
CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1

Basics of C++ (in OpenFOAM)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 2

Basics of C++ (in OpenFOAM)

Prerequisites

• You have some programming experience.

• You have experience in working in Linux.

Learning outcomes

• You will learn the basic syntax in C++

• You will learn how to use classes to implement simple C++ codes, and how member functions

are called in the top-level code.

• You will learn how to implement functions in the top-level code, understand the difference

between declaration and definition, and see how that can be practically used.

• You will learn how OpenFOAM compilation relates to compilation of a simple C++ code.

Although all of this is just C++ (not OpenFOAM), this is what you see all over OpenFOAM!

Make sure that you go through all of this yourself, although we may not check that you have

done it. Test different alternatives! You learn by doing!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 3

Basics of C++ (in OpenFOAM)

• To begin with: The aim of this part of the course is not to teach all of C++,

but to give a short introduction that is useful when trying to understand

the contents of OpenFOAM.

• After this introduction you should be able to recognize and make minor

modifications to most C++ features in OpenFOAM.

• Some books:

– C++ direkt by Jan Skansholm (ISBN 91-44-01463-5)

– C++ from the Beginning by Jan Skansholm (probably similar)

– C++ how to Program by Paul and Harvey Deitel

– Object Oriented Programming in C++ by Robert Lafore

• A link:

– https://www.geeksforgeeks.org/c-plus-plus/

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 4

Types and classes

• Variables can contain data of different types, for instance:

int myInteger;

for a declaration of an integer variable named myInteger, or

const int myConstantInteger = 10;

for a declaration of an constant integer variable named myConstantInteger with value

10. Must be assigned value at construction, since it can’t be changed later!

• Variables can be added, substracted, multiplied and divided as long as they have the same

type, or if the types have definitions on how to convert between the types.

• In C++ it is possible to define classes, which we for simplicity can view as specialized types.

There are many classes defined for you in OpenFOAM.

• Classes that need to be used in arithmetic expressions with other classes must have the

required conversions defined. Some of the classes in OpenFOAM can be used together in

arithmetic expressions, but not all of them.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 5

Namespaces

• When using pieces of C++ code developed by different programmers there is a risk that the

same name has been used for different things.

• By associating a declaration with a namespace, the declaration will only be visible if that

namespace is used. The standard declarations are used by starting with:

using namespace std;

• OpenFOAM declarations belong to namespace Foam, so in OpenFOAM we use:

using namespace Foam;

to make all declarations in namespace Foam visible.

• Explicit naming in OpenFOAM:

Foam::function();

where function() is a function defined in namespace Foam. This must be used if any other

namespace containing a declaration of another function() is also visible.

• We will test this later.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 6

Input / Output

• Input and output can be done using the standard library iostream, using:

cout << "Please type an integer!" << endl;

cin >> myInteger;

where << and >> are output and input operators, and endl is a manipulator that generates

a new line (there are many other manipulators).

• In OpenFOAM a new output stream Info is however defined, and it is recommended to use

that one instead since it takes care of write-outs for parallel simulations and it has some

knowledge about OpenFOAM classes.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

The main function

• All C++ codes must have at least one function:

int main()

{

return 0;

}

in this case, main takes no arguments, but it may (as in OpenFOAM applications).

• Code appearing after the return statement is not executed!!!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 8

Example code 1
Put in file exampleCode1.C:

#include <iostream>

using namespace std;

int main()

{

int myInteger;

const int constantInteger=5;

const float constantFloat=5.1;

cout << "Please type an integer!" << endl;

cin >> myInteger;

cout << myInteger << " + " << constantInteger << " = "

<< myInteger+constantInteger << endl;

cout << myInteger << " + " << constantFloat << " = "

<< myInteger+constantFloat << endl;

return 0;

}

Compile and run with:

g++ exampleCode1.C -o exampleCode1; ./exampleCode1; echo $?

The last part (echo $?) shows the return value from the main function!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 9

Operators

• +, -, * and / are operators that define how the operands should be used.

• Other standard operators are:

% (integer division modulus)

++ (add 1)

-- (substract 1)

+= (i+=2 adds 2 to i)

-= (i-=2 subtracts 2 from i)

= (i=2 multiplies i by 2)

/= (i/=2 divides i by 2)

etc. User-defined types should define its operators.

• Comparing operators: < > <= >= == != Generates bool (boolean)

• Logical operators: && || ! (or, for some compilers: and or not). Generates

bool (boolean)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 10

Functions

• Mathematic standard functions are available in standard libraries. They are thus not part

of C++ itself.

• Standard library cmath contains trigonometric functions, logaritmic functions and square

root. (use #include cmath; if you need them)

• Standard library cstdlib contains general functions, and some of them can be used for

arithmetics. (use #include cstdlib; if you need them)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 11

if, for and while-statements

• if-statements:

if (variable1 > variable2) {...CODE...} else {...CODE...}

• for-statements:

for (init; condition; change) {...CODE...}

• while-statements:

while (...expression...) {...CODE...}

break; breaks the execution of while

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 12

Example code 2
Put in file exampleCode2.C:

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

float myFloat;

cout << "Please type a float!" << endl;

cin >> myFloat;

cout << "sin(" << myFloat << ") = " << sin(myFloat) << endl;

if (myFloat < 5.5){cout << myFloat << " is less than 5.5" << endl;} else

{cout << myFloat << " is not less than 5.5" << endl;};

for (int i=0; i<myFloat; i++) {cout << "For-looping: " << i << endl;}

int j=0;

while (j<myFloat) {cout << "While-looping: " << j << endl; j++;}

return 0;

} //Note conversion of myFloat to int in loops!

Compile and run with:

g++ exampleCode2.C -o exampleCode2; ./exampleCode2

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 13

Arrays

• Arrays:

double f[5]; (Note: components numbered from 0!)

f[3] = 2.75; (Note: no index control!)

int a[6] = {2, 2, 2, 5, 5, 0}; (declaration and initialization)

The arrays have strong limitations, but serve as a base for array templates

• Array templates (example vector. other: list, deque):

#include <vector>

using namespace std

The type of the vector must be specified upon declaration:

vector<double> v2(3); gives {0, 0, 0}

vector<double> v3(4, 1.5); gives {1.5, 1.5, 1.5, 1.5}

vector<double> v4(v3); Constructs v4 as a copy of v3 (copy-constructor)

• Array template operations: The template classes define member functions that can be used

for those types, for instance: size(), empty(), assign(), push_back(), pop_back(),

front(), clear(), capacity() etc.

v.assign(4, 1.0); gives {1.0, 1.0, 1.0, 1.0}

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 14

Example code 3
Put in file exampleCode3.C:

#include <iostream>

#include <vector>

using namespace std;

int main()

{

vector<double> v2(3);

vector<double> v3(4, 1.5);

vector<double> v4(v3);

cout << "v2: (" << v2[0] << "," << v2[1] << "," << v2[2] << ")" << endl;

cout << "v3: (" << v3[0] << "," << v3[1] << "," << v3[2] << "," << v3[3] << ")" << endl;

cout << "v4: (" << v4[0] << "," << v4[1] << "," << v4[2] << "," << v4[3] << ")" << endl;

cout << "v2.size(): " << v2.size() << endl;

return 0;

}

//LineToFixCopyPasteProblem--

Compile and run with:

g++ exampleCode3.C -o exampleCode3; ./exampleCode3

Note that the standard vector class is not implemented to be able to execute:

cout << "v2: " << v2 << endl;

Such functionality is available in OpenFOAM.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 15

Function implementation

• Example function named average

double average (double x1, double x2)

{

int nvalues = 2;

return (x1+x2)/nvalues;

}

takes two arguments of type double, and returns type double. The variable nvalues is a

local variable, and is only visible inside the function. Note that any code after the return

statement will not be executed.

• A function doesn’t have to take arguments, and it doesn’t have to return anything (the

output type is then specified as void).

• There may be several functions with the same names, as long as there is a difference in the

arguments to the functions - the number of arguments or the types of the arguments.

• Functions must be declared before they are used.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 16

Example code 4

Put in file exampleCode4.C:

#include <iostream>

using namespace std;

double average (double x1, double x2)

{

int nvalues = 2;

return (x1+x2)/nvalues;

}

int main()

{

double d1=2.1;

double d2=3.7;

cout << "Average: " << average(d1,d2) << endl;

return 0;

}

Compile and run with:

g++ exampleCode4.C -o exampleCode4; ./exampleCode4

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 17

Declaration and definition of functions

• The function declaration must be done before it is used, but the function definition can be

done after it is used. Example (not complete code):

double average (double x1, double x2); //Declaration

main ()

{

mv = average(value1, value2)

}

double average (double x1, double x2) //Definition

{

return (x1+x2)/2;

}

The argument names may be omitted in the declaration (except for default values).

• Declarations are often included from include-files:

#include "file.h"

#include <standardfile>

• A good way to implement C++ classes is to make files in pairs, one with the declaration, and

one with the definition. This is done throughout OpenFOAM.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 18

Example code 5
Put in file exampleCode5.C:

#include <iostream>

#include "exampleCode5.H"

using namespace std;

int main()

{

double d1=2.1;

double d2=3.7;

cout << "Average: " << average(d1,d2) << endl;

return 0;

}

double average (double x1, double x2)

{

int nvalues = 2;

return (x1+x2)/nvalues;

}

Put in file exampleCode5.H:

double average (double, double);

Compile and run with: g++ exampleCode5.C -o exampleCode5; ./exampleCode5

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 19

Function parameters / arguments

reference and default value

• If an argument variable should be changed inside a function, the type of the argument must

be a reference, i.e.

void change(double& x1)

The reference parameter x1 will now be a reference to the argument to the function in-

stead of a local variable in the function. (standard arrays are always treated as reference

parameters).

• Reference parameters can also be used to avoid copying of large fields when calling a func-

tion. To avoid changing the parameter in the function it can be declared as const, i.e.

void checkWord(const string& s)

This often applies for parameters of class-type, which can be large.

• Default values can be specified, and then the function may be called without that parameter,

i.e.

void checkWord(const string& s, int nmbr=1)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 20

Example code 6

Put in file exampleCode6.C:

#include <iostream>

using namespace std;

double average (double& x1, double& x2, int nvalues=2)

{

x1 = 7.5;

return (x1+x2)/nvalues;

}

int main()

{

double d1=2.1;

double d2=3.7;

cout << "Modified average: " << average(d1,d2) << endl;

cout << "Half modified average: " << average(d1,d2,4) << endl;

cout << "d1: " << d1 << ", d2: " << d2 << endl;

return 0;}

Compile and run with: g++ exampleCode6.C -o exampleCode6; ./exampleCode6

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 21

Namespace example, in example code 6

In file exampleCode6.C, change the declaration/definition of the average function to:

namespace test1 { double average (double&, double&, int nvalues=2); }

namespace test2 { double average (double&, double&, int nvalues=2); }

using namespace test1;

and put new definitions after the main() function (see the similarities and differences):

namespace test1

{

double average (double& x1, double& x2, int nvalues)

{x1 = 7.5; return (x1+x2)/nvalues;}

}

namespace test2

{

double average (double& x1, double& x2, int nvalues)

{x1 = 10; return (x1+x2)/(2*nvalues);}

}

Compile and run with: g++ exampleCode6.C -o exampleCode6; ./exampleCode6

Switch between test1 and test2. Force use of a namespace with e.g. test1::average(d1,d2)

See that default values are set in the declaration only.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 22

Pointers, Example code 7

• A pointer points at a memory location (while a reference is referring to another variable, as

shown before, i.e. they are different). Example (put in exampleCode7.C):

#include <iostream>

using namespace std;

int main()

{

double d1=2.1;

double d2=3.7;

double* d3; //d3 is a pointer, currently not pointing at anything

d3 = &d1; //Now d3 points at the memory location of d1

cout << "d1: " << d1 << endl;

cout << "d2: " << d2 << endl;

cout << "d3: " << d3 << endl;

cout << "*d3: " << *d3 << endl;

d3 = &d2; //Now d3 points at the memory location of d2

cout << "d3: " << d3 << endl;

cout << "*d3: " << *d3 << endl;

return 0;}

Compile and run with: g++ exampleCode7.C -o exampleCode7; ./exampleCode7

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 23

Pointers for turbulence models

• Pointers can be used to point at a particular instance of a class. It can be run-time selected.

• A call to a function of a pointer is done by:

pointerObject->classFunction();

instead of the regular:

regularObject.classFunction();

• Turbulence models are treated with the turbulence pointer in OpenFOAM.

In file:$FOAM_SOLVERS/incompressible/simpleFoam/createFields.H:

autoPtr<incompressible::turbulenceModel> turbulence

(

incompressible::turbulenceModel::New(U, phi, laminarTransport)

);

In file $FOAM_SOLVERS/incompressible/simpleFoam/simpleFoam.C:

turbulence->correct();

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 24

Shared libraries (1/2), Example code 8

• It is convenient to organize developments in shared libraries, so they can be used by many

applications.

• We will separate the average function in exampleCode5.C and exampleCode5.H to a

shared library.

• Put in exampleCode8func.H:

double average (double, double);

• Put in exampleCode8func.C:

#include "exampleCode8func.H"

double average (double x1, double x2)

{

int nvalues = 2;

return (x1+x2)/nvalues;

}

• Compile a shared library:

g++ exampleCode8func.C -shared -o libexampleCode8func.so

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 25

Shared libraries (2/2), Example code 8

• Put in exampleCode8.C (note - only declaration and no definition!):

#include <iostream>

#include "exampleCode8func.H" //Library declarations need to be known

using namespace std;

int main()

{

double d1=2.1;

double d2=3.7;

cout << "Average: " << average(d1,d2) << endl;

return 0;

}

• Compile with:

g++ exampleCode8.C -L. -lexampleCode8func -o exampleCode8

• Add present path to LD_LIBRARY_PATH (try to run without this first):

export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

• Run:

./exampleCode8

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 26

OpenFOAM classes (in shared libraries)

• We know that types define what kind of values (data) a variable (object) may have, and what

operations may be made on the variable (functions and operators).

• Pre-defined C++ types are:

signed char unsigned int

short int unsigned long int

int float

unsigned char double

unsigned short int long double

• User defined ’types’ can be defined in classes. OpenFOAM provides many classes that are

useful for solving partial differential equations.

• OpenFOAM classes are used by including the class declarations in the header of the code,

and linking to the corresponding compiled OpenFOAM library at compilation.

• The path to included files that are in another path than the current directory must be

specified by -I

• The path to libraries that are linked to is specified with -L

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 27

Example code 9, with OpenFOAM classes
Put in file exampleCode9.C:

#include <iostream> //Just for cout

using namespace std; //Just for cout

#include "tensor.H" //From OpenFOAM

#include "symmTensor.H" //From OpenFOAM

using namespace Foam; //From OpenFOAM

int main()

{ tensor t1(1, 2, 3, 4, 5, 6, 7, 8, 9); //From OpenFOAM

cout << "t1[0]: " << t1[0] << endl;

symmTensor st1(1, 2, 3, 4, 5, 6); //From OpenFOAM

cout << "st1[5]: " << st1[5] << endl;

return 0;

}

Make sure that you have sourced OpenFOAM in your terminal window.

Compile and run with (some trial-and-error, looking at output from wmake for test/tensor):

g++ -std=c++0x exampleCode9.C -DWM_DP -DWM_LABEL_SIZE=32 -I$FOAM_SRC/OpenFOAM/lnInclude \

-L$WM_PROJECT_DIR/lib/$WM_OPTIONS/libOpenFOAM.so -o exampleCode9; ./exampleCode9

We include header files (declarations) from $FOAM_SRC/OpenFOAM/lnInclude

We link to library (definitions) $WM_PROJECT_DIR/lib/$WM_OPTIONS/libOpenFOAM.so

The additional flags...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 28

The additional flags

We saw a couple of additional compiler flags in the previous slide:

• -std=c++0x: Needed for old compilers that do not support C++11. This flag may or may

not be needed for this compilation (try).

• -DWM_DP: Double precision floats.

In $FOAM_SRC/OpenFOAM/primitives/Scalar/scalar/scalarFwd.H:

typedef double doubleScalar;

#if defined(WM_SP)

...

#elif defined(WM_DP)

typedef doubleScalar scalar;

• -DWM_LABEL_SIZE=32: 32 bit labels.

In $FOAM_SRC/OpenFOAM/primitives/ints/label/labelFwd.H:

#if WM_LABEL_SIZE == 32

typedef int32_t label;

Meaning of int32_t: Signed integer type with width of exactly 32 bits

	Basics of C++ (in OpenFOAM)
	Types and classes, namespace, I/O
	Main function, operators and other functions
	if, for and while-statements
	Arrays
	Function implementation
	Pointers, types vs. classes
	Pointers for turbulence models
	Shared libraries

