
Background sdfibm solver sdfIbmESI solver The End Bibliography

Implementing Immersed Boundary Method for particle
representation in OpenFOAM-v2112

Chit Yan Toe

Hydraulic Engineering Department,
Delft University of Technology,

Delft, The Netherlands

January 16, 2024

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 1 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Simulations of particle motion

Fluid-particle interaction problems —

powder technology

sediment transport

granular mechanics

plastic waste transport

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 2 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Different types of Computational mesh

Time-dependent mesh

Imposes no-slip BC on the particle
surface

Requires re-meshing for dynamic
meshes

Time-independent mesh

A single mesh during the simulation

No mesh for particles

So, how can particles be recognized
by the flow?

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 3 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Different types of Computational mesh

Time-dependent mesh

Imposes no-slip BC on the particle
surface

Requires re-meshing for dynamic
meshes

Time-independent mesh

A single mesh during the simulation

No mesh for particles

So, how can particles be recognized
by the flow?

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 3 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

How to recognize the particles?

Navier-Stokes Equations for incompressible flow

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u

Added a forcing term

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u + f

where f is the interaction force between the particle and the flow.

This is the so-called Immersed Boundary Method (IBM).
How to impose f ?

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 4 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

How to recognize the particles?

Navier-Stokes Equations for incompressible flow

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u

Added a forcing term

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u + f

where f is the interaction force between the particle and the flow.

This is the so-called Immersed Boundary Method (IBM).
How to impose f ?

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 4 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

How to recognize the particles?

Navier-Stokes Equations for incompressible flow

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u

Added a forcing term

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u + f

where f is the interaction force between the particle and the flow.

This is the so-called Immersed Boundary Method (IBM).

How to impose f ?

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 4 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

How to recognize the particles?

Navier-Stokes Equations for incompressible flow

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u

Added a forcing term

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u + f

where f is the interaction force between the particle and the flow.

This is the so-called Immersed Boundary Method (IBM).
How to impose f ?

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 4 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Two groups of IBM

Continuous Forcing Approach — f is added before numerical discretization

Discrete Forcing Approach — f is added after numerical discretization

Indirect imposition technique — Use of distribution function
Direct imposition technique — directly impose boundary condition on the IB

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 5 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Two groups of IBM

Continuous Forcing Approach — f is added before numerical discretization

Discrete Forcing Approach — f is added after numerical discretization

Indirect imposition technique — Use of distribution function
Direct imposition technique — directly impose boundary condition on the IB

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 5 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Two groups of IBM

Continuous Forcing Approach — f is added before numerical discretization

Discrete Forcing Approach — f is added after numerical discretization

Indirect imposition technique — Use of distribution function
Direct imposition technique — directly impose boundary condition on the IB

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 5 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

IBM in OpenFOAM

OpenFOAM-v2006 → porousPimpleIbFoam solver developed by Vergassola
[1] — Continuous forcing

foam-extend-5.0 → pimpleDyMIbFoam solver by Jasak [2] — Direct
forcing

OpenFOAM v9 → sdfibm solver by Zhang [3] — Direct forcing

This project → sdfIbmESI solver — Direct forcing + OpenFOAM-v2112

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 6 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

IBM in OpenFOAM

OpenFOAM-v2006 → porousPimpleIbFoam solver developed by Vergassola
[1] — Continuous forcing

foam-extend-5.0 → pimpleDyMIbFoam solver by Jasak [2] — Direct
forcing

OpenFOAM v9 → sdfibm solver by Zhang [3] — Direct forcing

This project → sdfIbmESI solver — Direct forcing + OpenFOAM-v2112

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 6 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

IBM in OpenFOAM

OpenFOAM-v2006 → porousPimpleIbFoam solver developed by Vergassola
[1] — Continuous forcing

foam-extend-5.0 → pimpleDyMIbFoam solver by Jasak [2] — Direct
forcing

OpenFOAM v9 → sdfibm solver by Zhang [3] — Direct forcing

This project → sdfIbmESI solver — Direct forcing + OpenFOAM-v2112

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 6 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

IBM in OpenFOAM

OpenFOAM-v2006 → porousPimpleIbFoam solver developed by Vergassola
[1] — Continuous forcing

foam-extend-5.0 → pimpleDyMIbFoam solver by Jasak [2] — Direct
forcing

OpenFOAM v9 → sdfibm solver by Zhang [3] — Direct forcing

This project → sdfIbmESI solver — Direct forcing + OpenFOAM-v2112

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 6 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Direct forcing technique

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u + f

Using general time discretization

un+1 − un

∆t
= RHSn+1/2 + f n+1/2

To obtain un+1 = V n+1,

f n+1/2 = −RHSn+1/2 +
V n+1 − un

∆t

for some grid nodes.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 7 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Direct forcing technique

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u + f

Using general time discretization

un+1 − un

∆t
= RHSn+1/2 + f n+1/2

To obtain un+1 = V n+1,

f n+1/2 = −RHSn+1/2 +
V n+1 − un

∆t

for some grid nodes.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 7 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Direct forcing technique

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∆u + f

Using general time discretization

un+1 − un

∆t
= RHSn+1/2 + f n+1/2

To obtain un+1 = V n+1,

f n+1/2 = −RHSn+1/2 +
V n+1 − un

∆t

for some grid nodes.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 7 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Reconsider
∇ · uf = 0 (1)

and
∂uf

∂t
+ uf · ∇uf = − 1

ρf
∇p + νf∇2uf (2)

Define the volume-weighted average of velocity as

u = (1− α)uf + αup

where
up = vp + ωp × r .

We also have
∇ · u = 0 (3)

and
∂u
∂t

= H −∇P + f p (4)

where
H ≡ −u · ∇u + νf∇2u

and P ≡ p/ρf and f p is the interaction force.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 8 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Reconsider
∇ · uf = 0 (1)

and
∂uf

∂t
+ uf · ∇uf = − 1

ρf
∇p + νf∇2uf (2)

Define the volume-weighted average of velocity as

u = (1− α)uf + αup

where
up = vp + ωp × r .

We also have
∇ · u = 0 (3)

and
∂u
∂t

= H −∇P + f p (4)

where
H ≡ −u · ∇u + νf∇2u

and P ≡ p/ρf and f p is the interaction force.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 8 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Reconsider
∇ · uf = 0 (1)

and
∂uf

∂t
+ uf · ∇uf = − 1

ρf
∇p + νf∇2uf (2)

Define the volume-weighted average of velocity as

u = (1− α)uf + αup

where
up = vp + ωp × r .

We also have
∇ · u = 0 (3)

and
∂u
∂t

= H −∇P + f p (4)

where
H ≡ −u · ∇u + νf∇2u

and P ≡ p/ρf and f p is the interaction force.
Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 8 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Contd.
∂u
∂t

= H −∇P + f p

where
H ≡ −u · ∇u + νf∇2u

In other words, f p is the force required to adjust the single-phase fluid velocity uf

to the averaged velocity u.

Using general time discretization

un+1 = un +∆t (H −∇P + f p)

Without interaction force,

û = un +∆t (H −∇P)

Therefore, un+1 − û = ∆tf p

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 9 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Contd.
∂u
∂t

= H −∇P + f p

where
H ≡ −u · ∇u + νf∇2u

In other words, f p is the force required to adjust the single-phase fluid velocity uf

to the averaged velocity u.
Using general time discretization

un+1 = un +∆t (H −∇P + f p)

Without interaction force,

û = un +∆t (H −∇P)

Therefore, un+1 − û = ∆tf p

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 9 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Contd.
∂u
∂t

= H −∇P + f p

where
H ≡ −u · ∇u + νf∇2u

In other words, f p is the force required to adjust the single-phase fluid velocity uf

to the averaged velocity u.
Using general time discretization

un+1 = un +∆t (H −∇P + f p)

Without interaction force,

û = un +∆t (H −∇P)

Therefore, un+1 − û = ∆tf p

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 9 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Contd.
∂u
∂t

= H −∇P + f p

where
H ≡ −u · ∇u + νf∇2u

In other words, f p is the force required to adjust the single-phase fluid velocity uf

to the averaged velocity u.
Using general time discretization

un+1 = un +∆t (H −∇P + f p)

Without interaction force,

û = un +∆t (H −∇P)

Therefore, un+1 − û = ∆tf p

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 9 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Contd. We know that un+1 − û = ∆tf p.

For the solid cell, we require un+1 = up, therefore we get

f p =
up − û
∆t

For the fluid cell, we require no interaction force, therefore f p = 0

For the interface cell, we get

f p = α
up − û
∆t

where α needs to determined by geometrical functions.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 10 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Contd. We know that un+1 − û = ∆tf p.

For the solid cell, we require un+1 = up, therefore we get

f p =
up − û
∆t

For the fluid cell, we require no interaction force, therefore f p = 0

For the interface cell, we get

f p = α
up − û
∆t

where α needs to determined by geometrical functions.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 10 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Contd. We know that un+1 − û = ∆tf p.

For the solid cell, we require un+1 = up, therefore we get

f p =
up − û
∆t

For the fluid cell, we require no interaction force, therefore f p = 0

For the interface cell, we get

f p = α
up − û
∆t

where α needs to determined by geometrical functions.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 10 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Volume-average discrete forcing method — sdfibm solver

Contd. We know that un+1 − û = ∆tf p.

For the solid cell, we require un+1 = up, therefore we get

f p =
up − û
∆t

For the fluid cell, we require no interaction force, therefore f p = 0

For the interface cell, we get

f p = α
up − û
∆t

where α needs to determined by geometrical functions.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 10 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

How to calculate α?

Fraction of AB lying within the surface S is simply the ratio: −φA/(φB − φA)

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 11 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Implementation of sdfibm solver

Directory of sdfibm solver

1 |-- CMakeLists.txt

2 |-- LICENSE.txt

3 |-- README.md

4 |-- examples

5 |-- figs

6 |-- src

7 ‘-- tool_vof

src directory of sdfibm solver

1 src/

2 |-- CMakeLists.txt

3 |-- libcollision

4 |-- libmaterial

5 |-- libmotion

6 |-- libshape

7 |-- main.cpp

8 |-- solid.cpp

9 |-- solid.h

10 |-- solidcloud.cpp

11 |-- solidcloud.h

12 ‘-- utils.h

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 12 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Implementation of sdfibm solver

Directory of sdfibm solver

1 |-- CMakeLists.txt

2 |-- LICENSE.txt

3 |-- README.md

4 |-- examples

5 |-- figs

6 |-- src

7 ‘-- tool_vof

src directory of sdfibm solver

1 src/

2 |-- CMakeLists.txt

3 |-- libcollision

4 |-- libmaterial

5 |-- libmotion

6 |-- libshape

7 |-- main.cpp

8 |-- solid.cpp

9 |-- solid.h

10 |-- solidcloud.cpp

11 |-- solidcloud.h

12 ‘-- utils.h

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 12 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Implementation of sdfibm solver

Listing 1: Creation of solidcloud object in main.cpp of sdfibm solver

1 #include "solidcloud.h"

2

3 int main(int argc, char *argv[])

4 {

5 // #include "--.H"

6 std::string dictfile;

7 if(runTime.time().value() > 0)

8 {

9 if(!Foam::Pstream::parRun())

10 dictfile = mesh.time().timeName() + "/solidDict";

11 else

12 dictfile = "processor0/" + mesh.time().timeName() + "/solidDict";

13 }

14 else

15 {

16 dictfile = "solidDict";

17 }

18 sdfibm::SolidCloud solidcloud(args.path() + "/" + dictfile, U, runTime.value

());

19 solidcloud.saveState(); // write the initial condition

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 13 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Implementation of sdfibm solver

Listing 2: Solving momentum equations in main.cpp of sdfibm solver

20 while (runTime.loop())

21 {

22 Foam::Info << "Time = " << runTime.timeName() << Foam::endl;

23 #include "CourantNo.H"

24 Foam::dimensionedScalar dt = runTime.deltaT();

25 if(solidcloud.isOnFluid())

26 {

27 Foam::fvVectorMatrix UEqn(

28 fvm::ddt(U)

29 + 1.5*fvc::div(phi, U) - 0.5*fvc::div(phi.oldTime(), U.oldTime())

30 ==0.5*fvm::laplacian(nu, U) + 0.5*fvc::laplacian(nu, U));

31 UEqn.solve();

32

33 phi = linearInterpolate(U) & mesh.Sf();

34 Foam::fvScalarMatrix pEqn(fvm::laplacian(p) == fvc::div(phi)/dt -

fvc::div(Fs));

35 pEqn.solve();

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 14 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Implementation of sdfibm solver

Listing 3: Solving momentum equations in main.cpp of sdfibm solver

37 U = U - dt*fvc::grad(p);

38 phi = phi - dt*fvc::snGrad(p)*mesh.magSf();

39

40 Foam::fvScalarMatrix TEqn(

41 fvm::ddt(T)

42 + fvm::div(phi, T)

43 ==fvm::laplacian(alpha, T));

44 TEqn.solve();

45 }

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 15 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Implementation of sdfibm solver

Listing 4: Fluid-particle interaction main.cpp of sdfibm solver

46 solidcloud.interact(runTime.value(), dt.value());

47 if(solidcloud.isOnFluid())

48 {

49 U = U - Fs*dt;

50 phi = phi - dt*(linearInterpolate(Fs) & mesh.Sf());

51 U.correctBoundaryConditions();

52 adjustPhi(phi, U, p);

53 T = (1.0 - As)*T + Ts;

54 T.correctBoundaryConditions();

55 #include "continuityErrs.H"

56 }

57 solidcloud.evolve(runTime.value(), dt.value());

58 solidcloud.saveState();

59 if(solidcloud.isOnFluid())

60 {

61 solidcloud.fixInternal(dt.value());

62 }

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 16 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Implementation of sdfibm solver

Listing 5: Saving output file main.cpp of sdfibm solver

63 if(runTime.outputTime())

64 {

65 runTime.write();

66

67 if(Foam::Pstream::master())

68 {

69 std::string file_name;

70 if(Foam::Pstream::parRun())

71 file_name = "./processor0/" + runTime.timeName() + "/

solidDict";

72 else

73 file_name = "./" + runTime.timeName() + "/solidDict";

74 solidcloud.saveRestart(file_name);

75 }

76 }

77 }

78 Foam::Info << "DONE\n" << endl;

79 return 0;

80 }

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 17 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Simulation of laminar flow around a sphere

Figure: Computational domain.

−2 0 2 4 6
x [m]

−2

−1

0

1

2

y
[m

]

−0.2 0.0 0.2
z [m]

−2

−1

0

1

2

0.000

0.111

0.222

0.333

0.444

0.556

0.667

0.778

0.889

1.000

U
[m

/s
]

×10−2

Figure: Result of pimpleDyMIbFoam solver.

−2 0 2 4 6
x [m]

0

2

4

6

8

U
[m

/s
]

×10−3

−2 −1 0 1 2
y [m]

0

2

4

6

8

U
[m

/s
]

×10−3

pimpleDyMIbFoam

porousPimpleIbFoam

sdfIbm

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 18 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Simulation of laminar flow around a sphere

Figure: Computational domain.

−2 0 2 4 6
x [m]

−2

−1

0

1

2

y
[m

]

−0.2 0.0 0.2
z [m]

−2

−1

0

1

2

0.000

0.111

0.222

0.333

0.444

0.556

0.667

0.778

0.889

1.000

U
[m

/s
]

×10−2

Figure: Result of pimpleDyMIbFoam solver.

−2 0 2 4 6
x [m]

0

2

4

6

8

U
[m

/s
]

×10−3

−2 −1 0 1 2
y [m]

0

2

4

6

8

U
[m

/s
]

×10−3

pimpleDyMIbFoam

porousPimpleIbFoam

sdfIbm

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 18 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Re-implementation — sdfIbmESI solver

Main difference is in compilation procedure

CMake in OpenFOAM v9

wmake in OpenFOAM-v2112 → Make folder is required.

Some minor differences e.g.

type conversion — vector() function, readScalar function
#include "IFstream.H" in solidcloud.C file

no main.cpp file in OpenFOAM-v2112, but sdfIbmESI.C file

Directory of sdfibmESI solver

1 sdfIbmESI/

2 |-- Make

3 |-- UEqn.H

4 |-- correctPhi.H

5 |-- createFields.H

6 |-- pEqn.H

7 |-- sdfIbmESI.C

8 ‘-- setRDeltaT.H

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 19 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Re-implementation — sdfIbmESI solver

Main difference is in compilation procedure

CMake in OpenFOAM v9

wmake in OpenFOAM-v2112 → Make folder is required.

Some minor differences e.g.

type conversion — vector() function, readScalar function
#include "IFstream.H" in solidcloud.C file

no main.cpp file in OpenFOAM-v2112, but sdfIbmESI.C file

Directory of sdfibmESI solver

1 sdfIbmESI/

2 |-- Make

3 |-- UEqn.H

4 |-- correctPhi.H

5 |-- createFields.H

6 |-- pEqn.H

7 |-- sdfIbmESI.C

8 ‘-- setRDeltaT.H

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 19 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Re-implementation — sdfIbmESI solver

Main difference is in compilation procedure

CMake in OpenFOAM v9

wmake in OpenFOAM-v2112 → Make folder is required.

Some minor differences e.g.

type conversion — vector() function, readScalar function
#include "IFstream.H" in solidcloud.C file

no main.cpp file in OpenFOAM-v2112, but sdfIbmESI.C file

Directory of sdfibmESI solver

1 sdfIbmESI/

2 |-- Make

3 |-- UEqn.H

4 |-- correctPhi.H

5 |-- createFields.H

6 |-- pEqn.H

7 |-- sdfIbmESI.C

8 ‘-- setRDeltaT.H

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 19 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Re-implementation — sdfIbmESI solver

Start with library files — libcollision, libshape, libmaterial, libmotion

collision.h of sdfibm solver

1 #ifndef COLLISION_HPP

2 #define COLLISION_HPP

3

4 #include "../types.h"

5 #include "../utils.h"

6 #include "../solid.h"

collision.H of sdfIbmESI solver

1 #ifndef COLLISION_HPP

2 #define COLLISION_HPP

3

4 #include "types.H"

5 #include "utils.H"

6 #include "solid.H"

options file in Make folder of libcollision library

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/meshTools/lnInclude \

4 -I$(LIB_SRC)/OpenFOAM/lnInclude \

5 -I../libshape/lnInclude \

6 -I../libmotion/lnInclude \

7 -I../libmaterial \

8 -I..

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 20 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Re-implementation — sdfIbmESI solver

Start with library files — libcollision, libshape, libmaterial, libmotion

collision.h of sdfibm solver

1 #ifndef COLLISION_HPP

2 #define COLLISION_HPP

3

4 #include "../types.h"

5 #include "../utils.h"

6 #include "../solid.h"

collision.H of sdfIbmESI solver

1 #ifndef COLLISION_HPP

2 #define COLLISION_HPP

3

4 #include "types.H"

5 #include "utils.H"

6 #include "solid.H"

options file in Make folder of libcollision library

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/meshTools/lnInclude \

4 -I$(LIB_SRC)/OpenFOAM/lnInclude \

5 -I../libshape/lnInclude \

6 -I../libmotion/lnInclude \

7 -I../libmaterial \

8 -I..

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 20 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Re-implementation — sdfIbmESI solver

files file in Make folder

1 solidcloud.C

2 solid.C

3 meshinfo.C

4 logger.C

5 geometrictools.C

6 cellenumerator.C

7 sdfIbmESI.C

8

9 EXE = $(FOAM_USER_APPBIN)/sdfIbmESI

options file in Make folder

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/
lnInclude \

3 # skipped some lines

4 -Ilibshape/lnInclude \

5 -Ilibmotion/lnInclude \

6 -Ilibcollision/lnInclude \

7 -Ilibmaterial

8

9 EXE_LIBS = \

10 -lfiniteVolume \

11 # skipped some lines

12 -Llibshape \

13 -lshape \

14 -Llibmotion \

15 -lmotion \

16 -Llibcollision \

17 -lcollision

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 21 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Practical part

Download the files from GitHub repository — sdfIbmESI solver

$ git clone https://github.com/ChitYanToe/sdfIbmESI.git

Run the script for compiling and running the simulation.

$ ./Allrun

Or, for manual compilation instead of using Allrun file, one needs to run

$ source exportFile.sh

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 22 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Thank you for your time.

Q & A.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 23 / 24



Background sdfibm solver sdfIbmESI solver The End Bibliography

Bibliography I

[1] Marco Vergassola. “A continuous forcing immersed boundary approach to
solve the VARANS equations in a volumetric porous region”. In: In
Proceedings of CFD with OpenSource Software, 2021. Edited by Nilsson. H,
2021.

[2] Hrvoje Jasak. “Immersed boundary surface method in foam-extend”. In:
Workshop OpenFOAM in Hydraulic Engineering. Vol. 21. 2018, p. 22.

[3] Chenguang Zhang. “sdfibm: A signed distance field based discrete forcing
immersed boundary method in OpenFOAM”. In: Computer Physics
Communications 255 (2020), p. 107370.

Chit Yan Toe Implementing IBM for particle representation in OpenFOAM-v2112 January 16, 2024 24 / 24


	Background
	sdfibm solver
	sdfIbmESI solver
	The End
	Bibliography

