
CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1

OpenFOAM user directory organization and compilation

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 2

OpenFOAM user directory organization and compilation

Prerequisites

• You know the OpenFOAM directory organization

• You have a basic understanding of the compilation process in OpenFOAM, and how it is

related to the environment

Learning outcomes

• Set up and use the user directory in an organized way

• Basic copying, renaming and compilation of applications and libraries, as a user

• Compilation procedures, paths and linking, as a user

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 3

User directory organization

• The $WM_PROJECT_USER_DIR environment variable is set up as a suggested location of the

user development and cases (note the similarity to the environment variable $WM_PROJECT_DIR,

which is the location of the OpenFOAM source code). It is empty from scratch, but remem-

ber that we have created some directories to prepare:

$ ls $WM_PROJECT_USER_DIR

applications run src

• You recognize that applications and src are also found in $WM_PROJECT_DIR, and the

purpose of creating those directories also in $WM_PROJECT_USER_DIR is to use the same

directory structure for our developments as in the OpenFOAM source code. This is not

mandatory, but it is good practice and you only have to remember one sub-directory struc-

ture.

• applications will be used for our own developed solvers and utilities

• src will be used for our own developed libraries

• run will be used for our cases, including running the original tutorials (assumed to be

known)

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 4

Basic user compilation procedures, applications (1/5)

Here is the procedure of copying and compiling the icoFoam solver from its original location

in $WM_PROJECT_DIR to the corresponding location in $WM_PROJECT_USER_DIR, renaming

directory, file name and executable name (to myIcoFoam), and compiling:

Copy:

foam

cp -r --parents applications/solvers/incompressible/icoFoam $WM_PROJECT_USER_DIR

cd $WM_PROJECT_USER_DIR/applications/solvers/incompressible

Note that you are now in a directory organized as in the original installation, and that we have

exactly the same directories and files as in the original installation:

$ tree icoFoam

icoFoam

|-- createFields.H

|-- icoFoam.C

`-- Make

|-- files

`-- options

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 5

Basic user compilation procedures, applications (2/5)

The compilation is given instructions through the files named files and options. The file

named options has include and linking instructions that can be kept as they are at this point.

The file named files contains:

icoFoam.C

EXE = $(FOAM_APPBIN)/icoFoam

This tells the compiler that it should compile the file named icoFoam.C, and that the exe-

cutable should be saved with the name icoFoam in the directory FOAM_APPBIN.

However, we do not want to overwrite the original executable file, which has exactly that

name and is located in exactly that location (since it was compiled with exactly the above files).

We should therefore at a minimum change the name of the exectuable. It is adviced to also

change the location of the executable to a corresponding directory for user-developed applica-

tions. As can be understood from the namings of the original directory and files, it is also

adviced to change those. I.e.:

mv icoFoam myIcoFoam

mv myIcoFoam/icoFoam.C myIcoFoam/myIcoFoam.C

sed -i s/icoFoam/myIcoFoam/g myIcoFoam/Make/files

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g myIcoFoam/Make/files

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 6

Basic user compilation procedures, applications (3/5)

At this point we can clean up (if any previous compilation left files), and compile:

wclean myIcoFoam

wmake myIcoFoam

Now you can try the myIcoFoam solver on the original icoFoam/cavity tutorial:

run

rm -r cavity

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity .

blockMesh -case cavity

myIcoFoam -case cavity >& log&

Check the top of the log-file, that you were running your myIcoFoam solver.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 7

Basic user compilation procedures, applications (4/5)

Now, which files were modified/created when we typed wmake?

$ tree $WM_PROJECT_USER_DIR/applications/solvers/incompressible/myIcoFoam

$WM_PROJECT_USER_DIR/applications/solvers/incompressible/myIcoFoam

|-- createFields.H

|-- Make

| |-- files

| |-- linux64GccDPInt32Opt

| | |-- myIcoFoam.C.dep

| | |-- myIcoFoam.o

| | |-- options

| | |-- sourceFiles

| | `-- variables

| `-- options

`-- myIcoFoam.C

I.e, there is now a directory Make/linux64GccDPInt32Opt, containing the same files as in

$WM_PROJECT_DIR/build/linux64GccDPInt32Opt/applications/solvers/incompressible/icoFoam

This means that the intermediate files are located differently for user compilations. However,

we do not have to bother much about that.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 8

Basic user compilation procedures, applications (5/5)
One additional file was modified/created when we typed wmake, and that is the executable
itself. The file named files now says that it should be saved with the name myIcoFoam in the
directory FOAM_USER_APPBIN:

$ ls -l $FOAM_USER_APPBIN/myIcoFoam

-rwxrwxr-x ... $WM_PROJECT_USER_DIR/platforms/linux64GccDPInt32Opt/bin/myIcoFoam

We see that the directory $WM_PROJECT_USER_DIR/platforms was created, and from
-rwxrwxr-x that myIcoFoam is an executable file. That file is found when we type the name
of that executable, since that path is included in the environment variable $PATH (here only
important paths, as environment variables):

$ echo $PATH

...:

$FOAM_USER_APPBIN:

$FOAM_SITE_APPBIN:

$FOAM_APPBIN:

...

The paths are searched in order, until the executable is found the first time. It is only lo-

cated in $FOAM_USER_APPBIN, so it is found there. However, if we wouldn’t have changed

the name of the executable there would have been one icoFoam in $FOAM_APPBIN and one in

$FOAM_USER_APPBIN, and it would use the one in $FOAM_USER_APPBIN since that path is first

in $PATH. I.e. we would override the original executable without touching it. BE CAREFUL!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 9

Basic user compilation procedures, libraries (1/8)

Assume that we want to develop a new boundary condition, based on an existing one. The

original boundary condition belongs to the finiteVolume library, so let’s go there and have a

look:

cd $WM_PROJECT_DIR/src/finiteVolume

We find the following directories (version dependent):

cfdTools finiteVolume fvMatrices interpolation Make volMesh

fields functionObjects fvMesh lnInclude surfaceMesh

All of them (except Make and lnInclude) contain several layers of sub-directories, in which

there are numerous classes that all belong to the finiteVolume library. The boundary condi-

tions are located in fields/fvPatchFields, and we are going to copy the one in

fields/fvPatchFields/derived/cylindricalInletVelocity

An important note here is that the directory name (and the file names inside it) corresponds

to the type name of the boundary condition (used to set the boundary condition in the cases).

This makes it easy to use the find command to find the boundary condition in the directory

structure: find $FOAM_SRC -name cylindricalInletVelocity.

Before we proceed we will discuss the Make and lnInclude directories...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 10

Basic user compilation procedures, libraries (2/8)
The Make directory tells the compiler how to compile the library, including all its classes. The
Make/files file lists all the files to be compiled, and where to put the final shared object file
(here keeping only lines corresponding to the boundary condition of interest):

...

fvPatchFields = fields/fvPatchFields

...

derivedFvPatchFields = $(fvPatchFields)/derived

$(derivedFvPatchFields)/cylindricalInletVelocity/cylindricalInletVelocityFvPatchVectorField.C

...

LIB = $(FOAM_LIBBIN)/libfiniteVolume

The Make/options file tells the compiler where to find include files and which libraries to

link to (version dependent):

EXE_INC = \

-I$(LIB_SRC)/surfMesh/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

LIB_LIBS = \

-lOpenFOAM \

-lmeshTools

There is in fact one more library that is found by default, as discussed in the next slide...

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 11

Basic user compilation procedures, libraries (3/8)

The lnInclude directory was generated when the source code was compiled. It contains soft

links to all the files in the library. This makes the file Make/options much shorter, since for

the include statements it is only necessary to give the path to the lnInclude directory of each

library that contains any class that is included.

In the previous slide we see that the finiteVolume library uses classes from the libraries

surfMesh and OpenFOAM. What we can’t see is that it also uses classes from its own library,

finiteVolume. However, since it is mostly the case that a library uses classes from its own

library the lnInclude directory of the present library is searched by default.

When we copy one class of a library to another location we have to remember that it most

likely uses other parts of the original library, and we thus have to add the original library to

the Make/options file.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 12

Basic user compilation procedures, libraries (4/8)

What we need to do is to copy the class that we want to develop, re-name directory, file names

and class name, and set up a Make directory.

Copy and rename the directory and file names:

foam

cp -r --parents src/finiteVolume/fields/fvPatchFields/derived/cylindricalInletVelocity $WM_PROJECT_USER_DIR

cd $WM_PROJECT_USER_DIR/src/finiteVolume/fields/fvPatchFields/derived

mv cylindricalInletVelocity myCylindricalInletVelocity

cd myCylindricalInletVelocity/

mv cylindricalInletVelocityFvPatchVectorField.C myCylindricalInletVelocityFvPatchVectorField.C

mv cylindricalInletVelocityFvPatchVectorField.H myCylindricalInletVelocityFvPatchVectorField.H

At this point we don’t look into the files, but we need to change the class name wherever it

occurs in the files by typing

sed -i s/cylindricalInletVelocity/myCylindricalInletVelocity/g *

We will get back to what this means later.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 13

Basic user compilation procedures, libraries (5/8)

Set up the Make directory as discussed before.

cd $WM_PROJECT_USER_DIR/src/finiteVolume

The Make/files file should contain:

fvPatchFields = fields/fvPatchFields

derivedFvPatchFields = $(fvPatchFields)/derived

$(derivedFvPatchFields)/myCylindricalInletVelocity/myCylindricalInletVelocityFvPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume

Here we have added ’my’ in three places, and changed to FOAM_USER_LIBBIN.
The Make/options file should contain:

EXE_INC = \

-I$(LIB_SRC)/surfMesh/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude

LIB_LIBS = \

-lOpenFOAM \

-lmeshTools \

-lfiniteVolume

Here we have added the finiteVolume library since we have moved out of that library.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 14

Basic user compilation procedures, libraries (6/8)

Finally, compile using

cd $WM_PROJECT_USER_DIR/src/finiteVolume

wmake

The output in the terminal window should end with (here using environment variable)

-o $WM_PROJECT_USER_DIR/platforms/linux64GccDPInt32Opt/lib/libmyFiniteVolume.so

We see that it is located in a similar structure as in the original installation.

We also see that there are intermediate files in Make/linux64GccDPInt32Opt/

However, contrary to when compiling applications we can not run this file. It should instead be

linked to the solver when running cases.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 15

Basic user compilation procedures, libraries (7/8)
It is time to test the boundary condition, and we can read how to use it in the file named
myCylindricalInletVelocityFvPatchVectorField.H:

type myCylindricalInletVelocity;

axis (0 0 1);

origin (0 0 0);

axialVelocity constant 30;

radialVelocity constant -10;

rpm constant 100;

Let’s adapt this for the movingWall patch of U for a cavity case named
myCylindricalInletVelocityCavity, as

type myCylindricalInletVelocity;

axis (1 0 0);

origin (0 0 0);

axialVelocity constant 1;

radialVelocity constant 0;

rpm constant 0;

value uniform (0 0 0); //Compulsory, but only placeholder!!!

//Line to fix copy-paste-problem

I.e. we are actually only assigning the x-component of the velocity, as in the original case. The

value entry at the end is compulsory to set, but it is overridden by the values determined from

our boundary condition.

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 16

Basic user compilation procedures, libraries (8/8)
Before running, the new library must be added to the controlDict file of the case, as:

libs ("libmyFiniteVolume.so");

Then the solver knows that it should link to the new library. Now try to run the case!

For applications we discussed that the environment variable $PATH is used to find the exe-
cutable files. The environment variable LD_LIBRARY_PATH is similarly used to find the li-
braries when dynamically linking:

$ echo $LD_LIBRARY_PATH

...:

$FOAM_USER_LIBBIN:

$FOAM_SITE_LIBBIN:

$FOAM_LIBBIN:

...

You can check which libraries the solver is linking to by:

ldd `which icoFoam`

However, since the solver itself does not know about the newly developed library, you can’t see

that one in the list.

As for the applications it is also for libraries important that you are using new library names.

Otherwise you may be linking to another file than what you think. BE CAREFUL!!!

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 17

Compilation using wmake
Let’s have a closer look at the terminal output when compiling (here myIcoFoam):

cd $WM_PROJECT_USER_DIR/applications/solvers/incompressible/myIcoFoam

wclean

wmake

This yields in the terminal window (version dependent):
Making dependency list for source file myIcoFoam.C

g++ -std=c++11 -m64 -DOPENFOAM_PLUS=1706 -Dlinux64 -DWM_ARCH_OPTION=64 -DWM_DP -DWM_LABEL_SIZE=32 -Wall

-Wextra -Wold-style-cast -Wnon-virtual-dtor -Wno-unused-parameter -Wno-invalid-offsetof -O3

-DNoRepository -ftemplate-depth-100 -I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/finiteVolume/lnInclude

-I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/meshTools/lnInclude -IlnInclude -I.

-I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/OpenFOAM/lnInclude

-I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/OSspecific/POSIX/lnInclude -fPIC -c myIcoFoam.C

-o Make/linux64GccDPInt32Opt/myIcoFoam.o

g++ -std=c++11 -m64 -DOPENFOAM_PLUS=1706 -Dlinux64 -DWM_ARCH_OPTION=64 -DWM_DP -DWM_LABEL_SIZE=32 -Wall

-Wextra -Wold-style-cast -Wnon-virtual-dtor -Wno-unused-parameter -Wno-invalid-offsetof -O3

-DNoRepository -ftemplate-depth-100 -I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/finiteVolume/lnInclude

-I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/meshTools/lnInclude -IlnInclude -I.

-I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/OpenFOAM/lnInclude

-I/home/oscfd/OpenFOAM/OpenFOAM-plus/src/OSspecific/POSIX/lnInclude -fPIC

-Xlinker --add-needed -Xlinker --no-as-needed Make/linux64GccDPInt32Opt/myIcoFoam.o

-L/home/oscfd/OpenFOAM/OpenFOAM-plus/platforms/linux64GccDPInt32Opt/lib \

-lfiniteVolume -lmeshTools -lOpenFOAM -ldl \

-lm -o /home/oscfd/OpenFOAM/oscfd-plus/platforms/linux64GccDPInt32Opt/bin/myIcoFoam

The compilation is done in two steps. The first gives the intermediate files. The second links to

libraries. There are lots of flags, of which some are specified in Make and many in wmake/rules

CFD with OpenSource Software, 2022

Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 18

Additional: Adding new BC to only myIcoFoam

Above we compiled the BC into a library that can be linked to by all solvers. Here we compile

it into the solver.

1. Copy the *.H and *.C files from the BC into the myIcoFoam directory.

2. Add the *.C file name of the BC in Make/files, before myIcoFoam.C.

3. Compile, using wmake.

4. Run the case that uses the BC.

Note that if the libs(*) line is still present in the controlDict file of the case, the solver

throws a warning that there is a duplicate entry in the runtime table. You should never have

duplicate entries, since it is unclear which entry is being used. Just remove the libs(*) line

to get rid of the problem.

Adding a class to a particular solver is only useful if the class only works for that particular

solver. Most of the time, classes should be compiled into libraries.

	OpenFOAM user directory organization and compilation
	User directory organization
	Basic user compilation procedures

