Cite as: Darbar, Y.: Explanation of dynamicRefineFVMesh for adaptive mesh refinement with an extension
for independent bulk and interface mesh refinement for two phase simulations.. In Proceedings of CFD
with OpenSource Software, 2022, Edited by Nilsson. H., http://dx.doi.org/10.17196/0S_CFD#YEAR_2022

CFD wiTH OPENSOURCE SOFTWARE

A COURSE AT CHALMERS UNIVERSITY OF TECHNOLOGY
TAUGHT BY HAKAN NILSSON

Explanation of dynamicRefineFVMesh for
adaptive mesh refinement with an
extension for independent bulk and
interface mesh refinement for two phase
simulations.

Developed for OpenFOAM-9

Author: .Peer reviewed by:
Stanislau STASHEUSKI
Saeed SALEHI
Mark WILSON

Yatin DARBAR
University of Leeds

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no
responsibility for the contents.

January 15, 2023

http://dx.doi.org/10.17196/OS_CFD#YEAR_2022

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

e How Adaptive Mesh Refinement (AMR) works in the damBreakWithObstacle tutorial and the
mesh refinement settings in this tutorial.

The theory of it:

e The entries of the dynamicMeshDict for the dynamicRefineFvMesh class will be explained in
detail with reference to the damBreakWithObstacle tutorial.

How it is implemented:

e How the AMR algorithm is called within a solver.

e THe details of the code that executes the mesh refinement processes

e How the user specified inputs in the dynamicMeshDict are used in the AMR updates
How to modify it:

e The steps required to extend the dynamicRef ineFvMesh class to allow for multiple field refine-
ment will be elucidated.

e How to use the created dynamicDualRefineFvMesh class to achieve independent mesh refine-
ment in one phase of a two—phase flow and that the phase interface in the damBreakWithObstacle
case.

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:
e How to run standard tutorials like the damBreakWithObstacle tutorial.

e Fundamentals of Computational Methods for Fluid Dynamics, Book by J. H. Ferziger and M.
Peric

e How to customize a solver and do top-level application programming.

Basic understanding of C++ in the context of OpenFOAM object oriented programming

Some understanding of the Volume of Fluid Method for simulating two phase flow.

Contents

1 Introduction
1.1 Background e e e
1.2 Motivation e
1.3 Document Outline e
2 Using dynamicRefineFvMesh for AMR
2.1 The damBreakWithObstacle Case i v v i i i .
2.2 The dynamicMeshDict file o
2.2.1 Sub-Class declaration
2.2.2 refineInterval e e
2.2.3 field e
2.2.4 lowerRefineInterval and upperRefinelInterval
2.2.5 unrefineLevel e e e e
2.2.6 nBufferLayers
2.2.7 maxRefinement
2.2.8 maxCells e e
2.2.9 correctFluxes e e e e e
2.2.10 dumpLevel
3 Dynamic meshing code
3.1 The interFoam source code
3.1.1 dynamicFvMesh.H
3.1.2 createDynamicFvMesh.H,
3.1.3 createDyMControls.H
3.1.4 Time Loop o e
3.2 dynamicRefineFvMesh::update()
3.2.1 Initialisation Phase
3.2.2 Refinement Phase
3.2.3 Unrefinement Phase
4 Creating dynamicDualRefineFvMesh
4.1 Introduction L e e e e e e e e e
4.2 Creating dynamicDualRefineFvMesh
4.2.1 Testing o .o e e e
4.3 Adding Dual-Field Refinement L.
4.3.1 Methodology e
4.3.2 Initialisation Phase e
4.3.3 Alterations for Refinement Phase
4.3.4 Alterations for Unrefinement Phase.
4.4 New selectUnrefineCandidates function
4.5 SUMMATY . . o v v et s e e e e e e e

O BEN e =]

11
11
11
11
12
12
12
13
13
14
14

16
16
17
17
18
18
19
21
22
24

Contents Contents

5 Using dynamicDualRefineFvMesh 40
5.1 Modifying the tutorial L 40
5.1.1 The dynamicMeshDict 40

5.1.2 Dual-field refinement 41

5.1.2.1 Interface Refinement 42

5.1.2.2 Bulk Refinement 42

5.2 Results. e e 43
5.3 Conclusion 43

A Dictionaries 47
A1 damBreakWithObstacle dynamicMeshDict 47

B Source Codes 49
B.1 dnterFoam.C e e e 49
B.2 dynamicRefineFvMesh.C 52

Nomenclature

Acronyms

AMR, Adaptive Mesh Refinement
CFD Computational Fluid Dynamics
RIJ Reactive Inkjet Printing

VOF Volume of Fluid

Chapter 1

Introduction

1.1 Background

At present, the OpenFOAM simulation code allows users to resolve only one evolving region using
adaptive mesh refinement (AMR) algorithms. Further to this in OpenFOAM 9 multiple static
regions with independent refinements levels can be utilised, however it is not possible to have two
independent levels of refinement for different evolving regions in a simulation. This limits the
efficiency of many multi—physics problems that require computational modelling. Achieving this is
the primary work of this project.

Adaptive mesh refinement is a technique of changing the structure of a computational mesh in a
localised area during a simulation. In many physical problems that require numerical modelling, a
uniform computational mesh, does not result in a uniform accuracy in the obtained solution. AMR
provides a framework in which regions of a simulation that need higher resolution to preserve the
precision of the solution can be adapted, whereas regions that do not require as much resolution
remain unchanged. Consider the case of high Reynolds number flow around a cylinder. A uniform
mesh may not capture the vortex shedding in the wake of the cylinder. Rather than refining the
whole mesh which will result in a large increase in the computational expense of the simulation,
AMR allows the refinement of the mesh in just the wake of the cylinder to capture the vortices, but
not adversely effect the intensity of the simulation.

The accuracy of solution is not the only way in which regions in a simulation can be identified for
mesh refinement. In OpenFOAM, the user specifies a single scalar field present in the simulation. For
example the user may request that regions above a threshold pressure should be refined. However
currently in OpenFOAM there is no way to prescribe mesh refinement using on two (or more) fields
within the simulation. For example there is not in-built method to refine both regions of high
temperature and high pressure, or even regions of both low and high pressure. Here the first steps
towards addressing this drawback will be explained.

There have been a number of previous studies that concern adapting the AMR in OpenFOAM.
Many such investigations arise from reports in the CFD with OpenSource Software course. Early
projects concern amalgamating AMR, into solvers that did not at the time support dynamic mesh
refinements. Kosters [1] showed that simulations run with the dieselFoam solver are highly mesh
dependent, hence implemented dynamic mesh refinements into the solver, in order to better resolve
the key physics present in the simulation. Similarly Nygren [2] added AMR to a moving mesh
within the sprayDyMFoam solver. Both of these reports were published in a time when AMR was
only implemented in a small selection of solvers, hence these projects mainly concerned understand-
ing a certain solver and where to implement the AMR. code rather then adapting the AMR process
itself. More recently, Lindblad [3] implemented a run—time mesh refinement for the k —w SST DES
turbulence model. This extension to the OpenFOAM source code was applied to the study of flow
past an aerofoil. This report gave a concise description of the update function used to achieve AMR

1.2. Motivation Chapter 1. Introduction

in a simulation, which provides a basis for a more thorough explanation of the AMR, code to be pre-
sented. One main focus of the current study is to use the AMR source code to justify the description
of the parameters that the user can set to carry the dynamic mesh refinements in an OpenFOAM
simulation. Finally, Eltard-Larsen [4] completed a similar task to Nygren [2] by merging two exist-
ing OpenFOAM dynamic mesh classes. Nygren merged the dynamicMotionSolverFvMesh and the
dynamicRefineFvMesh classes to form the dynamicMotionRefineFvMesh class. This report demon-
strated a solid methodology of first understanding the two dynamic mesh classes, then exemplifying
in detail how to merge the two classes together. A similar process will be explored in this project in
order to create a class in which AMR on two independent fields is possible. Most notably, Tobias
Holzmann [5] adapted the dynamicRefineFvMesh class in a way such that it it possible to use two
parameter sets for refining the interface and bulk of a two phase simulation in two different ways.
This bespoke class was originally posted on his personal website [6] however has since been taken
down, therefore the exact changes to the code are no longer available. Further to this Rettenmaier
et al [7] contributed heavily to advancing AMR capabilities of OpenFOAM, by introducing load
balanced 2D and 3D adaptive mesh refinement in OpenFOAM. The key deliverable from this work
was the ability to re-decompose an adaptive mesh throughout the simulation to ensure that an
even distribution of memory on the processors used in a parallel simulation. Despite this focus, the
library created for this output contained amendments to the AMR implementation, which allowed
users to refine the mesh simultaneously using the gradient or the curl of a vector field present in
the simulation. The work presented here provides inspiration for future directions in which the
developments here can be adapted.

The purpose of this document is to elucidate the AMR code in OpenFOAM in order to allow
readers to follow the modifications described in Chapter 4 of this document in order to achieve
independent adaptive mesh refinement on two fields in a computational fluid dynamics (CFD) sim-
ulation. In particular this adaptation will be used to achieve two distinct levels of mesh refinement
in a two—phase flow simulation. The bulk of one of the phases of interest will be refined more than
the other phase and in addition to this the interface between the two phases will be subject to mesh
refinements. Further to this the AMR code will be adapted to support an alternative method to
unrefining the mesh. This itself will also be a novel contribution to the OpenFOAM source code.

In order to achieve this extension to the existing source code, the current AMR capabilities
will be illustrated using a standard OpenFOAM tutorial case. After this a detailed explanation of
the AMR code will be given in order to understand how mesh refinements are carried out by an
example OpenFOAM solver. This will aid in understanding how the user inputs are used by the
AMR algorithm. Then, the modifications to the AMR code will be undertaken; with description of
the additions, in order to extend the current AMR method to allow for refinement on two fields.
Finally the tutorial case will be revisited, and the new AMR functionality will be demonstrated and
explained.

1.2 Motivation

The motivation for this extension to the OpenFOAM source code stems from understanding the
mixing that occurs in coalescing droplets. Chemical reactions in coalescing droplets are used in
many emerging technologies to create new materials in—situ. This process is exploited heavily in
the Reactive Inkjet Printing (RILJ) industry. Experimental studies are hindered by the fact that
the droplets used in RIJ printing are too small to be able to visualise and understand the internal
mixing dynamics [8, 9, 10]. This motivates the use of CFD in order to understand the motion within
coalescing droplets. With CFD the parameter regime that RIJ processes spans can be investigated
in order to better understand and quantify the mixing that occurs.

In many previous studies on coalescing droplets, the focus is on the external dynamics of the free
surface [11, 12, 13]. This is since the motion of the free surface is the dominant factor controlling the
movement of the droplet. Hence in many numerical studies, the focus has just been on increasing

1.3. Document Outline Chapter 1. Introduction

the mesh resolution at the interface the droplets. Instead of using a high resolution mesh across the
whole simulation domain, in order to reduce the number of mesh elements/cells in a CED simulation
AMR is used to focus on increasing the resolution of the mesh around the free surface, without having
unnecessary cells in places that do not need high resolution.

OpenFOAM allows for the AMR of cells at a fluid—fluid interface, which makes it a good choice of
simulation method for two—phase flow problems like droplet coalescence. However, when studying the
internal mixing dynamics of coalescing droplets the bulk fluid inside the droplet is just as important
to resolve as the free surface. Hence being able to resolve the bulk to a certain level of resolution like
the free surface is desirable in CFD simulations. Since the free surface dynamics influence the bulk
motion of the droplets, it is advantageous to refine the interface of the droplet to a high level, and
the bulk fluid of the droplet to level that is greater than the background mesh in the passive outer
phase in the simulation but less than or equal to the level of the interface refinement. In this way the
internal dynamics of the coalescing droplets can be accurately understood, while the computational
expense of the simulation is minimised as much as possible.

1.3 Document Outline

This guide is centered around understanding the current AMR methods that are responsible for
refining CFD simulations, with an extension to allow for dual-field refinement. To allow the reader
to understand the motivation of this project, the existing AMR capabilities and how to create a
mesh refinement class that can refine in two regions the following sections have been created.

e Chapter 2 — A brief introduction to AMR in OpenFOAM using an example tutorial to
understand the current capabilities of AMR in OpenFOAM.

e Chapter 3 — Discussion of how the dynamic mesh is created and updated in an example solver
and detailed explanation of AMR code.

e Chapter 4 — Explanation of modifications needed to achieve dual-field refinement.

e Chapter 5 — Demonstration of new AMR methods, revisiting the example tutorial.

Chapter 2

Using dynamicRefineFvMesh for
AMR

To begin, and give motivation for the modifications that will be undertaken later, we begin by using
the damBreakWithObstacle tutorial to illustrate how the user can employ AMR in an OpenFOAM
simulation.

2.1 The damBreakWithObstacle Case

After sourcing OpenFOAM 9, the damBreakWithObstacle case can be copied to the user’s working
directory, in order to run the simulation, by executing the following;:

cd $FOAM_RUN

cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreakWithObstacle .
cd damBreakWithObstacle

./Allrun

Once the simulation has completed the results can be visualised using Paraview. The AMR that
takes place during the simulation can be viewed by setting the direction of the view in the camera
controls to +X, the visual to be “Surface With Edges” in the Representation Toolbar and keeping the
Active Variable as “Solid Colour”. Figure 2.1a shows the visual that is obtained from these settings
and Figure 2.1b shows the visual that is obtained by changing the active variable to alpha.water.
Figure 2.1b shows the initial conditions of the damBreakWithObstacle of the simulation in which a
vertical column of water is held stationary until the simulation begins and the force of gravity causes
the column to collapse.

The mesh present at the start of the simulation is the uniform 32 x 32 x 32 regular hexahedral
mesh specified in the system/blockMeshDict file of the case directory, which was created when the
Allrun script executed the blockMesh utility. Selecting an arbitrary write time, the changes to the
mesh can be inspected. Figure 2.2a shows the mesh at 0.4s into the simulation, and Figure 2.2b
shows the mesh, with the surfaces of the mesh cells coloured by the phase fraction (alpha.water).
At 0.4s into the simulation the mesh is no longer a uniform grid. Instead some cells have be divided
to create smaller cells. This dividing of cells is the adaptive mesh refinement. By colouring the mesh
surface by the phase fraction, we see that the region coloured white/gray is the region in which
the mesh has been refined. This corresponds to the region in which alpha.water is such that 0 <
alpha.water < 1. The phase fraction alpha.water is used in the Volume of Fluid (VOF) method
to distinguish between the phases, present in a multiphase flow. In this case the value of the phase
fraction is one in all cells that contain solely water (coloured red), zero in all cells that contain solely
air (coloured blue), and cells which have a value of alpha between zero and one are said to contain
the air-water interface. We can conclude that throughout the simulation the mesh is being refined

2.1. The damBreakWithObstacle Case Chapter 2. Using dynamicRefineFvMesh for AMR

(a) Uncoloured mesh (b) Mesh coloured by phase fraction

Figure 2.1: Mesh of the damBreakWithObstacle tutorial at time ¢t = Os.

I
H
(a) Uncoloured mesh (b) Mesh coloured by phase fraction

Figure 2.2: Mesh of the damBreakWithObstacle tutorial at time ¢ = 0.4s.

10

2.2. The dynamicMeshDict file Chapter 2. Using dynamicRefineFvMesh for AMR

at the air—water interface. The reader is encouraged to look at data from different writeTimes to
convince themselves of this.

The mesh has been refined throughout this simulation due to the presence of the dynamicMeshDict
file that is present in the constant directory of the simulation case files. This file specifies an Open-
FOAM class that refines the mesh in the simulation. The class used in this simulation is called
dynamicRefineFvMesh. This refines and unrefines the mesh, by adding or removing points, faces
and cells, in the mesh. To explain how the dynamicRefineFvMesh class is utilised, and understand its
capabilities for mesh refinement, we shall examine and explain the entries in the dynamicMeshDict
file.

2.2 The dynamicMeshDict file

The dynamicMeshDict file for the damBreakWithObstacle tutorial case is provided in Appendix A.1.
The reader is encouraged to refer to this while reading the description in this section. To understand
this dictionary and how the settings correspond to mesh refinements seen in the damBreakWithObstacle
simulation, each of the entries shall be explained and their impact on the mesh refinement will be
linked back to the tutorial case.

2.2.1 Sub-Class declaration

The dynamicMeshDict begins by indicating which dynamicFvMesh subclass will be used in the
simulation.

17| dynamicFvMesh dynamicRefineFvMesh;

For completeness the subclasses of dynamicFvMesh are:
e dynamicInkjetFvMesh
e dynamicInterpolatedFvMesh
e dynamicMotionSolverFvMesh
e dynamicRefineFvMesh

The entries contained within the dynamicMeshDict depend on which subclass is selected. The
details of all the sub-classes are out of the scope for this project, since we are only concerned with
understanding the dynamicRefineFvMesh class in order to modify it.

2.2.2 refinelnterval

The refineInterval parameter controls how often the mesh is refined during the simulation.
Re-meshing a simulation domain is quite a computationally expensive procedure. By giving the
user the ability to reduce the frequency of mesh refinements this cost can be reduced dramtically.
refineInterval specifies the number of time-steps that should elapse before the mesh is refined /un-
refined. In the damBreakWithObstacle tutorial, refineInterval is set to 1.

20| refineIlnterval 1;

Therefore every time—step the mesh is updated.

2.2.3 field

This is simply the variable that will be used to decided if the mesh needs refining. In all versions
of OpenFOAM it must be a scalar value, therefore variables like velocity cannot be used. Instead
if the user would like to refine in regions of high velocity, one component of velocity must be
used, or indeed the velocity magnitude, must be calculated and stored during the simulation. In

11

2.2. The dynamicMeshDict file Chapter 2. Using dynamicRefineFvMesh for AMR

the damBreakWithObstacle tutorial, the phase fraction (alpha.water) will be used to define the
criteria in which the mesh is refined.

23| field alpha.water;

It will be explained in the next section how using this field, the user can refine the mesh at the
air—water interface through the simulation.

2.2.4 lowerRefineInterval and upperRefinelInterval

Specifying the scalar values of lowerRefineInterval and upperRefineInterval defines the criteria
in which cells are refined throughout the simulation. In general a cell will be refined if the value of
the cell field specified in the field entry is greater than the lowerRefineLevel and less than the
upperRefineLevel, i.e. for the i-th cell in the computational domain, the cell is refined if

lowerRefinelevel < field < upperRefinelevel.

The values of lowerRefineLevel and upperRefineLevel set in the damBreakWithObstacle case
are 0.001 and 0.999 respectively

26| lowerRefineLevel 0.001;
27| upperRefineLevel 0.999;

hence in the tutorial, cells will be refined if they satisfy the condition
0.001 < alpha.water < 0.999.

Recalling that the value of the phase fraction is between zero and one in all cells that contain the free
surface of a two—phase flow, this confirms the qualitative conclusion that the mesh is being refined
in the regions that contain the air—water interface.

2.2.5 unrefinelevel

The unrefineLevel input controls the mesh unrefinement. For a point in the mesh, if the value of
the field selected to refine on is less than unrefineLevel in all the cells that surround that point
ie.

field < unrefinelevel,
then the point is removed, thus unrefining the mesh, unless the point has just been added in order

to refine the mesh at this time—step in the simulation. In the damBreakWithObstacle tutorial the
unrefineLevel is set to 10.

30| unrefinelLevel 10;

Hence all points where the phase fraction is less than 10 are considered for unrefinement. Notice,
from the theory of the VOF method, that the phase fraction will always be greater than or equal
to zero and less than or equal to one. Therefore in this simulation all of the cells/points in the
computational domain are considered for unrefinement. We shall explore in greater detail later,
why the cells that fulfill the refinement criteria are not unrefined even though they satisfy the
unrefinement criteria.

2.2.6 nBufferlayers

In order to avoid sharp changes in the mesh grading, the nBufferLayers parameter prescribes a
number of layers that must “bridge” the gap between refined and unrefined regions of the mesh. The
larger the value of nBufferLayers the larger this intermediate layer is. In the damBreakWithTutorial
case the nBufferLayers parameter is set to 1.

33| nBufferLayers 1;

12

2.2. The dynamicMeshDict file Chapter 2. Using dynamicRefineFvMesh for AMR

HH
A
HH

HE

HA

H

(a) nBufferLayers = 1 (b) nBufferLayers = 4

Figure 2.3: Comparison of the cells around the interface in the damBreakWithObstacle tutorial at
0.2 s showing the effect of increasing the nBufferLayers parameter.

This produces a modest but adequate layer of cells around the interface. This can be more easily seen
by using the +7Z camera view in Paraview. Indeed if the nBufferLayers parameter is increased,
then the zone of cells around the interface extends. Figure 2.3 shows a comparison of the mesh
at 0.2s into the simulation between the damBreakWithObstacle tutorial with the nBufferLayers
parameter set to 1 and 4.

2.2.7 maxRefinement

Examining Figure 2.2a again, it is possible to see that some of the cells from the 32 x 32 x 32 mesh
have been split, and split again. Before the simulation is executed a cell in the computational mesh
has a cellLevel of zero. When a cell is refined, the value of the cellLevel for the resulting cells
that are created is increased by one. The maxRefinement entry sets the maximum number of times
an initial cell in the mesh before the simulation can be refined by defining the largest cellLevel
any future mesh cell may have. In the damBreakWithObstacle tutorial, maxRefinement is set to 2

6| maxRefinement 2;

Therefore the initial cells in the computational mesh will be refined a maximum of twice in the
simulation. This explains the observation in Figure 2.2a that some cells look like they have been
split twice over.

2.2.8 maxCells

The core concept of AMR is reducing computational expense by reducing the overall number of mesh
cells in the simulation. However splitting one cell results in seven new cells in the computational
domain, therefore in some cases the number of cells in the simulation can grow exponentially. The
maxCells parameter limits the total number of cells in the mesh, to ensure that the expense of the
simulation is not compromised by a blow up in the number of cells. Once the total number of cells
in the computational domain reaches maxCells refinement of the mesh stops and only unrefinement
can occur until the number of cells in the computational domain is less than maxCells. In the
damBreakTutorial the maxCell parameter is set to 200000

39| maxCells 200000;

There is no rubric on setting this parameter since it is highly case dependent.

13

44
45
46
47
48
49
50

2.2. The dynamicMeshDict file Chapter 2. Using dynamicRefineFvMesh for AMR

2.2.9 correctFluxes

The correctFluxes entry in the dynamicMeshDict is a dictionary that contains a list of the fluxes
on the cell faces in the simulation and corresponding velocity field. Fluxes on faces that change
within the mesh get recalculated by interpolating the velocity field. For fluxes that do not need
to be re—interpolated the none keyword can be used. This feature is mostly used in the mesh
refinement classes that alter the mesh topology. Listing 2.1 shows an example of how the fluxes
are re-calculated in the dynamicRefineFvMesh: :refine function. This is done by taking the scalar
product of the cell face normals (S£()) and the interpolated value of the field at the faces of the cell
(fvc::interpolate()).

const surfaceScalarField phiU
(
fvc::interpolate
(
lookupObject<volVectorField>(UName)
)
& S£()
)3

Listing 2.1: Example section of the code used to re—interpolate the fluxes on mesh faces

In the case of the damBreakWithObstacle simulation, since the initial mesh is a regular hexahedral
mesh, the refinements do not cause the orientation of the faces in the mesh to be altered. Therefore
no re-interpolation is required. The correctFluxes table is given by

correctFluxes

(
(phi none)
(nHatf none)
(rhoPhi none)
(alphaPhiO.water none)
(ghf none)

2.2.10 dumpLevel

The last entry in the dynamicRefineDict is a boolean input called, dumpLevel. This input gives
the user the optional to write out the cellLevel for each cell in the simulation. This allows the user
to visualise the cellLevel in Paraview alongside the other standard simulation data such velocity,
pressure etc. The code that executes this is found in the dynamicRefineFvMesh: :writeObject
function

if (dumpLevel_)
{
volScalarField scalarCellLevel
(
I0object
(
"cellLevel",
time() .timeName(),
*this,
IOobject::NO_READ,
IOobject: :AUTO_WRITE,
false
),
*this,
dimensionedScalar(dimless, 0)

)8
const labellList& celllLevel = meshCutter_.celllLevel();

forAll(cellLevel, celli)

14

2.2. The dynamicMeshDict file Chapter 2. Using dynamicRefineFvMesh for AMR

{
scalarCellLevel[celli] = celllLevel[cellil;
}

writeOk = writeOk && scalarCelllLevel.write();
¥

An IOobject called cellLevel that will be written out during the simulation is created and the
cellLevel () member function of the hexRef8 classes is used to access the cellLevel of all cells
in the mesh. The celllLevel obtained from the mesh is then stored in the IOobject celllLevel
which is written out in the simulation. This functionality is convenient since it allows the user to
assess whether AMR is suited for the simulation problem. If the regions of high cellLevel are quite
static, then a graded mesh or an over—set mesh, may be more appropriate for the simulation, rather
than a dynamically evolving mesh.

Now that we have investigated an example of using AMR in a multiphase simulation and under-
stood how to control the mesh refinements on the user level, we see that refinement using only one
field is possible. Therefore the next step is to understand how the source code of the solver invokes
the dynamicFvMesh class and updates the mesh during the simulation. After which we will be in a
position to make amendments to the source code.

15

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Chapter 3

Dynamic meshing code

Before examining the dynamicRef ineFvMesh class, in order to understand how AMR is achieved in
OpenFOAM, we shall begin with a top down approach to identify the lines of code that initialise
the dynamic mesh and cause it to be updated. In this way we can restrict our attention to the core
pieces of code that need to be examined.

When a simulation is carried out using OpenFOAM, we execute only the solver to begin the
simulation. Therefore the solver must carry out the AMR routine. Examining the solver source
code will allow us to determine how the mesh refinements are accomplished in an OpenFOAM
simulation. Since in the damBreakWithObstacle tutorial the interFoam solver is used, we shall use
this solver as an example to examine how dynamic mesh refinements are hard—coded into the solver
source code. Though we examine the interFoam solver specifically in this report, we shall see that
the AMR routine is called in a general way, which is very similar across many of the OpenFOAM
solvers that that boast AMR capabilities.

3.1 The interFoam source code

The code that defines the interFoam solver is found in the interFoam.C file. The full interFoam.C
file can be found in Appendix B.1. To understand how the dynamic mesh is created in the simulation,
it is first useful to examine the files that are included within the beginning of the source code. Listing
3.1 shows the main files included within the interFoam.C file.

#include "fvCFD.H"

#include "dynamicFvMesh.H"

#include "CMULES.H"

#include "EulerDdtScheme.H"

#include "localEulerDdtScheme.H"

#include "CrankNicolsonDdtScheme.H"

#include "subCycle.H"

#include "immiscibleIncompressibleTwoPhaseMixture.H"
#include "noPhaseChange.H"

#include "kinematicMomentumTransportModel.H"
#include "pimpleControl.H"

#include "pressureReference.H"

#include "fvModels.H"

#include "fvConstraints.H"

#include "CorrectPhi.H"

#include "fvcSmooth.H"

J/ % % % % %k % % % % % % % *k % % % % % % % % % % % % % % %k % % %k % %k % *x *x x //
int main(int argc, char *argv[])

{

#include "postProcess.H"

16

58
59
60
61
62
63
64
65
66
67

3.1. The interFoam source code Chapter 3. Dynamic meshing code

#include "setRootCaseLists.H"
#include "createTime.H"

#include '"createDynamicFvMesh.H"
#include "initContinuityErrs.H"
#include "createDylMControls.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createAlphaFluxes.H"
#include "initCorrectPhi.H"
#include "createUfIfPresent.H"

Listing 3.1: The included files in the interFoam solver

From these files we can begin to identify and investigate the generation of the dynamic mesh.

3.1.1 dynamicFvMesh.H

The first file that concerns the creation of the dynamic mesh, is the dynamicFvMesh.H header file.
This file is included in order to define the base class dynamicFvMesh, which all the dynamic mesh
classes listed in Section 2.2.1 inherit from. The dynamicFvMesh itself inherits from the fvMesh class,
which is the class used for standard static mesh simulations. dynamicFvMesh extends upon the
capabilities of the fvMesh class by providing the features that allow for a changing mesh during the
run time of a simulation. An example of such features is being able to read and return the dictionary
that defines the changes to the dynamic mesh, and also an update function that will execute changes
to the dynamic mesh for mesh motion and topological mesh changes.

3.1.2 createDynamicFvMesh.H

This inclusion allows the addition of a small section of code that calls the dynamicFvMesh: :New
function, which is defined in dynamicFvMeshNew.C. The section of code is presented in Listing 3.2
The dynamicFvMesh: :New function creates a dynamic mesh object by reading the dynamicFvMesh
sub—class that is specified in the dynamicMeshDict file in the case directory and creating a mesh of
that type.

Info<< "Create mesh for time = "

<< runTime.timeName() << nl << endl;

autoPtr<dynamicFvMesh> meshPtr

(
dynamicFvMesh: :New
(
IO0object
(
dynamicFvMesh: :defaultRegion,
runTime.timeName(),
runTime,
I0object: :MUST_READ

)

dynamicFvMesh& mesh = meshPtr();

Listing 3.2: createDynamicFvMesh.H file

For example in the damBreakWithObstacle case because the class dynamicRefineFvMesh was de-
clared at the beginning of the dynamicMeshDict, a dynamicRefineFvMesh object was created. After
the dynamicfvMesh: :New function is called, a reference called mesh is created. This reference is to
the dynamicFvMesh type that was just created by the dynamicfvMesh: :New function. With this in
mind when the object mesh is used within the code from now on, we understand that it is a reference
to an object from a subclass of dynamicFvMesh

17

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

3.1. The interFoam source code Chapter 3. Dynamic meshing code

3.1.3 createDyMControls.H

Again, this included file is to insert a small section of code into the solver. Namely,

#include "createControl.H"
#include "createTimeControls.H"

bool correctPhi
(
pimple.dict () .lookupOrDefault ("correctPhi", mesh.dynamic())

N

bool checkMeshCourantNo
(

pimple.dict () .lookupOrDefault ("checkMeshCourantNo", false)
)8

bool moveMeshOuterCorrectors
(

pimple.dict () .lookupOrDefault ("moveMeshOuterCorrectors", false)
);

Listing 3.3: createDyMControls.H file

In this case the section of code concerns reading some of the settings from the PIMPLE dictionary
from the case directory in the system/fvSolution file. The code creates three boolean objects:

e correctPhi
e checkMeshCourantNo
e moveMeshOuterCorrectors

The value of these boolean objects is determined by using the lookupOrDefault function. If any of
these keywords are found in the PIMPLE dictionary, then the value from the dictionary is assigned
to the value here, if they are not found in the dictionary, then the values are assigned a default value
specified in this section of code. The details of these controls are beyond the scope of this project,
so more detail will not be provided.

3.1.4 Time Loop

After the inclusion of the files presented in Listing 3.1, the dynamic mesh has been selected, con-
structed and made accessible through the mesh reference object. After which the time loop begins
(line 78 of interFoam.C) and within the time loop first the dynamic mesh controls that were created
in the createDyMControls.H file are read for use within the solution procedure.

Info<< "\nStarting time loop\n" << endl;

while (pimple.run(runTime))

{
#include "readDyMControls.H"

if (LTS)

{
#include "setRDeltaT.H"

}

else

{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"

}

runTime++;

18

105

115

3.2. dynamicRefineFvMesh: :update () Chapter 3. Dynamic meshing code

Info<< "Time = " << runTime.timeName() << nl << endl;

// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstPimpleIter() || moveMeshOuterCorrectors)
{
// Store divU from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence
tmp<volScalarField> divU;

if
(
correctPhi
&& !isType<twoPhaseChangeModels: :noPhaseChange>(phaseChange)
)
{
// Construct and register divU for mapping
divU = new volScalarField
(
"divUo",
fvc::div(fvc: :absolute(phi, U))
)5
}

fvModels.preUpdateMesh() ;

mesh.update() ;

Listing 3.4: The beginning of the interFoam time-loop

The reason the mesh controls are re-read at the start of each time-step is to allow the user the
ability to change the dynamic mesh controls in the PIMPLE dictionary during the run time of
the simulation. An advantage of OpenFOAM is the flexibility in having many run-time modifiable
settings. Next, the time step is set, the Courant number is calculated and this information along
with the current simulation time is printed to the output stream. After this the first call to the mesh
reference is on line 125 of the interFoam.C code. On this line the update () function is executed,
which is a member function of the mesh object. Since this is a pointer to the dynamicFvMesh subclass
that was created in createDynamicFvMesh.H file, it is seen that the code mesh.update() is really
a call to the dynamicFvMesh: :update () function.

In the case of the damBreakWithObstacle tutorial, since a dynamicRefineFvMesh class is de-
clared as the type for the dynamic mesh, then the mesh object created in the createDynamicFvMesh.H
file is a reference to a dynamicRefineFvMesh object. Therefore, when the mesh.update () function
is called, in actuality the dynamicRefineFvMesh: :update() function is called. Since this project
concerns making modifications to the dynamicRefineFvMesh class, we shall restrict attention to the
dynamicRefineFvMesh: :update () function, in order to understand what this function does and how
it accomplishes AMR within dynamicRefineFvMesh class, before going on to make modifications to
this class.

3.2 dynamicRefineFvMesh: :update()

As will be elucidated, the dynamicRefineFvMesh: :update() function is responsible for carrying
out the dynamic mesh refinements when the dynamicRefineFvMesh class is used. For brevity,
henceforth the function will be referred to as the update () function, since this report concerns the
dynamicRefineFvMesh class. A flow chart outlining the key steps in the function is provided in
Figure 3.1. A detailed description of theses key steps will be given in order to understand how
the mesh refinement is carried out, when using the dynamicRefineFvMesh class and corresponding
dynamicMeshDict.

19

3.2. dynamicRefineFvMesh: :update () Chapter 3. Dynamic meshing code

Figure 3.1: A flow diagram, outlining the key process and steps in the
dynamicRefineFvMesh: :update function.

20

1331
1332
1333
1334

1338

1336

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353

1360

1362
1363
1364
1365
1366

3.2. dynamicRefineFvMesh: :update () Chapter 3. Dynamic meshing code

3.2.1 Initialisation Phase

To begin the update () function reads in the dynamicMeshDict from the case directory and stores
it locally as a dictionary called refineDict.

const dictionary refineDict
(
dynamicMeshDict () .optionalSubDict (typeName + "Coeffs")

DK

Notice that the dynamicMeshDict is re-read every time—step (since the update () function is called
each time—step) in order to allow for run—time modifications to the AMR strategy throughout the
simulation.

In order to indicate when adaptations to the mesh have been made the function uses a boolean
variable hasChanged. This is initially set to false since during the initialisation phase of the function
no changes to the mesh have been undertaken.

bool hasChanged = false;

We shall see in later phases of the update() function the value of hasChanged is reassigned when
alterations to the mesh have been completed.

The next stage of the initialisation phase is to check the refinement parameters. This is done
by looking up the entries in the refineDict (recall this is a local copy of dynamicMeshDict at a
given time-step). First a label for the refineInterval is created and assigned the value of the
refineInterval in the refineDict.

label refineInterval = refineDict.lookup<label>("refinelInterval");

The function now proceeds to determine whether mesh refinement is enabled.

if (refinelInterval == 0)
{
topoChanging (hasChanged) ;

return false;

}

else if (refinelnterval < 0)

{

FatalErrorInFunction

<< "Illegal refinelInterval " << refinelnterval << nl
<< "The refinelnterval setting in the dynamicMeshDict should"
<< " be >= 1." << nl
<< exit(FatalError);

}

If the refinement variable refineInterval is set to zero then mesh refinements are disabled and
the function ceases operation. This is useful in situations such as finding a steady state solution
before enabling refinements to the mesh. If the refineInterval is less than zero, a warning will be
passed to the output stream since this is an invalid value for refineInterval and the solver will also
terminate execution. In the case that refineInterval is defined appropriately (refineInterval is
greater than zero), then the function moves on to storing a local version of the maxCell parameter.

label maxCells = refineDict.lookup<label>("maxCells");

Again this parameter is checked in order to make sure that it is properly defined since a non-positive
value of maxCells does not make physical sense.

if (maxCells <= 0)
{
FatalErrorInFunction
<< "Illegal maximum number of cells " << maxCells << nl
<< "The maxCells setting in the dynamicMeshDict should"

21

3.2. dynamicRefineFvMesh: :update () Chapter 3. Dynamic meshing code

1367 << " be > 0." << nl
1368 << exit(FatalError);
1369 }

The final part of the initialisation phase is to create and store a local value of the the nBufferLayers
parameter

1371 const label nBufferLayers =
1372 refineDict.lookup<label>("nBufferLayers");

3.2.2 Refinement Phase

The refinement phase of the update() function begins with the identification of which cells in
the computational mesh should be refined based on the criteria set out in the refineDict and
the assignment of the maxRefinement parameter. These two tasks are both carried out by the
dynamicRefineFvMesh: :selectRefineCandidates function. The selectRefineCandidates func-
tions are defined on lines 684-804 of the dynamicRefineFvMesh.C file (See Appendix B.2). The
maxRefinement parameter is assigned and checked in a similar way to the refineInterval and
maxCells parameters in the initialisation phase.

766 const label maxRefinement = refineDict.lookup<label>("maxRefinement"); ‘

It too cannot have a non-positive value, hence an error warning is output in the cases when the user
specifies an invalid value of the maxRefinement parameter.

768 if (maxRefinement <= 0)

769 {

770 FatalErrorInFunction

771 << "Illegal maximum refinement level " << maxRefinement << nl
772 << "The maxCells setting in the dynamicMeshDict should"

773 << " be > 0." << nl

774 << exit(FatalError);

775 }

As well as returning the maxRefinement value, this function creates a lists of cells that are candidates
for refinement. The selectRefineCandidates identifies cells as candidates for refinement by using
the local error function (defined on lines 635-655 of the dynamicRefineFvMesh.C file). The error
of each cell in the computational mesh is calculated by the function

error; = min{field; — lowerRefineLevel,upperRefineLevel — field,}, (3.1)

where the subscript i denotes the i—th cell in the computational mesh. The error function gives
a way to quantify the closest distance to either of the upperRefinelLevel and lowerRefinelLevel
limits. This information is not used elsewhere in the update function, however it lays the foundation
for prioritising cells with higher error to be the ones refined first. Since these cells are furthest from
both upperRefinelevel and lowerRefineLevel. As we shall see later this will be beneficial in
cases in which all the candidates for refinement cannot be refined due to the maximum allowable
number of cells in the mesh being exceed. The selectRefineCandidates function identifies cells
that should be refined, by measuring the cells error and its cel1lLevel. If the error of the cell is great
than zero, and the cellLevel is less than the maxRefinement parameter then the cell is identified
as a candidate to be refined.

695 const scalarField cellError

696 (

697 error (vF1d, lowerRefineLevel, upperRefineLevel)
698);

699

700 const labelList& celllLevel = meshCutter_.cellLevel();
701

702 // Mark cells that are candidates for refinement.

703 forAll(cellError, celli)

22

705

1404

831

1463

3.2. dynamicRefineFvMesh: :update () Chapter 3. Dynamic meshing code

{
if
(
celllLevel[celli] < maxRefinement
&& cellError([celli] > 0
)
{
candidateCells.set(celli, 1);
}
}

From the definition of the error function in equation 3.1, we can we see that the cell error is non—
negative whenever
lowerRefinelLevel < field < upperRefineLevel. (3.2)

which confirms the statement in Section 2.2.4.

Before beginning the actual refinement procedure and turning the list of candidate cells for
refinement into a definitive list of cells that will be refined, a trivial check that the number of cells
in the computational mesh domain is less than maxCells is completed.

if (globalData() .nTotalCells() < maxCells)

If this is not the case then the refinement process is skipped and the function proceeds to the
unrefinement sub—routine. If the number of cells in the simulation is less than maxCells, then the
refinement takes places. In order to avoid undergoing a mesh refinement that would result in creating
too many cells, The number of cells that can be refined is calculated, assuming that each refined cell
creates seven new cells. This is done by using the selectRefineCells function (defined on lines
807-891 of dynamicRefineFvMesh.C)

label nTotToRefine = (maxCells - globalData().nTotalCells()) / 7;

|

After which the number of cells that have been marked for refinement is checked against this esti-
mation

if (nCandidates < nTotToRefine)

There are two situations that can occur. The first being that the number of cells after refinement
will not exceed maxCells. In this case refinement will occur to all marked cells. The second case
occurs when the number of cells after refinement is more than maxCells. In this case, cells are
refined until the number of cells in the mesh becomes larger than maxCell. The order in which cells
are chosen in this case is just in the order they are listed in the candidates array. There is scope here
to use the data gathered from the error function in order to rank the cells that should be refined
first. This final check gives a list nCellsToRefine which contains all the cells that will be refined
this time—step.

If nCellsToRefine is greater than zero, the refinement procedure begins by calling the refine
function. Briefly this function creates the new mesh by splitting the cells that need to be refined
by introducing a point in the middle of the cell. The cell fields are then mapped and the flux is
approximated on the newly created faces. Notice that the flux correction will only occur if specified
in the correctFluxes dictionary in the dynamicMeshDict file.

At the end of the refinement procedure, the boolean hasChanged is set to true, since in the case
that nCellsToRefine is greater than zero, the mesh has been updated. The function now moves
onto the unrefinement sub-routine.

hasChanged = true;

23

905

909

1511

3.2. dynamicRefineFvMesh: :update () Chapter 3. Dynamic meshing code

3.2.3 Unrefinement Phase

The phase starts by selecting the points that should be unrefined. This is done by calling the
selectUnrefineCandidates function (defined on lines 894 —983 of dynamicRefineFvMesh.C). It is
noted here that when talking about unrefinement of the mesh, a computational cell itself cannot
be unrefined, but rather a common point/corner of a set of cells can be removed to create a larger
cell. Hence when selecting candidates to unrefine the mesh, we consider points in the computational
mesh, rather than cells.

The selectUnrefineCandidates function works by considering the cells around a point in the
mesh.

forAll(pointCells(), pointi)
{
const labellList& pCells = pointCells() [pointil;

scalar maxVal = -great;
forAll(pCells, i)
{
maxVal = max(maxVal, vFld[pCells[il]);
}

unrefineCandidates[pointi] =
unrefineCandidates[pointi] && maxVal < unrefineLevel;

}

It finds the largest value of the field that has been selected to control the refinement of the mesh
(field) in the cells surrounding a point and stores that as the variable maxVal. Then if

maxVal < unRefineLevel, (3.3)

the point is made a candidate for removal, thereby giving a way to unrefine the mesh by removing
points.

Again, not all the candidates for unrefinement are passed on to actually be unrefined, in this
case the selectUnrefinePoints function is used to ensure that points that have been identified as
candidates to be removed are not part of protected cells, or the intermediate layer that is created
to have guarantee a smooth mesh level transition between refined and unrefined regions. The
selectUnrefinePoints function also takes the refineCells array as an input, to ensure that any
cells that have been refined on this iteration of the mesh refinement algorithm are not immediately
unrefined in the same time—step. This is why in the damBreakWithObstacle tutorial despite setting
all cells to be unrefined (by setting unRefineLevel to 10), those cells that have been refined are
not immediately unrefined in the same time—step. Once the selectUnrefinePoints function has
approved the points that can be removed from the mesh, the finalised list of points that are to
be removed are stored in the nSplitPoints variable. Another trivial check that the number of
nSplitPoints is greater than zero is completed before executing the unrefinement procedure.

if (nSplitPoints > 0)

The unrefine function executes the removal of the nSplitPoints in the mesh. As before, the fields
are also mapped and the fluxes are recreated approximately on the new faces. Also as before, the
fluxes will only be recreated if they are listed under correctFluxes in the dynamicMeshDict. The
full details of the unrefine function are out of the scope for this project.

The last stage of the unrefinement procedure is to change the boolean hasChanged to true. This
could already have a true value the mesh has been refined during the refinement phase, but since
the update function allows for refinement without unrefinement and vice versa, the hasChanged
value must also be changed here also.

hasChanged = true;

24

3.2. dynamicRefineFvMesh: :update () Chapter 3. Dynamic meshing code

After the unrefinement procedure, the update function then passes the value of hasChanged to the
topoChanging boolean. The topoChanging variable is returned by the call to mesh.update() and
the value is used later on in the interFoam.C code.

This concludes the description of the dynamicRefineFvMesh: :update() function. It is now
possible to adapt the dynamicRefineFvMesh class in order to add the capabilities to refine on two
fields within the CFD simulation. The instructions and details of the adaptations necessary are
described in the next chapter.

25

Chapter 4

Creating dynamicDualRefineFvMesh

4.1 Introduction

In order to establish the ability to refine on two fields in a CFD simulation using OpenFOAM a
new dynamicFvMesh subclass needs to be implemented. This will primarily be achieved by adapt-
ing the the source code of the dynamicRefineFvMesh class and building on the mesh refinement
algorithms and processes described in Chapter 3. The new dynamicFvMesh subclass will be named
dynamicDualRefineFvMesh, since the core principle of the new class is to add the functionality to
refine on two fields in a simulation. The report shall focus on using the dynamicDualRefineFvMesh
class to refine the mesh of a separated two-phase flow, but reader is encouraged to apply the
dynamicDualRefineFvMesh class to other investigations. The finished class is provided in the ac-
companying files, but the reader is encouraged to understand and carry out the changes to the source
code.

We shall begin by copying the dynamicRefineFvMesh source code, compiling into our own library,
then checking that this library is accessible by running the damBreakWithObstacle tutorial again.
After which the alterations to the code will be undertaken and the dynamicDualRefineFvMesh will
be created and compiled.

4.2 Creating dynamicDualRefineFvMesh

In order to create a user modifiable version of dynamicRefineFvMesh which will be the basis of
dynamicDualRef ineFvMesh, we shall make a copy of the dynamicRefineFvMesh directory (located in
$FOAM_SRC/dynamicFvMesh) in the user directory. To do this we can execute the following commands
(after sourcing the OpenFOAM).

cd $WM_PROJECT_USER_DIR

mkdir src/dynamicFvMesh/dynamicDualRefineFvMesh

cd src/dynamicFvMesh/dynamicDualRefineFvMesh

cp -r $FOAM_SRC/dynamicFvMesh/dynamicRefineFvMesh/dynamicRefineFvMesh* .

We shall begin by renaming the class files to match the new class that will be implemented as part
of this report, as well as renaming all the occurrences of the class names in the header and main
files. Now we must rename the class files and their occurrences.

mv dynamicRefineFvMesh.H dynamicDualRefineFvMesh.H
mv dynamicRefineFvMesh.C dynamicDualRefineFvMesh.C
sed -i 's/dynamicRefineFvMesh/dynamicDualRefineFvMesh/g' dynamicDualRefineFvMesh.*

In order to compile this class, we must create a Make directory with the corresponding files
and options files. The simplest way to create this is to copy the Make folder that compiles the
dynamicRefineFvMesh class located in the $FOAM_SRC/dynamicFvMesh directory

26

N

© W N o u

10
11
12
13

1326
1327
1328

4.2. Creating dynamicDualRefineFvMesh Chapter 4. Creating dynamicDualRefineFvMesh

cp -r $FOAM_SRC/dynamicFvMesh/Make .

Notice that the copied Make/files file, is used to compile dynamicFvMesh and all of its sub—classes.
Hence, in order to compile solely the user created dynamicDualRefineFvMesh class, the Make/files
file must be changed to

Make/files

dynamicDualRefineFvMesh.C

LIB = $(FOAM_USER_LIBBIN)/libdynamicDualRefineFvMesh

Here we also note that the library is saved in the $FOAM_USER_LIBBIN since users do not have the abil-
ity to compile libraries in the $FOAM_LIBBIN. Since we have moved the dynamicDualRefineFvMesh
library away from the base class dynamicFvMesh, we must ensure that the compiled base class can
be accessed. Therefore an additional set of lines needs to be added to the Make/options file:

Make/options

EXE_INC = \
-I$(LIB_SRC)/triSurface/1nInclude \
-I$(LIB_SRC) /meshTools/1lnInclude \
-I$(LIB_SRC) /dynamicMesh/1nInclude \
-I$(LIB_SRC)/finiteVolume/1nInclude \
-I$(LIB_SRC) /dynamicFvMesh/1nInclude

LIB_LIBS = \
-ltriSurface \
-1meshTools \
-ldynamicMesh \
-1finiteVolume \
-ldynamicFvMesh

Finally, it is possible to ensure that any users are aware that a non-standard library is being used in
the simulation. The dynamicDualRefineMesh: :update() function can be amended to print out a
statement to the output stream to alert the user that the dynamicDualRefineFvMesh is being used.

bool Foam::dynamicDualRefineFvMesh: :update()
{

Info<< "Using dynamicDualRefineFvMesh" << endl;

We can now compile the code and check that this class is accessible by the OpenFOAM solver.
Recall to compile the class we can use

wclean
wmake

4.2.1 Testing

Since no modifications to the bespoke class have been made apart from changing the name of the
class, the dynamicDualRef ineFvMesh class should run and produce just as the dynamicRef ineFvMesh
class did in Chapter 2. In order to test that the renaming and recompiling procedure has resulted
in a new class that is accessible by the OpenFOAM solvers, the damBreakWithObstacle tuto-
rial will be executed. In order to use the newly created class, we can copy a new version of the
damBreakWithObstacle tutorial in the users run directory and call it testDamBreak.

cd $FOAM_RUN
cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreakWithObstacle ./testDamBreak
cd testDamBreak

27

1331
1332
1333
1334
1335
1336

4.3. Adding Dual-Field Refinement Chapter 4. Creating dynamicDualRefineFvMesh

To use the newly created dynamicDualRefineFvMesh the dynamicFvMesh type specified in the
dynamicMeshDict must be changed from dynamicRefineFvMesh to dynamicDualRefineFvMesh.

sed -i 's/dynamicRefineFvMesh/dynamicDualRefineFvMesh/g' constant/dynamicMeshDict ‘

And the dynamicDualRefineFvMesh library must be added to the system/controlDict file

echo 'libs ("libdynamicDualRefineFvMesh.so");' >> system/controlDict

Since the objective of this part of the tutorial is only to ensure that the dynamicDualRefineFvMesh
is accessed by the interFoam solver, we shall forego creating the obstacle that is part of the original
damBreakWithObstacle simulation. To test the access of the class we run

blockMesh
setFields
interFoam

From the output stream we can see that the “Using dynamicDualRefineFvMesh” message is printed,
and hence the interFoam solver is using the user compiled dynamicDualRefineFvMesh class in order
to conduct the mesh refinement in the simulation.

4.3 Adding Dual-Field Refinement
4.3.1 Methodology

Despite the motivation for this project stemming from the desire to have a refined interface and bulk
phase in multiphase simulation, the adaptations to the source code can be applied to a myriad of
situations. Hence what will be implemented is a class that can handle mesh refinements on in two
regions, defined by the same or independent scalar fields present in the CFD simulation. The method
of generating dual-field refinement, will be to create two distinct parts to the update function, one
section will refine and unrefine one field, and the latter part will focus on refining and unrefining
the second field. For ease of explanation, the changes to the variables in the source code will be
denoted with a suffix 1 or 2, depending on which of the fields the code concerns. The changes made
in this report are not the most efficient implementation to produce the required result, however they
are seen as first proof of concept implementation to demonstrate the capabilities of OpenFOAM,
in part to understand and prove that minimal changes to the code are needed, just a reshaping of
the mesh refinement algorithms. Further to this the current implementation will not be capable of
dealing with the refinementRegions that one can define in OpenFOAM-9 for static regions of mesh
refinement. Therefore the following adaptations will remove and not consider some of the differences
to the code that this entails.

4.3.2 Initialisation Phase

As discussed in Section 3.2.1, the update function which conducts the mesh refinement undergoes
an initialisation phase, in which the parameters specified in the constant/dynamicMeshDict are
read, stored and checked to ensure they are correctly defined. The first step towards implementing
two field refinement is to amend the initialisation phase of the update function in order to ensure
that the parameters for both fields that will be refined on during the simulation are well-defined. In
this implementation parameters for each field that will be refined on must be created. For reference
the original initialisation phase of dynamicRefineFvMesh is given in Listing 4.1.

const dictionary refineDict
(
dynamicMeshDict () .optionalSubDict (typeName + "Coeffs")

)

label refineInterval = refineDict.lookup<label>("refineInterval");

28

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

4.3. Adding Dual-Field Refinement Chapter 4. Creating dynamicDualRefineFvMesh

bool hasChanged = false;
if (refinelInterval == 0)
{
topoChanging(hasChanged) ;

return false;

}

else if (refinelnterval < 0)

{

FatalErrorInFunction

<< "Illegal refinelnterval " << refinelnterval << nl
<< "The refinelnterval setting in the dynamicMeshDict should"
<< " be >= 1." << nl
<< exit(FatalError);

}

// Note: cannot refine at time O since no VO present since mesh not
// moved yet.

if (time().timeIndex() > O && time() .timeIndex() % refineInterval == 0)
{
label maxCells = refineDict.lookup<label>('"maxCells");

if (maxCells <= 0)

{
FatalErrorInFunction
<< "Illegal maximum number of cells " << maxCells << nl
<< "The maxCells setting in the dynamicMeshDict should"
<< " be > 0." << nl
<< exit(FatalError);
}

const label nBufferLayers =
refineDict.lookup<label>("nBufferLayers") ;

Listing 4.1: Original Initialisation phase

Whereas, in the dynamicDualRefineFvMesh.C file, the initialisation of the update function is given

in Listing 4.2.

Info<< "Using dynamicDualRefineFvMesh" << endl;
// Re-read dictionary. Chosen since usually -small so trivial amount
// of time compared to actual refinement. Also very useful to be able
// to modify on-the-fly.
const dictionary refineDict
(
dynamicMeshDict () .optionalSubDict (typeName + "Coeffs")
)5

label refineIntervall = refineDict.lookup<label>("refineIntervall");
label refinelnterval2 = refineDict.lookup<label>("refineInterval2");

bool hasChanged = false;

if (refineIntervall == O && refinelnterval2 == 0)

{
topoChanging(hasChanged) ;
return false;
}
else if (refineIntervall < O || refineInterval2 < 0)
{

FatalErrorInFunction
<< "Illegal refineInterval " << refinelntervall
<< " | " << refinelInterval2 << nl
<< "The refinelnterval setting in the dynamicMeshDict should"

29

4.3. Adding Dual-Field Refinement Chapter 4. Creating dynamicDualRefineFvMesh

1629 << " be >= 1." << nl

1630 << exit(FatalError);

1631 }

1632 // Note: cannot refine at time O since no VO present since mesh not
1633 // moved yet.

1634

1635 if (time().timeIndex() > O

1636 && time().timeIndex() % refineIntervall == 0

1637 && time() .timeIndex() % refineInterval2 == 0)

1638 {

1639 label maxCellsl = refineDict.lookup<label>("maxCellsl");
1640 label maxCells2 = refineDict.lookup<label>("maxCells2");
1641

1642 if (maxCellsl <= 0 || maxCells2 <= 0)

1643 {

1644 FatalErrorInFunction

1645 << "Illegal maximum number of cells " << maxCellsl
1646 << " | " << maxCells2 << nl

1647 << "The maxCells setting in the dynamicMeshDict should"
1648 << " be > 0." << nl

1649 << exit(FatalError);

1650 }

1651

1652 const label nBufferLayersl =

1653 refineDict.lookup<label>("nBufferLayers1");

1654 const label nBufferLayers2 =

1655 refineDict.lookup<label>("nBufferLayers2");

Listing 4.2: New Initialisation phase

In general all the assignments in the initialisation phase need to be duplicated to account for the
two fields that will be refined on in the simulation. In addition to this the checks for the well defined
nature of the parameters need to be amended, so the the error prints out both the values to the
output stream.

Since we have named the fields we shall refine with the 1 and 2 suffix respectively, the changes
that will be made to the source code will be analogous for both fields. Hence for brevity, the changes
for one of the fields will be explained and detailed, with the changes for the second field following
suit. All that will be needed is a trivial change from the suffix 1 to the suffix 2. The alterations
to the code will be described according to whether they appear in the refinement or unrefinement
phase of the update function.

4.3.3 Alterations for Refinement Phase

As with creating the key parameters for the initialisation phase of the update function, we put the
suffix 1 on the key parameters, functions and data types in the refinement phase of the code. The full
refinement phase of the dynamicRefieFvMesh class, which is contained in the dynamicRefineFvMesh.C
file is found on lines 1375-1465 (Appendix B.2). The new refinement phase that is used in the
dynamicDualRefineFvMesh class is given in Listing 4.3.

1657 // --- Field 1 --—- //

1658

1659 // Cells marked for refinement or otherwise protected from unrefinement.
1660 PackedBoolList refineCells1(nCells());

1661

1662 label maxRefinementl = 0;

1663

1664 maxRefinementl = selectRefineCandidatesl(refineCellsl, refineDict);
1665

1666 if (globalData() .nTotalCells() < maxCellsl)

1667 {

1668 // Select subset of candidates. Take into account max allowable
1669 // cells, refinement level, protected cells.

1670 labellList cellsToRefinel

30

1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726

4.3. Adding Dual-Field Refinement

Chapter 4.

selectRefineCells

(
maxCellsi,
maxRefinementl,
refineCellsl

)

)8

label nCellsToRefinel =

returnReduce

cellsToRefinel.size(), sumOp<label>()

if (nCellsToRefinel > 0)

// Refine/update mesh and map fields
autoPtr<mapPolyMesh> map = refine(cellsToRefinel);

(

Vg

{
{
}
}

}

// Update refineCells. Note that some of the marked ones have
// not been refined due to constraints.

const labelList& cellMap = map().cellMap();
const labelList& reverseCellMap = map().reverseCellMap();

PackedBoolList newRefineCell(cellMap.size());

forAll(cellMap, celli)

{
label o0ldCelli = cellMaplcellil;
if (o0ldCelli < 0)
{
newRefineCell.set(celli, 1);
}
else if (reverseCellMap[oldCelli] != celli)
{
newRefineCell.set(celli, 1);
}
else
{
newRefineCell.set(celli, refineCellsl.get(oldCelli));
}
}

refineCellsl.transfer (newRefineCell);

// Extend with a buffer layer to prevent neighbouring points
// being unrefined.
for (label i = 0; i < nBufferLayersl; i++)
{
extendMarkedCells(refineCellsl);
}

hasChanged = true;

Listing 4.3: New Refinement Phase

Creating dynamicDualRefineFvMesh

Table 4.1 shows all the parameters, labels, functions, etc that need to be changed and their new name
in the section of code. It is observed that the selectRefineCandidates function has to be changed
to selectRefineCandidates1; this is because the selectRefineCandidates function reads in the
refinement parameters from the dynamicMeshDict. Since the parameter names have changed to
account for the two fields that will be refined, then the selectRefineCandidates function needs to

be adapted.

In order to do this, we can copy the selectRefineCandidates function defined on line 751 of

31

806

812

817
818
819

821

809

4.3. Adding Dual-Field Refinement Chapter 4. Creating dynamicDualRefineFvMesh

Table 4.1: List of the renamed parameters in the refinement phase of the update function with the
type of the parameter also identified.

Original Name New Name Type
refineCells refineCellsl PackedBoolList
maxRefinement maxRefinementl label
selectRefineCandidates selectRefineCandidatesl function
maxCells maxCellsl label
nCellsToRefine nCellsToRefinel label
cellsToRefine cellsToRefinel labellist
nBufferLayers nBufferLayersl label

dynamicRefineFvMesh.C (See Appendix B.2) and paste it into the dynamicDualRefineFvMesh.C
file at line 806. The original set of selectRefineCandidates functions are found on lines 684 — 804
in the dynamicRefineFvMesh.C file (Appendix B.2) We shall create the selectRefineCandidatesl
function in order to read the parameters that will govern the mesh refinement for the first field
in the CFD simulation. After pasting selectRefineCandidates function from line 751 of the
dynamicRefineFvMesh.C file, to line 806 of the dynamicDualRefineFvMesh.C file all that needs to
be changed is the names of the parameters read from the dynamicMeshDict in order to ensure the
correct parameters are read in. First the name of the function must be changed to reflect the new
class that the function is a member of, and also the change in name to signal that this function will
read the data from the first refinement field.

Foam::scalar Foam::dynamicDualRefineFvMesh: :selectRefineCandidates1

After this the field name

const word fieldName(refineDict.lookup("fieldl"));

lowerRefinelevel, upperRefinelevel

const scalar lowerRefineLevel =
refineDict.lookup<scalar>("lowerRefineLevell");

const scalar upperRefinelevel =
refineDict.lookup<scalar>("upperRefineLevell");

and maxRefinement

const label maxRefinement = refineDict.lookup<label>("maxRefinementi");

are all updated to ensure that the proper fields are read from the dynamicMeshDict that is stored lo-
cally as the refineDict dictionary in the update function. After this the selectRefineCandidates
function can be unaltered since the refinement criteria and procedure for the field is the same as in
the existing dynamicRefineFvMesh class. The newly created selectRefineCandidatesl function
is presented in Listing 4.4.

Foam: :scalar Foam::dynamicDualRefineFvMesh::selectRefineCandidatesl
(
PackedBoolList& candidateCells,
const dictionary& refineDict
) const
{
const word fieldName(refineDict.lookup("fieldl"));

const volScalarField& vFld = lookupObject<volScalarField>(fieldName);
const scalar lowerRefineLevel =
refineDict.lookup<scalar>("lowerRefineLevell");

const scalar upperRefinelevel =
refineDict.lookup<scalar>("upperRefineLevell");

32

825

266
267
268
269
270

1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

4.3. Adding Dual-Field Refinement Chapter 4. Creating dynamicDualRefineFvMesh

const label maxRefinement = refineDict.lookup<label>("maxRefinementl");

if (maxRefinement <= 0)

{
FatalErrorInFunction
<< "Illegal maximum refinement level " << maxRefinement << nl
<< "The maxCells setting in the dynamicMeshDict should"
<< " be > 0." << nl
<< exit(FatalError);
}

// Determine candidates for refinement (looking at field only)
selectRefineCandidates
(
candidateCells,
lowerRefinelevel,
upperRefinelevel,
maxRefinement,
vF1ld
)3

return maxRefinement;

Listing 4.4: New selectRefineCandidates1 function

Since we have defined a new member function selectRefineCandidates1, we must ensure it is
declared in the dynamicDualRefineFvMesh.H file. We are able to copy the declaration of the
selectRefineCandidates function from the dynamicRefineFvMesh.H file for this, since the new
function takes in the same input parameters as the old function, then all that must change is the
name.

The code added to the dynamicDualRefineFvMesh.H file is give in Listing 4.5

virtual scalar selectRefineCandidatesil
(
PackedBoolList& candidateCell,
const dictionary& refineDict
) const;

Listing 4.5: Declaration of selectRefineCandidates1 function

4.3.4 Alterations for Unrefinement Phase

The unrefinement phase of the update function will be adapted in a similar manner to the refinement
phase of the code as presented in the previous section. Similarly, the changes here are analogous to
the changes that are made the second field, in which the user will change the suffix 1 to 2. In addi-
tion, the dynamicDualRef ineFvMesh class will be extended to allow for the unrefinement of a field, if
the value of of the field chosen to refine the mesh on is larger then a specified value. The original un-
refinement phase of the update function is found in lines 1467-1518 of the dynamicRefineFvMesh.C
file (See Appendix B.2). The new refinement phase for one of the fields in the simulation for the
dynamicDualRefineFvMesh class is given in Listing 4.6.

boolList unrefineCandidates1(nPoints(), true);
selectUnrefineCandidates1
(
unrefineCandidatesli,
refineDict
)8
{

// Select unrefineable points that are not marked in refineCells

33

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761

4.4. New selectUnrefineCandidates function Chapter 4. Creating dynamicDualRefineFvMesh

labellList pointsToUnrefinel
(
selectUnrefinePoints
(
refineCellsl,
unrefineCandidatesl

N

label nSplitPointsl = returnReduce
(

pointsToUnrefinel.size(),
sumOp<label>()
)8

if (nSplitPointsl > 0)

{
// Refine/update mesh
unrefine (pointsToUnrefinel) ;
hasChanged = true;

}

Listing 4.6: New Unrefinement Phase

We can notice again, that all that changes are the names of some of the key parameters and variables
in the unrefinement phase. A list of the changed names in the unrefinement part of the function is
given in Table 4.2. In similar fashion to the refinement phase, the key adaptation to the unrefinement
phase, is the change to the selectUnrefineCandidates function. Once again we change this to
handle the reading of the changed parameters name, but crucially we shall change this to add the
capabilities of more flexible unrefinement.

4.4 New selectUnrefineCandidates function

The selectUnrefineCandidates functions are on lines 894-983 of the dynamicRefineFvMesh.C file
(Appendix B.2). We shall add flexibility to this function to allow the user to unrefine the mesh if
the field selected to control the mesh refinements is greater than a user defined threshold value. This
threshold value will be named upperUnrefineLevel, with the previous variable unrefinelLevel now
being named lowerUnrefineLevel. At present, it is possible to unrefine the mesh only if the field
chosen to control the mesh refinements in the cells around a point is less than the unrefinelLevel
parameter. The upperUnrefineLevel parameter will be introduced in order to achieve the unre-
finement of a the mesh if the field chosen to control the mesh in the cells around a point is greater
than the upperUnrefinelevel parameter.

Recall that when unrefining the computational mesh, we consider removing points in the mesh
to make larger cells. In order to implement this we need to find the value of the refinement field in
the cells that surround a point in the mesh. We can use the pointCells() function in order to loop

Table 4.2: List of the renamed parameters in the unrefinement phase of the update function with
the type of the parameter also identified.

Old Name New Name Type
unrefineCandidates unrefineCandidatesl boolList
selectUnrefineCandidates selectUnrefineCandidatesl function
pointsToUnrefine pointsToUnrefinel labellist
nSplitPoints nSplitPointsi label
refineCells refineCellsl PackedBoolList
unrefinelevel lowerUnrefinelevel label

34

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

4.4. New selectUnrefineCandidates function Chapter 4. Creating dynamicDualRefineFvMesh

through all the cells that border a point in the computational mesh in order to find the field value
of those cells. The code to do this is given in Listing 4.7

forAll(pointCells(), pointi)
{
const labelList& pCells = pointCells() [pointil;

scalar minVal = great;
forAll(pCells, i)
{
minVal = min(minVal, vF1ld[pCells[i]]);
}

Listing 4.7: Code for finding the minimum value of a certain volume field in the cells surrounding a
point in the computational mesh.

In this code we loop over all points in the computational mesh, for each point we store a list of
all the cells that border that point in the pCells variable. Then an arbitrary value for the minVal
parameter is created, this is set to be great since in the coming for-loop this value will be ensured to
be overwritten, because in a stable simulation all values of any volume field should be finite valued.
Next we loop over all the border cells of that point and find the minimum value of that field in the
cells around that points. Hence minVal ends as the minimum of all the cells around a point in the
computational mesh. In order the unrefine the mesh, all points such that the minVal is greater than
the upperUnRefineLevel are marked as candidates to unrefine.

unrefineCandidates[pointi] =
unrefineCandidates[pointi] && minVal > upperUnrefinelLevel

To make the selection of the refinement flexible, the selectUnrefeinCandidates1 function of
the dyanamicDualRefineFvMesh class will be adapted so that the user can other specify one or
both of the lowerUnrefineLevel and upperUnrefineLevel. To introduce this change in the
selectUnrefineCandidates1 function, the code given in Listing 4.7 needs to be added to the func-
tion. In addition to this a series of logical statements can be added to the function so the either the
mesh is unrefined in places such that field < lowerUnrefinelLevel and upperUnrefinelevel <
field or upperUnrefinelLevel < field or field < lowerUnrefineLevel, depending on which
of lowerUnrefineLevel and upperUnrefineLevel are defined in the dynamicMeshDict. The new
selectUnrefineCandidates function is given in Listing 4.8. We can see that the handling of dif-
ferent unrefinement criteria is selected using the multiple if statements, depending on the entries
that appear in the dynamicMeshDict.

void Foam::dynamicDualRefineFvMesh::selectUnrefineCandidatesl
(
boolList& unrefineCandidates,
const dictionary& refineDict
) const
{
if (refineDict.found("lowerUnrefineLevell")
&& refineDict.found("upperUnrefineLevell"))
{
const word fieldName(refineDict.lookup("field1"));
const volScalarField& vF1ld
(
lookupObject<volScalarField>(fieldName)
E

const scalar lowerUnrefineLevel =
refineDict.lookup<scalar>("lowerUnrefineLevell");

const scalar upperUnrefinelevel =
refineDict.lookup<scalar>("upperUnrefineLevell");

forAll(pointCells(), pointi)

{
const labelList& pCells = pointCells() [pointil;

35

4.4. New selectUnrefineCandidates function Chapter 4. Creating dynamicDualRefineFvMesh

1086
1087 scalar maxVal = -great;

1088 forAll(pCells, i)

1089 {

1090 maxVal = max(maxVal, vF1ld[pCells[i]]);

1091 }

1092

1093 scalar minVal = great;

1094 forAll(pCells, i)

1095 {

1096 minVal = min(minVal, vF1ld[pCells([i]]);

1097 }

1098

1099 unrefineCandidates[pointi] =

1100 (unrefineCandidates[pointi] && maxVal < lowerUnrefineLevel)
1101 || (unrefineCandidates[pointi] && minVal > upperUnrefineLevel);
1102 }

1103 X

1104

1105 if (refineDict.found("lowerUnrefineLevell")

1106 && !refineDict.found("upperUnrefinelLevell"))

1107

1108 {

1109 const word fieldName(refineDict.lookup("fieldl"));
1110 const volScalarField& vFld

1111 (

1112 lookupObject<volScalarField>(fieldName)

1113)

1114

1115 const scalar lowerUnrefinelLevel =

1116 refineDict.lookup<scalar>("lowerUnrefineLevell");
1117

1118 forAll (pointCells(), pointi)

1119 {

1120 const labellList& pCells = pointCells() [pointil;
1121

1122 scalar maxVal = -great;

1123 forAll(pCells, i)

1124 {

1125 maxVal = max(maxVal, vFld[pCells[i]]);

1126 }

1127

1128 unrefineCandidates [pointi] =

1129 (unrefineCandidates[pointi] && maxVal < lowerUnrefineLevel);
1130 }

1131 X

1132

1133 if (!refineDict.found("lowerUnrefineLevell")

1134 && refineDict.found("upperUnrefineLevell™))

1135 {

1136 const word fieldName(refineDict.lookup("fieldl"));
1137 const volScalarField& vFld

1138 (

1139 lookupObject<volScalarField>(fieldName)

1140)8

1141

1142 const scalar upperUnrefinelevel =

1143 refineDict.lookup<scalar>("upperUnrefineLevell");
1144

1145 forAll(pointCells(), pointi)

1146 {

1147 const labelList& pCells = pointCells() [pointil;
1148

1149 scalar minVal = great;

1150 forAll(pCells, i)

1151 {

1152 minVal = min(minVal, vF1ld[pCells[i]]);

1153 }

36

4.4. New selectUnrefineCandidates function Chapter 4. Creating dynamicDualRefineFvMesh

1154
1155 unrefineCandidates [pointi] =

1156 (unrefineCandidates[pointi] && minVal > upperUnrefineLevel);
1157 }

1158 }

1159 }

1160

1161

1162| void Foam::dynamicDualRefineFvMesh::selectUnrefineCandidates2
1163 (

1164 boolList& unrefineCandidates,

1165 const dictionary& refineDict

1166|) const

1167| {

1168 if (refineDict.found("lowerUnrefineLevel2")

1169 &% refineDict.found("upperUnrefineLevel2"))

1170 {

1171 const word fieldName(refineDict.lookup("field2"));
1172 const volScalarField& vF1d

1173 (

1174 lookupObject<volScalarField>(fieldName)

1175)8

1176

1177 const scalar lowerUnrefineLevel =

1178 refineDict.lookup<scalar>("lowerUnrefineLevel2");
1179

1180 const scalar upperUnrefinelevel =

1181 refineDict.lookup<scalar>("upperUnrefineLevel2");
1182

1183 forAll(pointCells(), pointi)

1184 {

1185 const labelList& pCells = pointCells() [pointil;
1186

1187 scalar maxVal = -great;

1188 forAll(pCells, i)

1189 {

1190 maxVal = max(maxVal, vFld[pCells[i]]);

1191 }

1192

1193 scalar minVal = great;

1194 forAll(pCells, i)

1195 {

1196 minVal = min(minVal, vF1ld[pCells[i]]);

1197 }

1198

1199 unrefineCandidates[pointi] =

1200 (unrefineCandidates[pointi] && maxVal < lowerUnrefineLevel)
1201 || (unrefineCandidates[pointi] && minVal > upperUnrefineLevel) ;
1202 }

1203 X

1204 if (refineDict.found("lowerUnrefineLevel2")

1205 && !refineDict.found("upperUnrefinelLevel2"))

1206

1207 {

1208 const word fieldName(refineDict.lookup("field2"));
1209 const volScalarField& vFld

1210 (

1211 lookupObject<volScalarField>(fieldName)

1212 DK

1213

1214 const scalar lowerUnrefineLevel =

1215 refineDict.lookup<scalar>("lowerUnrefineLevel2") ;
1216

1217 forAll(pointCells(), pointi)

1218 {

1219 const labelList& pCells = pointCells() [pointil;
1220

1221 scalar maxVal = -great;

37

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

312
313
314

316

4.5. Summary Chapter 4. Creating dynamicDualRefineFvMesh

forAll(pCells, i)
{

maxVal = max(maxVal, vFld[pCells[ill);
}

unrefineCandidates [pointi] =
(unrefineCandidates[pointi]l && maxVal < lowerUnrefineLevel);

}

if (!refineDict.found("lowerUnrefineLevel2")
&& refineDict.found("upperUnrefinelLevel2"))

{
const word fieldName(refineDict.lookup("field2"));
const volScalarField& vFld
(
lookupObject<volScalarField>(fieldName)
)5
const scalar upperUnrefinelevel =
refineDict.lookup<scalar>("upperUnrefineLevel2");
forAll(pointCells(), pointi)
{
const labelList& pCells = pointCells() [pointil;
scalar minVal = great;
forAll(pCells, i)
{
minVal = min(minVal, vF1ld[pCells[i]]);
}
unrefineCandidates[pointi] =
(unrefineCandidates[pointi] && minVal > upperUnrefineLevel);
}
¥

Listing 4.8: New selectUnrefineCandidates function

Again, since we have defined a new member function selectUnrefineCandidates1 in the class
dynamicDualRefineFvMesh then we must ensure it is declared in the dynamicDualRefineFvMesh.H
file. For this we are able to copy the declaration of the selectUnrefineCandidates function from the
dynamicRefineFvMesh.H file. Since the new function takes in the same input parameters as the old
function, then all that must change is the name. The code added to the dynamicDualRefineFvMesh.H
file is give in Listing 4.9

void selectUnrefineCandidatesl

(
boolList& unrefineCandidates,
const dictionary& refineDict
) const;

Listing 4.9: Declaration of selectUnrefineCandidatesl function

4.5 Summary

The adaptations completed in this section are to create one field of refinement for the AMR algorithm
in OpenFOAM. As stated in the introduction to this chapter, the same procedure in creating the
refinement code for fieldl is applied for field2. All that changes is the suffix 1 to 2 in all the
variables listed in Table 4.1 and Table 4.2. Since this is a trivial matter, the details will not be
stated explicitly. The full dynamicDualRefineFvMesh class code is provided in the supplementary
material of the report files. In order to compile the library from the provided materials without

38

4.5. Summary Chapter 4. Creating dynamicDualRefineFvMesh

going through the changes to the source code explained in this chapter, the user can unzip the class
from the provided materials and use the Allwmake script to compile the library in a directory of their
choosing. At this point we are in a position to test the dynamicDualRefineFvMesh class library,
and apply it to our problem of choice to demonstrate its capabilities.

39

[

© W N A A W

e e e
S SRS

15
16
17
18
19
20
21
22
23
24
25
26

Chapter 5

Using dynamicDualRefineFvMesh

5.1 Modifying the tutorial

We shall use the damBreakWithObstacle tutorial case in order to demonstrate the capabilities of
the dynamicDualRefineFvMesh class created in Chapter 4. To use the dynamicDualRefineFvMesh
class, we shall return to the test case created in Section 4.2.1. If the dynamicDualRefineFvMesh
library is intended to be used on any other case, then the library must be linked in the controlDict
file as illustrated in Section 4.2.1. After the library has been linked to the case, all that is left to do
is to add the entries for field 1 and field 2 in the dynamicMeshDict.

5.1.1 The dynamicMeshDict

The changes made to the dynamicMeshDict are such that most entries in the dictionary must be
duplicated in order to specify the refinement parameters for the first and second refinement fields
(fieldl and field2). In addition to this the lowerUnrefineLevel and upperUnrefineLevel can
be added to the dictionary for each phase due to the new unrefine functionality added to the class.

An example dynamicMeshDict used for the demonstration of the two field refinement capabilities
of dynamicDualRefineFvMesh is given in Listing 5.1

[k————— -—= ——%— Ct++ —k—————— -—= ———x%\
mmmmmman |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ / 0 peration | Website: https://openfoam.org
\\ / A nd | Version: 9
\\/ M anipulation |
\k————— - - -—— ———x/
FoamFile
{
format ascii;
class dictionary;
location "constant";
object dynamicMeshDict;
}

/] * % k% k% k k k x k k k k k k k k k k k k k k k k *k k k k k *x ¥ * * *k kx x x //
dynamicFvMesh dynamicDualRefineFvMesh;

// --- Field 1 -- Interface --- //

// How often to refine

refinelntervall 1;

// Field to be refinement on
fieldl alpha.water;

// Refine field in between lower..upper

40

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

5.1. Modifying the tutorial Chapter 5. Using dynamicDualRefineFvMesh

lowerRefineLevell 0.001;
upperRefinelLevell 0.999;

// 1f value < unrefineLevel unrefine
lowerUnrefineLevell 0;
upperUnrefinelLevell 0.4;

// Have slower than 2:1 refinement
nBufferLayersl 2;

// Refine cells only up to maxRefinement levels
maxRefinementl 2;

// Stop refinement if maxCells reached
maxCellsl 200000;

// --- Field 2 -- Bulk Water --- //
// How often to refine
refinelnterval2 1;

// Field to be refinement on
field2 alpha.water;

// Refine field in between lower..upper
lowerRefinelevel2 0.4;
upperRefinelevel2 1.1;

// 1f value < unrefineLevel unrefine
lowerUnrefinelevel2 0.5;

// Have slower than 2:1 refinement
nBufferLayers2 1;

// Refine cells only up to maxRefinement levels
maxRefinement2 1;

// Stop refinement if maxCells reached
maxCells2 200000;

// Flux field and corresponding velocity field. Fluxes on changed
// faces get recalculated by interpolating the velocity. Use 'none'
// on surfaceScalarFields that do not need to be reinterpolated.
correctFluxes
(

(phi none)

(nHatf none)

(rhoPhi none)

(alphaPhiO.water none)

(ghf none)
)3

// Write the refinement level as a volScalarField
dumpLevel false;

Listing 5.1: dynamicMeshDict example for dynamicDualRefineFvMesh

Hence it is seen that most of the original entries of the dynamicMeshDict are duplicated to account
for the two fields that will be refined on in the simulation.

5.1.2 Using dynamicDualRefineFvMesh to generate independent bulk and
interface mesh refinement

The motivation of this project is to create a mesh class such that one phase within a two phase flow
can be refined, but also an independent refinement level can be generated at the interface of the
flow. In this section we shall demonstrate how the dynamicDualRefineFvMesh class can be used

41

N

© W N o u

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

© 0w N U A W N e

e
= o

5.1. Modifying the tutorial Chapter 5. Using dynamicDualRefineFvMesh

to do this. We shall use field1l to refine the air—water interface in the testDamBreak simulation,
and field?2 to refine/unrefine the bulk of the water phase. The dynamicMeshDict shown in Listing
5.1 shows an example of the parameter settings that can be used to conduct the mesh refinement
desired.

5.1.2.1 Interface Refinement

Listing 5.2, shows the parameters used in the dynamicMeshDict In order to refine the air—water
interface of the testDamBreak simulation using dynamicDualRefineFvMesh.

// --- Field 1 -- Interface --- //
// How often to refine
refineIntervall 1;

// Field to be refinement on
fieldl alpha.water;

// Refine field in between lower..upper
lowerRefineLevell 0.001;
upperRefinelLevell 0.999;

// 1f value < lowerUnrefineLevel unrefine
lowerUnrefineLevell 0;

// If value > upperUnrefinelLevel unrefine
upperUnrefinelLevell 0.4;

// Have slower than 2:1 refinement
nBufferLayersi 28

// Refine cells only up to maxRefinement levels
maxRefinementl 2;

// Stop refinement if maxCells reached
maxCells1 200000;

Listing 5.2: Interface Field Refinement Paramters

In order to refine the mesh around the interface, we shall use the standard entries that were present in
the original damBreakWithObstacle case. We use the alpha.water field, with lowerRefineLevel
and upperRefineLevel set to 0.001 and 0.999 respectively to ensure refinement on all cells that
contain the multiphase interface. In addition to this we shall use the new lowerUnrefineLevel
and upperRefinementLevel functionality. To ensure that any cells that lie in bulk of the two
phases in the simulation are unrefined from the interface refinement level. To ensure the interface
is more refined than the bulk we set the maxRefinement parameter for the interface to 2, and
the nBufferLayers parameter will be set to 2 in order emphasize the mesh resolution around the
interface.

5.1.2.2 Bulk Refinement

Listing 5.3 shows the parameters we use to carry out the wanted refinement in the bulk of the
alpha.water phase.

// --- Field 2 -- Bulk Water --- //
// How often to refine
refineInterval2 1;

// Field to be refinement on
field2 alpha.water;

// Refine field in between lower..upper

lowerRefineLevel2 0.4;
upperRefinelevel2 1.1;

42

12
13
14
15
16
17
18
19
20
21
22

5.2. Results Chapter 5. Using dynamicDualRefineFvMesh

// 1f value < unrefineLevel unrefine
lowerUnrefinelevel2 0.001;

// Have slower than 2:1 refinement
nBufferLayers2 28

// Refine cells only up to maxRefinement levels
maxRefinement2 1;

// Stop refinement if maxCells reached
maxCells?2 200000;

Listing 5.3: Bulk Field Refinement Paramters

To refine the mesh around in the bulk, we shall use the alpha.water field, with lowerRefineLevel
and upperRefineLevel set to 0.999 and 1.1 respectively. Recall the alpha.water phase should be
bounded between 0 and 1, with the cells containing the alpha.water having value 1. We increase the
limit to 1.1 to account for the numerical error that is introduced in the Finite Volume discretisation.
This way all bulk water cells will be accounted for. In addition to this we shall solely use the
lowerUnrefineLevel functionality to control the unrefinement of the bulk phase. To ensure that
no cells that contain only the air phase in the simulation are refined the lowerUnrefineLevel is set
to 0.001. Since we desire a level of mesh refinement higher than the background mesh that is found
in the air phase, but lower than the level on the interface we set the maxRefinement parameter for
the bulk water phase to 1. Again the nBufferLayers parameter is also to set to 2 in order to more
easily visualise the transition regions of the mesh.

5.2 Results

To run the simulation with the dynamicDualRefineFvMesh, we shall execute

blockMesh
setFields
interFoam

It is noted here that we do not use the Allrun script that is provided with the damBreakWithObstacle
tutorial, for one because some amendments to this script are needed to ensure it calls the user cre-
ated library, but also since the evolution of the water over the obstacle is not necessarily of interest
in the report, but demonstrating the changes to the mesh are. In its current state, the tutorial
case crashes around 1.1s into the simulation, the nature of this is not fully understood at present.
The current theory is that there is some interference between the refinement procedures of the two
fields used in the simulation. Changing the refinement parameters in the dyanmicMeshDict causes
a difference in the run—time of the simulation before it crashes. Further work would be needed to
understand if this is a case specific problem and determine a solution. Once the simulation results
can still be viewed in Paraview. Figure 5.1 shows a comparison of the mesh at time t = 0.4s in the
simulation, using the same visualisation view as in Chapter 2 when using the dynamicRefineFvMesh
and dynamicDualRefineFvMesh classes to handle to the AMR in the simulation. From Figure 5.1
we can see that indeed the mesh refinement we desired has been generated. We find the initial
mesh is preserved in the air phase, one level of mesh refinement in the water phase and two levels
of refinement at the air-water interface.

5.3 Conclusion

Figure 5.1 shows it is possible with a very small adaptation of the OpenFOAM source code to refine
on multiple evolving fields in a CFD simulation. In addition to this we have shown it is possible
to employ this adaptation to the source code, such that any two fields can be refined on in the
simulation. The reader is encouraged to experiment with the dynamicDualRefineFvMesh library in
other tutorial cases to explore the limits of its capabilities.

43

5.3. Conclusion Chapter 5. Using dynamicDualRefineFvMesh

(a) dynamicRefineFvMesh (b) dynamicDualRefineFvMesh

Figure 5.1: Comparison of the mesh on the +X face of the simulation for the damBreakWithObstacle
tutorial at time ¢ = 0.4s using either dynamicRefineFvMesh and dynamicDualRefineFvMesh.

It is noted that the implementation of this library is not the most efficient or general, but
the purpose of this report was to create a proof of concept library to understand how to create a
method of generating two—field refinement in an OpenFOAM simulation. The library can be made
more effective and flexible by using dictionary inputs like the refinementRegions functionality in
OpenFOAM 9 does for static regions of mesh refinement. In this was the implementation can be
made more general, by allowing multiple refinement fields, which will be handled by a loop in the
source code. This would be the main direction of future work to extend this library.

44

Bibliography

[1]

2]

A. Kosters, “Dynamic mesh refinement in dieselFoam.” http://www.tfd.chalmers.se/
~hani/kurser/0S_CFD_2010/anneKoesters/anneKoestersReport.pdf.

A. Nygren, “Adaptive mesh refinement with a moving mesh using sprayDyMFoam.”
http://www.tfd.chalmers.se/~hani/kurser/0S_CFD_2015/AndreasNygren/Tutorial_
SprayDyMFoam.pdf.

D. Lindblad, “Implementation and run-time mesh refinement for the £k — —w SST DES tur-
bulence model when applied to airfoils..” http://www.tfd.chalmers.se/~hani/kurser/0S_
CFD_2013/DaniellLindblad/k-0Omega-SST-DES-Report.pdf.

B. Eltard-Larsen, “How to make a dynamicMotionRefineFvMesh class.” http:
//wuw.tfd.chalmers.se/~hani/kurser/0S_CFD_2015/BjarkeEltard-Larsen/
dynamicMotionRefineFvMesh_revised.pdf.

T. Holzmann, “dynamicRefineFvMesh with two regions.” https:
//www.cfd-online.com/Forums/openfoam-community-contributions/
162715-dynamicrefinefvmesh-two-regions.html.

T. Holzmann, “Holzmann cfd.” http://www.holzmann-cfd.de/index.php/en/development.

D. Rettenmaier, D. Deising, Y. Ouedraogo, E. Gjonaj, H. De Gersem, D. Bothe, C. Tropea, and
H. Marschall, “Load balanced 2d and 3d adaptive mesh refinement in openfoam,” SoftwareX,
vol. 10, p. 100317, 2019.

J. Castrejon-Pita, K. Kubiak, A. Castrején-Pita, M. Wilson, and I. Hutchings, “Mixing and
internal dynamics of droplets impacting and coalescing on a solid surface,” Physical Review E,
vol. 88, no. 2, p. 023023, 2013.

P. Krober, J. T. Delaney, J. Perelaer, and U. S. Schubert, “Reactive inkjet printing of
polyurethanes,” Journal of Materials Chemistry, vol. 19, no. 29, pp. 5234-5238, 2009.

S.-I. Yeh, H.-J. Sheen, and J.-T. Yang, “Chemical reaction and mixing inside a coalesced droplet
after a head-on collision,” Microfiuidics and Nanofluidics, vol. 18, no. 5, pp. 1355-1363, 2015.

J. Eggers, J. R. Lister, and H. A. Stone, “Coalescence of liquid drops,” Journal of Fluid Me-
chanics, vol. 401, pp. 293-310, 1999.

J. Jin, C. H. Ooi, D. V. Dao, and N.-T. Nguyen, “Coalescence processes of droplets and liquid
marbles,” Micromachines, vol. 8, no. 11, p. 336, 2017.

M. Brik, S. Harmand, I. Zaaroura, and A. Saboni, “Experimental and numerical study for
the coalescence dynamics of vertically aligned water drops in oil,” Langmuir, vol. 37, no. 10,
pp- 3139-3147, 2021.

45

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/anneKoesters/anneKoestersReport.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/anneKoesters/anneKoestersReport.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/AndreasNygren/Tutorial_SprayDyMFoam.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/AndreasNygren/Tutorial_SprayDyMFoam.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/DanielLindblad/k-Omega-SST-DES-Report.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/DanielLindblad/k-Omega-SST-DES-Report.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/BjarkeEltard-Larsen/dynamicMotionRefineFvMesh_revised.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/BjarkeEltard-Larsen/dynamicMotionRefineFvMesh_revised.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/BjarkeEltard-Larsen/dynamicMotionRefineFvMesh_revised.pdf
https://www.cfd-online.com/Forums/openfoam-community-contributions/162715-dynamicrefinefvmesh-two-regions.html
https://www.cfd-online.com/Forums/openfoam-community-contributions/162715-dynamicrefinefvmesh-two-regions.html
https://www.cfd-online.com/Forums/openfoam-community-contributions/162715-dynamicrefinefvmesh-two-regions.html
http://www.holzmann-cfd.de/index.php/en/development

Study questions

1. Which field should you use in the damBreakWithTutorial simulation to refine the air—water
interface?

2. What setting should be used for refinetInterval to ensure mesh refinement only takes place
every 5 time steps?

3. Which keyword can be used to in the correctFluxes table for fluxes that do not need to be
re—interpolated?

4. In what file is the mesh object created, and what is this object and instance of?

5. What type of fields can be refined on currently in OpenFOAM using the dynamicRefineFvMesh
class? How would other fields be refined on?

6. What is the name of the local dictionary that the dynamicMeshDict is stored as during mesh
refinement?

7. How do you find the maximum value of a field in the cells around a point in the CFD mesh?

8. What happens if the number of cells marked to be refined will cause the number of cells in the
simulation to exceed maxCells— and how In the code is it estimated if this will occur?

9. In the unrefinement phase of the AMR code, why are points considered and not cells?

46

© 0 N O U A W N e

I I N e R S~ S S S S S
AW N = O © KB N oA W N = O

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Appendix A

Dictionaries

A.1 damBreakWithObstacle dynamicMeshDict

dynamicMeshDict
/% *— CH+ —x* *\
S5SS |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Website: https://openfoam.org
N\ / A nd | Version: 9
\\/ M anipulation |
* &
FoamFile
{
format ascii;
class dictionary;
location "constant";
object dynamicMeshDict;
}

// % % % % % % % %k % *k % % % % % % %k % % %k %k % % % % %k % *k % *k % * % * % % *x //
dynamicFvMesh dynamicRefineFvMesh;

// How often to refine
refinelnterval 1;

// Field to be refinement on
field alpha.water;

// Refine field in between lower..upper
lowerRefineLevel 0.001;
upperRefineLevel 0.999;

// 1f value < unrefineLevel unrefine
unrefinelLevel 10;

// Have slower than 2:1 refinement
nBufferLayers ilg

// Refine cells only up to maxRefinement levels
maxRefinement 2;

// Stop refinement if maxCells reached
maxCells 200000;

// Flux field and corresponding velocity field. Fluxes on changed
// faces get recalculated by interpolating the velocity. Use 'none'
// on surfaceScalarFields that do not need to be reinterpolated.
correctFluxes

47

45
46
47
48
49
50
51
52
53
54
55

57

A.l1. damBreakWithObstacle dynamicMeshDict Appendix A. Dictionaries

(
(phi none)
(nHatf none)
(rhoPhi none)
(alphaPhiO.water none)
(ghf none)

)5

// Write the refinement level as a volScalarField
dumpLevel true;

[/ kokskook sk sk ok s ok sk ok ok sk ok s ok 3k sk ok s ok 3k ok ok sk ok ok K ok ok s ok 3 ok ok s ok ok 3k sk ok ok 3k ok ok ok 3k ok sk sk ok sk ok sk sk ok ok skok sk kokkokkkk -/ /

48

Appendix B

Source Codes

B.1 interFoam.C

interFoam.C

/% A\

|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Website: https://openfoam.org
|
|

\\ / A nd Copyright (C) 2011-2021 OpenFOAM Foundation
\\/ M anipulation
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application
interFoam

Description
Solver for 2 incompressible, isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach,
with optional mesh motion and mesh topology changes including adaptive
re-meshing.

* */

#include "fvCFD.H"

#include "dynamicFvMesh.H"

#include "CMULES.H"

#include "EulerDdtScheme.H"

#include "localEulerDdtScheme.H"

#include "CrankNicolsonDdtScheme.H"

#include "subCycle.H"

#include "immiscibleIncompressibleTwoPhaseMixture.H"
#include "noPhaseChange.H"

#include "kinematicMomentumTransportModel.H"

49

B.1. interFoam.C Appendix B. Source Codes

#include "pimpleControl.H"
#include "pressureReference.H"
#include "fvModels.H"

#include "fvConstraints.H"
#include "CorrectPhi.H"
#include "fvcSmooth.H"

J/ % % ok ok ok k k kK ok ok ok ok ok k ok k Kk k ok k Kk k ok k kK k k ok k kx k k * x x *x //

int main(int argc, char *argv[])
{

#include "postProcess.H"

#include "setRootCaselLists.H"
#include "createTime.H"

#include '"createDynamicFvlMesh.H"
#include "initContinuityErrs.H"
#include "createDyMControls.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createAlphaFluxes.H"
#include "initCorrectPhi.H"
#include "createUfIfPresent.H"

turbulence->validate();

if (!LTS)
{
#include "CourantNo.H"
#include "setInitialDeltaT.H"
¥

// % % % k% % % % % % % % % % % % % % % % % % %k % % % % % % % % *x % *x *x *x //
Info<< "\nStarting time loop\n" << endl;

while (pimple.run(runTime))

{
#include "readDyMControls.H"
if (LTS)
{
#include "setRDeltaT.H"
}
else
{
#include "CourantNo.H"
#include "alphaCourantNo.H"
#include "setDeltaT.H"
}
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{
if (pimple.firstPimpleIter() || moveMeshOuterCorrectors)
{

// Store divU from the previous mesh so that it can be mapped
// and used in correctPhi to ensure the corrected phi has the
// same divergence

tmp<volScalarField> divU;

if
(
correctPhi
&& !isType<twoPhaseChangeModels: :noPhaseChange>(phaseChange)

50

B.1. interFoam.C Appendix B.

Source Codes

o

// Construct and register divU for mapping
divU = new volScalarField
(
"divUuo",
fvc::div(fvc: :absolute(phi, U))
)5
}

fvModels.preUpdateMesh() ;
mesh.update() ;

if (mesh.changing())

{
// Do not apply previous time-step mesh compression flux
// if the mesh topology changed
if (mesh.topoChanging())
{
talphaPhiiCorr0.clear();
}
gh = (g & mesh.C()) - ghRef;
ghf = (g & mesh.Cf()) - ghRef;
MRF .update() ;
if (correctPhi)
{
#include "correctPhi.H"
}
mixture.correct();
if (checkMeshCourantNo)
{
#include "meshCourantNo.H"
}
}

divU.clear();

fvModels.correct();

surfaceScalarField rhoPhi

(
I0object
(
"rhoPhi",
runTime.timeName(),
mesh
Do
mesh,
dimensionedScalar (dimMass/dimTime, O0)
);

#include "alphaControls.H"
#include "alphaEqnSubCycle.H"

mixture.correct();

#include "UEqn.H"

// --- Pressure corrector loop
while (pimple.correct())
{

o1

© 0w N U A W N e

W oW W W W W oW W NN NNNNNNNRN R R R R R R R e e e
N0 Ok N R O © 0N OA N RO © KN oA W N = O

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

#include "pEqn.H"

¥
if (pimple.turbCorr())
{
turbulence->correct();
}

3

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}

Info<< "End\n" << endl;

return 0;

// 3k >k 3k >k 3k 3k 3k 3k ok 3k >k 3k ok 3k ok >k 3k >k 3k >k 3k ok >k 3k >k 3k >k 3k >k >k ok 5k 3k >k 3k ok 3k ok >k k >k 3k >k 3k >k sk 5k >k 3k >k 3k >k 3k ok >k >k >k 3k >k 3k ok >k k >k 3k >k 3k >k 5k %k >k >k k //

B.2 dynamicRefineFvMesh.C

dynamicRefineFvMesh.C

/% A

|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Website: https://openfoam.org
|
|

\\ / A nd Copyright (C) 2011-2021 OpenFOAM Foundation
\\/ M anipulation

License
This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

* */

#include "dynamicRefineFvMesh.H"
#include "surfacelInterpolate.H"
#include "polyTopoChange.H"

#include "syncTools.H"

#include "pointFields.H"

#include "sigFpe.H"

#include "cellSet.H"

#include "addToRunTimeSelectionTable.H"

// * % % % % % x % x % x * x % Static Data Members * * * % x * *x * *x * *x *x *x //

namespace Foam

52

51

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104
105

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

defineTypeNameAndDebug(dynamicRefineFvMesh, 0);
addToRunTimeSelectionTable(dynamicFvMesh, dynamicRefineFvMesh, IOobject);
}

// * % % % x % % % * % *x x Protected Member Functions * * * * % % % % % * % //

Foam::label Foam::dynamicRefineFvMesh: :count

(
const PackedBoolList& 1,
const unsigned int val
)
{
label n = O;
forAll(1, i)
{
if (1.get(i) == val)
{
n++;
}
// Debug also serves to get-around Clang compiler trying to optimise
// out this forAll loop under 03 optimisation
if (debug)
{
Info<< "n=" << n << endl;
}
}
return n;
}

void Foam::dynamicRefineFvMesh::calculateProtectedCells

(
PackedBoolList& unrefineableCells
) const
{
if (protectedCells_.empty())
{
unrefineableCells.clear();
return;
}

const labelList& celllLevel = meshCutter_.cellLevel();
unrefineableCells = protectedCells_;

// Get neighbouring cell level
labellList neilevel(nFaces()-nInternalFaces());

for (label facei = nInternalFaces(); facei < nFaces(); facei++)
{

neilevel [facei-nInternalFaces()] = cellLevel[faceOwner() [faceil];
¥

syncTools: : swapBoundaryFaceList (¥this, neiLevel);

while (true)

{
// Pick up faces on border of protected cells
boolList seedFace(nFaces(), false);

forAll(faceNeighbour(), facei)

{
label own = faceOwner() [faceil;
bool ownProtected = unrefineableCells.get(own);
label nei = faceNeighbour() [faceil;

53

153
154

156

158

165

B.2. dynamicRefineFvMesh.C

Appendix B. Source Codes

bool neiProtected = unrefineableCells.get(nei);

if (ownProtected && (celllevel[neil] > cellLevell[own]))

{
seedFace[facei] = true;
}
else if (neiProtected && (cellLevel[own] > cellLevell[neil))
{
seedFace[facei] = true;
}
}
for (label facei = nInternalFaces(); facei < nFaces(); facei++)
{
label own = faceOwner() [faceil;
bool ownProtected = unrefineableCells.get(own);
if
(
ownProtected
&& (neilevel[facei-nInternalFaces()] > cellLevel[own])
)
{
seedFace[facei] = true;
}
}

syncTools: :syncFaceList (*this, seedFace, orEqOp<bool>());

// Extend unrefineableCells
bool hasExtended = false;

for (label facei = 0; facei < nInternalFaces(); facei++)

{
if (seedFacel[faceil])
{
label own = faceOwner() [faceil;
if (unrefineableCells.get(own) == 0)
{
unrefineableCells.set(own, 1);
hasExtended = true;
}
label nei = faceNeighbour() [faceil;
if (unrefineableCells.get(nei) == 0)
{
unrefineableCells.set(nei, 1);
hasExtended = true;
}
}
}
for (label facei = nInternalFaces(); facei < nFaces(); facei++)
{
if (seedFacel[faceil)
{
label own = faceOwner() [faceil;
if (unrefineableCells.get(own) == 0)
{
unrefineableCells.set (own, 1);
hasExtended = true;
}
}
}
if (!returnReduce(hasExtended, orOp<bool>()))
{
break;
}

o4

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

174| }

175

176

177| void Foam::dynamicRefineFvMesh: :readDict ()

17s| {

179 const dictionary refineDict

180 (

181 dynamicMeshDict () .optionalSubDict (typeName + "Coeffs")
182 E

183

184 List<Pair<word>> fluxVelocities = List<Pair<word>>
185 (

186 refineDict.lookup("correctFluxes")

187)

188 // Rework into hashtable.

189 correctFluxes_.resize(fluxVelocities.size());

190 forAll (fluxVelocities, i)

191 {

192 correctFluxes_.insert (fluxVelocities[i] [0], fluxVelocities[il[1]);
193 }

194

195 dumpLevel_ = Switch(refineDict.lookup("dumpLevel™));
196 }

197

198

199| // Refines cells, maps fields and recalculates (an approximate) flux
200| Foam: :autoPtr<Foam: :mapPolyMesh>
201 | Foam: :dynamicRefineFvMesh: :refine

202 (

203 const labellList& cellsToRefine

204|)

205

206 // Mesh changing engine.

207 polyTopoChange meshMod (*this) ;

208

209 // Play refinement commands into mesh changer.

210 meshCutter_.setRefinement (cellsToRefine, meshMod) ;

211

212 // Create mesh (with inflation), return map from old to new mesh.
213 // autoPtr<mapPolyMesh> map = meshMod.changeMesh(*this, true);
214 autoPtr<mapPolyMesh> map = meshMod.changeMesh(*this, false);

215

216 Info<< "Refined from "

217 << returnReduce(map() .n01dCells (), sumOp<label>())

218 << " to " << globalData() .nTotalCells() << " cells." << endl;
219

220 if (debug)

221 {

222 // Check map.

223 for (label facei = 0; facei < nInternalFaces(); facei++)

224 {

225 label oldFacei = map().faceMap() [faceil;

226

227 if (oldFacei >= nlInternalFaces())

228 {

229 FatalErrorInFunction

230 << "New internal face:" << facei

231 << " fc:" << faceCentres() [faceil

232 << " originates from boundary oldFace:" << oldFacei
233 << abort(FatalError);

234 }

235 }

236 }

237

238 // Update fields

239 updateMesh (map) ;

240

241 // Correct the flux for modified/added faces. All the faces which only

95

250

305

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

// have been renumbered will already have been handled by the mapping.
{

const labellist& faceMap = map().faceMap();

const labelList& reverseFaceMap = map().reverseFaceMap();

// Storage for any master faces. These will be the original faces

// on the coarse cell that get split into four (or rather the

// master face gets modified and three faces get added from the master)
labelHashSet masterFaces(4*cellsToRefine.size());

forAll(faceMap, facei)

{
label oldFacei = faceMapl[faceil;
if (oldFacei >= 0)
{
label masterFacei = reverseFaceMap[oldFaceil;
if (masterFacei < 0)
{
FatalErrorInFunction
<< "Problem: should not have removed faces"
<< " when refining."
<< nl << "face:" << facei << abort(FatalError);
}
else if (masterFacei != facei)
{
masterFaces.insert (masterFacei) ;
}
}
}
if (debug)
{
Pout<< "Found " << masterFaces.size() << " split faces " << endl;
}
HashTable<surfaceScalarField*> fluxes
(
lookupClass<surfaceScalarField>()
O
forAllIter (HashTable<surfaceScalarField*>, fluxes, iter)
{
if (!correctFluxes_.found(iter.key()))
{
WarningInFunction
<< "Cannot find surfaceScalarField " << iter.key()
<< " in user-provided flux mapping table "
<< correctFluxes_ << endl
<" The flux mapping table is used to recreate the"
<< " flux on newly created faces." << endl
<< " Either add the entry if it is a flux or use ("
<< iter.key() << " none) to suppress this warning."
<< endl;
continue;
}

const word& UName = correctFluxes_[iter.key()];

if (UName == "none")
{

continue;
}
if (UName == "NaN")
{

Pout<< "Setting surfaceScalarField " << iter.key()
<< " to NaN" << endl;

56

B.2. dynamicRefineFvMesh.C

Appendix B.

Source Codes

surfaceScalarField& phi = *iter();
sigFpe::fillNan(phi.primitiveFieldRef ());

continue;

}
if (debug)
{
Pout<< "Mapping flux " << iter.key()
<< " using interpolated flux " << UName
<< endl;
}

surfaceScalarField& phi = *iter();
const surfaceScalarField phiU

(
fvc::interpolate
(
lookupObject<volVectorField>(UName)
)
& Sf()
)5

// Recalculate new internal faces.
for (label facei = 0; facei < nInternalFaces(); facei++)
{

label oldFacei = faceMap[faceil;

if (oldFacei == -1)

{
// Inflated/appended
phi[faceil = phiU[faceil;

}
else if (reverseFaceMap[oldFacei] != facei)
{
// face-from-masterface
phi[facei] = phiU[faceil;
}

// Recalculate new boundary faces.

surfaceScalarField: :Boundary& phiBf =
phi.boundaryFieldRef () ;

forAll(phiBf, patchi)

{
fvsPatchScalarField& patchPhi = phiBf [patchi];
const fvsPatchScalarField& patchPhiU =

phiU.boundaryField() [patchil;

label facei = patchPhi.patch().start();

forAll(patchPhi, i)

{
label oldFacei = faceMap[faceil;
if (oldFacei == -1)
{

// Inflated/appended
patchPhi[i] = patchPhiU[il;
}
else if (reverseFaceMap[oldFacei] != facei)
{
// face-from-masterface
patchPhi[i] = patchPhiU[i];
}

facei++;

o7

395

405

425

435

B.2. dynamicRefineFvMesh.C Appendix B.

Source Codes

// Update master faces
forAllConstIter(labelHashSet, masterFaces, iter)
{

label facei = iter.key();

if (isInternalFace(facei))

{
phi[facei] = phiU[faceil;

}

else

{
label patchi = boundaryMesh() .whichPatch(facei);
label i = facei - boundaryMesh() [patchi].start();

const fvsPatchScalarField& patchPhiU =
phiU.boundaryField () [patchil;

fvsPatchScalarField& patchPhi = phiBf [patchil;

patchPhi[i] = patchPhiU[il;

// Update numbering of cells/vertices.
meshCutter_.updateMesh(map) ;

// Update numbering of protectedCells_
if (protectedCells_.size())
{
PackedBoolList newProtectedCell(nCells());

forAll (newProtectedCell, celli)
{
label 0ldCelli = map().cellMap() [cellil;
newProtectedCell.set(celli, protectedCells_.get(oldCelli));
}
protectedCells_.transfer (newProtectedCell) ;
}

// Debug: Check refinement levels (across faces only)
meshCutter_.checkRefinementLevels (-1, labelList(0));

return map;

Foam: :autoPtr<Foam: :mapPolyMesh>
Foam: :dynamicRefineFvMesh: :unrefine

(
const labelList& splitPoints

)

{
polyTopoChange meshMod (*this);
// Play refinement commands into mesh changer.
meshCutter_.setUnrefinement (splitPoints, meshMod);
// Save information on faces that will be combined
V72N
// Find the faceMidPoints on cells to be combined.

o8

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

446 // for each face resulting of split of face into four store the
447 // midpoint

448 Map<label> faceToSplitPoint(3*splitPoints.size());

449

450 {

451 forAll(splitPoints, i)

452 {

453 label pointi = splitPoints[i];

454

455 const labellList& pEdges = pointEdges() [pointil;

456

457 forAll(pEdges, j)

458 {

459 label otherPointi = edges() [pEdges[jl].otherVertex(pointi);
460

461 const labelList& pFaces = pointFaces() [otherPointi];
462

463 forAll (pFaces, pFacei)

464 {

465 faceToSplitPoint.insert (pFaces[pFacei], otherPointi);
166 }

467 }

468 }

469 }

470

471

472 // Change mesh and generate map.

473 // autoPtr<mapPolyMesh> map = meshMod.changeMesh(*this, true);
474 autoPtr<mapPolyMesh> map = meshMod.changeMesh(*this, false);

475

476 Info<< "Unrefined from "

477 << returnReduce (map() .n01dCells(), sumOp<label>())

478 << " to " << globalData().nTotalCells() << " cells."

479 << endl;

480

481 // Update fields

482 updateMesh (map) ;

483

484 // Correct the flux for modified faces.

485 {

486 const labelList& reversePointMap = map().reversePointMap();
487 const labellList& reverseFaceMap = map() .reverseFaceMap();
488

489 HashTable<surfaceScalarField*> fluxes

490 (

491 lookupClass<surfaceScalarField>()

492)8

493 forAllIter (HashTable<surfaceScalarField*>, fluxes, iter)

494 {

495 if (!correctFluxes_.found(iter.key()))

496 {

497 WarningInFunction

498 << "Cannot find surfaceScalarField " << iter.key()
499 << " in user-provided flux mapping table "

500 << correctFluxes_ << endl

501 <" The flux mapping table is used to recreate the"
502 << " flux on newly created faces." << endl

503 << " Either add the entry if it is a flux or use ("
504 << iter.key() << " none) to suppress this warning."
505 << endl;

506 continue;

507 }

508

509 const word& UName = correctFluxes_[iter.key()];

510

511 if (UName == "none")

512 {

513 continue;

99

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

514 }

515

516 if (debug)

517 {

518 Info<< "Mapping flux " << iter.key()

519 << " using interpolated flux " << UName
520 << endl;

521 }

522

523 surfaceScalarField& phi = *iter();

524 surfaceScalarField: :Boundary& phiBf =

525 phi.boundaryFieldRef () ;

526

527 const surfaceScalarField phiU

528 (

529 fvc::interpolate

530 (

531 lookupObject<volVectorField>(UName)

532)

533 & Sf()

534)3

535

536

537 forAllConstIter (Map<label>, faceToSplitPoint, iter)
538 {

539 label oldFacei = iter.key();

540 label oldPointi = iter();

541

542 if (reversePointMap[oldPointi] < 0)

543 {

544 // midpoint was removed. See if face still exists.
545 label facei = reverseFaceMap[oldFaceil;
546

547 if (facei >= 0)

548 {

549 if (isInternalFace(facei))

550 {

551 phi[facei] = phiU[faceil;

552 }

553 else

554 {

555 label patchi = boundaryMesh() .whichPatch(facei);
556 label i = facei - boundaryMesh() [patchi].start();
557

558 const fvsPatchScalarField& patchPhiU =
559 phiU.boundaryField() [patchil;
560 fvsPatchScalarField& patchPhi = phiBf [patchi];
561 patchPhi[i] = patchPhiU[i];

562 }

563 }

564 }

565 }

566 }

567 ¥

568

569

570 // Update numbering of cells/vertices.

571 meshCutter_.updateMesh(map) ;

572

573 // Update numbering of protectedCells_

574 if (protectedCells_.size())

575 {

576 PackedBoolList newProtectedCell (nCells());

577

578 forAll (newProtectedCell, celli)

579 {

580 label 0ldCelli = map().cellMap() [cellil;

581 if (oldCelli >= 0)

60

586

645

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

newProtectedCell.set(celli, protectedCells_.get(oldCelli));

}
protectedCells_.transfer (newProtectedCell);
}

// Debug: Check refinement levels (across faces only)
meshCutter_.checkRefinementLevels(-1, labelList(0));

return map;

const Foam::cellZone& Foam::dynamicRefineFvMesh::findCellZone
(
const word& cellZoneName
) const
{
const label cellZoneID = cellZones().findZoneID(cellZoneName) ;
bool cellZoneFound = (cellZoneID != -1);
reduce (cellZoneFound, orOp<bool>());
if (!cellZoneFound)
{
FatalErrorInFunction
<< "cannot find cellZone " << cellZoneName
<< exit(FatalError);

}

return cellZones() [cellZonelID];

Foam: :scalarField

;| Foam: :dynamicRefineFvMesh: :cellToPoint (const scalarField& vF1ld) const

{
scalarField pFld(nPoints());
forAll(pointCells(), pointi)
{
const labelList& pCells = pointCells() [pointi];
scalar sum = 0.0;
forAll(pCells, i)
{
sum += vF1d[pCells[il];
}
pFld[pointi] = sum/pCells.size();
}
return pFld;
}

Foam: :scalarField Foam::dynamicRefineFvMesh: :error

(
const scalarField& fld,
const scalar minlLevel,
const scalar maxLevel

) const

{

scalarField c(fld.size(), -1);
forAll(c, celli)
{

scalar err = min(fld[celli] - minLevel, maxLevel - fld[cellil);

if (err >= 0)
{

61

651

654

658

695

B.2. dynamicRefineFvMesh.C Appendix B.

Source Codes

c[celli] = err;

return c;

Foam::scalarField Foam::dynamicRefineFvMesh: :error
(
const scalarField& fld,
const labelList& cells,
const scalar minLevel,
const scalar maxLevel
) const
{
scalarField c(fld.size(), -1);

forAll(cells, i)
{

const label celli = cells[il;
scalar err = min(fld[celli] - minLevel, maxLevel - fld[cellil);

if (err >= 0)
{
clcelli] = err;

}

return c;

void Foam::dynamicRefineFvMesh::selectRefineCandidates
(
PackedBoolList& candidateCells,
const scalar lowerRefinelevel,
const scalar upperRefinelevel,
const scalar maxRefinement,
const scalarField& vFld
) const
{
// Get error per cell. Is -1 (not to be refined) to >0 (to be refined,
// higher more desirable to be refined) .
const scalarField cellError
(
error (vF1ld, lowerRefineLevel, upperRefineLevel)

);
const labelList& cellLevel = meshCutter_.cellLevel();

// Mark cells that are candidates for refinement.
forAll(cellError, celli)
{
if
(
cellLevel[celli] < maxRefinement
&& cellError([celli] > 0O
)
{
candidateCells.set(celli, 1);
}

void Foam::dynamicRefineFvMesh::selectRefineCandidates

62

735

745

752

754

758

B.2. dynamicRefineFvMesh.C Appendix B.

Source Codes

PackedBoolList& candidateCells,
const scalar lowerRefinelevel,
const scalar upperRefinelevel,
const scalar maxRefinement,
const scalarField& vFld,
const labelList& cells
) const
{
// Get error per cell. Is -1 (not to be refined) to >0 (to be refined,
// higher more desirable to be refined).
const scalarField cellError
(
error (vFld, cells, lowerRefineLevel, upperRefinelLevel)

);
const labelList& celllLevel = meshCutter_.cellLevel();

// Mark cells that are candidates for refinement.
forAll(cellError, celli)
{
if
(
cellLevel[celli] < maxRefinement
&& cellError[celli] > 0O
)
{
candidateCells.set(celli, 1);
}

Foam::scalar Foam::dynamicRefineFvMesh: :selectRefineCandidates

(
PackedBoolList& candidateCells,
const dictionary& refineDict

) const

{

const word fieldName(refineDict.lookup("field"));

const volScalarField& vFld = lookupObject<volScalarField>(fieldName);

const scalar lowerRefinelevel =
refineDict.lookup<scalar>("lowerRefineLevel");

const scalar upperRefinelevel =
refineDict.lookup<scalar>("upperRefineLevel");

const label maxRefinement = refineDict.lookup<label>("maxRefinement");

if (maxRefinement <= 0)

{
FatalErrorInFunction
<< "Illegal maximum refinement level " << maxRefinement << nl
<< "The maxCells setting in the dynamicMeshDict should"
<< " be > 0." << nl
<< exit(FatalError);
}

if (refineDict.found("cellZone"))
{
// Determine candidates for refinement (looking at field only)
selectRefineCandidates
(
candidateCells,
lowerRefineLevel,
upperRefinelevel,
maxRefinement,

63

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

786 vFld,

787 findCellZone (refineDict.lookup("cellZone"))
788 E

789 }

790 else

791 {

792 // Determine candidates for refinement (looking at field only)
793 selectRefineCandidates

794 (

795 candidateCells,

796 lowerRefineLevel,

797 upperRefinelLevel,

798 maxRefinement,

799 vF1ld

800)8

801 }

802

803 return maxRefinement;

s04| }

805

806

807| Foam: :1abelList Foam::dynamicRefineFvMesh::selectRefineCells
sos| (

809 const label maxCells,

810 const label maxRefinement,

811 const PackedBoolList& candidateCells

s12|) const

s13| {

814 // Every refined cell causes 7 extra cells

815 label nTotToRefine = (maxCells - globalData().nTotalCells()) / 7;
816

817 const labelList& celllLevel = meshCutter_.cellLevel();
818

819 // Mark cells that cannot be refined since they would trigger refinement
820 // of protected cells (since 2:1 cascade)

821 PackedBoolList unrefineableCells;

822 calculateProtectedCells (unrefineableCells);

823

824 // Count current selection

825 label nLocalCandidates = count(candidateCells, 1);
826 label nCandidates = returnReduce(nLocalCandidates, sumOp<label>());
827

828 // Collect all cells

829 DynamicList<label> candidates(nLocalCandidates);

830

831 if (nCandidates < nTotToRefine)

832 {

833 forAll(candidateCells, celli)

834 {

835 if

836 (

837 candidateCells.get(celli)

838 && (

839 unrefineableCells.empty()

840 |l 'unrefineableCells.get(celli)

841)

842)

843 {

844 candidates.append(celli);

845 }

846 }

847 }

848 else

849 {

850 // Sort by error? For now just truncate.

851 for (label level = 0; level < maxRefinement; level++)
852 {

853 forAll(candidateCells, celli)

64

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

857 cellLevel[celli] == level

858 && candidateCells.get(celli)

859 && (

860 unrefineableCells.empty ()

861 || 'unrefineableCells.get(celli)
862)

865 candidates.append(celli);

869 if (returnReduce(candidates.size(), sumOp<label>()) > nTotToRefine)
870 {
871 break;

874 }

876 // Guarantee 2:1 refinement after refinement

877 labellList consistentSet

878 (

879 meshCutter_.consistentRefinement

880 (

881 candidates.shrink(),

882 true // Add to set to guarantee 2:1

884)8
885
886 Info<< "Selected " << returnReduce(consistentSet.size(), sumOp<label>())
887 << " cells for refinement out of " << globalData().nTotalCells()

888 << "." << endl;

890 return consistentSet;

894| void Foam::dynamicRefineFvMesh::selectUnrefineCandidates
895| (

896 boolList& unrefineCandidates,

897 const volScalarField& vF1d,

898 const scalar unrefinelevel

899|) const

900 | {

901 forAll(pointCells(), pointi)

902 {

903 const labelList& pCells = pointCells() [pointi];

905 scalar maxVal = -great;

906 forAll(pCells, i)

907 {

908 maxVal = max(maxVal, vFld[pCells[i]]);
909 }

911 unrefineCandidates [pointi] =
912 unrefineCandidates[pointi] && maxVal < unrefineLevel;

915

917| void Foam::dynamicRefineFvMesh::selectUnrefineCandidates
918 (

919 boolList& unrefineCandidates,

920 const volScalarField& vF1d,

921 const cellZone& cZone,

65

935

953

955
956

958

985

B.2. dynamicRefineFvMesh.C

Appendix B. Source Codes

const scalar unrefinelLevel
) const
{
const Map<label>& zoneMap(cZone.lookupMap());

forAll(pointCells(), pointi)

{
const labelList& pCells = pointCells() [pointil;
scalar maxVal = -great;
forAll(pCells, i)
{
if (zoneMap.found(pCells[i]))
{
maxVal = max(maxVal, vFld[pCells[i]]);
}
}
unrefineCandidates[pointi] =
unrefineCandidates[pointi] && maxVal < unrefinelevel;
}

void Foam::dynamicRefineFvMesh::selectUnrefineCandidates
(

boolList& unrefineCandidates,

const dictionary& refineDict

) const
{
if (refineDict.found("unrefineLevel"))
{
const word fieldName(refineDict.lookup("field"));
const volScalarField& vF1ld
(
lookupObject<volScalarField>(fieldName)
)8
const scalar unrefinelevel =
refineDict.lookup<scalar>("unrefineLevel");
if (refineDict.found("cellZone"))
{
selectUnrefineCandidates
(
unrefineCandidates,
vF1ld,
findCellZone(refineDict.lookup("cellZone")),
unrefinelevel
);
}
else
{
selectUnrefineCandidates
(
unrefineCandidates,
vFld,
unrefinelLevel
);
}
¥

Foam::labelList Foam::dynamicRefineFvMesh: :selectUnrefinePoints

(
const PackedBoolList& markedCell,
const boolList& unrefineCandidates

66

991
992
993
994
995
996

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

B.2. dynamicRefineFvMesh.C Appendix B.

Source Codes

) const
{
// All points that can be unrefined
const labellList splitPoints(meshCutter_.getSplitPoints());

DynamicList<label> newSplitPoints(splitPoints.size());

forAll(splitPoints, i)
{
label pointi = splitPoints[i];

if (unrefineCandidates[pointi])

{
// Check that all cells are not marked
const labelList& pCells = pointCells() [pointil;

bool hasMarked = false;

forAll(pCells, pCelli)
{
if (markedCell.get (pCells[pCellil))
{
hasMarked = true;
break;

if (!'hasMarked)
{
newSplitPoints.append(pointi);

newSplitPoints.shrink();

// Guarantee 2:1 refinement after unrefinement
labellist consistentSet

(
meshCutter_.consistentUnrefinement
(
newSplitPoints,
false
)
);

Info<< "Selected " << returnReduce(consistentSet.size(), sumOp<label>())
<< " split points out of a possible "
<< returnReduce(splitPoints.size(), sumOp<label>())
<< "M << endl;

return consistentSet;

void Foam::dynamicRefineFvMesh: :extendMarkedCells

(

PackedBoolList& markedCell
) const
{

// Mark faces using any marked cell
boolList markedFace(nFaces(), false);

forAll (markedCell, celli)

{
if (markedCell.get(celli))
{

const cell& cFaces = cells()[cellil;

67

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

1058
1059 forAll(cFaces, i)

1060 {

1061 markedFace[cFaces[i]] = true;
1062 }

1063 }

1064 X

1065
1066 syncTools: :syncFaceList (*this, markedFace, orEqOp<bool>());
1067
1068 // Update cells using any markedFace

1069 for (label facei = 0; facei < nInternalFaces(); facei++)

1070 {

1071 if (markedFace[faceil)

1072 {

1073 markedCell.set (faceOwner() [faceil, 1);

1074 markedCell.set (faceNeighbour () [faceil, 1);

1075 }

1076 }

1077 for (label facei = nInternalFaces(); facei < nFaces(); facei++)
1078 {

1079 if (markedFace[faceil)

1080 {

1081 markedCell.set (faceOwner () [faceil, 1);

1082 }

1083 }

1084| }

1085
1086
1087| void Foam::dynamicRefineFvMesh::checkEightAnchorPoints

1088| (

1089 PackedBoolList& protectedCell,

1090 label& nProtected

1091|) const

1092 {

1093 const labellList& celllLevel = meshCutter_.cellLevel();
1094 const labelList& pointLevel = meshCutter_.pointLevel();
1095
1096 labelList nAnchorPoints(nCells(), 0);
1097
1098 forAll(pointLevel, pointi)

1099 {

1100 const labelList& pCells = pointCells(pointi);
1101
1102 forAll(pCells, pCelli)

1103 {

1104 label celli = pCells[pCellil;
1105
1106 if (pointLevel[pointi] <= cellLevel[cellil)

1107 {

1108 // Check if cell has already 8 anchor points -> protect cell
1109 if (nAnchorPoints[celli] == 8)

1110 {

1111 if (protectedCell.set(celli, true))

1112 {

1113 nProtected++;

1114 }

1115 }

1116
1117 if (!protectedCell[cellil)
1118 {

1119 nAnchorPoints[cellil++;
1120 }

1121 }

1122 }

1123 }

1124

1125

68

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

1126 forAll(protectedCell, celli)

1127 {

1128 if (!protectedCelllcellil && nAnchorPoints[celli] != 8)
1129 {

1130 protectedCell.set(celli, true);

1131 nProtected++;

1132 }

1133 ¥

1134 }

1135
1136
1137 // * % % % % % % * % * % % % % *x x Constructors * * * % % % % % * % % *x % *x //
1138
1139 | Foam: :dynamicRefineFvMesh: :dynamicRefineFvMesh(const IOobject& io)
1140 :

1141 dynamicFvMesh(io),

1142 meshCutter_(*this),

1143 dumpLevel_(false),

1144 nRefinementIterations_(0),

1145 protectedCells_(nCells(), 0)

1146 | {

1147 // Read static part of dictionary
1148 readDict();

1149
1150 const labelList& celllLevel = meshCutter_.cellLevel();
1151 const labelList& pointLevel = meshCutter_.pointLevel();
1152
1153 // Set cells that should not be refined.

1154 // This is currently any cell which does not have 8 anchor points or
1155 // uses any face which does not have 4 anchor points.

1156 // Note: do not use cellPoint addressing

1157
1158 // Count number of points <= cellLevel
1159 [/ TTTTTTTTmmmm s s ss s s s ms e e
1160
1161 labelList nAnchors(nCells(), 0);
1162
1163 label nProtected = 0;
1164
1165 forAll(pointCells(), pointi)

1166 {

1167 const labelList& pCells = pointCells() [pointil;
1168
1169 forAll(pCells, i)

1170 {

1171 label celli = pCells[il;
1172
1173 if (!protectedCells_.get(celli))

1174 {

1175 if (pointLevel[pointi] <= cellLevel[celli])
1176 {

1177 nAnchors[celli]++;

1178
1179 if (nAnchors[celli] > 8)

1180 {

1181 protectedCells_.set(celli, 1);
1182 nProtected++;

1183 }

1184 }

1185 }

1186 }

1187 }

1188
1189
1190 // Count number of points <= faceLevel

1191 [/ TTTTTTT T mmm s s s s s s sy e e

1192 // Bit tricky since proc face might be one more refined than the owner since
1193 // the coupled one is refined.

69

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

B.2. dynamicRefineFvMesh.C Appendix B.

Source Codes

labellList neilevel(nFaces());

for (label facei = 0; facei < nInternalFaces(); facei++)

{
neilevel[facei] = celllLevel[faceNeighbour() [faceil]];
}
for (label facei = nInternalFaces(); facei < nFaces(); facei++)
{
neilevel [facei] = celllLevel[faceOwner() [facei]];
}

syncTools: :swapFaceList (*this, neilevel);

boolList protectedFace(nFaces(), false);

forAll(faceOwner(), facei)

{
label facelLevel = max
(
celllevel [faceOwner () [faceil],
neilevel [facei]
DE;
const face& f = faces() [faceil;
label nAnchors = 0;
forAll(f, fp)
{
if (pointLevel[f[fp]] <= faceLevel)
{
nAnchors++;
if (nAnchors > 4)
{
protectedFace[facei] = true;
break;
}
}
}
}

syncTools: :syncFaceList (xthis, protectedFace, orEqOp<bool>());

for (label facei = 0; facei < nInternalFaces(); facei++)

{
if (protectedFace[faceil)
{
protectedCells_.set(faceOwner() [facei], 1);
nProtected++;
protectedCells_.set (faceNeighbour () [faceil, 1);
nProtected++;
}
}
for (label facei = nInternalFaces(); facei < nFaces(); facei++)
{
if (protectedFace[faceil])
{
protectedCells_.set(faceOwner() [facei], 1);
nProtected++;
}
}

// Also protect any cells that are less than hex
forAll(cells(), celli)
{

70

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

B.2. dynamicRefineFvMesh.C Appendix B.

Source Codes

const cell& cFaces = cells() [celli];
if (cFaces.size() < 6)
{
if (protectedCells_.set(celli, 1))
{
nProtected++;
¥
}
else
{
forAll(cFaces, cFacei)
{
if (faces() [cFaces[cFaceil].size() < 4)
{
if (protectedCells_.set(celli, 1))
{
nProtected++;
}
break;
}
}
}

}

// Check cells for 8 corner points

checkEightAnchorPoints (protectedCells_, nProtected);

¥
if (returnReduce(nProtected, sumOp<label>()) == 0)
{
protectedCells_.clear();
¥
else
{

cellSet protectedCells(*this, "protectedCells", nProtected);

forAll(protectedCells_, celli)

{
if (protectedCells_[cellil)

{
protectedCells.insert(celli);
}

}

Info<< "Detected " << returnReduce(nProtected, sumOp<label>())
<< " cells that are protected from refinement."
<< " Writing these to cellSet "
<< protectedCells.name()
<< "." << endl;

protectedCells.write();

¥
}
// % % % % % % % % % * *x * % % % % Destructor * * * % % % % % *x % % * % % *x //

Foam: :dynamicRefineFvMesh: : "dynamicRefineFvMesh()

{3

// * % % % % % % % % % *x * *x % *x Member Functions * * * % x % % % % * % % *x //

bool Foam::dynamicRefineFvMesh: :update ()

{
// Re-read dictionary. Chosen since usually -small so trivial amount
// of time compared to actual refinement. Also very useful to be able

71

B.2. dynamicRefineFvMesh.C Appendix B. Source Codes

1330 // to modify on-the-fly.

1331 const dictionary refineDict

1332 (

1333 dynamicMeshDict () .optionalSubDict (typeName + "Coeffs")

1334);

1335

1336 label refineInterval = refineDict.lookup<label>("refineInterval");
1337

1338 bool hasChanged = false;

1339

1340 if (refinelInterval == 0)

1341 {

1342 topoChanging(hasChanged) ;

1343

1344 return false;

1345 }

1346 else if (refinelnterval < 0)

1347 {

1348 FatalErrorInFunction

1349 << "Illegal refinelnterval " << refinelnterval << nl

1350 << "The refinelnterval setting in the dynamicMeshDict should"
1351 << " be >= 1." << nl

1352 << exit(FatalError);

1353 }

1354

1355 // Note: cannot refine at time O since no VO present since mesh not
1356 // moved yet.

1357

1358 if (time().timeIndex() > O && time().timeIndex() % refineInterval == 0)
1359 {

1360 label maxCells = refineDict.lookup<label>("maxCells");

1361

1362 if (maxCells <= 0)

1363 {

1364 FatalErrorInFunction

1365 << "Illegal maximum number of cells " << maxCells << nl
1366 << "The maxCells setting in the dynamicMeshDict should"
1367 << " be > 0." << nl

1368 << exit(FatalError);

1369 }

1370

1371 const label nBufferLayers =

1372 refineDict.lookup<label>("nBufferLayers") ;

1373

1374 // Cells marked for refinement or otherwise protected from unrefinement.
1375 PackedBoolList refineCells(nCells());

1376

1377 label maxRefinement = 0;

1378

1379 if (refineDict.isDict("refinementRegions"))

1380 {

1381 const dictionary& refinementRegions

1382 (

1383 refineDict.subDict("refinementRegions")

1384);

1385

1386 forAllConstIter(dictionary, refinementRegions, iter)

1387 {

1388 maxRefinement = max

1389 (

1390 selectRefineCandidates

1391 (

1392 refineCells,

1393 refinementRegions.subDict (iter () .keyword())
1394) >

1395 maxRefinement

1396)8

1397 }

72

1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465

B.2. dynamicRefineFvMesh.C Appendix B.

Source Codes

}
else
{
maxRefinement = selectRefineCandidates(refineCells, refineDict);
}
if (globalData().nTotalCells() < maxCells)
{
// Select subset of candidates. Take into account max allowable
// cells, refinement level, protected cells.
labellList cellsToRefine
(
selectRefineCells
(
maxCells,
maxRefinement,
refineCells
)
)8
label nCellsToRefine = returnReduce
(
cellsToRefine.size(), sumOp<label>()
);
if (nCellsToRefine > 0)
{
// Refine/update mesh and map fields
autoPtr<mapPolyMesh> map = refine(cellsToRefine);
// Update refineCells. Note that some of the marked ones have
// not been refined due to constraints.
{
const labellList& cellMap = map().cellMap();
const labellList& reverseCellMap = map().reverseCellMap();
PackedBoolList newRefineCell(cellMap.size());
forAll(cellMap, celli)
{
label 0ldCelli = cellMapl[celli];
if (oldCelli < 0)
{
newRefineCell.set(celli, 1);
}
else if (reverseCellMapl[oldCelli] != celli)
{
newRefineCell.set(celli, 1);
}
else
{
newRefineCell.set(celli, refineCells.get(0ldCelli));
¥
}
refineCells.transfer (newRefineCell);
}
// Extend with a buffer layer to prevent neighbouring points
// being unrefined.
for (label i = 0; i < nBufferLayers; i++)
{
extendMarkedCells(refineCells);
}
hasChanged = true;
}
}

73

B.2. dynamicRefineFvMesh.C Appendix B.

Source Codes

boolList unrefineCandidates(nPoints(), true);

if (refineDict.isDict("refinementRegions"))

{
const dictionary& refinementRegions
(
refineDict.subDict("refinementRegions")
)5
forAllConstIter(dictionary, refinementRegions, iter)
{
selectUnrefineCandidates
(
unrefineCandidates,
refinementRegions.subDict (iter() .keyword())
)3
3
}
else
{
selectUnrefineCandidates
(
unrefineCandidates,
refineDict
)5
}
{
// Select unrefineable points that are not marked in refineCells
labellList pointsToUnrefine
(
selectUnrefinePoints
(
refineCells,
unrefineCandidates
)
)3
label nSplitPoints = returnReduce
(
pointsToUnrefine.size(),
sumOp<label>()
)
if (nSplitPoints > 0)
{
// Refine/update mesh
unrefine (pointsToUnrefine) ;
hasChanged = true;
}
}
if ((nRefinementIterations_ % 10) == 0)
{
// Compact refinement history occasionally (how often?).
// Unrefinement causes holes in the refinementHistory.
const_cast<refinementHistory&>(meshCutter() .history()).compact();
}

nRefinementIterations_++;

}

topoChanging (hasChanged) ;
if (hasChanged)
{

// Reset moving flag (if any). If not using inflation we'll not move,

74

B.2. dynamicRefineFvMesh.C

Appendix B. Source Codes

// if are using inflation any follow on movePoints will set it.
moving(false);

}

return hasChanged;

bool Foam::dynamicRefineFvMesh::writeObject

(
I0stream: :streamFormat fmt,
I0stream: :versionNumber ver,
I0stream: :compressionType cmp,
const bool write
) const
{
// Force refinement data to go to the current time directory.
const_cast<hexRef8&>(meshCutter_) .setInstance(time().timeName());
bool writelk =
(
dynamicFvMesh: :writeObject (fmt, ver, cmp, write)
&% meshCutter_.write(write)
)
if (dumpLevel_)
{
volScalarField scalarCellLevel
(
IO0object
(
"cellLevel",
time () .timeName (),
*this,
I0object::NO_READ,
I0object::AUTO_WRITE,
false
),
*this,
dimensionedScalar(dimless, 0)
)8
const labelList& celllLevel = meshCutter_.celllLevel();
forAll(celllLevel, celli)
{
scalarCellLevel[celli] = celllLevel[cellil;
}
writeOk = writeOk && scalarCellLevel.write();
¥
return writeOk;
}

// 3k >k 3k >k 5k 3k 5k 3k >k 3k ok 3k >k >k 3k >k 3k >k 3k >k 3k 5k >k 3k >k 3k >k 3k >k >k >k >k 3k >k 3k >k 3k >k >k k >k 3k >k 3k >k 5k 5k >k 3k >k 3k >k >k >k >k >k >k 3k >k 3k %k >k %k >k %k >k %k %k >k %k >k k k //

75

	Introduction
	Background
	Motivation
	Document Outline

	Using dynamicRefineFvMesh for AMR
	The damBreakWithObstacle Case
	The dynamicMeshDict file
	Sub-Class declaration
	refineInterval
	field
	lowerRefineInterval and upperRefineInterval
	unrefineLevel
	nBufferLayers
	maxRefinement
	maxCells
	correctFluxes
	dumpLevel

	Dynamic meshing code
	The interFoam source code
	dynamicFvMesh.H
	createDynamicFvMesh.H
	createDyMControls.H
	Time Loop

	dynamicRefineFvMesh::update()
	Initialisation Phase
	Refinement Phase
	Unrefinement Phase

	Creating dynamicDualRefineFvMesh
	Introduction
	Creating dynamicDualRefineFvMesh
	Testing

	Adding Dual–Field Refinement
	Methodology
	Initialisation Phase
	Alterations for Refinement Phase
	Alterations for Unrefinement Phase

	New selectUnrefineCandidates function
	Summary

	Using dynamicDualRefineFvMesh
	Modifying the tutorial
	The dynamicMeshDict
	Dual–field refinement
	Interface Refinement
	Bulk Refinement

	Results
	Conclusion

	Dictionaries
	damBreakWithObstacle dynamicMeshDict

	Source Codes
	interFoam.C
	dynamicRefineFvMesh.C

