
Cite as: Afshar Ghasemi, K.: Implementing a non-isothermal interPhaseChangeFoam solver with a

thermodynamic cavitation model. In Proceedings of CFD with OpenSource Software, 2023, Edited by

Nilsson. H., http://dx.doi.org/10.17196/OS CFD#YEAR 2023

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Implementing a non-isothermal
interPhaseChangeFoam solver with a
thermodynamic cavitation model

Developed for OpenFOAM-v2212

Author:
Keivan Afshar Ghasemi
Norwegian University of Science and Technology
keivan.a.ghasemi@ntnu.no

Peer reviewed by:
Prof. David Robert Emberson

Dr. Saeed Salehi
Martina Nobilo

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 15, 2024

http://dx.doi.org/10.17196/OS_CFD#YEAR_2023


Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to use the pre-existing interPhaseChangeFoam solver, in conjunction with the interCon-
densatingEvaporatingFoam solver, along with their phase change models to simulate a sce-
nario featuring non-isothermal cavitation marked by considerable heat transfer rates.

The theory of it:

• The theory of interPhaseChangeFoam solver and its corresponding cavitation models.

• The theory of interCondensatingEvaporatingFoam solver and its corresponding boiling mod-
els.

• The main difference between a cavitation model and a boiling model.

• The theory of ZwartExtended cavitation model, an improved Zwart model for thermodynamic
cavitations.

How it is implemented:

• How the phase change models (cavitation and boiling models) are implemented in OpenFOAM.

• How these phase change models are incorporated into the phase change solvers (interPhaseCh-
angeFoam and interCondensatingEvaporatingFoam solvers).

How to modify it:

• How to integrate the Plesset-Zwick bubble dynamics equation to the Zwart cavitation model
to develop ZwartExtended cavitation model.

• How to modify the interCondensatingEvaporatingFoam solver so that it can be considered
as the non-isothermal counterpart to the interPhaseChangeFoam solver.

• How to implement the thermalInterPhaseChangeFoam solver and its corresponding ZwartExt-
ended cavitation model.

1



Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• How to run standard document tutorials like condensatingVessel and cavitatingBullet

tutorials.

• Fundamentals of Computational Methods for Fluid Dynamics, Book by J. H. Ferziger and M.
Peric.

• Basic C++ programming and how to customize an OpenFOAM solver and do top-level appli-
cation programming.

• Fundamentals of bubble dynamics and cavitation modelings, and their numerical scheme im-
plementations.

2



Contents

Introduction 6

1 Theory 7
1.1 Comparing the equations of iPCF and iCEF solvers . . . . . . . . . . . . . . . . . . . 7
1.2 iPCF and iCEF phase change models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Cavitation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Boiling models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 A thermodynamic cavitation model (ZwartExtended) . . . . . . . . . . . . . . . . . 10
1.3.1 Zwart cavitation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 ZwartExtended cavitation model . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Comparing the source codes of iPCF and iCEF solvers . . . . . . . . . . . . . . . . . 12
1.4.1 Transport equations (UEqn, pEqn, TEqn, and alphaEqn) . . . . . . . . . . . . 12
1.4.2 Solvers’ main algorithms (iPCF.C, iCEF.C, and createFields.H files) . . . . 13
1.4.3 Phase change models and their directories . . . . . . . . . . . . . . . . . . . . 14

2 Implementations 15
2.1 Implementing ZwartExtended cavitation model . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 twoPhaseMixtureEThermo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 temperaturePhaseChangeTwoPhaseMixture . . . . . . . . . . . . . . . . . . . 19
2.1.3 ZwartExtended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Implementing thermalInterPhaseChangeFoam solver . . . . . . . . . . . . . . . . . . 20

3 Test cases and results 22
3.1 Setting up the test case for iPCF solver . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Setting up the test case for tIPCF solver . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A ZwartExtended cavitation model source code 32
A.1 ZwartExtended.H file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 ZwartExtended.C file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



Nomenclature

Acronyms
iCEF interCondensatingEvaporatingFoam
iPCF interPhaseChangeFoam
tIPCF thermalInterPhaseChangeFoam
CFD Computational Fluid Dynamics
OpenFOAM Open-source Field Operation and Manipulation
VOF Volume of Fluid

English symbols
ṁ Mass transfer rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg/(m

3 · s)
ℜ Universal gas constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(K ·mol)
a Thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
cp Specific heat capacity at constant pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(kg ·K)
g Gravitational acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m/s2

L Latent heat of vaporization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J/kg
l Physical length scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
M Molecular weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g/mol
p Local pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pa
R Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m
T Local temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
ui Cartesian velocity component in i-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m/s

Greek symbols
α Volume fraction
δ Kronecker delta
κ Thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(s ·m ·K)
λ Molecular mean free path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
µ Dynamic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/(m · s)
ν Kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
ρ Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

σ Surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m

Superscripts
+ Condensation
− Vaporization/Evaporation

Subscripts
∞ Free stream
i, j, k Cartesian directions
0 Nucleus (effective initial)

4



Nomenclature Nomenclature

B Bubble
C Condensation
E Evaporation
l Liquid phase
nuc Nucleation
sat Saturation
t Turbulent
V Vaporization
v Vapor phase

5



Introduction

In the field of fluid dynamics, “cavitation” denotes the localized isothermal vaporization that appears
when the local pressure drops below the saturation vapor pressure of the liquid. This occurrence
is a byproduct of escalating fluid flow velocity. The vapor-filled cavities or bubbles formed within
a cavitating flow experience implosion when the local pressure surpasses the vapor pressure. Char-
acterized by this inward process, cavitation is often described using terms such as “implosion” or
“nucleus collapse” [1]. This phenomenon holds critical significance, particularly in the study of fluid
mechanics and related engineering applications.

Concerning the numerical modeling of the cavitation phenomenon, various methods exist to
simulate this two-phase flow. One prominent approach is the Volume of Fluid (VOF) phase-fraction
based interface capturing technique, widely employed in several OpenFOAM multiphase solvers.
This method, recognized as a one-fluid formulation, derives transport equations for the mixture
(comprising a fraction of both liquid and vapor phases distributed within each computational cell).
Nevertheless, it factors in the volume fraction of each phase separately when solving the VOF
equation as well as computing different parameters of transport equations, including density and
thermophysical properties [2]. To model cavitating flows using this method, the mass transfer rates
between liquid and vapor phases are calculated by considering the respective volume fractions of
phases. Regarding OpenFOAM, three models characterizing these mass transfer rates have already
been implemented, including Kunz, Merkle, and SchnerrSauer models, all of which will be briefly
discussed in Section 1.2. However, in these three cavitation models, as outlined in the previous
paragraph, the cavitation phenomenon is treated as an isothermal event. Consequently, not only
the solver using these models is isothermal, but also the mass transfer rates are solely computed
based on the difference between local and saturation vapor pressures, emphasizing the mechanical
effect in the bubble generation process. While this is generally accurate, it may fall short if the
superheated liquid approaches its boiling temperature, necessitating the inclusion of thermal effects
or temperature fluctuations in the mass transfer rates equations, which would be the case for thermal
fluids such as refrigerants [3].

The objective of this project is to enhance OpenFOAM’s capability to employ the VOF method
in simulating scenarios with the conditions described earlier, specifically thermodynamic cavitat-
ing flows. Within OpenFOAM, there are two pre-existing solvers tailored for cavitating flows,
i.e. cavitatingFoam and interPhaseChangeFoam solvers. However, the former relies on a differ-
ent two-phase flow model rather than VOF, while the latter, as mentioned briefly in the previous
paragraph, is an isothermal solver using the previously discussed cavitation models. Consequently,
modifications are needed. We need to not only introduce an energy transport equation to con-
sider temperature changes in interPhaseChangeFoam but also implement a new thermodynamic
cavitation model. In addition to these, OpenFOAM includes a non-isothermal phase change solver
named interCondensatingEvaporatingFoam, designed for simulating condensation and evapora-
tion in two-phase flows using the VOF method. Fortunately, from the numerical implementation
standpoint, it aligns well with the interPhaseChangeFoam approach, with the primary difference
being the set of models used to calculate the mass transfer rates. As a result, in the subsequent chap-
ters, the interCondensatingEvaporatingFoam solver will serve as the base solver for developing the
new non-isothermal interPhaseChangeFoam solver, referred to as thermalInterPhaseChangeFoam.

6



Chapter 1

Theory

The interCondensatingEvaporatingFoam (iCEF) solver was thoroughly explored in a student tu-
torial featured in the proceedings of CFD with OpenSource Software, 2022 [4]. Similarly, the
interPhaseChangeFoam (iPCF) solver and its associated Zwart cavitation model, to be discussed
later in this chapter, were covered in the tutorials for the proceedings 2013 and 2018, respec-
tively [5, 6]. Therefore, this report will focus on the unique aspects of the source codes of each
solver, emphasizing the distinctions that allow for the incorporation of the energy transport equa-
tion from iCEF into iPCF. Concluding this chapter, the Plesset-Zwick bubble dynamics equation
will be introduced, accompanied by the presentation of the new thermodynamic cavitation model.
This model, formulated based on the mentioned bubble dynamics equation, essentially constitutes
a modified version of the Zwart model.

1.1 Comparing the equations of iPCF and iCEF solvers

At the outset, the governing equations of the two solvers will be investigated, considering their
roles as incompressible solvers tailored for systems involving two immiscible fluids undergoing phase
changes. Notably, cavitation defines the phase change in iPCF, whereas iCEF addresses condensation
and evaporation. To streamline this chapter, all the parameters and their units used in the following
equations are defined in the Nomenclature section of this report. The following equations outline
mass conservation and momentum transport for these distinct scenarios.

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (1.1)

∂

∂t
(ρuj) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj

(
(µ+ µt)(

∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij )

)
+ ρg (1.2)

However, adhering to the OpenFOAM convention, the direct implementation of these two equa-
tions is not followed. Instead, there is an equation governing velocity (UEqn) and another for pressure
(pEqn), a combination of Eq. (1.1) and Eq. (1.2); their implementations will be investigated later
in this chapter. Besides these, an additional equation governs the VOF model, determining the
volume fraction of phase1, i.e. liquid in this context, based on the mass transfer rates between
liquid and vapor phases. Given that liquid serves as the carrier fluid (phase1) here, ṁ+ corresponds
to condensation, while ṁ− signifies vaporization/evaporation.

∂(ρlαl)

∂t
+

∂(ρlαluj)

∂xj
= ṁ+ + ṁ− (1.3)

It is needless to state that the sum of phase fractions in the VOF model equals one (αl+αv = 1).
The calculation of mass transfer rates, ṁ+ and ṁ− in Eq. (1.3), depends on the selected phase change
model, a topic that will be explored in greater detail in the subsequent sections. However, Eq. (1.3) is

7



1.2. iPCF and iCEF phase change models Chapter 1. Theory

also not implemented directly in OpenFOAM. The numerical derivation of the actual implementation
of this equation is thoroughly explained at the beginning of Section 2.2 of reference [4]; according
to which, the OpenFOAM volume fraction equation (alphaEqn) is stated as

∂αl

∂t
+

∂(αluj)

∂xj
− αl

∂uj

∂xj
= αl(V̇V − V̇C) + V̇C , (1.4)

where V̇C and V̇V are calculated as
V̇C =

(
1

ρl
− αl(

1

ρl
− 1

ρv
)

)
ṁC

V̇V =

(
1

ρl
− αl(

1

ρl
− 1

ρv
)

)
ṁV .

(1.5)

In the above equations, subscripts C and V are used for V̇ to emphasize the connection of this
equation with the iPCF solver and, consequently, with condensation and vaporization phenomena.

In addition to these three equations (continuity, momentum, and volume fraction), the iCEF

solver incorporates an energy transport equation (TEqn, based on temperature), Eq. (1.6), to account
for temperature variations. Notably, subscripts C and E are employed to underscore the association of
this equation with the iCEF solver and, consequently, with condensation and evaporation phenomena.

∂(ρcpT )

∂t
+

∂

∂xj
(ρujcpT ) =

∂

∂xj
(κ

∂T

∂xj
)− (ṁC + ṁE)L (1.6)

In all the previously mentioned equations, the variables p, T , and all other unsubscripted param-
eters refer to the mean values (computational cell center). Therefore, all thermophysical properties
of the mixture, such as ϕ, can be computed based on the properties of the liquid and vapor phases
and their volume fractions, as

ϕ = αlϕl + αvϕv = αlϕl + (1− αl)ϕl . (1.7)

1.2 iPCF and iCEF phase change models

Henceforth, the phase change models of the iPCF solver will be referred to as cavitation models, and
those of the iCEF solver will be denoted as boiling models. In both of these model classifications, the
mass transfer rates have been computed for the aforementioned transport equations, i.e. pEqn, TEqn,
and alphaEqn. However, there are two principal distinctions between these two types. First of all,
as described in the Introduction chapter, the cavitation models treat the phase change phenomenon
as an isothermal process, focusing on the inertia (mechanical) effect caused by the disparity between
saturation and local pressures in their simulation equations. The saturation pressure, psat, is also
considered constant in their corresponding equations. Conversely, the boiling models consider the
phase change phenomenon as an isobaric process, concentrating on the heat transfer (thermal)
effect arising from the difference between saturation and local temperatures in their simulation
equations. The saturation temperature, Tsat, is also considered constant in their corresponding
equations. Another key difference is from a mathematical perspective. Given that the iCEF solver,
and consequently its boiling models, must solve an energy transport equation, the implementation of
the boiling models includes an additional member function, TSource(), corresponding to the source
term of Eq. (1.6), i.e. (ṁC + ṁE)L.

Initially, to ensure that none of the available phase change models in OpenFOAM align with the
goals of this project, all of them have been investigated in detail. As a result, their condensation and
vaporization/evaporation rate equations are briefly outlined in the following section. It is evident
that none of these models has taken into account the superposed effect of the thermal and mechani-
cal impacts. It is also worth mentioning that the rates mentioned below are equivalent to the return
values of mDotAlphal() member function of each of these models in OpenFOAM that eventually will
be used to calculate the terms associated with the mass transfer rates in the volume fraction equation.

8



1.2. iPCF and iCEF phase change models Chapter 1. Theory

1.2.1 Cavitation models

• Kunz

Originally designed to analyze sheet- and super-cavitation for predicting cavitating flows over
blunt bodies, utilizes two empirical constants, CV and CC, which should be set according to
each case. Additionally, it considers properties of the bulk flow, including the mean flow time
scale, t∞, equal to the ratio of blunt body diameter to free stream velocity, U∞ [7]. The
OpenFOAM implementation of this model differs slightly from the original version.

ṁV =
CVρv

( 12ρlU
2
∞)t∞

min [p− psat, 0]

ṁC =
CCρv
t∞

α2
l

max [p− psat, 0]

max [p− psat, 0.01psat]

(1.8)

• Merkle

Initially designed for predicting sheet cavitations. The Kunz model employs the same vapor-
ization rate as the Merkle model. So, as anticipated, this model also relies on two empirical
constants and the same bulk flow properties [8].

ṁV =
CVρl

( 12ρvU
2
∞)t∞

min [p− psat, 0]

ṁC =
CC

( 12U
2
∞)t∞

max [p− psat, 0]

(1.9)

• SchnerrSauer

Originally developed for simulating transient cavitations. This model, the most recent among
these cavitation models, which will be used for the baseline test case, employs the simplified
Rayleigh-Plesset bubble dynamics equations, similar to the Zwart model, to be discussed later,
for calculating mass transfer rates [9]. In this model, apart from the empirical constants,
calculations involve a nucleation site volume fraction, αnuc, and a bubble radius, RB. Detailed
equations for these two parameters can be found in Section 1.1.1 of reference [6].

ṁV = CV(1 + αnuc − αl)αl
3ρlρv
ρRB

√
2

3ρl

1

|p− psat + 0.01psat|
min [p− psat, 0]

ṁC = CCα
2
l

3ρlρv
ρRB

√
2

3ρl

1

|p− psat + 0.01psat|
max [p− psat, 0]

(1.10)

1.2.2 Boiling models

• constant

The implementation of this model in OpenFOAM is based on the Lee phase change model. It
employs two empirical coefficients, CE and CC, calculated from the ratio between well-known
mass transfer intensity factors, rE and rC, and the saturation temperature, Tsat [4].{

ṁE = −CEρl max [T − Tsat, 0]

ṁC = CCρv max [Tsat − T, 0]
(1.11)

• interfaceHeatResistance

The implementation of this model in OpenFOAM is based on the film boiling model of
Hardt [10]. It utilizes the thermal transmittance of the fluid, R, as well as the vapor-liquid
interface area, Ainterface , calculated based on α = 0.5.

ṁE = − AinterfaceR

L(αl + SMALL)
max [T − Tsat, 0]

ṁC =
AinterfaceR

L(αv + SMALL)
max [Tsat − T, 0]

(1.12)

9



1.3. A thermodynamic cavitation model (ZwartExtended) Chapter 1. Theory

The reason that the ṁE equations include a minus sign while the ṁV equations do not is due
to the use of the maximum function for both condensation and evaporation rates in boiling models.
This is achieved by changing the position of T and Tsat, making the term T − Tsat positive for
both equations. In contrast, cavitation models use the minimum function for the vaporization rate,
resulting in the term p− psat being a negative term for the vaporization equation. Therefore, there
is no need to add the minus sign artificially to the equation.

It is also essential to note that the empirical constants for the models mentioned, denoted as
CC and CV/E, are specific to each model and test case. The utilization of the same symbols across
models does not imply uniform values or units for these constants.

1.3 A thermodynamic cavitation model (ZwartExtended)

In the field of bubble dynamics, a renowned equation, namely the Rayleigh-Plesset equation, is
employed to predict alterations in bubble radius under the influence of a pressure differential. This
equation relies on the thermophysical characteristics of the surrounding liquid, encompassing pa-
rameters such as kinematic viscosity and surface tension. The equation is expressed as [1]

pv − p

ρl
= R

d2RB

dt2
+

3

2

(
dRB

dt

)2

+
4νl
RB

dRB

dt
+

2σ

ρlRB
. (1.13)

This equation offers versatility in simplification based on various considerations of the ther-
modynamic relationship between the vapor bubble and the surrounding liquid. In the subsequent
discussion, we will investigate one of its most commonly applied simplifications, which gives rise to
the Zwart cavitation model. Towards the end, this equation will be augmented by incorporating
another bubble dynamics equation, thereby deriving a novel thermodynamic cavitation model.

1.3.1 Zwart cavitation model

In the Rayleigh-Plesset equation, Eq. (1.13), under the conditions where the influence of the surface
tension term as well as the kinematic viscosity term are negligible—that is respectively, when the
Weber number (We = ρlU

2l/σ), representing the ratio of inertia to surface tension, is significantly
greater than unity, and when the Reynolds number (Re = ρlU/ν), representing the ratio of inertia
to viscosity, exceeds values typical of laminar flow—the Rayleigh-Plesset equation can be simplified
to what is known as initial version of the Rayleigh equation [1, 11].

pv − p

ρl
= R

d2RB

dt2
+

3

2

(
dRB

dt

)2

(1.14)

Moreover, in the scenario where the scale effect, as denoted by the second-order term in Eq. (1.14),
can be disregarded—specifically, when the Knudsen number (Kn = λ/l = ν/l

√
πM/2ℜT ), repre-

senting the ratio of molecular mean free path to the physical length scale, is considerably less than
unity—the Rayleigh equation, Eq. (1.14), can be further simplified to [11]

pv − p

ρl
=

3

2

(
dRB

dt

)2

⇝
dRB

dt
=

√
2

3

pv − p

ρl
. (1.15)

This relation, which only considers the inertia (mechanical effect due to pressure difference),
constitutes the foundational equation in bubble dynamics, extensively employed in various cavitation
models, such as SchnerrSauer and Zwart models. The detailed equations and implementation
of the Zwart model are comprehensively explained in reference [6]. However, in this report, the
mass transfer rates are reiterated below, in Eq. (1.16), as the pressure-related terms of the new
thermodynamic cavitation model, which are precisely aligned with those of the Zwart model.

Preceding the introduction of the Zwart equations, in distinguishing αnuc and RB within this
model from the SchnerrSauer model, it is noteworthy that, in OpenFOAM implementations, these
parameters are computed based on other field properties for the SchnerrSauermodel. Conversely, in

10



1.3. A thermodynamic cavitation model (ZwartExtended) Chapter 1. Theory

the conventional application of the Zwart model, these parameters are treated as constants supplied
to the solver. 

ṁV = CV
3αnucρv

RB

√
2

3ρl

1

|p− psat + 0.01psat|
min [p− psat, 0]

ṁC = CC
3ρv
RB

√
2

3ρl

1

|p− psat + 0.01psat|
max [p− psat, 0]

(1.16)

1.3.2 ZwartExtended cavitation model

The Zwart cavitation model, grounded in the simplified Rayleigh bubble dynamics equation,
Eq. (1.15), predicts well the initial stage of bubble growth during the bubble generation process. In
this step, the dynamics are primarily influenced by the pressure disparity between the liquid and
vapor phases. However, as the bubble generation progresses (RB ≫ R0), subsequent growth pivots
on the heat transfer from the superheated liquid to the liquid-vapor interface, a factor overlooked in
the Zwart model. Consequently, as superheated liquid approaches its boiling temperature (either by
changing temperature or pressure), conventional cavitation models, which rely on inertia, encounter
challenges in accurately estimating flow behavior [3].

This is where the Plesset-Zwick bubble dynamics equation can be beneficial. Originally designed
to estimate changes in bubble radius by incorporating boiling heat transfer, this model considers
the vapor bubble to be at saturated vapor temperature, while the surrounding liquid maintains its
own temperature. Thus, the predicted bubble dynamics unfold as [12]

dRB

dt
=

√
3

π

ρlcp(T − Tsat)

ρvL

√
al
t

. (1.17)

This equation is incorporated linearly into the simplified Rayleigh equation, Eq. (1.15), by
Zhang Yao et al. [3] to consider the superposed effects of the inertia and heat transfer impacts
for simulating thermodynamic cavitating flows. Initially, this new cavitation model, named the
ZwartExtended model in this project, was applied across a broad range of water temperatures.
However, Huashi Xu et al. [11] later adapted it by applying a new set of empirical constants for
simulating cavitating flows of a superheated thermo-fluid, where the model again demonstrated sat-
isfactory performance. According to the ZwartExtended model, condensation and vaporization rates
can be calculated as



ṁV = CV
3αnucρv

RB

(√
2

3

1

ρl |p− psat + SMALL|
min [p− psat, 0]−

√
3

π

ρlcp
ρvL

√
al
t
max [T − Tsat, 0]

)

ṁC = CC
3ρv
RB

(√
2

3

1

ρl |p− psat + SMALL|
max [p− psat, 0] +

√
3

π

ρlcp
ρvL

√
al
t
max [Tsat − T, 0]

)
.

(1.18)

In this model, additional parameters, namely the thermal diffusivity of the liquid phase, al, and
the time variable, t, have been introduced beyond those featured in previous models. The incor-
poration of the temporal term could potentially introduce complexities in the application of these
equations. Fortunately, a favorable circumstance arises. Given that bubble growth is predominantly
influenced by temperature differences during the second stage of the cavitation process (RB ≫ R0),
the time variable t in these equations can be effectively substituted with a constant value represent-
ing the bubble growth time. This substitution, as declared by Zhang Yao et al., ensures enhanced
calculation convergence and stability of the model [3].

11



1.4. Comparing the source codes of iPCF and iCEF solvers Chapter 1. Theory

1.4 Comparing the source codes of iPCF and iCEF solvers

In this section, the detailed source codes of each solver will not be explored. Given the extensive
nature of this detailed explanation, it is worth noting that the complete source codes investigations
are available in the references mentioned earlier [4, 5, 6]. As declared at the outset of this chapter,
the focus will be on highlighting the key distinctions between the iPCF and iCEF source codes.
First of all, it is crucial to recognize that the iCEF solver is tailored for dynamic meshes, while the
basic version of the iPCF solver is designed for static meshes. Consequently, most of the disparities
observed in the primary solver files (.C) involve declarations of additional libraries and inclusions
of extra terms and conditions for calculating the flux field (phi) in the iCEF solver. Conversely, in
files like alphaEqn.H, alphaControls.H, alphaEqnSubCycle.H, and UEqn.H, contents are directly
imported from the iPCF solver in the options file of the Make directory, obviating the need for
detailed discussion in the subsequent sections. Moreover, since the upcoming chapter will employ
the iCEF solver as the foundation for constructing the thermalInterPhaseChangeFoam (tIPCF)
solver, the principal emphasis of this section will be on the supplementary terms present in the iPCF
solver that need to be incorporated into the iCEF solver for the development of the new solver.

1.4.1 Transport equations (UEqn, pEqn, TEqn, and alphaEqn)

To facilitate a smoother exploration of the source codes, it is beneficial to initially focus on the main
transport equations. However, it should be noted that the velocity and volume fraction equations
(UEqn and alphaEqn) remain identical across these solvers, as previously mentioned. Therefore,
the differences between the solvers can be assessed by examining the pEqn.H files. Two noticeable
distinctions are evident in the pEqn.H files. The first difference lies in the definition of the phiHbyA
field, as observable in the 4th lines of the following codes.

phiHbyA definition - iCEF/pEqn.H

1 surfaceScalarField phiHbyA

2 (

3 "phiHbyA",

4 (fvc::interpolate(HbyA) & mesh.Sf())

5 + fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi)

6 );

phiHbyA definition - iPCF/pEqn.H

1 surfaceScalarField phiHbyA

2 (

3 "phiHbyA",

4 fvc::flux(HbyA )

5 + fvc::interpolate(rho*rAU)*fvc::ddtCorr(U, phi)

6 );

However, according to the definition of fvc::flux function, the flux of HbyA is calculated through
the same expression as fvc::interpolate(HbyA) & mesh.Sf(). But in iCEF solver, this calculation
is written in this way because, as stated, this solver is designed for dynamic meshes. The subsequent
and principal distinction found in the pEqn.H files is the definition of the p_rghEqn matrices.

p rghEqn definition - iCEF/pEqn.H

1 fvScalarMatrix p_rghEqn

2 (

3 fvc::div(phiHbyA)

4 - fvm::laplacian(rAUf, p_rgh)

5 ==

6 vDotv + vDotc

7 );

12



1.4. Comparing the source codes of iPCF and iCEF solvers Chapter 1. Theory

p rghEqn definition - iPCF/pEqn.H

1 fvScalarMatrix p_rghEqn

2 (

3 fvc::div(phiHbyA) - fvm::laplacian(rAUf, p_rgh)

4 - (vDotvP - vDotcP)*(mixture->pSat() - rho*gh)

5 + fvm::Sp(vDotvP - vDotcP, p_rgh)

6 );

As observed, the divergence and laplacian terms remain consistent in these equations, with the
sole distinction residing in their source terms. As mentioned in the preceding sections, these source
terms are linked to the mass transfer rates between phases, fundamentally computed according
to the mDot() and mDotP() member functions of boiling and cavitation models, respectively. The
rationale behind the direct inclusion of source terms into the pressure equation in the iCEF solver, as
opposed to the implicit implementation in the iPCF solver, is that in the former scenario, the source
terms do not depend on pressure. Consequently, throughout the pressure equation-solving process,
their values remain constant. Conversely, in the latter scenario, the source terms are contingent on
pressure, necessitating their inclusion through discretization to facilitate solver capability in solving
the pressure equation.

In summary, both of these terms need to be incorporated into the pressure equation of the new
solver. However, due to the straightforward parsing of the condensation and vaporization rates’
equations in the ZwartExtended model into pressure and temperature terms, the new cavitation
model will feature two distinct functions: mDotT() and mDotP(). This approach aims to facilitate
the discretization process of the pressure equation.

Aside from the pressure equation, the TEqn, which is the temperature equation, is exclusive to
the iCEF solver, and a detailed exploration can be found in the reference [4]. The sole parameter
that establishes a connection between this equation and the phase change models is the source term,
calculated through the TSource() member function of the phase change model.

1.4.2 Solvers’ main algorithms (iPCF.C, iCEF.C, and createFields.H files)

Apart from the general distinctions highlighted at the beginning of this section, the primary disparity
between the main algorithms of these two solvers lies in how they create the pressure field. As evident
in the following source codes, in the iPCF solver, the pressure field is directly generated using the
p_rgh field by incorporating the hydraulic pressure, rho*gh. Consequently, the iPCF solver only
necessitates reading the p_rgh dictionary from the 0 directory of a test case. Conversely, in the
iCEF solver, the pressure field is constructed based on the p dictionary. This is essential as it serves
as a required field for the thermodynamic library of the iCEF solver, enabling the creation of a
thermo object specific to the temperature and pressure fields of a test case.

p definition - iCEF/createFields.H

1 // Creating e based thermo

2 autoPtr<twoPhaseMixtureEThermo> thermo

3 (

4 new twoPhaseMixtureEThermo(U, phi)

5 );

6

7 ...

8

9 volScalarField& p = thermo->p();

p definition - iPCF/createFields.H

1 volScalarField p

2 (

3 IOobject

4 (

5 "p",

6 runTime.timeName(),

7 mesh,

13



1.4. Comparing the source codes of iPCF and iCEF solvers Chapter 1. Theory

8 IOobject::NO_READ,

9 IOobject::AUTO_WRITE

10 ),

11 p_rgh + rho*gh

12 );

Furthermore, two additional volScalarField and a dimensionedScalar objects are generated
in the createFilds.H file of the iCEF solver, namely kappaEff, rhoCp, and Prt. These fields are
necessary for the energy transport equation of the solver.

1.4.3 Phase change models and their directories

Considering the phase change directory of the iCEF solver, named temperaturePhaseChangeTwoPha-
seMixtures, it contains the following directories shown in a tree diagram.

temperaturePhaseChangeTwoPhaseMixtures

Make

"A Boiling Model"

temperaturePhaseChangeTwoPhaseMixtures

thermoIncompressibleTwoPhaseMixture

twoPhaseMixtureEThermo

While, the phase change directory of the iCPF solver, named phaseChangeTwoPhaseMixtures,
contains these folders,

phaseChangeTwoPhaseMixtures

Make

"A Cavitation Model"

phaseChangeTwoPhaseMixture

As evident from the above tree diagrams, apart from the phaseChangeTwoPhaseMixture and
temperaturePhaseChangeTwoPhaseMixtures classes, which are basically the same, the phase change
directory of the iCEF solver includes two additional directories related to temperature. Specifically,
the phase change library of the iCEF solver, instead of utilizing the incompressibleTwoPhaseMixture
class employed by the iPCF solver, employs the thermoIncompressibleTwoPhaseMixture class.
This class is essentially inherited from the incompressibleTwoPhaseMixture class. Notably, it
adds the capability to read values of thermophysical properties pertinent to the energy equation,
such as thermal conductivities, specific heat capacities, and formation enthalpies of both phases.
These values are sourced from the transportProperties dictionary, in addition to properties like
kinematic viscosity and density, which are already being read by the parent class.

Additionally, the twoPhaseMixtureEThermo class, which inherits from both the basicThermo

and thermoIncompressibleTwoPhaseMixture classes, is responsible for calculating the thermo-
physical properties of the mixture (liquid and vapor). It also computes their effective parameters,
which are the combination of laminar and turbulent values. Moreover, this class reads the con-
stant saturation temperature, denoted as Tsat, from the thermophysicalProperties dictionary of
the respective test case. While the constant saturation pressure, denoted as pSat, is read by the
phaseChangeTwoPhaseMixture class in the iPCF solver, from the transportProperties dictionary,
which is the only difference between the main phase change classes of these two solvers.

14



Chapter 2

Implementing the
thermalInterPhaseChangeFoam solver
and its corresponding
ZwartExtended cavitation model

As explained in the preceding chapter, the developments of the tIPCF solver and its corresponding
ZwartExtended cavitation model are anchored in the iCEF solver and its constant boiling model.
Consequently, the implementation process begins by duplicating the entire iCEF solver directory into
the user directory and subsequently making the necessary file adjustments, including changing the
name of the files, removing the redundant boiling model (interfaceHeatResistance), and adding
the required libraries to the Make directory.

Preparing the base directory for implementing the new solver and its cavitation model

1 foam

2 cp -r --parents "applications/solvers/multiphase/interCondensatingEvaporatingFoam/"

3 "$WM_PROJECT_USER_DIR"
4 ufoam

5 cd applications/solvers/multiphase

6 mv interCondensatingEvaporatingFoam thermalInterPhaseChangeFoam

7 cd thermalInterPhaseChangeFoam

8 mv interCondensatingEvaporatingFoam.C thermalInterPhaseChangeFoam.C

9 sed -i s/interCondensatingEvaporatingFoam/thermalInterPhaseChangeFoam/g thermalInterPhaseChangeFoam.C

10 sed -i s/interCondensatingEvaporatingFoam/thermalInterPhaseChangeFoam/g Make/files

11 sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

12 cd temperaturePhaseChangeTwoPhaseMixtures

13 rm -r interfaceHeatResistance

14 mv constant ZwartExtended

15 mv ZwartExtended/constant.C ZwartExtended/ZwartExtended.C

16 mv ZwartExtended/constant.H ZwartExtended/ZwartExtended.H

17 sed -i s/constant/ZwartExtended/g ZwartExtended/ZwartExtended.H

18 sed -i s/constant/ZwartExtended/g ZwartExtended/ZwartExtended.C

19 sed -i s/constant/ZwartExtended/g Make/files

20 sed -i s/interfaceHeatResistance.*//g Make/files

21 sed -i s/libphaseTemperatureChangeTwoPhaseMixtures/libthermalPhaseChangeTwoPhaseMixtures/g Make/files

22 sed -i s/FOAM_LIBBIN/FOAM_User_LIBBIN/g Make/files

23 cd ..

Following the above steps, the core directory is prepared for the integration of new lines of code.
To start, the essential libraries need to be included into the options files of the Make directories for
both the main solver and the temperaturePhaseChangeTwoPhaseMixtures library. As depicted in
the subsequent list, initially, the saturationModel library must be added to the original options
file, as the new cavitation model will utilize a variable saturation temperature and pressure to

15



2.1. Implementing ZwartExtended cavitation model Chapter 2. Implementations

calculate mass transfer rates. Exactly the same lines (under both EXE_INC and EXE_LIBS) should
also be added to the options file of the Make directory inside the phase change library. Finally, due
to the change in the name of the phase change library to thermalPhaseChangeTwoPhaseMixtures

in the preparation steps, the new solver needs access to the new library in the user directory, which
is the rationale for adding the first two lines under EXE_LIBS.

Solver main directory - Make/options

1 interPhaseChangeFoam = $(FOAM_SOLVERS)/multiphase/interPhaseChangeFoam
2 interFoam = $(FOAM_SOLVERS)/multiphase/interFoam
3 VoF = $(FOAM_SOLVERS)/multiphase/VoF
4

5 EXE_INC = \

6 -I$(interPhaseChangeFoam) \

7 -I$(interFoam) \

8 -I$(VoF) \

9 -ItemperaturePhaseChangeTwoPhaseMixtures/lnInclude \

10 -I$(LIB_SRC)/finiteVolume/lnInclude \

11 -I$(LIB_SRC)/fvOptions/lnInclude\
12 -I$(LIB_SRC)/meshTools/lnInclude \

13 -I$(LIB_SRC)/sampling/lnInclude \

14 -I$(LIB_SRC)/dynamicFvMesh/lnInclude \

15 -I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

16 -I$(LIB_SRC)/transportModels \

17 -I$(LIB_SRC)/transportModels/twoPhaseMixture/lnInclude \

18 -I$(LIB_SRC)/transportModels/incompressible/lnInclude \

19 -I$(LIB_SRC)/transportModels/interfaceProperties/lnInclude \

20 -I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

21 -I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \

22 -I$(LIB_SRC)/phaseSystemModels/reactingEuler/saturationModels/lnInclude
23

24 EXE_LIBS = \

25 -L$(FOAM_USER_LIBBIN) \

26 -lthermalPhaseChangeTwoPhaseMixtures \

27 -lfiniteVolume \

28 -lfvOptions \

29 -lmeshTools \

30 -lsampling \

31 -ldynamicFvMesh \

32 -ltwoPhaseMixture \

33 -ltwoPhaseProperties \

34 -linterfaceProperties \

35 -lincompressibleTransportModels \

36 -lturbulenceModels \

37 -lincompressibleTurbulenceModels \

38 -lfluidThermophysicalModels \

39 -lsaturationModel

With all necessary changes made in the base directory, the implementation process of the new
solver and cavitation model can now commence. The implementation will proceed in two primary
steps: initially, the development of the phase change library in Section 2.1 as the basis for the
main solver, followed by the development of the main solver in Section 2.2, which is basically just a
modification of one of the transport equations.

2.1 Implementing ZwartExtended cavitation model

To facilitate a smooth implementation process, all necessary changes to each directory will be
discussed in separate sub-sections. The procedure will advance sequentially from a base class
to its derived classes, and subsequently to the next base class, and so forth. As nothing has
been altered in the thermoIncompressibleTwoPhaseMixture, which serves as the parent class for
twoPhaseMixtureEThermo, the changes in this derived class can be examined as the initial step.

16



2.1. Implementing ZwartExtended cavitation model Chapter 2. Implementations

2.1.1 twoPhaseMixtureEThermo

As mentioned at the beginning of this chapter, the saturation pressure and temperature in this
new cavitation model need to be variable. Consequently, it is not only essential to have access to
the built-in saturation models of OpenFOAM by including its library in this class, but also, when
calculating the saturation pressure and temperature based on the local temperature and pressure
(pSat(T) and Tsat(p)), it is necessary to restrict the values of the local temperature and pressure
within the range from the triple point up to the critical point of the fluid. This ensures that the
values of the saturation model remain reasonable and no Floating point exception error would
appear. Therefore, three parts of this class need to be modified: the header, the protected data, and
then the public member functions that provide access to these protected data. The modifications
are as follows.

twoPhaseMixtureEThermo.H

1 ...

2

3 #include "saturationModel.H"

4

5 ...

6

7 protected:

8

9 // Protected Data

10

11 //- Saturation model

12 autoPtr<saturationModel> saturationModelPtr_;

13

14 //- Critical pressure [Pa]

15 dimensionedScalar Pc_;

16

17 //- Critical temperature [K]

18 dimensionedScalar Tc_;

19

20 //- Triple-point pressure [Pa]

21 dimensionedScalar Pt_;

22

23 //- Triple-point temperature [K]

24 dimensionedScalar Tt_;

25

26 ...

27

28 // Access to thermodynamic state variables

29

30 //- Return the saturation temperature based on the chosen model

31 virtual tmp<volScalarField> Tsat

32 (

33 const volScalarField& p

34 ) const;

35

36 //- Return the saturation pressure based on the chosen model

37 virtual tmp<volScalarField> pSat

38 (

39 const volScalarField& T

40 ) const;

41

42 //- Return const-access to the critical pressure

43 const dimensionedScalar& Pc() const

44 {

45 return Pc_;

46 }

47

48 //- Return const-access to the critical temperature

49 const dimensionedScalar& Tc() const

50 {

51 return Tc_;

17



2.1. Implementing ZwartExtended cavitation model Chapter 2. Implementations

52 }

53

54 //- Return const-access to the triple-point pressure

55 const dimensionedScalar& Pt() const

56 {

57 return Pt_;

58 }

59

60 //- Return const-access to the triple-point temperature

61 const dimensionedScalar& Tt() const

62 {

63 return Tt_;

64 }

65 ...

As a result of these adjustments, the constructor of this class and its read() member function
must be modified in the twoPhaseMixtureEThermo.C file. The read() function should be modified
to ensure that the required triple- and critical-point temperatures and pressures are provided inside
the thermophysicalProperties dictionary. Additionally, two member functions, Tsat and pSat,
declared in the header file, should be defined here.

twoPhaseMixtureEThermo.C

1 ...

2

3 // * * * * * * * * * * * * * * * * Constructor * * * * * * * * * * * * * * * //

4

5 Foam::twoPhaseMixtureEThermo::twoPhaseMixtureEThermo

6 (

7 const volVectorField& U,

8 const surfaceScalarField& phi

9 )

10 :

11 basicThermo(U.mesh(), word::null),

12 thermoIncompressibleTwoPhaseMixture(U, phi),

13

14 saturationModelPtr_

15 (

16 saturationModel::New

17 (

18 static_cast<const basicThermo&>(*this).subDict("saturationModel"),

19 U.mesh()

20 )

21 ),

22 Pc_("Pc", dimPressure, static_cast<const basicThermo&>(*this)),

23 Tc_("Tc", dimTemperature, static_cast<const basicThermo&>(*this)),

24 Pt_("Pt", dimPressure, static_cast<const basicThermo&>(*this)),

25 Tt_("Tt", dimTemperature, static_cast<const basicThermo&>(*this))

26 {}

27

28

29 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

30

31 ...

32

33 Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureEThermo::Tsat

34 (

35 const volScalarField& p

36 ) const

37 {

38 return saturationModelPtr_->Tsat(p);

39 }

40

41

42 Foam::tmp<Foam::volScalarField> Foam::twoPhaseMixtureEThermo::pSat

43 (

44 const volScalarField& T

18



2.1. Implementing ZwartExtended cavitation model Chapter 2. Implementations

45 ) const

46 {

47 return saturationModelPtr_->pSat(T);

48 }

49

50

51 bool Foam::twoPhaseMixtureEThermo::read()

52 {

53 if (basicThermo::read() && thermoIncompressibleTwoPhaseMixture::read())

54 {

55 basicThermo::readEntry("Pc", Pc_);

56 basicThermo::readEntry("Tc", Tc_);

57 basicThermo::readEntry("Pt", Pt_);

58 basicThermo::readEntry("Tt", Tt_);

59

60 return true;

61 }

62

63 return false;

64 }

65

66

67 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

2.1.2 temperaturePhaseChangeTwoPhaseMixture

Within this class, the necessary modifications pertain to the member functions. As discussed in the
previous chapter, the equations of the new cavitation model need to be split into temperature and
pressure terms. Hence, instead of a single function for calculating the source term of the pressure
equation, there will be two (the following source code includes comments providing descriptions for
each of these terms). It is worth noting that the member functions mDotP() and mDotT(), along
with their derived functions vDotP() and vDotT(), are implemented as virtual functions. This
design choice has been implemented to enable each phase change model to calculate these functions
according to its distinct definitions. The following adjustments are required in the source code of
this class.

temperaturePhaseChangeTwoPhaseMixture.H

1 ...

2

3 // Member Functions

4

5 ...

6

7 //- Return the pressure term of the mass condensation and vaporisation

8 // rates as coefficients to multiply (p - pSat)

9 virtual Pair<tmp<volScalarField>> mDotP() const = 0;

10

11 //- Return the temperature term of the mass condensation and

12 // vaporisation rates as coefficients

13 virtual Pair<tmp<volScalarField>> mDotT() const = 0;

14

15 ...

16

17 //- Return the pressure term of the volumetric condensation and

18 // vaporisation rates as coefficients

19 virtual Pair<tmp<volScalarField>> vDotP() const;

20

21 //- Return the temperature term of the volumetric condensation and

22 // vaporisation rates as coefficients

23 virtual Pair<tmp<volScalarField>> vDotT() const;

24

25 ...

19



2.2. Implementing thermalInterPhaseChangeFoam solver Chapter 2. Implementations

temperaturePhaseChangeTwoPhaseMixture.C

1 ...

2

3 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

4

5 ...

6

7 Foam::Pair<Foam::tmp<Foam::volScalarField>>

8 Foam::temperaturePhaseChangeTwoPhaseMixture::vDotP() const

9 {

10 dimensionedScalar pCoeff(1.0/mixture_.rho1() - 1.0/mixture_.rho2());

11 Pair<tmp<volScalarField>> mDotP = this->mDotP();

12

13 return Pair<tmp<volScalarField>>(pCoeff*mDotP[0], pCoeff*mDotP[1]);

14 }

15

16 Foam::Pair<Foam::tmp<Foam::volScalarField>>

17 Foam::temperaturePhaseChangeTwoPhaseMixture::vDotT() const

18 {

19 dimensionedScalar pCoeff(1.0/mixture_.rho1() - 1.0/mixture_.rho2());

20 Pair<tmp<volScalarField>> mDotT = this->mDotT();

21

22 return Pair<tmp<volScalarField>>(pCoeff*mDotT[0], pCoeff*mDotT[1]);

23 }

24

25 ...

2.1.3 ZwartExtended

The ZwartExtended class, which inherits from the temperaturePhaseChangeTwoPhaseMixture class
and has been developed based on the constant class, has undergone extensive modifications, with
several new member data and functions implemented. Additionally, the return values of the pre-
existing functions have also been altered. Therefore, instead of isolating the modifications within the
constant base class, according to the convention of writing the tutorials of this course, the entire
new cavitation class will be presented in Appendix A.

2.2 Implementing thermalInterPhaseChangeFoam solver

Regarding implementing the tIPCF solver, fortunately, there is not much that needs to be changed
in the source code. At this phase of the project, the only modification required is to the source term
of the pressure equation, pEqn, as stated in Section 1.4.1. This is because all other source terms in
TEqn and alphaEqn have already been addressed in the implementation of the member functions of
the ZwartExtended cavitation model, and no further adjustments need to be done to employ them
in these transport equations.

pEqn.H

1 ...

2

3 // Update the pressure BCs to ensure flux consistency

4 constrainPressure(p_rgh, U, phiHbyA, rAUf);

5

6 Pair<tmp<volScalarField>> vDotP = mixture->vDotP();

7 const volScalarField& vDotcP = vDotP[0]();

8 const volScalarField& vDotvP = vDotP[1]();

9

10 Pair<tmp<volScalarField>> vDotT = mixture->vDotT();

11 const volScalarField& vDotcT = vDotT[0]();

12 const volScalarField& vDotvT = vDotT[1]();

13

14 volScalarField limitedT (min(max(T, thermo->Tt()), thermo->Tc()));

15

20



2.2. Implementing thermalInterPhaseChangeFoam solver Chapter 2. Implementations

16 while (pimple.correctNonOrthogonal())

17 {

18 fvScalarMatrix p_rghEqn

19 (

20 fvc::div(phiHbyA) - fvm::laplacian(rAUf, p_rgh)

21 - (vDotvP - vDotcP)*(thermo->pSat(limitedT) - rho*gh)

22 + fvm::Sp(vDotvP - vDotcP, p_rgh)

23 ==

24 vDotvT + vDotcT

25 );

26

27 ...

At this stage, all that is required is to first compile the phase change library and then compile
the main solver, which can be achieved by executing the specified commands below. After that, if
everything is done correctly, there will be a new library named libthermalPhaseChangeTwoPhase-

Mixtures.so in the $WM_PROJECT_USER_DIR/platforms/*/lib directory, and a new solver named
thermalInterPhaseChangeFoam in the $WM_PROJECT_USER_DIR/platforms/*/bin directory.

Compiling the new solver and its cavitation model

1 ufoam

2 cd applications/solvers/multiphase/thermalInterPhaseChangeFoam

3 wclean

4 wclean temperaturePhaseChangeTwoPhaseMixtures

5 wmake temperaturePhaseChangeTwoPhaseMixtures

6 wmake

21



Chapter 3

Test cases and results

As the test case for the new solver and cavitation model, the original tutorial of the iPCF solver was
chosen, which involves modeling the cavitating flow over a bullet moving through water. Several
reasons influenced this decision. First, there was a need for a reliable base case to which the results
of the new models could be compared. Additionally, for the tutorial test cases within this course,
the simulation runtime needed to be relatively short, making it impractical to use a real engineering
application for assessing the new models. Considering that the original tutorial is a laminar case, this
simplified the comparison process, as there was no need to account for turbulent parameters in the
final results. Overall, the only modification to the original tutorial was to increase the temperature
of the liquid, bringing it close to its boiling temperature at the free stream pressure.

3.1 Setting up the test case for iPCF solver

As mentioned, all that needs to be done is to duplicate the original tutorial of the iPCF solver, named
cavitatingBullet, and then adjust the liquid temperature and its thermophysical properties, by
going through the subsequent relevant sections of the following files. These modifications need to
be done for the iPCF test case with high temperature (363 K).

Copying the original tutorial

1 run

2 cp -r "$WM_PROJECT_DIR/tutorials/multiphase/interPhaseChangeFoam/cavitatingBullet/"
"cavitatingBullet_HighTemperature"

• Modifying the saturation pressure and transport properties of the phases

constant/transportProperties dictionary

1 pSat 69783; // Saturation pressure at 363 K

2

3 sigma 0.061; // Water surface tension at 363 K

4

5 water // Saturated liquid water properties at 363 K (CoolProp)

6 {

7 transportModel Newtonian;

8 nu 3.26e-07;

9 rho 965.396;

10 }

11

12 vapour // Saturated vapour water properties at 363 K (CoolProp)

13 {

14 transportModel Newtonian;

15 nu 2.817e-05;

16 rho 0.422;

17 }

18 ...

22



3.2. Setting up the test case for tIPCF solver Chapter 3. Test cases and results

• Changing the number of subdomains for parallel simulation

system/decomposeParDict dictionary

1 numberOfSubdomains 8;

2 method simple;

3

4 coeffs

5 {

6 n (1 2 4);

7 }

• Changing the Allrun script for running in parallel mode

Allrun file

1 ...

2 runApplication decomposePar

3

4 # Run the solver

5 # runApplication $(getApplication)
6 runParallel $(getApplication)
7 #------------------------------------------------------------------------------

3.2 Setting up the test case for tIPCF solver

Configuring the test case for the tIPCF solver requires additional steps. First, as noted in Sec-
tion 1.4.2, the iCEF solver reads the pressure dictionary directly from the 0 directory. Therefore, for
the tICPF solver, which is also derived from the iCEF solver, this pressure dictionary needs inclusion
in the 0 directory. Additionally, since this new solver deals with the energy equation, it requires a
temperature dictionary in the 0 directory. Besides the fields dictionaries, as mentioned in Section 2.1,
this new cavitation model needs to read additional constants from the phaseChangeProperties,
thermophysicalProperties, and transportProperties dictionaries. These new entries must be
included in the mentioned dictionaries. Also, due to the energy equation and the dynamic mesh
nature of this solver, several entries need to be added to the dictionaries of the system directory.
All these will be detailed in the following.

Preparing the original tutorial

1 run

2 cp -r "$WM_PROJECT_DIR/tutorials/multiphase/interPhaseChangeFoam/cavitatingBullet/"
"thermalCavitatingBullet"

3 cd thermalCavitatingBullet

4 cp 0.orig/p_rgh 0.orig/p

5 cp 0.orig/alpha.water 0.orig/T

6 touch constant/phaseChangeProperties

7 touch constant/thermophysicalProperties

• Pressure field
(Header is included because the object needs to be changed from p_rgh to p)

0.orig/p dictionary

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class volScalarField;

6 object p;

7 }

8 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

9

23



3.2. Setting up the test case for tIPCF solver Chapter 3. Test cases and results

10 dimensions [ 1 -1 -2 0 0 0 0 ];

11

12 internalField uniform 1e05;

13

14 boundaryField

15 {

16 inlet

17 {

18 type calculated;

19 value $internalField;
20 }

21

22 outlet

23 {

24 type calculated;

25 value $internalField;
26 }

27

28 walls

29 {

30 type symmetry;

31 }

32

33 bullet

34 {

35 type calculated;

36 value $internalField;
37 }

38 }

39

40

41 // ************************************************************************* //

• Temperature field
(Header is included because the object needs to be changed from alpha.water to T)

0.orig/T dictionary

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class volScalarField;

6 object T;

7 }

8 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

9

10 dimensions [0 0 0 1 0 0 0];

11

12 internalField uniform 363;

13

14 boundaryField

15 {

16 inlet

17 {

18 type fixedValue;

19 value $internalField;
20 }

21

22 outlet

23 {

24 type inletOutlet;

25 inletValue $internalField;
26 }

27

28 walls

29 {

24



3.2. Setting up the test case for tIPCF solver Chapter 3. Test cases and results

30 type symmetry;

31 }

32

33 bullet

34 {

35 type zeroGradient;

36 }

37 }

38

39

40 // ************************************************************************* //

• Phase change properties
(Header is included because this file was created as a blank file)

The specific coefficients for the new cavitation model should be included in this dictionary.
These coefficients are derived from references [3, 6, 11].

constant/phaseChangeProperties dictionary

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object phaseChangeProperties;

7 }

8 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

9

10 phaseChangeTwoPhaseModel ZwartExtended;

11

12 ZwartExtendedCoeffs

13 {

14 Cc 2e-03;

15 Cv 10;

16 alphaNuc 5e-04;

17 rNuc 1e-06;

18 tG 5e-03;

19 TInf 363;

20 }

21

22 // ************************************************************************* //

• Thermophysical properties
(Header is included because this file was created as a blank file)

Within this dictionary, it is necessary to include the temperature and pressure values corre-
sponding to the triple- and critical-point, as explained in Section 2.1.1. Simultaneously, the
coefficients for the well-known Antoine saturation model, derived from reference [13], should
also be added. However, it is worth noting that the coefficients in this reference were originally
formulated for a different version of the Antoine saturation model. As a result, modifications
were made to adapt the coefficients for compatibility with the OpenFOAM implementation of
this model, which relies on natural logarithms, pressure expressed in Pascal, and temperature
in Kelvin.

constant/thermophysicalProperties dictionary

1 FoamFile

2 {

3 version 2.0;

4 format ascii;

5 class dictionary;

6 object thermophysicalProperties;

7 }

8 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

25



3.2. Setting up the test case for tIPCF solver Chapter 3. Test cases and results

9 //- Water critical- and triple-point pressures and temperatures (CoolProp)

10 Pc 2.2064e7;

11 Tc 647.096;

12

13 Pt 611.655;

14 Tt 273.16;

15

16 /*

17 saturationModel

18 {

19 type constant;

20 pSat 69783;

21 Tsat 363;

22 }

23 */

24

25 saturationModel

26 {

27 type Antoine;

28 A 23.196;

29 B -3816.447;

30 C -46.13;

31 }

32

33 // ************************************************************************* //

• Transport properties

As evident in the following, within each phase dictionary, namely water and vapour, four
entries pertaining to the energy equation have been added. Consequently, the transport-

Properties dictionary for the new solver and its cavitation model mirrors the structure found
in the iCEF original tutorial, i.e. condensatingVessel.

constant/transportProperties dictionary

1 phases (water vapour);

2

3 sigma 0.061; // Water surface tension at 363 K

4

5 water // Saturated liquid water properties at 363 K (CoolProp)

6 {

7 transportModel Newtonian;

8 nu 3.26e-07;

9 rho 965.396;

10

11 Cp 4205.135;

12 Cv 3821.188;

13 kappa 0.673; // Thermal conductivity [J/s/m/K]

14 hf 376408.297;

15 }

16

17 vapour // Saturated vapour water properties at 363 K (CoolProp)

18 {

19 transportModel Newtonian;

20 nu 2.817e-05;

21 rho 0.422;

22

23 Cp 2042.423;

24 Cv 1531.255;

25 kappa 0.024;

26 hf 2659285.627;

27 }

28

29 Prt 0.7;

30

31 // ************************************************************************* //

26



3.2. Setting up the test case for tIPCF solver Chapter 3. Test cases and results

• Changing the default solver and adding two new entries in control dictionary

system/controlDict dictionary

1 ...

2

3 application thermalInterPhaseChangeFoam;

4

5 ...

6

7 maxAlphaCo 1.0;

8

9 maxDeltaT 1e-02;

10

11

12 // ************************************************************************* //

• Including the required numerical schemes for the temperature field

system/fvSchemes dictionary

1 ...

2

3 divSchemes

4 {

5 ...

6 div(rhoCpPhi,T) Gauss linearUpwind grad(T);

7 ...

8 div((muEff*dev(T(grad(U))))) Gauss linear;

9 div((interpolate(cp)*rhoPhi),T) Gauss linearUpwind grad(T);

10 }

11

12 ...

13

14 wallDist

15 {

16 method meshWave;

17 }

• Including the required control entries for the energy equation

system/fvSolution dictionary

1 ...

2

3 solvers

4 {

5 ".*(rho|rhoFinal)"

6 {

7 solver diagonal;

8 }

9

10 ...

11

12 "T.*"

13 {

14 solver smoothSolver;

15 smoother symGaussSeidel;

16 tolerance 1e-6;

17 relTol 0.0;

18 }

19

20 ...

21

22 }

23

24 ...

27



3.3. Results Chapter 3. Test cases and results

3.3 Results

In this section, the outcomes of the three different cases will be presented and compared to each other.
Firstly, the results of the original iPCF tutorial will be examined. Secondly, the case configuration
for simulating the iPCF tutorial under elevated temperatures will be explored. It is noteworthy that,
despite the fact that the energy equation is not solved by the iPCF solver, the impact of increased
temperature will be manifested in altered saturation pressure and other transport properties of the
liquid. Lastly, the same case will be analyzed using the tIPCF solver. Notably, the outlet boundary
will be reached by the cavitation of the flow at higher temperatures around 9 ms, exerting influence
on domain properties thereafter. Thus, only the results up to this critical time will be presented
in the subsequent discussion. Moreover, given that the original iPCF tutorial, as depicted in the
following figures, was tailored for a short cavitating flow over the bullet, the mesh resolution in the
latter portion of the domain is inadequately refined, thereby inducing anomalous characteristics in
the tail of the cavitating flow for cases with higher saturation temperature at 8 ms.

As outlined in the preceding setting sections, the cavitation model utilized for the iPCF solver
is the SchnerrSauer model, while for the tIPCF solver, the ZwartExtended model is employed. To
visualize the simulation results using ParaView, certain considerations should be noted. Firstly, since
the simulations were conducted in parallel mode without reconstruction, it is essential to select the
Decomposed Case type under the Properties section of a given test case in ParaView, as opposed
to the default Reconstructed Case option. Secondly, due to the placement of the bullet in the
center of the domain, visualizing a cross-sectional representation of the domain is preferable that
can be achieved by using either Clip or Slice filters.

Figure 3.1: Volume fraction of the carrier fluid at 1 ms with different solvers and under different
conditions

In Figure 3.1, the results are presented in three rows: the first row displays the outcomes of the
iPCF solver at a temperature of 293 K (original tutorial). Moving to the second row, the results
of the same solver under an elevated temperature of 363 K are showcased. Lastly, in the third
row, the outcomes of the tIPCF solver under the identical temperature as the second row, 363 K, are

28



3.3. Results Chapter 3. Test cases and results

illustrated. It is important to note that the bulk fluid (free stream) pressure is held constant at 1 bar
across all these cases. Observing the figures, it becomes evident that initially, the ZwartExtended

cavitation model (third row) predicts higher cavitation in the flow with a high saturation temperature
(close to its boiling point) in comparison to the Schnerrsauer model (second row). Furthermore,
comparing the Schnerrsauer model in two different conditions (first and second rows) illustrates
that increasing the saturation temperature of the flow does not initially significantly increase the
cavitation rate for this model.

However, as depicted in Figure 3.2, although the Schnerrsauer model initially projected lower
vaporization, it predicted higher vapor fractions after 8 ms compared to the ZwartExtended model
behind the bullet (second and third rows). In other words, while the ZwartExtended model forecasts
elevated vaporization rates at the beginning, it also predicts heightened condensation rates after the
establishment of the flow.

Figure 3.2: Volume fraction of the carrier fluid at 8 ms with different solvers and under different
conditions

Finally, it is noteworthy that computing the pressure coefficient of the bullet, denoted as
Cp = p−p∞

1
2ρ∞U2 , which closely corresponds to the cavitation number in this scenario, does not re-

veal a substantial difference between the employed cavitation models across the bullet. However,
the difference between the computed coefficients decreases over time, just like the appearance of
the volume fraction contours in the above figures. Therefore, the author’s perspective at this stage
is that for a more meaningful comparison between models, their application in simulating two sce-
narios is crucial: first, simulating cavitating flows involving thermo-fluids, such as refrigerants, and
then simulating cavitating internal flows. In the former cases, the thermal impact of the cavitation
phenomenon will be more significant due to the thermophysical properties of the fluid, and in the
latter cases, a highly informative criterion, such as the discharge coefficient of the nozzle, can be
calculated, providing a more effective means of distinguishing between these models.

29



Bibliography

[1] C. E. Brennen, Cavitation and Bubble Dynamics. New York: Oxford University Press, Jan.
1995.

[2] Y. Sun, Z. Guan, and K. Hooman, “Cavitation in Diesel Fuel Injector Nozzles and its Influence
on Atomization and Spray,” Chemical Engineering & Technology, vol. 42, no. 1, pp. 6–29, 2019.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ceat.201800323.

[3] Z. Yao, L. Xian-Wu, Jibin, L. Shu-Hong, W. Yu-Lin, and X. Hong-Yuan, “A Thermodynamic
Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures,”
Chinese Physics Letters, vol. 27, p. 016401, Jan. 2010.

[4] Y. Sun, “Description of interCondensatingEvaporatingFoam and implementation of SGS term
into volume fraction equation,” In Proceedings of CFD with OpenSource Software, 2022, Edited
by Nilsson. H. http://dx.doi.org/10.17196/OS CFD#YEAR 2022.

[5] A. Asnagi, “interPhaseChangeFoam tutorial and PANS turbulence model,” In
Proceedings of CFD with OpenSource Software, 2013, Edited by Nilsson. H.
http://dx.doi.org/10.17196/OS CFD#YEAR 2013.

[6] M. Jansson, “Implementing a Zwart-Gerber-Belamri cavitation model,” In Pro-
ceedings of CFD with OpenSource Software, 2018, Edited by Nilsson. H.
http://dx.doi.org/10.17196/OS CFD#YEAR 2018.

[7] R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. Chyczewski, J. W. Lindau, H. J. Gibeling,
S. Venkateswaran, and T. R. Govindan, “A preconditioned Navier–Stokes method for two-phase
flows with application to cavitation prediction,” Computers & Fluids, vol. 29, pp. 849–875, Aug.
2000.

[8] C. Merkle, J. Feng, and P. Buelow, “Computational modeling of the dynamics of sheet cavita-
tion,” 1998.

[9] G. Schnerr Professor Dr.-Ing.habil, “Physical and Numerical Modeling of Unsteady Cavitation
Dynamics,” May 2001.

[10] S. Hardt and F. Wondra, “Evaporation model for interfacial flows based on a continuum-field
representation of the source terms,” Journal of Computational Physics, vol. 227, pp. 5871–5895,
May 2008.

[11] H. u, T. ang, and Z. he, “Flow in fuel nozzles under cavitation and flash-boiling conditions,”
AIP Advances, vol. 12, no. 5, p. 055218, 2022. eprint: https://doi.org/10.1063/5.0089755.

[12] M. S. Plesset and S. A. Zwick, “The Growth of Vapor Bubbles in Superheated Liquids,” Journal
of Applied Physics, vol. 25, pp. 493–500, May 2004.

[13] Appendix A: Useful Tables and Charts, pp. 303–317. John Wiley Sons, Ltd, 2012.

30



Study questions

1. What criteria are utilized to classify a phase change phenomenon as cavitation?

2. What sets apart a cavitation model from a boiling model at a fundamental level?

3. How are cavitation and boiling models implemented in OpenFOAM’s computational frame-
work?

4. What constitutes the bubble dynamics equations, and what functions do they serve in the
modeling of the cavitation phenomenon?

5. What is the significance of considering the combined impact of mechanical and thermal influ-
ences in the cavitation process?

6. In the context of cavitation, how can thermal effects be appropriately accounted for?

7. How a thermodynamic cavitation model can be implemented in OpenFOAM? What additional
libraries need to be considered in comparison to the required libraries of the built-in cavitation
models in OpenFOAM?

8. How a non-isothermal counterpart for interPhaseChangeFoam solver can be implemented in
OpenFOAM?

31



Appendix A

ZwartExtended cavitation model
source code

A.1 ZwartExtended.H file

ZwartExtended.H file

1 /*---------------------------------------------------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration |

5 \\ / A nd | www.openfoam.com

6 \\/ M anipulation |

7 -------------------------------------------------------------------------------

8 Copyright (C) 2016-2019 OpenCFD Ltd.

9 -------------------------------------------------------------------------------

10 License

11 This file is part of OpenFOAM.

12

13 OpenFOAM is free software: you can redistribute it and/or modify it

14 under the terms of the GNU General Public License as published by

15 the Free Software Foundation, either version 3 of the License, or

16 (at your option) any later version.

17

18 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

19 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

20 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

21 for more details.

22

23 You should have received a copy of the GNU General Public License

24 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

25

26 Class

27 Foam::temperaturePhaseChangeTwoPhaseMixture::ZwartExtended

28

29 Description

30 This model is based on a thermodynamic cavitation model, which considers

31 the superposed effect of inertia (mechanical effect due to pressure

32 gradient) and heat transfer (thermal effect due to temperature gradient)

33 impacts in calculating the mass transfer rates.

34

35 Reference:

36 \verbatim

37 Z. Yao, L. Xian-Wu, Jibin, L. Shu-Hong, W. Yu-Lin, and X. Hong-Yuan,

38 A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a

39 Wide Range of Water Temperatures, Chinese Phys. Lett., vol. 27, no. 1,

40 p. 016401, Jan. 2010, doi: 10.1088/0256-307X/27/1/016401.

41 \endverbatim

32



A.1. ZwartExtended.H file Appendix A. ZwartExtended cavitation model source code

42

43 SourceFiles

44 ZwartExtended.C

45

46 \*--------------------------------------------------------------------*/

47

48 #ifndef ZwartExtended_H

49 #define ZwartExtended_H

50

51 #include "temperaturePhaseChangeTwoPhaseMixture.H"

52

53 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

54

55 namespace Foam

56 {

57 namespace temperaturePhaseChangeTwoPhaseMixtures

58 {

59

60 /*--------------------------------------------------------------------*\

61 Class ZwartExtended

62 \*--------------------------------------------------------------------*/

63

64 class ZwartExtended

65 :

66 public temperaturePhaseChangeTwoPhaseMixture

67 {

68 // Private data

69

70 //- Condensation rate coefficient [-]

71 dimensionedScalar Cc_;

72

73 //- Vapourisation rate coefficient [-]

74 dimensionedScalar Cv_;

75

76 //- Nucleation site volume-fraction [-]

77 dimensionedScalar alphaNuc_;

78

79 //- Nucleation site radius [m]

80 dimensionedScalar rNuc_;

81

82 //- Bubble growth time [s]

83 dimensionedScalar tG_;

84

85 //- Bulk temperature (liquid) [K]

86 dimensionedScalar TInf_;

87

88 //- Return the limited pressures of both phases for calculating Tsat

89 tmp<volScalarField> pTsat

90 (

91 const volScalarField& p

92 ) const;

93

94 //- Return the limited temperature for calculating pSat

95 tmp<volScalarField> TpSat

96 (

97 const volScalarField& T

98 ) const;

99

100 //- Part of the condensation and vaporisation rates [s/m2]

101 tmp<volScalarField> pCoeff

102 (

103 const volScalarField& p,

104 const volScalarField& T

105 ) const;

106

107 //- Part of the condensation and vaporisation rates [J/m3/s/K]

108 tmp<volScalarField> TCoeff() const;

109

33



A.1. ZwartExtended.H file Appendix A. ZwartExtended cavitation model source code

110

111 public:

112

113 //- Runtime type information

114 TypeName("ZwartExtended");

115

116

117 // Constructors

118

119 //- Construct from components

120 ZwartExtended

121 (

122 const thermoIncompressibleTwoPhaseMixture& mixture,

123 const fvMesh& mesh

124 );

125

126

127 //- Destructor

128 virtual ~ZwartExtended() = default;

129

130

131 // Member Functions

132

133 //- Return the mass condensation and vaporisation rates as a

134 // coefficient to multiply (1 - alphal) for the condensation rate

135 // and a coefficient to multiply alphal for the vaporisation rate

136 virtual Pair<tmp<volScalarField>> mDotAlphal() const;

137

138 //- Return the pressure term of the mass condensation and vaporisation

139 // rates as coefficients to multiply (p - pSat)

140 virtual Pair<tmp<volScalarField>> mDotP() const;

141

142 //- Return the temperature term of the mass condensation and

143 // vaporisation rates as coefficients

144 virtual Pair<tmp<volScalarField>> mDotT() const;

145

146 //- Source for T equarion

147 virtual tmp<fvScalarMatrix> TSource() const;

148

149 //- Correct the ZwartExtended phaseChange model

150 virtual void correct();

151

152 //- Read the transportProperties dictionary and update

153 virtual bool read();

154 };

155

156

157 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

158

159 } // End namespace temperaturePhaseChangeTwoPhaseMixtures

160 } // End namespace Foam

161

162 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

163

164 #endif

165

166 // ************************************************************************* //

34



A.2. ZwartExtended.C file Appendix A. ZwartExtended cavitation model source code

A.2 ZwartExtended.C file

ZwartExtended.C file

1 /*---------------------------------------------------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration |

5 \\ / A nd | www.openfoam.com

6 \\/ M anipulation |

7 -------------------------------------------------------------------------------

8 Copyright (C) 2016-2020 OpenCFD Ltd.

9 -------------------------------------------------------------------------------

10 License

11 This file is part of OpenFOAM.

12

13 OpenFOAM is free software: you can redistribute it and/or modify it

14 under the terms of the GNU General Public License as published by

15 the Free Software Foundation, either version 3 of the License, or

16 (at your option) any later version.

17

18 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

19 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

20 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

21 for more details.

22

23 You should have received a copy of the GNU General Public License

24 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

25

26 \*---------------------------------------------------------------------------*/

27

28 #include "ZwartExtended.H"

29 #include "addToRunTimeSelectionTable.H"

30 #include "fvcGrad.H"

31 #include "twoPhaseMixtureEThermo.H"

32 #include "fvmSup.H"

33 #include "mathematicalConstants.H"

34

35 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

36

37 namespace Foam

38 {

39 namespace temperaturePhaseChangeTwoPhaseMixtures

40 {

41 defineTypeNameAndDebug(ZwartExtended, 0);

42 addToRunTimeSelectionTable

43 (

44 temperaturePhaseChangeTwoPhaseMixture,

45 ZwartExtended,

46 components

47 );

48 }

49 }

50

51 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

52

53 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::ZwartExtended

54 (

55 const thermoIncompressibleTwoPhaseMixture& mixture,

56 const fvMesh& mesh

57 )

58 :

59 temperaturePhaseChangeTwoPhaseMixture(mixture, mesh),

60 Cc_("Cc", dimless, optionalSubDict(type() + "Coeffs")),

61 Cv_("Cv", dimless, optionalSubDict(type() + "Coeffs")),

62 alphaNuc_("alphaNuc", dimless, optionalSubDict(type() + "Coeffs")),

63 rNuc_("rNuc", dimLength, optionalSubDict(type() + "Coeffs")),

35



A.2. ZwartExtended.C file Appendix A. ZwartExtended cavitation model source code

64 tG_("tG", dimTime, optionalSubDict(type() + "Coeffs")),

65 TInf_("TInf", dimTemperature, optionalSubDict(type() + "Coeffs"))

66 {

67 correct();

68 }

69

70 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

71

72 Foam::tmp<Foam::volScalarField>

73 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::pTsat

74 (

75 const volScalarField& p

76 ) const

77 {

78 const twoPhaseMixtureEThermo& thermo =

79 refCast<const twoPhaseMixtureEThermo>

80 (

81 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

82 );

83

84 volScalarField limitedP

85 (

86 "pTsat",

87 min(max(p, thermo.Pt()), thermo.Pc())

88 );

89

90 if (mesh_.time().outputTime())

91 {

92 limitedP.write();

93 }

94

95 return

96 tmp<volScalarField>(new volScalarField(limitedP));

97 }

98

99 Foam::tmp<Foam::volScalarField>

100 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::TpSat

101 (

102 const volScalarField& T

103 ) const

104 {

105 const twoPhaseMixtureEThermo& thermo =

106 refCast<const twoPhaseMixtureEThermo>

107 (

108 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

109 );

110

111 volScalarField limitedT

112 (

113 "TpSat",

114 min(max(T, thermo.Tt()), thermo.Tc())

115 );

116

117 if (mesh_.time().outputTime())

118 {

119 limitedT.write();

120 }

121

122 return

123 tmp<volScalarField>(new volScalarField(limitedT));

124 }

125

126

127 Foam::tmp<Foam::volScalarField>

128 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::pCoeff

129 (

130 const volScalarField& p,

131 const volScalarField& T

36



A.2. ZwartExtended.C file Appendix A. ZwartExtended cavitation model source code

132 ) const

133 {

134 const twoPhaseMixtureEThermo& thermo =

135 refCast<const twoPhaseMixtureEThermo>

136 (

137 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

138 );

139

140 const volScalarField pSat = thermo.pSat(this->TpSat(T));

141

142 return

143 (3*mixture_.rho2())*sqrt(2/(3*mixture_.rho1()))

144 /(rNuc_*sqrt(mag(p - pSat) + SMALL*pSat));

145 }

146

147

148 Foam::tmp<Foam::volScalarField>

149 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::TCoeff() const

150 {

151 volScalarField limitedAlpha1

152 (

153 min(max(mixture_.alpha1(), scalar(0)), scalar(1))

154 );

155

156 //- Specific heat capacity of the mixture [J/kg/K]

157 volScalarField cp

158 (

159 limitedAlpha1*mixture_.Cp1()

160 + (scalar(1) - limitedAlpha1)*mixture_.Cp2()

161 );

162

163 //- Thermal diffusivity of the liquid phase [m2/s]

164 const dimensionedScalar a1 =

165 mixture_.kappa1()/(mixture_.Cp1()*mixture_.rho1());

166

167 return

168 (3*mixture_.rho1())*cp*sqrt(3*a1)

169 /(rNuc_*sqrt(constant::mathematical::pi*tG_));

170 }

171

172

173 Foam::Pair<Foam::tmp<Foam::volScalarField>>

174 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::mDotAlphal() const

175 {

176 const volScalarField& p = mesh_.lookupObject<volScalarField>("p");

177 const volScalarField& T = mesh_.lookupObject<volScalarField>("T");

178

179 volScalarField pCoeff(this->pCoeff(p, T));

180 volScalarField TCoeff(this->TCoeff());

181

182 const twoPhaseMixtureEThermo& thermo =

183 refCast<const twoPhaseMixtureEThermo>

184 (

185 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

186 );

187

188 const volScalarField pSat = thermo.pSat(this->TpSat(T));

189 const volScalarField Tsat = thermo.Tsat(this->pTsat(p));

190

191 const dimensionedScalar p0(dimPressure, Zero);

192 const dimensionedScalar T0(dimTemperature, Zero);

193

194 //- Latent heat of vaporization [J/kg]

195 dimensionedScalar L = mixture_.Hf2() - mixture_.Hf1();

196

197 return Pair<tmp<volScalarField>>

198 (

199 Cc_*(pCoeff*max(p - pSat, p0) + TCoeff*max(Tsat - T, T0)/L),

37



A.2. ZwartExtended.C file Appendix A. ZwartExtended cavitation model source code

200 Cv_*alphaNuc_*(pCoeff*min(p - pSat, p0) - TCoeff*max(T - Tsat, T0)/L)

201 );

202 }

203

204

205 Foam::Pair<Foam::tmp<Foam::volScalarField>>

206 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::mDotP() const

207 {

208 const volScalarField& p = mesh_.lookupObject<volScalarField>("p");

209 const volScalarField& T = mesh_.lookupObject<volScalarField>("T");

210

211 volScalarField pCoeff(this->pCoeff(p, T));

212

213 volScalarField limitedAlpha1

214 (

215 min(max(mixture_.alpha1(), scalar(0)), scalar(1))

216 );

217

218 const twoPhaseMixtureEThermo& thermo =

219 refCast<const twoPhaseMixtureEThermo>

220 (

221 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

222 );

223

224 const volScalarField pSat = thermo.pSat(this->TpSat(T));

225

226 return Pair<tmp<volScalarField>>

227 (

228 Cc_*(scalar(1) - limitedAlpha1)*pos0(p - pSat)*pCoeff,

229 -Cv_*alphaNuc_*limitedAlpha1*neg(p - pSat)*pCoeff

230 );

231 }

232

233

234 Foam::Pair<Foam::tmp<Foam::volScalarField>>

235 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::mDotT() const

236 {

237 const volScalarField& p = mesh_.lookupObject<volScalarField>("p");

238 const volScalarField& T = mesh_.lookupObject<volScalarField>("T");

239

240 volScalarField TCoeff(this->TCoeff());

241

242 volScalarField limitedAlpha1

243 (

244 min(max(mixture_.alpha1(), scalar(0)), scalar(1))

245 );

246

247 const twoPhaseMixtureEThermo& thermo =

248 refCast<const twoPhaseMixtureEThermo>

249 (

250 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

251 );

252

253 const volScalarField Tsat = thermo.Tsat(this->pTsat(p));

254

255 const dimensionedScalar T0(dimTemperature, Zero);

256

257 dimensionedScalar L = mixture_.Hf2() - mixture_.Hf1();

258

259 volScalarField mDotTV

260 (

261 "mDotTV", Cv_*alphaNuc_*limitedAlpha1*TCoeff*max(T - Tsat, T0)/L

262 );

263 volScalarField mDotTC

264 (

265 "mDotTC", Cc_*(scalar(1) - limitedAlpha1)*TCoeff*max(Tsat - T, T0)/L

266 );

267

38



A.2. ZwartExtended.C file Appendix A. ZwartExtended cavitation model source code

268 if (mesh_.time().outputTime())

269 {

270 mDotTC.write();

271 mDotTV.write();

272 }

273

274 return Pair<tmp<volScalarField>>

275 (

276 tmp<volScalarField>(new volScalarField(mDotTC)),

277 tmp<volScalarField>(new volScalarField(-mDotTV))

278 );

279 }

280

281

282 Foam::tmp<Foam::fvScalarMatrix>

283 Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::TSource() const

284 {

285

286 const volScalarField& p = mesh_.lookupObject<volScalarField>("p");

287 const volScalarField& T = mesh_.lookupObject<volScalarField>("T");

288

289 volScalarField pCoeff(this->pCoeff(p, T));

290 volScalarField TCoeff(this->TCoeff());

291

292 tmp<fvScalarMatrix> tTSource

293 (

294 new fvScalarMatrix

295 (

296 T,

297 dimEnergy/dimTime

298 )

299 );

300

301 fvScalarMatrix& TSource = tTSource.ref();

302

303 volScalarField limitedAlpha1

304 (

305 min(max(mixture_.alpha1(), scalar(0)), scalar(1))

306 );

307

308 const twoPhaseMixtureEThermo& thermo =

309 refCast<const twoPhaseMixtureEThermo>

310 (

311 mesh_.lookupObject<basicThermo>(basicThermo::dictName)

312 );

313

314 const volScalarField pSat = thermo.pSat(this->TpSat(T));

315 const volScalarField Tsat = thermo.Tsat(this->pTsat(p));

316

317 const dimensionedScalar p0(dimPressure, Zero);

318

319 dimensionedScalar L = mixture_.Hf2() - mixture_.Hf1();

320

321 const volScalarField VcoeffP

322 (

323 Cv_*alphaNuc_*limitedAlpha1*pCoeff*min(p - pSat, p0)*L

324 );

325

326 const volScalarField CcoeffP

327 (

328 Cc_*(scalar(1) - limitedAlpha1)*pCoeff*max(p - pSat, p0)*L

329 );

330

331 const volScalarField VcoeffT

332 (

333 Cv_*alphaNuc_*limitedAlpha1*TCoeff*pos(T - Tsat)

334 );

335 const volScalarField CcoeffT

39



A.2. ZwartExtended.C file Appendix A. ZwartExtended cavitation model source code

336 (

337 Cc_*(scalar(1) - limitedAlpha1)*TCoeff*pos(Tsat - T)

338 );

339

340 TSource =

341 - (VcoeffP + CcoeffP)

342 + fvm::Sp(VcoeffT, T) - VcoeffT*Tsat

343 + fvm::Sp(CcoeffT, T) - CcoeffT*Tsat;

344

345 return tTSource;

346 }

347

348

349 void Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::correct()

350 {

351 }

352

353

354 bool Foam::temperaturePhaseChangeTwoPhaseMixtures::ZwartExtended::read()

355 {

356 if (temperaturePhaseChangeTwoPhaseMixture::read())

357 {

358 subDict(type() + "Coeffs").readEntry("Cc", Cc_);

359 subDict(type() + "Coeffs").readEntry("Cv", Cv_);

360 subDict(type() + "Coeffs").readEntry("alphaNuc", alphaNuc_);

361 subDict(type() + "Coeffs").readEntry("rNuc", rNuc_);

362 subDict(type() + "Coeffs").readEntry("tG", tG_);

363 subDict(type() + "Coeffs").readEntry("TInf", TInf_);

364

365 return true;

366 }

367

368 return false;

369 }

370

371

372 // ************************************************************************* //

40


	Introduction
	Theory
	Comparing the equations of iPCF and iCEF solvers
	iPCF and iCEF phase change models
	Cavitation models
	Boiling models

	A thermodynamic cavitation model (ZwartExtended)
	Zwart cavitation model
	ZwartExtended cavitation model

	Comparing the source codes of iPCF and iCEF solvers
	Transport equations (UEqn, pEqn, TEqn, and alphaEqn)
	Solvers' main algorithms (iPCF.C, iCEF.C, and createFields.H files)
	Phase change models and their directories


	Implementations
	Implementing ZwartExtended cavitation model
	twoPhaseMixtureEThermo
	temperaturePhaseChangeTwoPhaseMixture
	ZwartExtended

	Implementing thermalInterPhaseChangeFoam solver

	Test cases and results
	Setting up the test case for iPCF solver
	Setting up the test case for tIPCF solver
	Results

	ZwartExtended cavitation model source code
	ZwartExtended.H file
	ZwartExtended.C file


