);

// C_agg_sec of the current section
C_agg_sec_curr = C_agg_sec_[sec];

// The C_agg_sec for the first section is the same as C_agg_sec_curr

if (sec==0){

}
else

{

}

C_agg_sec_prev = C_agg_sec_curr;

C_agg_sec_prev = C_agg_sec_[sec-1];

// The C_agg_sec for the last section is the same as spacing_*xC_agg_sec_curr
if (sec==(n_secs_.value()-1)){
C_agg_sec_next = spacing_*C_agg_sec_curr;

}
else

{

C_agg_sec_next = C_agg_sec_[sec+1];

// Addition of particles to section
for (int k = 0; k <= sec; k++)

{

for (int j = k; j <= sec; j++)

{

volScalarField C_agg_sec_jk (C_agg_sec_[jl + C_agg_sec_[k]);
if (C_agg_sec_prev <= C_agg_sec_jk && C_agg_sec_jk <= C_agg_sec_next)

{

// Calculating eth_ijk

if (C_agg_sec_curr < C_agg_sec_jk && C_agg_sec_jk < C_agg_sec_next)

¢ eta_ijk = (C_agg_sec_next-C_agg_sec_jk)/(C_agg_sec_next-C_agg_sec_curr);
lee if (C_agg_sec_prev < C_agg_sec_jk && C_agg_sec_jk < C_agg_sec_curr)

¢ eta_ijk = (C_agg_sec_prev-C_agg_sec_jk)/(C_agg_sec_prev-C_agg_sec_curr);
}

// Calculation eta_p_ijk (NO MERGING)
eta_p_ijk = C_agg_sec_curr / C_agg_sec_jk * (n_p_sec_[j] + n_p_sec_[k]);

// Corresponds to 1-delta(j,k)/2

if (j==k)
{
coag_prefactor = 0.5;
}
else
{
coag_prefactor = 1.0;
}
suml_inside_ = coag_prefactor * eta_ijk * beta * N_agg_sec_[j] * N_agg_sec_[k

suml_N_agg += suml_inside_;
suml_N_pri += suml_inside_ * eta_p_ijk;
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// Removal of particles to section
sum2_all_ *= 0.0;
for (int m = 0; m < n_secs_.value(); m++)
{

sum2_all_ += beta * N_agg_sec_[m];

}

// Coagulation source terms
I_coag_N_agg_sec_[sec] = (suml_N_agg - N_agg_sec_[sec] * sum2_all_) * Av_ * rho;
I_coag_N_pri_sec_[sec] = (sumi_N_pri - N_pri_sec_[sec] * sum2_all_) * Av_ * rho;

3.15 Updating source terms

The overall source terms for each section can be derived by combining the individual source terms
computed for each of the mechanisms. The implementation of the class function responsible for
calculating the final source terms (S_N_agg_sec and S_N_pri_sec) is based on Eq. (2.16) and
Eq. (2.17) for surface growth, and Eq. (2.19) and Eq. (2.20) for the oxidation process. The
implementation of the class function updateSourceTerms () is presented below.

laminarSPBM.C

template<class ReactionThermo>
void Foam::combustionModels: :laminarSPBM<ReactionThermo>: :updateSourceTerms ()
{
forAll (secNum_, sec)
{
S_N_agg_sec_[sec] *= 0.0;
S_N_pri_sec_[sec] *= 0.0;

// First section

if (sec==0)

{
// Inception
S_N_agg_sec_[sec] += I_inc_C_tot_ / C_agg_sec_[0] / Av_;
S_N_pri_sec_[sec] += I_inc_C_tot_ / C_agg_sec_[0] / Av_;

// PAH adsorption & surface growth
S_N_agg_sec_[sec] += - I_grow_C_tot_sec_[0] / (C_agg_sec_[1] - C_agg_sec_[0]) / Av_;
S_N_pri_sec_[sec] += - I_grow_C_tot_sec_[0] / (C_agg_sec_[1] - C_agg_sec_[0]) / Av_;

// Oxidation

S_N_agg_sec_[sec] += (I_ox_C_tot_sec_[1] / (C_agg_sec_[1] - C_agg_sec_[0]) \

- I_ox_C_tot_sec_[0] / C_agg_sec_[0]) / Av_;

S_N_pri_sec_[sec] += (I_ox_C_tot_sec_[1] / (C_agg_sec_[1] - C_agg_sec_[0]) * n_p_sec_[1] \
- I_ox_C_tot_sec_[0] / C_agg_sec_[0]) / Av_;

// Coagulation
S_N_agg_sec_[sec] += I_coag_N_agg sec_[0];
S_N_pri_sec_[sec] += I_coag_N_pri_sec_[0];

}

// Middle sections

else if (sec > 0 && sec < (this->n_secs_.value() - 1))

{
// PAH adsorption & surface growth
S_N_agg_sec_[sec] += (I_grow_C_tot_sec_[sec-1] / (C_agg_sec_[sec] - C_agg_sec_[sec-1])\
- I_grow_C_tot_sec_[sec] / (C_agg_sec_[sec+1l] - C_agg_sec_[secl)) / Av_;
S_N_pri_sec_[sec] += (I_grow_C_tot_sec_[sec-1] / (C_agg_sec_[sec] - C_agg_sec_[sec-1]) *

n_p_sec_[sec-1] \
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- I_grow_C_tot_sec_[sec] / (C_agg_sec_[sec+1] - C_agg_sec_[sec]) * n_p_sec_[sec]l) / Av_;

// Oxidation

S_N_agg_sec_[sec] += (I_ox_C_tot_sec_[sec+l] / (C_agg_sec_[sec+l] - C_agg_sec_[sec]) \

- I_ox_C_tot_sec_[sec] / (C_agg_sec_[sec] - C_agg_sec_[sec-11)) / Av_;

S_N_pri_sec_[sec] += (I_ox_C_tot_sec_[sec+1] / (C_agg_sec_[sec+l] - C_agg_sec_[sec]) *
n_p_sec_[sec+1]\

- I_ox_C_tot_sec_[sec] / (C_agg_sec_[sec] - C_agg_sec_[sec-1]) * n_p_sec_[sec]l) / Av_;

// Coagulation
S_N_agg_sec_[sec] += I_coag_N_agg_sec_[sec];
S_N_pri_sec_[sec] += I_coag_N_pri_sec_[sec];

}

// Last section
else if (sec == this->n_secs_.value() - 1)
{
// PAH adsorption & surface growth
S_N_agg_sec_[sec] += I_grow_C_tot_sec_[sec-1] / (C_agg_sec_[sec] - C_agg_sec_[sec-1]) /
Av_;
S_N_pri_sec_[sec] += I_grow_C_tot_sec_[sec-1] / (C_agg_sec_[sec] - C_agg_sec_[sec-1]) *
n_p_sec_[sec-1] / Av_;

// Oxidation

S_N_agg_sec_[sec] += - I_ox_C_tot_sec_[sec] / (C_agg_sec_[sec] - C_agg_sec_[sec-1]) / Av_;

S_N_pri_sec_[sec] += - I_ox_C_tot_sec_[sec] / (C_agg_sec_[sec] - C_agg_sec_[sec-1]) *
n_p_sec_[sec] / Av_;

// Coagulation
S_N_agg_sec_[sec] += I_coag_N_agg sec_[sec];
S_N_pri_sec_[sec] += I_coag_N_pri_sec_[sec];

3.16 Solving the transport equations

In the sectional population balance model, the values of N,z and IV, in each section are obtained
by solving transport equations employing the corresponding source terms. However, since the size of
each section is predefined, the value of Clo for each section can be easily determined by an algebraic
equation. The function updateSoot () solves the three desired soot variables for each section by
iterating over all sections.

laminarSPBM.C

template<class ReactionThermo>
void Foam::combustionModels: :laminarSPBM<ReactionThermo>: :updateSoot ()
{

const surfaceScalarField& phi = this->phi();

volScalarField rho (this->thermo().rho());

fv::options& fvOptions(fv::options::New(this->mesh_));

forAll (secNum_, sec)
{
const volScalarField D(diffusionCoeff(sec));
// N_agg_ Equation
{
Info<< "N_agg Equation for section " << sec << endl;
volScalarField& N_agg = N_agg_sec_[sec];
fvScalarMatrix N_aggEqn
(
fvm: :ddt (rho, N_agg)
+ fvm::div(phi, N_agg)
- fvm::laplacian(D*rho, N_agg)
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rho * S_N_agg_sec_[sec]
)5

N_aggEqn.relax();
fvOptions.constrain(N_aggEqn) ;
N_aggEqn.solve(this->mesh() .solver("N_agg"));
fvOptions.correct (N_agg) ;

}

// N_pri_ Equation

{

Info<< "N_pri Equation for section " << sec << endl;
volScalarField& N_pri = N_pri_sec_[sec];
fvScalarMatrix N_priEqn

(
fvm: :ddt (rho, N_pri)
+ fvm::div(phi, N_pri)
- fvm::laplacian(D*rho, N_pri)
rho * S_N_pri_sec_[sec]
);

N_priEqn.relax();
fvOptions.constrain(N_priEqn) ;
N_priEqn.solve(this->mesh().solver("N_pri"));
fvOptions.correct(N_pri);

}
// C_tot Equation
{
Info<< "C_tot Equation for section " << sec << endl;
C_tot_sec_[sec] = N_agg_sec_[sec] * Av_ * C_agg_sec_[sec];
}

3.17 Overall values calculation

After calculating all soot variables for each section, overall values can be computed by summation
over all sections for extensive variables, and by number based averaging for intensive variables. In
the laminarSPBM library, the updateSootVariables() function is implemented to determine the
overall value of Nygg, Npri, Ciot, and dp,.

laminarSPBM.C

template<class ReactionThermo>
void Foam::combustionModels: :laminarSPBM<ReactionThermo>: :updateSootVariables()

{

N_agg_ *= 0.0;
N_pri_ *= 0.0;
C_tot_ *= 0.0;

volScalarField d_m_sum (d_m_*N_agg_*0.0);

forAll (secNum_, sec)

{

}

N_agg_ += N_agg_sec_[sec];
N_pri_ += N_pri_sec_[sec];
C_tot_ += C_tot_sec_[sec];
d_m_sum += N_agg_sec_[sec] * d_m_sec_[sec];

d_m_ = d_m_sum / N_agg_;
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Evidently, All required fields should be declared in the header file and initialized in the class con-

structor.

laminarSPBM.H

145
146
147

volScalarField N_agg_;
volScalarField N_pri_;
volScalarField C_tot_;
volScalarField d_m_;

laminarSPBM.C

225
226
227
228
229

231
232
233
234
235
236

N_agg_

(
IOobject
(

"N_agg",
this->mesh() .time() .timeName(),
this->mesh(),
I0object::NO_READ,
IOobject: :AUTO_WRITE

)

this->mesh(), dimensionedScalar("N_agg", dimensionSet(-1,0,0,0,1,0,0),0.0)
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Chapter 4

Tutorial

4.1 Physics and Geometry

As the main focus of the tutorial is on flow chemistry and the soot formation process, a simple case
study of a zero-dimensional constant volume reactor is set up to test the laminarSPBM. Using such a
simple case is sufficient for the evaluation stage while maintaining an affordable computational cost.
The computational domain consists of just 36 cells uniformly distributed, with no inlet or outlet
considered for the reactor, as portrayed in Fig. 4.1. The reactor, being a closed box, has an initial
velocity of zero in both directions, leading to zero velocity during the simulation time. This means
all fields will be uniform across the domain.

The gas is initially at a pressure of P = 1.0 x 10° Pa and a temperature of T = 1800 K. The
initial composition of the gas is set by specifying the mass fraction of CH4 and No, and the mass
fraction of the rest of the species is set to zero. Table 4.1 summarizes the initial and boundary
conditions for all fields.

In the following section, a detailed description will be provided for setting up the simulation case.
The reader is encouraged to refer to the tutorial case accompanying this report for more instructions
about the simulation case.

4.2 Time Directory

4.2.1 Gas Phase

The initial composition of the gas is defined by setting up the mass fraction of methane Ycp, = 0.3
and nitrogen Yn, = 0.7. The mass fraction of all other species is set to be zero in the Ydefault file.
The boundary condition for walls patch is zeroGradient for all fields. The content of the species

walls

1

|
| |
»77#77+774x<
1 1 1 ‘ | uniform mesh

!
! !

F-—-¢+ -4 - d ===l = == - =
| | | | |
| |
I I

Figure 4.1: Computational domain with 6 x 6 uniform grid.
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Field Initial value Boundary condition
U (0 0 0) zeroGradient
P 1.0eb zeroGradient
T 1800 zeroGradient
N2 0.7 zeroGradient
CH4 0.3 zeroGradient
Ydefault 0 zeroGradient

Table 4.1: Initial and boundary conditions

files located in 0 directory is provided below.

0/Ch4

Ve - ——%= Ct++ —k—————— - ———x\
R | |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2006 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* */
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

location HON-

object CH4;
}
J/ % % ok ok ok k k ok ok ok ok ok ok ok k ok k Kk k ok k Kk k ok ok k k k ok k kx *k *k * x x *x //
dimensions [0000O0O0O0];
internalField uniform 0.3;
boundaryField
{

walls

{

type zeroGradient;

}

frontAndBack

{

type empty;

}

}

// 3k >k 3k >k 3k 3k >k 3k >k 3k ok 3k >k >k 3k >k 3k >k 3k >k 3k 5k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k ok >k 3k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k >k >k >k >k >k 3k >k 3k >k >k %k >k %k >k %k %k >k %k >k k k //

For the N2 file, similar content should be included.

0/N2

Ve - ——%= Ct++ —k—————— - ———x\
| =======m= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I\ / 0 peration | Version: v2006 |
I \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* */
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

location "o";

34




14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35

N

© W N o u

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33

4.2. Time Directory Chapter 4. Tutorial

object N2;
J/ % % % % % %k % %k %k k % *k %k % %k % *k *x *k k *k *k *k %k ¥ *k X *k X *k k * *x * *x *x *x //

dimensions [0000O0O0O0];

internalField uniform 0.7;

boundaryField
{
walls
{
type zeroGradient;
}
frontAndBack
{
type empty;
}
}

[/ kokskook ok sk ok s ok sk ok ok sk ok s ok 3k sk ok s ok ok ok sk ok 3 ok K sk ok s ok 3 ok ok s ok ok K sk ok ok 3k ok ok ok sk ok sk sk ok sk ok sk sk ok sk sk kokskokkkk -/ /

The content of the Ydefault file indicates that initially, the gas is the mixture of only methane and
nitrogen.

0/Ydefault

/* *— C++ —x* *\
| s======== |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2006 |
| \\ / A nd | Website: www.openfoam.com |
I \\/ M anipulation | |
\k—mmmm - - - - ———x/
FoamFile
{

version 2.0;

format ascii;

class volScalarField;

location "o";

object Ydefault;
}

J/ % % %k % % % % %k % *k % % % % % % %k % %k *k *k %k % % % % % *k % *k *x * % * % % *x //
dimensions [0O0O0O0O0O0 O0];

internalField uniform 0.0;

boundaryField
{
frontAndBack
{
type empty;
}
walls
{
type zeroGradient;
¥
}

[/ kokskook ok sk ok sk ok ok sk ok sk ok sk ok k sk ok s ok ok sk ok sk ok o sk ok sk ok o sk k ok ok s ok k ok k sk ok ok 3k ok ok sk ok sk ok sk sk ok sk ok sk sk ok skok skosk sk sk ok skokkkk -/ /

Boundary and initial conditions for pressure and temperature are similar to the mass fraction files
but consistent with the values specified in Table 4.1.

35




© 0 N O U A W N e

I e S T
S S

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

© 0w N O U A W N e

=R e e
w N = O

4.2. Time Directory Chapter 4. Tutorial

4.2.2 Solid Phase

Note that laminarSPBM requires N_agg_sec and N_pri_sec for each section, but as all of N_agg_sec
and N_pri_sec are grouped together under the names N_agg and N_pri, one needs to set up only
two files, N_agg and N_pri, in the 0 directory. To avoid division by zero, it is assumed that there
is one agglomerate consisting of just one primary particle in each section. This infinitesimal initial
value, which will not have any impact on the results, has the unit of moles per kilogram of the gas
mixture and is calculated as follows.

. . 1 ]
N =N = —1.66054 x 10—24]2—O
g

agg,sec pri,sec Aw

(4.1)

The boundary conditions of both N_agg and N_pri files are similar to the mass fractions as can be
seen in the following.

0/N_agg
*— C++ —% *\
| |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2006 |
[ \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* */
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
object N_agg;
}

J/ % % % % % %k % %k % k %k *k %k ¥ %k % *k % %k k *k *k *k %k ¥ %k X *k X *k k *k *x * *x *x *x //
dimensions [-1 00010 0];

internalField uniform 1.66054e-24;

boundaryField
{
walls
{
type zeroGradient;
}
frontAndBack
{
type empty;
}
}

[/ ok sk ok sk sk ok s ok sk ok ok sk ok s ok 3k sk ok s ok 3k ok ok sk ok 3 ok 3k ok ok 3 ok 3 ok ok s ok ok K sk ok ok 3k ok ok ok 3k ok 3k sk ok sk ok sk ok ok ok sk kokkokkkk -/ /

0/N_pri
- ——%— Ct++ —k—————— -—— ———x\
| |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: v2006 |
I \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* */
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
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object N_pri;
J/ % % % % % %k % %k %k k % *k %k % %k % *k *x *k k *k *k *k %k ¥ *k X *k X *k k * *x * *x *x *x //

dimensions [-1000100];

internalField uniform 1.66054e-24;

boundaryField
{
walls
{
type zeroGradient;
}
frontAndBack
{
type empty;
}
}

// 3k >k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k 3k %k 5k %k >k 3k >k 3k >k 3k >k 5k %k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k %k >k %k >k %k >k %k %k >k *k >k k k //

4.3 Constant Directory

In OpenFOAM, the combustion model is configured in the combustionProperties file, which is
located in the constant directory. Here, the laminarSPBM model is specified to utilize the sectional
soot, model.

constant/combustionProperties

/ %= CH++ —% *\
| | |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2006 |
I \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\* */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "constant";

object combustionProperties;
}

J/ % % % % % k * k k k k k k k *k k *k *k *k k k k k Kk *k *x * * *k *k *k k k kx *x *x *x //
combustionModel laminarSPBM;

active true;

laminarCoeffs

{
}

// 3k >k 3k >k 3k ok 3k 3k >k 3k ok 3k ok ok ok ok 3k >k 3k ok sk ok sk 3k ok 3k ok 3k ok sk ok sk k ok 3k ok sk ok ok k ok 3k ok sk ok sk ok sk 3k ok 3k ok ok ok sk ok K 3k ok 3k ok k ok ok k >k 3k >k sk ok k Kk //

Soot model settings are configured in the sootProperties dictionary. This setup involves spec-
ifying PAHs treated as soot precursors, variables required for creating sections and switches for
activating/deactivating various mechanisms. The settings used in this tutorial are outlined below.

constant/sootProperties

[x————= -—— ——%— Ct++ —k—————— -—— ———x\

|
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I\ / 0 peration | Version: v2006 |
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4.3. Constant Directory Chapter 4.

Tutorial

[ \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\x----- -——x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "constant";

object sootProperties;
}

// % % % % % %k % %k % k %k * %k % % % *k % %k k *k *k *k %k % %k % *k X *k k * *x * *x *x *x //
PAHs (A2 A3 A4);

number0fSections 40;
spacingFactor 1.5;

scrubbing_enabled  true;
PAH_growth_enabled true;
HACA_growth_enabled true;
inception_enabled true;
HACA_oxidation_enabled true;
coagulation_enabled true;

[/ skokskok ok sk ok sk ok ok sk ok sk ok sk ok ok sk ok s ok ok sk ok sk ok ok sk ok sk ok sk k sk ok sk ok k ok k sk ok ok ok ok ok sk ok sk ok sk sk ok sk ok sk sk ok skok ksk ok sk ok skokkkk -/ /

In this tutorial, the Appel-Beerhens-Fenske (ABF) mechanism [9] is employed to solve the gas
chemistry and obtain thermophysical properties. Consequently, both the thermophysical and chem-
istry files, named thermo.ABF-mod and reactions.ABF respectively, formatted in Chemkin, are
placed in the constant directory. Subsequently, the names of these two files are specified in the

thermophysicalProperties to be utilized by foamChemistryReader.

constant/thermophysicalProperties

/* *— C++ —x% *\
| == = |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2006 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\k————— - ———x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "constant";

object thermophysicalProperties;
}
// % % % % % % k % % % k % *k k % % % % % %k % %k *k *k % % * % % % % % k kx x % *x //
thermoType
{
type hePsiThermo;
mixture reactingMixture;
transport sutherland;
thermo janaf;
energy sensibleEnthalpy;
equationOfState perfectGas;
specie specie;
}

inertSpecie N2;

chemistryReader foamChemistryReader;
foamChemistryFile "<constant>/reactions.ABF";
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4.4. System Directory Chapter 4. Tutorial

foamChemistryThermoFile "<constant>/thermo.ABF-mod";

[/ kokokook ok sk ok sk ok ok sk ok sk ok sk ok ok sk ok s ok K sk ok sk ok ok sk ok sk ok ok k sk ok s ok ok ok K sk ok k ok K sk ok ok ok ok ok sk ok s ok ok sk ok ok ok ok ok sk ok o ok ok sk ok //

4.4 System Directory

The simulation is planned to run for ¢t = 0.2s with a time step of dt = 1 x 10™%s, as indicated in the
controDict dictionary below. Additionally, 1iblaminarSPBM. so is included to enable the solver to
link to the new library. For postprocessing purposes, the probes function object is also included.

system/controlDict

/* *— C++ —% *\
| = | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ A\\ / 0 peration | Version: v2006 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\kmmm e e e */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;
}
J/ k% % % % % % % % % * % * %k % % % %k % % %k * % % % % %k % *k % *k *x * % * % % *x //
application reactingFoam;
startFrom latestTime;
startTime 0;
stopAt endTime;
endTime 0.2;
deltaT le-4;
writeControl timeStep;
writeInterval 100;
purgeWrite 2;
writeFormat ascii;

writePrecision 7;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable true;
adjustTimeStep no;

maxCo 0.1;
functions{

#include "probes"

}

libs ("liblaminarSPBM.so");
[/ okokokok sk k ok ok sk ok ok o o o o ok ok ok ok ok ok ok ok ok K K K K 3K K o o o o o ok ok ok ok ok ok ok ok ok Kk K 3k kK ok o o ok ok sk ok sk ok ok ok ok ok ok k ok kkkk ok / /

In the fvSchemes dictionary, the default value for divSchemes is set to Gauss limitedLinear 1.
Consequently, there is no need to specify divSchemes for N_agg_sec and N_pri_sec of each section
separately.

system/fvSchemes
—————— ——%— Ct++ —k—————— ————— ———x\
| |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2006 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
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\* */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;
}
J/ % % % %k %k % % % % % >k % %k % % % % % % % % % % % % % % %k % % % % %k * *x *x x //
ddtSchemes
{
default Euler;
}
gradSchemes
{
default Gauss linear;
}
divSchemes
{
default Gauss limitedLinear 1;
div(phi,U) Gauss limitedLinearV 1;
div(phi,Yi_h) Gauss limitedLinear 1;
div(phi,K) Gauss limitedLinear 1;
div(phid,p) Gauss limitedLinear 1;

div(phi,epsilon) Gauss limitedLinear 1;
div(phi,k) Gauss limitedLinear 1;
div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

}
laplacianSchemes
{
default Gauss linear orthogonal;
}
interpolationSchemes
{
default linear;
}
snGradSchemes
{
default orthogonal;
}

In the fvSolution dictionary, solution control entries for both group names N_agg and N_pri should
be added.

system/fvSolution

/ -— k= Ct++ —k—————— ———x%\
| = | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / 0 peration | Version: v2006 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\k————— -—— - -—— ———x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "system";
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object fvSolution;
}
// * % % % %k % % % % % % % %k % % % %k % % % % % * % % % % %k % % % % %k % *x *x x //
solvers
{
"rho.x"
1{
solver diagonal;
}
P
{
solver PCG;
preconditioner DIC;
tolerance 1le-6;
relTol 0.1;
}
pFinal
{
$p;
tolerance le-6;
relTol 0.0;
¥
"(Ulh|N_agg|N_pri)"
{
solver PBiCGStab;
preconditioner DILU;
tolerance le-6;
relTol 0.1;
¥
"(Ulh|N_agg|N_pri)Final"
{
$U;
relTol 0;
}
Yi
{
$hFinal;
¥
}
PIMPLE
{
momentumPredictor no;
nOuterCorrectors 1;
nCorrectors 2;
nNonOrthogonalCorrectors 0;
}

[/ kokskok ok sk ok sk ok sk ok ok sk ok s ok K sk ok s ok 3k ok ok sk ok ok K sk ok ok 3k ok ok s ok k ok K sk ok ok 3k ok ok s ok s ok sk sk ok sk ok sk sk ok ok skok sk kokskokkkk -/ /

A probes sampling file is added to the system directory to collect simulation data over time at
the center of the domain, with probeLocations set to (0.05 0.05 0.005). The fields to be probed
include the total number of agglomerates (N_agg), total number of primary particles (N_pri), and
total carbon content (C_tot). Additionally, to enable the plotting of the particle size distribution,
Nage and Ny, of each section are collected during the simulation time. Since the number of sections
is not fixed and can be modified by the user, a pre-processing Python code has been developed to
read the number of sections, numberOfSections, from the sootProperties dictionary and make
the necessary adjustments to the value of the fields entry. The following is the probes file if the
number of sections is set to five.

system/probes
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/* *— C++ —* *\
| ========= | |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ A\\ / 0 peration | Version: v2006 |
| \\ / A nd | Website: www.openfoam.com |
| \\/ M anipulation | |
\k————— - - - - ———x/
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "system";

object probesSampling;
}
// % % % % % % % %k % *k %k %k % % % % %k % %k *k *k %k % %k % %k % *k *x *k k * % * % % *x //
probes
{

type probes;

libs (sampling) ;

name probes;

writeControl outputTime;

writelnterval 1;
interpolationScheme cellPoint;
sampleOnExecute yes;

fields (N_agg N_pri C_tot N_agg_secO N_agg_secl N_agg_sec2 N_agg sec3 N_agg_secd
N_pri_secO N_pri_secl N_pri_sec2 N_pri_sec3 N_pri_sec4);

probelLocations
(
(0.05 0.05 0.005)

)g

4.5 Running the case

The computational grid is generated using the blockMesh utility, and the simulation is carried out
in serial mode. An Allrun script runs all necessary commands, including those needed for mesh
generation, preprocessing to adjust the probes dictionary, running the case, and postprocessing.
Both post-/preprocessing files are written in the Python language, and the resulting plots will be
saved in the figures directory. The evolution of overall variables is depicted in Fig. 4.2. Fig. 4.3
portrays the particle size distribution based on the number of agglomerates, Ny, and the number
of primary particles, Npyi.
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Figure 4.2: Evolution of various soot variables over time.
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Figure 4.3: Soot particle size distribution at t=0.2 (s)
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Study Questions

1. Why is there no need to specify a boundary condition for Cyo¢ in laminarSPBM, while it is
necessary for laminarSoot?

2. What is the impact of each mechanism (inception, HACA, and PAH surface growth, oxidation,
and coagulation) on the soot particle size distribution?

3. Why is the data type used for storing inception data different from that of other mechanisms?
4. What information is received from the OpenFOAM chemistry solver?

5. Which function takes care of transferring particles between sections?
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Appendix A

Chemical Source Terms

This appendix is a part of laminarSoot documentation [20].

A.1 Inception

The inception is described using reactive dimerization of polycylic aromatic hydrocarbons (PAHs)
[22] where collision of two PAH molecules form physically-bonded dimers followed by their car-
bonization that results in new soot particles. This two-step process can be described as

k
PAH, + PAH; —— Dimer};, (A1)
krev
Dimer;; Knpac, Dimer;;. (A.2)

In Equation (A.1), krpwp is the forward rate of physical dimerization and computed as

T
kewp = 22-0.1- Av-d%, 87::]3 : (A.3)
i

where d;; = 2d;d;/(d; + d;) and m;; = m;m;/(m; + m;) are reduced diameter and mass of PAH
molecules in the dimer, respectively. The mass of PAH is calculated by dividing the molecular weight
by Avogadro’s number. The diameter is estimated by assuming a sphere with the mass of one PAH
molecule and an estimated density [23] using

0%
Mpag = ZiH, (A.4)

nC,PAHWcarbon + nH,PAHWhydrogen (A 5)

bl

ppam = 171943.5197

NC,PAH + NH,PAH

Vpay = LPAH (A.6)
pPPAH
6V 1/3
dpag = <F7:4H) . (A7)

The reverse rate of physical dimerization, kggv, is calculated from kpwp and equilibrium coef-
ficient of physical dimerization as
krpy = kpw pl0~beaen(10)/(RT) (A.8)

€= CWZ‘J‘ — d, (Ag)
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where W;; = W, W, /(W; + W;) is the reduced molecular mass of dimer, a = 0.115 (obtained from
pyrere dimerization data [24]) and b=1.8, ¢=933420 j/kg, and d=34053 j/mol [22].
The rate of chemical bond formation, kggac is defined in the Arrhenius form [25] as

krpac =5 x 100 . ¢(796232/RT) (A.10)

Assuming a steady state condition for the physical dimers, 8[Dimer;"j] /0t =0, the formation of
dimer can be obtained as

krpwp[PAH;|[PAH,]

A1l
krev + kreac ( )

Wdimerij = kREAC

The PAHs forming the dimer is removed from the gas mixture due to inception at the same rate
as dimerization meaning that

WPAH; = WPAH; = —Wdimer;, - (A.12)

Therefore, the carbon content that transforms from the gas to the solid phase through the
inception process can be computed by

n n
Sctot,inception = Z Z Cijwdimemjv (A~13)
i=1 j=i
where Cj; and Hj; are number of carbon and hydrogen atoms in dimer;;, respectively. n is the number
of PAHs designated as soot precursors.

A.2 Surface growth via HACA

Hydrogen abstraction carbon addition (HACA) is a major pathway for soot mass growth where
active reaction sites on particles form bonds with acetylene molecule (C2Hs). HACA mechanism [9]
is described by a set of elementary with given rates that are listed in Table A.1. The HACA rate is
defined as the absolute rate change of concentration of CoHz (weyn,) via HACA mechanism as

wi2h2 = akf‘l[C?HQ][Csoot"]la (A14)
d 7
7 [Calle] = —weyp,. (A.15)

In Equation (A.14), kg refers to forawrd reaction rate constant of 4th reaction in reaction 4
in Table A.1. The contribution of HACA to growth source terms can be computed from HACA
rate considering the number of carbon atoms in CyHy and the number of arm-chair and zig-zag
hydrogenated sites on soot particle [26] using

C,i i
Sgrow|HACA = 2we,p, /P (A.16)

In Equation (A.14), « is the surface reactivity of soot defined by an empirical relation [9] as

12.56 — 0.00563 - T'
a = tanh S T AT 1.38 4 0.00068 - T" | . (A.17)
logy ( Vl/iar:on )

[C,, o] is the concentration of dehydrogenated site on soot particle computed by
[Csooto]l = A;Ot vasooto' (A18)

A, is the total surface area of soot particles obtained as

Al = N! . Av- 7'4'(d;)27 (A.19)

pri

48



A.3. Surface growth via PAH adsorption Appendix A. Chemical Source Terms

Table A.1: Rate coefficients for the various surface reactions in Arrhenius form k = AT? . ¢~ E/RT

No. Reaction A ﬁ n % K]
1 Csoot-1 + H 7= Cyootc + Ho f 417x107 0 6542.52
r 39x10% 0 5535.98
2 Csoot_H + OH == Cyoor- + HLO £ 10% 0.734 719.68
r 3.68x10%2 1.139 8605.94
3 Csoot* + H — Cyoor + HoO f 10* 0.734 719.68
4 Caoote + CoHy —— Cooot 1 f 80 1.56  1912.43
5 Csootr + O — 2CO f 22x10% 0 3774.53
6 Cooot-H+OH — CO++H, f 0.13 0 0

Xso0t° 18 the number of active reaction sites per unit surface area of particles.

k’fl[H] =+ kfg [OH] X
Fer1 [Ha] + ko [HoO] + kpa[H] + kpa[CoHo] + kys[Oa] + ki [H] + ko [OH] 7775

Xsoot® =

(A.20)

where Yooty = 2-3x 10¥m~2. In Equation (A.20), k.1 denotes the reverse rate of the first reaction
in Table A.1, and the rest of the reaction rates follow the same naming convention.

A.3 Surface growth via PAH adsorption

The adsorption of PAHs on the surface is a major mass growth pathway of soot particles. Here, a
two-step process, similar to inception, is used to address the PAH adsorption. The collision of PAH
molecule leads to physically bonded, Soot — PAH*, that is followed by chemical bond formation,
and completes the adsorption process. The following reactions describes the process

k W, a

PAH + Soot 7= Soot—PAH", (A.21)
krv,ad

Soot—PAH* %, Soot— PAH. (A.22)

The forward rate of physical adsorption, kew ad, in Equation (A.21) is computed by harmonic
mean of collision frequency of soot particles and PAH molecules in free molecular and continuum
regime as

Bfm,ad . ﬁcont,ad A

k w,ad = v, A.23
Jrad 6j'm,ad + ﬂcont,ad ( )
where S qq is obtained [25] as
kgT 1 1 .
Bfmad = 2.2\/7T B ( — ) (d +dpan)’, (A.24)
2 magg mpaAH -
where mflgg =C! . Wearbon/ (N(ﬁgg - Av) is the mass of soot agglomerate. Seont,ad is computed by
2kpT [Cy(d:,)  Cs(dpam) ,
cont.ad = . d +d , A.25
Beont,ad 30 [ ar + doan (df) + dpan) ( )
2A (—0.784/N)] (i
C(d) =1+ [1.21 +0.4e0 } (d + dpam) - (A.26)

The reverse rate of physical adsorption, k;y a4, is computed similar to reverse physical inception
rate (Equation (A.8)) as

krv,ad = kfw,ad X loibeiaﬁln(lo)/(RT), (AQ?)
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—c MWsoot . MWPAH
MWsoot + MWPAH
where MWgoot = Crot - Wearbon/Nagg is the equivalent molecular weight of soot, and a, b, ¢, and d

have the same values as Equation (A.8).
The rate of chemical adsorption, k¢ aq is defined in the Arrhenius form [25] as

€

—d, (A.28)

krc,ad =92 x 1010 . e(—96232/RT)' (A29)

The total adsorption rate can be calculated assuming a steady-state concentration for physically
adsorbed PAH on soot, 9[Soot — PAH*|/dt = 0, similar to inception rate (Equation (A.11)) as

k f0,aa[Soot]! [PAH]

w;ah,ad = krc,ad rood + kroad (A.30)
[Soot]® = pNZgg. (A.31)

The contribution of PAH adsorption rate to particle carbon and hydrogen content is computed
as

n
Cii — i
Sgrow\ad - ZCPAHJC " Wpah,ad, k> (A32)
k=1

The rate of removal of PAH from gas mixture due to adsorption is given as

wiPAH,k = *W;ah,ad,k- (A.33)

A.4 Oxidation via HACA

The carbon atoms on the surface of soot are oxidized via reaction with Oy molecules and OH
radicals which decreases total carbon of soot and releases CO and Hy molecules to gas mixture.
The oxidation process is described by HACA mechanism. Here, we assume that oxidation does not
change the hydrogen content of soot particles. The absolute rate change of O2 molecules (w,2) and
OH radicals (w,r) by oxidation is calculated as

wf,2 = Oék’f5 [OQ] [C (A34)

]z
°
soot 1 7

why, = ak[OH]N,, p. (A.35)

The oxidation source term is calculated considering the number of carbon atoms removed from
soot through each oxidation pathway by

St = —(2wiy + wiy)/p, (A.36)
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