
Cite as: Meier, R.: Implementation of FGM model for premixed flames in OpenFOAM. In Proceedings of

CFD with OpenSource Software, 2022, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS CFD#YEAR 2022

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Implementation of FGM model for
premixed flames in OpenFOAM

Developed for OpenFOAM-v2112

Author:
Rafael Meier
Federal University of Santa
Catarina, Brazil

Peer reviewed by:
Örjan Fjällborg

Mohammad Khanouki
Thiago Souza

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 23, 2023

http://dx.doi.org/10.17196/OS_CFD#YEAR_2022

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• how to solve a canonical combustion problem using a Flamelet-Generated Manifold (FGM)
method for premixed flames.

The theory of it:

• the theory of combustion modeling and the theory of FGM for premixed flames.

How it is implemented:

• how the thermochemical properties (density, temperature, reaction rate, etc.) from an Open-
FOAM default solver are replaced by tabulated properties previously computed following the
FGM methodology.

• how to implement a transport equation for the combustion variables.

How to modify it:

• how the implementation is done from the rhoReactingBuoyantFoam solver. A database con-
sidering a stochiometric combustion of methane/air will be provided, showing how the user can
set the appropriate manifold database. In addition, a simulation case in the Bunsen burner
will be presented, where the user can modify the inlet velocity profile as needed.

1

Prerequisites

The reader is expected to know in advance the following topics in order to get maximum benefit out
of this report:

• The fundamentals of fluid mechanics and combustion.

• Familiarity with CFD.

• Basic knowledge of object orientation and C++ syntax.

• Experience to run standard tutorials in OpenFOAM and usage of Paraview.

2

Contents

1 Theory 6
1.1 Introduction . 6
1.2 Laminar premixed flames structure and propagation speed 6
1.3 Flamelet-Generated Manifold model . 7
1.4 Governing equations and computational arrangement 9

1.4.1 FGM procedure and numerical structure . 10

2 Reacting flow solver 14
2.1 Mass conservation . 15
2.2 Momentum conservation . 15
2.3 Chemical species conservation . 17
2.4 Energy conservation . 18
2.5 Pressure equation . 19

3 FGM solver 22
3.1 Main solver changes . 22
3.2 Thermophysical library . 24
3.3 Solver compilation . 27

4 2D Bunsen flame test case 28
4.1 Geometry . 28
4.2 Boundary conditions . 29
4.3 Thermophysical properties . 31
4.4 Solution and schemes . 31
4.5 Running the case . 32

5 Results and discussions 34

3

Nomenclature

Roman symbols
c progress variable
cp isobaric heat capacity
D mass diffusivity
Dm,i diffusion coefficient of the i component into the mixture
h total sensible enthalpy
hoi enthalpy of formation of species i

j
′′

i diffusive mass flux
Ka Karlovitz number
l characteristic length
Le Lewis number
MW molecular weight
p pressure
Pr Prandtl number
Q̇

′′
heat flux

Q̇
′′′

volumetric heat release rate
Ru universal gas constant
Scf cell face area
Sd flame displacement speed
S̃d density-weighted flame displacement speed
S0
l flat flame speed
Sl flame speed
Sc Schmidt number
t time
T temperature
~V velocity
~Vf flame velocity
V– volume
u

′
turbulence velocity

Yi mass fraction of component i
~z high vector

Greek symbols
α thermal diffusivity
δl flame thickness
δr reacting zone thickness
η Kolmogorov length scale
λ heat conductivity
µ viscosity
ν momentum diffusivity
ρ density

4

τ characteristic time
ψ compressibility factor
ω̇

′′′

i reaction rate

Abbreviations
CFD Computional Fluid Dynamics
CSP Computational Singular Perturbation model
DNS Direct Numerical Simulation
FGM Flamelet-Generated Manifold model
ILDM Intrinsic Low-Dimensional Manifolds model
OpenFOAM Open source Field Operation And Manipulation

Subscripts
b burned gas
c related to the progress variable
chem chemical
f flame
cf cell face
g gas
i species i
m mixture-averaged
nb neighbor cells
P cell center point
t turbulent
u unburned gas

Chapter 1

Theory

1.1 Introduction

Combustion physics is a complex phenomenon based upon the competition of flow and chemistry
time scales of varying magnitudes. In terms of computational fluid dynamics (CFD) modeling,
roughly speaking, the models decouple the set of partial differential equations governing the flow
field from the system of ordinary differential equations of chemical kinetics. This is justified since,
in general, the time scales of the chemical reactions are much faster than the characteristic time
scale of the flow. However, reactions of different orders of magnitude exist even in case of simplified
chemical mechanisms, resulting in the mathematical stiffness problem.

When a fundamental research approach of the phenomena is considered, e.g., computational
modeling based on Direct Numerical Simulations (DNS), it is necessary to use all physical descrip-
tions to understand the intrinsic details of the interaction involving the flow-chemistry process.
However, in terms of engineering applications, i.e., gas turbines for electrical power generation, air-
craft engines, and internal combustion engines for cars, trucks, ships, and furnaces, the domains
for simulations are substantially enlarged, becoming impractical the utilization of detailed models
for transport equations and chemical kinetics. In literature, numerical models have focused on de-
creasing the computational complexity in order to make feasible combustion studies using regular
computational architectures. Chemical reduction techniques are one of the ways to tackle this prob-
lem. Some of them are referred as conventional reduction [1], Intrinsic Low-Dimensional Manifolds
(ILDM) [2], Computational Singular Perturbation (CSP) [3], and the Flamelet-Generated Manifold
model (FGM) [4]. These models are based on the idea that most chemical time scales are very small
compared to the flow time scales. If all transport processes are neglected, a time-scale analysis can
be performed, and the fastest time scales are assumed to be at steady-state. Mathematically, this
means that all variables can be stored in a database as a function of a few controlling variables, and
during the run-time, only the equations for the controlling variables are solved [5]. In this work, an
implementation of the FGM model in OpenFOAM’s CFD platform will be presented.

1.2 Laminar premixed flames structure and propagation speed

Figure 1.1 shows a premixed flame front propagating embedded in a flow field ~V [6]. A magnified
structure across the flame front may be viewed where it is presented the flame surface separating the
burned and unburned mixture, a flame sheet approximation, and the laminar flame structure, which
are the basis for a thin flame approximation [7, 8, 9]. Represented by YF,u, the mass fractions of the
reactants in the unburned gas are constant until the flame front, where they begin to be consumed,
and products begin to form as the temperature increases monotonically from the unburnt region, Tu,
to the burnt region Tb. The flame structure reveals the flame preheating zone, with a characteristic
length scale δl, and a thin reaction zone, with a characteristic length scale δr � δl.

6

1.3. Flamelet-Generated Manifold model Chapter 1. Theory

Figure 1.1: Flame sheet approximation and laminar flame structure [6].

Naming Sd the displacement speed and ~V the flow velocity of the unburned mixture in the
vicinity of the flame surface, the local propagation velocity of the flame surface ~Vf is

~Vf = ~V + Sd~n (1.1)

where Sd~n is the displacement velocity and ~n is the normal unit vector at the flame surface, pointed
to the unburned mixture side, Fig. 1.1. The displacement speed measures the front speed relative
to the difference between the flow speed and the front speed ~Vf [8]

Sd = (~Vf − ~V) · ~n. (1.2)

For a meaningful comparison between values of the displacement speed defined at different lo-
cations, Sd is often normalized by the ratio of local density ρ to the density if the fresh mixture ρu
yielding

S̃d =
ρ

ρu
Sd. (1.3)

The density-weighted flame displacement speed, S̃d, can be directly compared to the laminar
flame speed Sl for the same reactant mixture [10]. When a flame propagates freely in one-dimensional
adiabatic domain in a steady-state regime, it is called the laminar free flame. Its propagating speed
is named the flat flame speed S0

l = Sl where ~Vf = 0, and it is used as a reference quantity for
premixed combustion analysis.

1.3 Flamelet-Generated Manifold model

Laminar flamelet methods are based on the assumption that flame structures are much thinner than
most length scales of the flow, also implying that the chemical reactions are very fast compared to
all other time scales. For that reason, the internal structure of the flame front is almost frozen while
it moves around the embedded flow field. The dynamics of the thin flame front is then determined
by using a kinematic equation for the propagation of the flame front, in case of non-premixed or
partially premixed flames, the mixture fraction equation for the mixing should also be considered,
and a CFD solver to solve the conservation equations related to the flow [5, 11].

Figures 1.2 and 1.3 illustrate the premises of the flamelet modeling. In many combustion appli-
cations, the flamelet concept plays a key role. The flamelet is a one-dimensional element of the flame
front with the front structure of a laminar flame. The flamelet concept is connected with the fact
that in most premixed situations, the structure of the flame will depend only on the normal direction
of the flame front. In general, the reactive front is very thin compared to the other flame scales [8].

7

1.3. Flamelet-Generated Manifold model Chapter 1. Theory

This so-called flamelet hypothesis states that the flame front will retain its one-dimensional laminar
structure as it propagates in a turbulent flow [12]. Figure 1.2 points out this feature, showing that

for wrinkled flame regimes and even for the corrugated regime, the vector flame speed, ~Vf , remains
along the direction normal to the flame front area despite the distortions and effects that a turbulent
flow may cause.

(a) wrinkled flamelet regime (b) corrugated regime

Figure 1.2: Premixed flame propagating in a turbulent flow.

The Borghi-Peters diagram for premixed turbulent combustion, presented in Fig. 1.3, places
the theoretical assumptions in terms of flow and chemistry time scales. The diagram shows how
turbulence affects the flame propagating speed and the internal structure of the flame through the
normalized relations of turbulence velocity u

′
and flame speed S0

l , and the characteristic length
scales of turbulent lt and flame thickness the δl.

Thin reaction zone

Figure 1.3: Borghi-Peters regime diagram for premixed turbulent combustion.

A general relation is called turbulent Karlovitz number, and it is defined as

Ka =
τchem
τη

(1.4)

8

1.4. Governing equations and computational arrangement Chapter 1. Theory

where τchem and τη are the chemistry and Kolmogorov time scales, respectively. Equation (1.4) can
be expanded in terms of flame thickness δl comparing the smallest turbulent scales, i.e., the so-called
Kolmogorov scales η, Eq. (1.5),

Ka =

(
δl
η

)2

=

(
lt
δl

)− 1
2

(
u

′

Sl

) 3
2

. (1.5)

Therefore, the accuracy of the flamelet approximation relies on conditions where the turbulent
intensity does not substantially affect the innner flame structure which remains close to a laminar
flame, wrinkled by turbulence motions, Ka ≤ 1 in Eq. (1.5). In this case, the mean burning rate
may be estimated from the burning rate of a laminar flame multiplied by the overall flame surface
[8].

In the FGM framework, a database representing the combustion process is initially built by stor-
ing a set of laminar one-dimensional flames directly solved with detailed chemical kinetic (flamelets)
as a function of one (or a few) reaction control variables. FGM reduces the number of equations to
be solved and reduces the stiffness of the system of equations [13, 14]. In some cases, this method-
ology can be a hundred times faster, for instance, than the direct integration of the conservation
equations [15] without losing much accuracy. It is important to notice that according to Fig. 1.3,
the present model developed here is limited to the weak wrinkled flamelet regime or, in other words,
to conditions where the turbulence is u

′ ≤ S0
l .

1.4 Governing equations and computational arrangement

For a detailed description of a reacting flow, the system of governing equations (assuming ideal gases
and perfect mixtures) is as follows [8, 16, 17]. The conservation of total mass is defined as

∂ρ

∂t
+∇ · ρ~V = 0 (1.6)

where ρ is the density, t is time and ~V the fluid velocity vector. The conservation of momentum is
given by

∂ρ~V

∂t
+∇ · ρ~V ~V = −∇p+∇ · τ + ρ~g (1.7)

in which p is the pressure, ~g is the gravitational acceleration. The viscous stress tensor τ is computed
for a Newtonian fluid using the Stokes assumption

τ = µ

(
∇~V + (∇~V)T − 2

3
I∇ · ~V

)
(1.8)

where I is the identity tensor and µ the dynamic viscosity. In a reacting flow, the conservation of
mass for species may be expressed as

∂ρYi
∂t

+∇ · ρ(~V + ~Vc)Yi = ω̇
′′′

i −∇ · j
′′

i , i = 1, .., N − 1. (1.9)

Yi is the mass fraction species i and ω̇
′′′

i its reaction rate. N is the number of species. The correction

velocity ~Vc force the sum of all diffusive fluxes j
′′

i to be zero

~Vc = −1

ρ

N∑
i=1

j
′′

i . (1.10)

The diffusive mass flux is computed using a mixture-averaged model derived from the Stefan-Maxwell
equations [18], neglecting pressure and temperature diffusion (Soret effect)

j
′′

i = −ρDm,i∇Yi. (1.11)

9

1.4. Governing equations and computational arrangement Chapter 1. Theory

Dm,i is the diffusion coefficient of species i in the mixture.
The conservation of energy is built from the total enthalpy

∂ρh

∂t
+∇ · ρ~V h = −∇ · Q̇

′′
+
∂p

∂t
−

N∑
i=1

hoi ω̇
′′′

i . (1.12)

The transport of energy is formulated in terms of the total sensible enthalpy h = hs + 1
2
~V · ~V

and

−∇ · Q̇
′′

= ∇ ·
(
λ

cp
∇hs

)
−

N∑
i=1

∇ ·
(
λ

cp
hs,i∇Yi

)
︸ ︷︷ ︸

∇·(λ∇T)

−
N∑
i=1

∇ ·
(
hs,iĵ

′′

i

)
(1.13)

where λ is the heat conductivity of the mixture, cp the isobaric heat capacity and T the temperature.
Viscous work, potential energy, radiation, and Dufour effect are neglected. The sensible enthalpy
hs,i of species i and the sensible enthapy of the mixture hs for ideal gases is given by

hs,i = hi − hoi , hs =

N∑
i=1

Yihs,i, (1.14)

where hoi = hi(298 K) is the enthalpy of formation of species i. The corrected diffusive mass flux ĵ
′′

i

is given by

ĵ
′′

i = j
′′

i − Yi
N∑
i=1

j
′′

i . (1.15)

The Fouries’s second law ∇ · (λ∇T) is rewritten (assuming ideal gases and that all species have
the same temperature) in order to obtain the first term on the r.h.s. of Eq. (1.13), which can
is discretized implicitly. The equation for the ideal gases closes the system of partial differential
equations

ρ =
pMWg

RuT
, (1.16)

where MWg is the molar mass of the mixture and Ru the universal gas constant.

1.4.1 FGM procedure and numerical structure

Based on the flamelet assumption, in the FGM model the set of combustion thermochemistry vari-
able, e.g., temperature, density and species concentrations are parameterized as a function of specific
variables controlling the temporal evolution of the combustion process. A look-up procedure with
any CFD code can effectively be done to retrieve the thermochemistry variables from the FGM gener-
ated chemistry database [19]. Here, the flamelet database is obtained from a steady one-dimensional,
strechless, freely propagating laminar flame solved with the CHEM1D package [20]. The solution
is performed for a stoichiometric premixed CH4/air flame at atmospheric conditions. The chemical
mechanism used to generat the manifold was the well-stablished GRI3.0 mechanism with 53 species
and 325 elementary reactions [21].

The flamelet manifold is based on the CO2 species as the reaction progress, c, which controls
the evolution of the combustion process since it presents a monotonic evolution as seen in Fig. 1.4a
[12, 19]. The set of thermo-chemistry database, i.g., temperature, density and reaction rate, are
tabulated as a function of the progress variable chosen. As an example of the tabulation procedure,
Fig. 1.4b shows the mass fraction of methane, YCH4

, as a function of the non-scaled progress variable,
YCO2.

This case can be fully described using only carbon dioxide as the reaction progress variable.
Similar conclusions are establish for other thermo-chemistry quantities. By scaling the reaction

10

1.4. Governing equations and computational arrangement Chapter 1. Theory

C
O

2

(a) Mass fraction of CO2 as function of x-axis.

C
H
4

CO2

(b) Mass fraction of CH4 as function of the non-
scaled progress variable, i.e., YCO2 .

Figure 1.4: Premixed flame structure computed with CHEM1D and GRI3.0 reaction mechanism
[12, 19].

progress variable to vary between c = 0 and c = 1, the state of the combustion process is then
completely identified, such that at c = 0 the mixture is in the unburned state and at c = 1 in the
fully burnt state. The scaled progress variable c is defined as follows

c =
YCO2

−min(YCO2
)

max(YCO2)−min(YCO2)
, (1.17)

where min(YCO2
) and max(YCO2

) are taken from the lower and the upper limit of YCO2
(x), as

shown in Fig. 1.4a. To identify easily the state of the combustion process, the computed database
is tabulated as a function of the scaled progress variable, Eq. (1.17). The manifold generated is
interpolated on a 1D equidistant grid with 801 points lineary distributed between 0 and 1. Figures
1.5 show the premixed laminar database using the FGM approach for the methane/air premixed
flame.

The local progress of combustion is given only in terms of a single control variable, i.e., c, by
tracking the evolution of the scalar c through a transport equation, such that the entire combustion
process is immediately retrived within the FGM approximation. Figure 1.6 shows the interface
procedure between the FGM-CFD algorithm for direct simulations. The CFD executes a lookup
procedure on FGM pre-processing database updating the thermo-chemistry states as the transport
equation for c is solved in the CFD code.

The set of transport equation for the variable c and the thermo-chemistry states are defined as

∂(ρc)

∂t
+∇ · ρ~V c = ∇ · ρDc∇c+ ω̇

′′′

c (1.18)

ρ = f1(c) (1.19)

T = f2(c) (1.20)

ω̇
′′′

c = f3(c) (1.21)

Now, that the entire complexity observed in the Equations determining the species transport, Eq.
(1.9) and energy, Eq. (1.12), is replaced by a single transport Eq. (1.18) with the lookup procedure
proving the corresponding values of ρ, T and ω̇

′′′

c .

11

1.4. Governing equations and computational arrangement Chapter 1. Theory

C
O

2

(a) Source term of CO2 as function of x-axis in
physical space.

(b) Source term of CO2 as function of the scaled
progress variable, c.

(c) Temperature, T , as a function of the progress
variable.

(d) Density of the mixture, ρ, as a function of the
progress variable.

Figure 1.5: Premixed flame structure computed with CHEM1D and GRI3.0 reaction mechanism
[12, 19].

Figure 1.6: Implementation of FGM as the combustion model in a CFD code: DNS case.

12

1.4. Governing equations and computational arrangement Chapter 1. Theory

The dynamic viscosity µ is a function of temperature and modeled using the Sutherland’s law.
The diffusion coefficient Dc in Eq. (1.18) is modeled considering the ratio between the temperature
diffusivity ρD and the Lewis number of the progress variable chosen, i.e., LeCO2

, [22, 23]

ρD =
λ

cp
(1.22)

Dc =
λ

cpLeCO2

(1.23)

where LeCO2
= 1.38 and the mass diffusivity term is based on [22]

λ

cp
= 2.58 · 10−5

(
T

298

)0.69

. (1.24)

13

Chapter 2

Reacting flow solver

This chapter provides a top-level description of the rhoReactingBuoyantFoam, a native OpenFOAM
solver that comes as an optional platform in reactingFoam. The application is a solver for chemical
reactions using a density-based thermodynamics package with enhanced buoyancy treatment. The
majority of compressible solvers implemented in OpenFOAM use the PIMPLE algorithm, which
merges the controls of PISO and SIMPLE pressure correction schemes, providing characteristics of
a full-transient solver or resulting in a pseudo-transient simulation [24].

The algorithm solves the compressible fluid equation based on the pressure correction equation
(similar to incompressible flows), which establishes the physical connection between the momentum
and the continuity equation. The chemical species and energy transport equations are part of the
algorithm’s linear sequence since their results directly influence the mass flux through the mesh cells.
The internal time step loop is solved as follows in List. 2.1

1. Solve the density equation, ρ, rhoEqn.H.

2. Solve the momentum equation, ~V , UEqn.H, where it generates a temporary velocity fields
~V ∗, that don’t satisfy the continuity equation before the restriction imposed by the pressure
gradient.

3. Solve the transport for the chemical species equation, Y1, ..., YN , YEqn.H, where N is the
number of species.

4. Solve the energy transport equation, defined in terms of enthalpy, EEqn.H. The species and
energy equation are connected by the energy heat release rate, Q̇

′′′
, and the temperature field

comes out from the enthalpy solution. In addition, pressure and temperature are key variables
used to update the thermodynamic variables, e.g., the equation of state to compute the density
and the transport variables.

5. Solve the pressure equation, p, pEqn.H. To ensure mass conservation, the continuity and the
momentum equation are coupled through the pressure equation (and with the equation of
state) which satisfies the continuity equation. Also a correction for the velocity is computed

from pressure p = p∗ + p
′

and ~V = ~V ∗ + ~V
′
, where ~V

′
= f(p

′
), until it satisfies the mass

conservation.

6. Correct the density through the new pressure and temperature field using the equation of
state.

14

2.1. Mass conservation Chapter 2. Reacting flow solver

Listing 2.1: reactingFoam/rhoReactingBuoyantFoam/rhoReactingBuoyantFoam.C

101 #include "rhoEqn.H"

102

103 // --- Pressure-velocity PIMPLE corrector loop

104 while (pimple.loop())

105 {

106 #include "UEqn.H"

107 #include "YEqn.H"

108 #include "EEqn.H"

109

110 // --- Pressure corrector loop

111 while (pimple.correct())

112 {

113 #include "pEqn.H"

114 }

115

116 if (pimple.turbCorr())

117 {

118 turbulence->correct();

119 }

120 }

121

122 rho = thermo.rho();

123 }

2.1 Mass conservation

The rhoReactingBuoyantFoam is a solver that uses the variable-density continuity equation as shown
in Eq. (1.6). It is solved following List. 2.2

Listing 2.2: src/finiteVolume/cfdTools/compressible/rhoEqn.H

1 {

2 fvScalarMatrix rhoEqn

3 (

4 fvm::ddt(rho)

5 + fvc::div(phi)

6 ==

7 fvOptions(rho)

8);

9

10 fvOptions.constrain(rhoEqn);

11

12 rhoEqn.solve();

13

14 fvOptions.correct(rho);

15 }

In OpenFOAM, the fvm class stands for finite-volume matrix, and it is used when operations
are to be implicit and a left-hand side matrix is formed. This is opposed to the fvc class, which
stands for finite-volume calculus, and used for explicit operations, such as forming the right-hand
side of the matrix equation [25]. The fvm::ddt(rho) term is the time derivative of density. In line

5, fvc::div(phi) represents the divergence of the mass flux ρ~V .

2.2 Momentum conservation

The equations of motion are given by the composition of Eqs. (1.7) and (1.8) yielding

∂ρ~V

∂t
+∇ · ρ~V ~V = −∇p+ ρ~g +∇ ·

(
2µeffD(~V)

)
−∇

(
2

3
µeff (∇ · ~V)

)
, (2.1)

15

2.2. Momentum conservation Chapter 2. Reacting flow solver

where p is the static pressure field. The effective viscosity µeff is the sum of the molecular

and turbulent viscosity and the rate of strain (deformation) tensor, D(~V), is defined as D(~V) =
1
2

(
∇~V + (∇~V)T

)
as seen in Eq. (1.8).

In the OpenFOAM implementation, the solvers that consider buoyant effects define the pressure
solution in terms of prgh which stands for the pressure without the hydrostatic pressure

prgh = p− ρ~g · ~z (2.2)

where ~z is a positive vector. In this way, the pressure gradient and gravity force terms are rearranged
according to

∇p+ ρ~g = −∇(prgh + ρ~g · ~z) + ρ~g, (2.3)

∇p+ ρ~g = −∇prgh − (~g · ~z)∇ρ− ρ~g + ρ~g, (2.4)

∇p+ ρ~g = −∇prgh − (~g · ~z)∇ρ. (2.5)

The momentum equation is defined in UEqn.H file presented in List. 2.3.

Listing 2.3: reactingFoam/rhoReactingBuoyantFoam/UEqn.H

1 MRF.correctBoundaryVelocity(U);

2

3 fvVectorMatrix UEqn

4 (

5 fvm::ddt(rho, U) + fvm::div(phi, U)

6 + MRF.DDt(rho, U)

7 + turbulence->divDevRhoReff(U)

8 ==

9 fvOptions(rho, U)

10);

11

12 UEqn.relax();

13

14 fvOptions.constrain(UEqn);

15

16 if (pimple.momentumPredictor())

17 {

18 solve

19 (

20 UEqn

21 ==

22 fvc::reconstruct

23 (

24 (

25 - ghf*fvc::snGrad(rho)

26 - fvc::snGrad(p_rgh)

27)*mesh.magSf()

28)

29);

30

31 fvOptions.correct(U);

32 K = 0.5*magSqr(U);

33 }

The object MRF is related to Multiple Reference Frame, which is one method for solving problems
including the rotating parts with the static mesh. More information can be found in [26]. In line 7,
the turbulence->divDevReff(U) term is related to the turbulence RAS/LES model chosen.

The time derivative, convection and the laplacian are implicit terms stored in the fvm member
classes in UEqn and it is set equal to terms in line solve. The reconstruct command reconstructs

16

2.3. Chemical species conservation Chapter 2. Reacting flow solver

a volume field from a face flux field. The volume field is reconstructed from face values rather
than simply using the cell center values from the onset in order to create a pseudo-staggered grid
setup on OpenFOAM’s standard colocated grid. This method is effectively a representation of Rhie-
Chow interpolation [27], which aims to remove checker-board pressure oscillations that may occur
on colocated grids (due to pressure at a cell only depending on adjacent cells and not on the cell
in question) [28, 29]. The two terms inside reconstruct are those found in the l.h.s of Eq. (2.5),
where they are the negative surface normal gradient of ρ and prgh multiplied by the surface area
over all of the cell faces. The resulting linear equations are then solved with a matrix solver, thus
yielding the predicted velocity.

2.3 Chemical species conservation

In order to account for the chemical reactions between different chemical species, a conservation
equation for each species i is given by

∂ρYi
∂t

+∇ · ρ~V Yi = ∇ · (µeff∇Yi) + ω̇
′′′

i , i = 1, .., N − 1. (2.6)

In List. 2.4, the equation that solves each species is built in line 23 of YiEqn, where the reacting source
term, ω̇

′′′

i , in Eq. (2.6) stands for reaction->R(Yi). The reactingFoam solver was constructed to
tackle, mainly, turbulent problems. Thus, as can be noted in Eq. (2.6), the transport parameter is
defined as µeff as in line 27, fvm::laplacian(turbulence->muEff(),Yi). Therefore, it is admited
that the Schmidt number, Sc = ν/D, is equal to unity such that the Lewis number becomes Le =
1/Pr. Using this assumption, the termo-diffusivity effect for all species becomes equal and the
prefferential diffusion effects are neglected, differently than Eq. (1.9).

Listing 2.4: reactingFoam/YEqn.H

1 tmp<fv::convectionScheme<scalar>> mvConvection

2 (

3 fv::convectionScheme<scalar>::New

4 (

5 mesh,

6 fields,

7 phi,

8 mesh.divScheme("div(phi,Yi_h)")

9)

10);

11

12 {

13 reaction->correct();

14 Qdot = reaction->Qdot();

15 volScalarField Yt(0.0*Y[0]);

16

17 forAll(Y, i)

18 {

19 if (i != inertIndex && composition.active(i))

20 {

21 volScalarField& Yi = Y[i];

22

23 fvScalarMatrix YiEqn

24 (

25 fvm::ddt(rho, Yi)

26 + mvConvection->fvmDiv(phi, Yi)

27 - fvm::laplacian(turbulence->muEff(), Yi)

28 ==

29 reaction->R(Yi)

30 + fvOptions(rho, Yi)

31);

32

33 YiEqn.relax();

34

35 fvOptions.constrain(YiEqn);

17

2.4. Energy conservation Chapter 2. Reacting flow solver

36

37 YiEqn.solve(mesh.solver("Yi"));

38

39 fvOptions.correct(Yi);

40

41 Yi.max(0.0);

42 Yt += Yi;

43 }

44 }

45

46 Y[inertIndex] = scalar(1) - Yt;

47 Y[inertIndex].max(0.0);

48 }

2.4 Energy conservation

In List. 2.5, the energy transport equation is based on the sensible enthalpy, he in OpenFOAM’s
nomenclature, and is defined as

∂ρh

∂t
+∇ · (∇ρ~V h) +

∂ρK

∂t
+∇ · (∇ρ~V K)− ∂p

∂t
= ∇ · (αeff∇h) + Q̇

′′′
(2.7)

where K = |~V 2|/2 is the kinetic energy, h is the enthalpy defined as the sum of internal energy e
and the kinematic pressure h = e+ p/e [30, 24] and Q̇

′′′
is the volumetric heat release rate resulting

from Q̇
′′′

= −
∑N
i=1 h

o
i ω̇

′′′

i .
The effective thermal diffusivity αeff is the sum of the laminar and turbulent thermal diffusivities

αeff =
ρνt
Prt

+
µ

Pr
=
ρνt
Prt

+
λ

cp
(2.8)

where νt is the turbulent (kinematic) viscosity and Prt is the turbulent Prandtl number. The
contribution of the transient pressure term, ∂p/∂t, could be present or not in the energy equation if
the problem require the necessecity to solve shock waves. After solving the energy equation, in line
28, EEqn.solve(), the thermophysical variables are updated in line 32, thermo.correct(). The
source codes related to the correct() procedure are found in src/thermophysicalModels.

Listing 2.5: reactingFoam/EEqn.H

1 {

2 volScalarField& he = thermo.he();

3

4 fvScalarMatrix EEqn

5 (

6 fvm::ddt(rho, he) + mvConvection->fvmDiv(phi, he)

7 + fvc::ddt(rho, K) + fvc::div(phi, K)

8 + (

9 he.name() == "e"

10 ? fvc::div

11 (

12 fvc::absolute(phi/fvc::interpolate(rho), U),

13 p,

14 "div(phiv,p)"

15)

16 : -dpdt

17)

18 - fvm::laplacian(turbulence->alphaEff(), he)

19 ==

20 Qdot

21 + fvOptions(rho, he)

22);

23

24 EEqn.relax();

25

18

2.5. Pressure equation Chapter 2. Reacting flow solver

26 fvOptions.constrain(EEqn);

27

28 EEqn.solve();

29

30 fvOptions.correct(he);

31

32 thermo.correct();

33

34 Info<< "min/max(T) = "

35 << min(T).value() << ", " << max(T).value() << endl;

36 }

2.5 Pressure equation

The pressure correction equation has the purpose of correcting the velocity field and density such
that the restrictions associated with the continuity equation are satisfied [29, 31, 32]. The equation
reads in the semi-discrete form

∂ρ

∂t
V– P +

∑
cf

ψp~V ∗cf · ~Scf +
∑
cf

ρ∗cf
H[V∗]

AP
· ~Scf −

∑
cf

∇pP
AP

· ~Scf −
∑
cf

ρ∗cf
~V ∗cf · ~Scf

+
∑
cf

ρ∗cf
H[V

′
]

AP
· ~Scf +

∑
cf

ρ
′

cf
~V

′

cf · ~Scf = 0

(2.9)

in which the subscript cf stands for cell face, P for cell center point, and Scf for cell face area
vector. The sum are taken over the faces around the cell with the center point, P . The asterisk
stands for the temporary values computed previously in the momentum equation, which generally
will not satisfy the continuity equation at the first interactions, and the superscript prime indicates
the correction terms. The H[V] operator is defined as

H[V] = ~r −
∑
nb

a
~V
nb
~Vnb (2.10)

The ~r is a source term and it is a contribution from the discretization of time-term ∂ρ
∂t V– P where V– P is

the volume of P cell. The equation above comes from the discretization of the linearized momentum
equation resulting in the system A[x] = B where anb is related to the individual contribuiton mass
flux of the neighbor cells. The AP is the diagonal matrix of aP coefficients that takes into account
all mass flux and time variation in the P cell.

The density is written as

ρ = ψp (2.11)

where ψ = (RgT)−1 is the compressibility factor. The last term in Eq. (2.9) is very small and it is

neglected. The second last term is also neglected since the velocity correction ~V
′

is unknow at the
moment of the solution. Hence, the final form of the pressure equation becomes

∂ρ

∂t
V– P +

∑
cf

ψp~V ∗cf · ~Scf +
∑
cf

ρ∗cf
H[V∗]

AP
· ~Scf −

∑
cf

∇pP
AP

· ~Scf −
∑
cf

ρ∗cf
~V ∗cf · ~Scf = 0. (2.12)

Then, the Eq. (2.2) for prgh is inserted in Eq. (2.12) yielding

∂ρ

∂t
V– P +

∑
cf

ψ(prgh + ρ~g · ~z)~V ∗cf · ~Scf +
∑
cf

ρ∗cf
H[V∗]

AP
· ~Scf

−
∑
cf

∇prgh,P
AP

· ~Scf −
∑
cf

∇ρ~g · ~z
AP

· ~Scf −
∑
cf

ρ∗cf ~V
∗
cf · ~Scf = 0.

(2.13)

19

2.5. Pressure equation Chapter 2. Reacting flow solver

The above equation still contains the density ρ of the current time step. As approximation of the
density of the current time step, the density of the previous time step ρ∗ could be used. By doing
this and with the following expression

ψprgh = ψp− ψρ~g · ~z = ρ− ψρ~g · ~z (2.14)

the modified pressure is simplified as

∂ρ

∂t
V– P +

∑
cf

ψprgh~V
∗
cf · ~Scf −

∑
cf

ψp∗rgh
~V ∗cf · ~Scf +

∑
cf

ρ∗cf
H[V∗]

AP
· ~Scf

−
∑
cf

∇prgh,P
AP

· ~Scf −
∑
cf

∇ρ∗P~g · ~z
AP

= 0.

(2.15)

Comparing the above equation with the source code in List. 2.6 we can identify the corrected phase
velocity without considering the pressure gradient as

~V ∗cf =
H[V∗]

AP
− ∇ρ

∗
P~g · ~z
AP

. (2.16)

In order to derive the expression for the time derivative in the source code of the pressure equation,
the density is divided into the density of the previous time step ρ∗ and a density correction ρ

′
, i.e.,

ρ = ρ∗ + ρ
′

and the time derivative is taken from this expression

∂ρ

∂t
=
∂ρ∗

∂t
+
∂ρ

′

∂t
=
∂ρ∗

∂t
+ ψ

(
∂p

′

rgh

∂t
+
∂ρ

′

∂t
~g · ~z

)
. (2.17)

Neglecting the last two terms in the above equation, it yields

∂ρ

∂t
=
∂ρ∗

∂t
+ ψ

∂p
′

rgh

∂t
(2.18)

Listing 2.6: reactingFoam/rhoReactingBuoyantFoam/pEqn.H

1 rho = thermo.rho();

2

3 // Thermodynamic density needs to be updated by psi*d(p) after the

4 // pressure solution

5 const volScalarField psip0(psi*p);

6

7 volScalarField rAU(1.0/UEqn.A());

8 surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rho*rAU));

9 volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));

10

11 surfaceScalarField phig(-rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());

12

13 surfaceScalarField phiHbyA

14 (

15 "phiHbyA",

16 (

17 fvc::flux(rho*HbyA)

18 + MRF.zeroFilter(rhorAUf*fvc::ddtCorr(rho, U, phi))

19)

20 + phig

21);

22

23 MRF.makeRelative(fvc::interpolate(rho), phiHbyA);

24

25 // Update the pressure BCs to ensure flux consistency

26 constrainPressure(p_rgh, rho, U, phiHbyA, rhorAUf, MRF);

27

28 fvScalarMatrix p_rghDDtEqn

20

2.5. Pressure equation Chapter 2. Reacting flow solver

29 (

30 fvc::ddt(rho) + psi*correction(fvm::ddt(p_rgh))

31 + fvc::div(phiHbyA)

32 ==

33 fvOptions(psi, p_rgh, rho.name())

34);

35

36 while (pimple.correctNonOrthogonal())

37 {

38 fvScalarMatrix p_rghEqn

39 (

40 p_rghDDtEqn

41 - fvm::laplacian(rhorAUf, p_rgh)

42);

43

44 p_rghEqn.solve(mesh.solver(p_rgh.select(pimple.finalInnerIter())));

45

46 if (pimple.finalNonOrthogonalIter())

47 {

48 // Calculate the conservative fluxes

49 phi = phiHbyA + p_rghEqn.flux();

50

51 // Explicitly relax pressure for momentum corrector

52 p_rgh.relax();

53

54 // Correct the momentum source with the pressure gradient flux

55 // calculated from the relaxed pressure

56 U = HbyA + rAU*fvc::reconstruct((phig + p_rghEqn.flux())/rhorAUf);

57 U.correctBoundaryConditions();

58 fvOptions.correct(U);

59 K = 0.5*magSqr(U);

60 }

61 }

62

63 p = p_rgh + rho*gh;

64

65 // Thermodynamic density update

66 thermo.correctRho(psi*p - psip0);

67

68 if (thermo.dpdt())

69 {

70 dpdt = fvc::ddt(p);

71 }

72

73 #include "rhoEqn.H"

74 #include "compressibleContinuityErrs.H"

21

Chapter 3

FGM solver

In this implementation, the FGM solver, fgmPremixedFoam, is built from the rhoReactingBuoyantFoam
where a new library named combustionFGMModel is called by the OpenFOAM. A general view of
this implementation is seen in Fig. 3.1. The fgmPremixedFoam solver resolves the mass, momentum
and progress variable balance equations. The new library has two main classes, lookupFGM and
fgmThermo, responsible for computing the thermochemistry fields and returning them to the main
solver. The manifold containing the thermo-chemistry data is loaded by the lookupFGM class, which
is held in the constant/ directory of the case to be solved. In the following discussion, we present
the top-level changes in rhoReactingBuoyantFoam and the new library details.

Figure 3.1: Schematic workflow of the fgmPremixedFoam solver and the combustionFGMModel li-
brary.

3.1 Main solver changes

In rhoReactingBuoyantFoam solver, the thermo object is declared in createFields.H as seen in
List. 3.1.

22

3.1. Main solver changes Chapter 3. FGM solver

Listing 3.1: reactingFoam/rhoReactingBuoyantFoam/createFields.H

3 Info<< "Reading thermophysical properties\n" << endl;

4 autoPtr<rhoReactionThermo> pThermo(rhoReactionThermo::New(mesh));

5 rhoReactionThermo& thermo = pThermo();

6 thermo.validate(args.executable(), "h", "e");

7

8 basicSpecieMixture& composition = thermo.composition();

In this solver, the lines above are replaced by the following code observed in List. 3.2. The progress
variable, c, is declared as PV in line 4, and the pressure field, p, is declared in line 17. The objects
related to classes lookupFGM and fgmThermo are initialized in lines 32 and 35, respectively.

Listing 3.2: fgmPremixedFoam/createFields.H

3 // FGM Fields

4 volScalarField PV

5 (

6 IOobject

7 (

8 "PV",

9 runTime.timeName(),

10 mesh,

11 IOobject::MUST_READ,

12 IOobject::AUTO_WRITE

13),

14 mesh

15);

16

17 volScalarField p

18 (

19 IOobject

20 (

21 "p",

22 runTime.timeName(),

23 mesh,

24 IOobject::MUST_READ,

25 IOobject::AUTO_WRITE

26),

27 mesh

28);

29

30 Info<< "Reading thermophysical properties\n" << endl;

31 // Initializing FGM manifold

32 lookupFGM fgmTable(mesh);

33

34 // Initializing fgmThermo

35 fgmThermo thermo(mesh, fgmTable, p, PV);

As pointed out in Chapter 1, the FGM model simplifies the species and the energy equation.
Hence, lines 107 and 108 which are default in rhoReactingBuoyantFoam.C, List. 2.1, are replaced
by the solution of PVEqn.H in fgmPremixedFoam.C, List. 3.3.

Listing 3.3: fgmPremixedFoam/fgmPremixedFoam.C

94 #include "UEqn.H"

95 #include "PVEqn.H"

The progress variable PV is solved as a transport equation as seen in List. 3.4. The thermophysical
variables thermo.Dmass() and thermo.sourcePV() are computed in the fgmThermo class. In addi-
tion, the temperature field also comes out from thermo object and all transport and thermodynamic
properties are updated in line 33, thermo.correct().

23

3.2. Thermophysical library Chapter 3. FGM solver

Listing 3.4: fgmPremixedFoam/PVEqn.H

12 tmp<fvScalarMatrix> tPVEqn

13 (

14 (

15 fvm::ddt(rho, PV)

16 + fvm::div(phi, PV)

17 - fvm::laplacian(thermo.Dmass(), PV)

18 == thermo.sourcePV()

19)

20);

21

22 fvScalarMatrix& PVEqn = tPVEqn.ref();

23

24 PVEqn.relax();

25 fvOptions.constrain(PVEqn);

26

27 PVEqn.solve();

28 fvOptions.correct(PV);

29 PV = max(min(PV, 1.0), 0.0);

30

31 T = thermo.T();

32

33 thermo.correct();

The fgmPremixedFoam solver aims to model problems within the scope of DNS, therefore, no
turbulence modeling is used and the momentum equation is set up accordingly, List. 3.5.

Listing 3.5: fgmPremixedFoam/UEqn.H

3 fvVectorMatrix UEqn

4 (

5 fvm::ddt(rho, U) + fvm::div(phi, U) + MRF.DDt(rho, U)

6 - fvm::laplacian(thermo.mu(), U)

7 - fvc::div(thermo.mu()*Foam::dev2(Foam::T(fvc::grad(U))))

8 ==

9 fvOptions(rho, U)

10);

3.2 Thermophysical library

The combustionFGMModel is made up of the lookupFGM and fgmThermo classes. The fgmTable

object is initialized in createFields.H as a lookupFGM class and loads the manifolds in the constant
folder, List. 3.6, and also, it is responsible for interpolating the required thermochemistry variables,
ρ, T , ω̇

′′′

c , in order to obtain the local values of the progress variable in PVEqn.H.

Listing 3.6: combustionFGMModel/lookupFGM.C

32 lookupFGM::lookupFGM

33 (

34 const fvMesh& mesh

35)

36 :

37 IOdictionary

38 (

39 IOobject

40 (

41 "fgmProperties",

42 mesh.time().constant(),

43 mesh,

44 IOobject::MUST_READ_IF_MODIFIED,

45 IOobject::NO_WRITE

46)

47),

48 mesh_(mesh),

24

3.2. Thermophysical library Chapter 3. FGM solver

49 PV_table(lookup("PV")),

50 sourcePV_table(lookup("sourcePV")),

51 T_table(lookup("T")),

52 rho_table(lookup("rho"))

53

54 ...

The lookupFGM member function, lookupFGM::interpolateValue1D, computes the interpolation
process of ρ, T and the source term, ω̇

′′′

c , List. 3.7, as the progress variable c/PV is solved in PVEqn.H

and then, the transport and thermodynamic properties are updated.

Listing 3.7: combustionFGMModel/lookupFGM.C

74 Foam::scalar Foam::lookupFGM::interpolateValue1D

75 (

76 const List<scalar>& table,

77 scalar pvValue,

78 const List<scalar>& pvTable

79) const

80 {

81

82 scalar interpolatedValue;

83

84 scalar lower_pvTable=0;

85 scalar upper_pvTable=0;

86 scalar lower_table=0;

87 scalar upper_table=0;

88

89 if(pvValue == 0)

90 {

91 interpolatedValue = table[0];

92 }

93 else

94 {

95 //- A small number to prevent divide by zero

96 scalar smallValue(1e-5);

97 scalar rate;

98

99 // INTERPOLATION ALGORITHM

100 for(int j=0; j < pvTable.size(); j++)

101 {

102 pvValue = min(pvValue,1.);

103

104 if(pvTable[j] >= pvValue)

105 {

106

107 lower_pvTable = pvTable[j-1];

108 upper_pvTable = pvTable[j];

109

110 lower_table = table[j-1];

111 upper_table = table[j];

112

113 break;

114 }

115

116 }

117

118 rate = (upper_table - lower_table)/ \

119 max((upper_pvTable - lower_pvTable),smallValue);

120

121 interpolatedValue = (pvValue - lower_pvTable)*rate + lower_table;

122

123 interpolatedValue = max(interpolatedValue,min(table));

124

125 }

126

127 return interpolatedValue;

25

3.2. Thermophysical library Chapter 3. FGM solver

128

129 }

The fgmThermo class is concerned with computing all thermodynamic states and the molecular
transport variables, e.g., dynamic viscosity, µ, and the mass diffusivity coefficient, D, List. 3.8. This
class was built according to the OpenFOAM’s library $FOAM SRC/thermophysicalModels/. The
data file in the constant folder has the information about the FGM model, thermoType, the Lewis
number and the gas constant Rgas. The fgmTable_ is loaded from the lookupFGM class and the
variables p_ and PV_ come from the initialization in createFields.H. The other members data are
also initialized and can be checked in the files provided with this report.

Listing 3.8: Piece of initialization variables in combustionFGMModel/fgmThermo/fgmThermo.C

74 Foam::fgmThermo::fgmThermo

75 (

76 const fvMesh& mesh,

77 const lookupFGM& lookupFGM,

78 volScalarField& p,

79 volScalarField& PV

80)

81 :

82

83 IOdictionary

84 (

85 IOobject

86 (

87 "thermophysicalProperties",

88 mesh.time().constant(),

89 mesh,

90 IOobject::MUST_READ_IF_MODIFIED,

91 IOobject::NO_WRITE

92)

93),

94

95 fgmThermoModel_(lookup("thermoType")),

96 Le_(lookupOrDefault<scalar>("Le",1.0)),

97 Rgas_(lookupOrDefault<scalar>("Rgas",287.0)),

98

99 fgmTable_(lookupFGM),

100

101 p_(p),

102

103 PV_(PV),

104

105 ...

The Foam::fgmThermo::correct() member function is responsible for updating all variables as
the transport equation for PV is solved. A small section of correct() is shown in List. 3.9.

Listing 3.9: Piece of interpolation process in combustionFGMModel/fgmThermo/fgmThermo.C

175 void Foam::fgmThermo::correct()

176 {

177 scalarField& TCells = T_.primitiveFieldRef();

178 scalarField& psiCells = psi_.primitiveFieldRef();

179 scalarField& sourcePVCells = sourcePV_.primitiveFieldRef();

180 scalarField& rhoCells = rho_.primitiveFieldRef();

181 scalarField& DmassCells = Dmass_.primitiveFieldRef();

182 scalarField& muCells = mu_.primitiveFieldRef();

183

184 const scalarField& pCells = p_.internalField();

185 const scalarField& PVCells = PV_.internalField();

186

187 // Interpolate for internal field

188 forAll(TCells, celli)

26

3.3. Solver compilation Chapter 3. FGM solver

189 {

190 TCells[celli] = fgmTable_.interpolateValue1D

191 (

192 fgmTable_.T_table,

193 PVCells[celli],

194 fgmTable_.PV_table

195);

196

197 DmassCells[celli] = massDiffusivity_model(TCells[celli]);

198

199 muCells[celli] = viscosity_model(TCells[celli]);

200

201 ...

The values of members data, T_, rho_, and sourcePV_ are corrected for each cell using the inter-
polation method. The transport properties, Dmass_ and mu_, are calculated following the member
functions implemented according to Eq. (1.23), for both mass diffusivity and the Sutherland’s law
for viscosity, List. 3.10. The ideal gas law, ψ = ρ/p is used for psi_. The members data are also
updated for the patches.

Listing 3.10: Member functions to compute the transport variables in fgmThermo.C

285 Foam::scalar Foam::fgmThermo::compressibility_model(const scalar rho, const scalar p) const

286 {

287 return rho/p;

288 }

289

290 Foam::scalar Foam::fgmThermo::massDiffusivity_model(const scalar T) const

291 {

292

293 scalar T298 = 298;

294 scalar C069 = 0.69;

295 scalar CD = 2.58E-5;

296

297 return CD*pow(T/T298,C069)/Le_;

298

299 }

300

301 Foam::scalar Foam::fgmThermo::viscosity_model(const scalar T) const

302 {

303 // Model: Sutherland's law

304 scalar muRef = 1.7894E-5;

305 scalar TRef = 273.15;

306 scalar S = 110.4;

307

308 return muRef*pow(T/TRef,1.5)*((TRef+S)/(T+S));

309

310 }

3.3 Solver compilation

The solver compilation can be performed by running the provided bash script in the fgmPremixedFoam/
folder

bash Allwmake

or can be done manually typing in terminal window

wmakeLnInclude -u combustionFGMModel

wmake combustionFGMModel

wmake fgmPremixedFoam

27

Chapter 4

2D Bunsen flame test case

In this Chapter, it is built a test case for a two-dimensional slab domain subject to a prescribed
inlet velocity, while at the sides of the domain, symmetric boundary conditions were imposed, Fig.
4.1. The domain has a length of L = 20 mm in the streamwise direction and a width of W = 5 mm.
To avoid reflections of pressure waves at the inlet and at the outlet region, partially non-reflective
boundary conditions (PNRBC) are used [33]. A constant Poiseuille flow is prescribed at the inlet do-
main. The simulation starts by initializing a value of the progress variable equal to c(t = 0) = 0.8 in
the entire domain. The setup is done using the tutorial case from the buoyantPimpleFoam/hotRoom/
problem.

Figure 4.1: Initial and boundary conditions for the Bunsen flame test case.

4.1 Geometry

Copy the hotRoom/ from OpenFOAM’s tutorial to the local folder $FOAM_USER/.

cd $WM_PROJECT_USER_DIR
mkdir testCase

cp -r $FOAM_TUTORIALS/heatTransfer/buoyantPimpleFoam/hotRoom ./testCase

28

4.2. Boundary conditions Chapter 4. 2D Bunsen flame test case

cd testCase

mv hotRoom bunsenFlame

cd bunsenFlame

Now, the geometry and mesh are setup. First, the domain dimensions are configured.

sed -i s/"scale \ \ 1"/"scale \ \ 0.001"/g system/blockMeshDict

sed -i s/"10 0 0"/"20 0 0"/g system/blockMeshDict

sed -i s/"10 5 0"/"20 5 0"/g system/blockMeshDict

sed -i s/"(0 0 10)"/"(0 0 0.1)"/g system/blockMeshDict

sed -i s/"10 0 10"/"20 0 0.1"/g system/blockMeshDict

sed -i s/"10 5 10"/"20 5 0.1"/g system/blockMeshDict

sed -i s/"0 5 10"/"0 5 0.1"/g system/blockMeshDict

Then, the mesh resolution is set.

sed -i s/"(20 10 20)"/"(600 100 1)"/g system/blockMeshDict

The patches names and locations are defined.

sed -i s/floor/inlet/g system/blockMeshDict

sed -i s/"(1 5 4 0)"/"(0 4 7 3)"/g system/blockMeshDict

sed -i s/ceiling/outlet/g system/blockMeshDict

sed -i s/"(3 7 6 2)"/"(1 2 6 5)"/g system/blockMeshDict

sed -i s/"type wall;"/"type patch;"/g system/blockMeshDict

sed -i "$(sed -n '/patch/ =' system/blockMeshDict | tail -n 1)"' s/patch/empty/' system/blockMeshDict

sed -i s/fixedWalls/frontAndBack/g system/blockMeshDict

sed -i '/\ \ \ \ frontAndBack/i \ \ \ lowerWall\n\ \ \ {\n\ \ \ }' system/blockMeshDict

sed -i '/\ \ \ lowerWall/i \ \ \ upperWall\n\ \ \ {\n\ \ \ }' system/blockMeshDict

sed -i "$(sed -n '/(0 4 7 3)/ =' system/blockMeshDict | tail -n 1)"' s/(0 4 7 3)//' \

system/blockMeshDict

sed -i "$(sed -n '/(2 6 5 1)/ =' system/blockMeshDict | head -n 1)"' s/(2 6 5 1)//' \

system/blockMeshDict

From the former lines, we created two new patches. Copy the lines below and put them within the
curly brackets of upperWall{} and lowerWall{}, respectively, found in the system/blockMeshDict.

upperWall patch

type symmetry;

faces

(

(7 6 2 3)

);

lowerWall patch

type symmetry;

faces

(

(0 1 5 4)

);

4.2 Boundary conditions

The vector and the scalar fields are configured in the 0/ folder. The original turbulent fields
alphat,epsilon,k,nut and the temperature field are removed. The same process done before
is carried out for p,p_rgh,U.

mv 0.orig 0

cd 0

rm alphat epsilon k nut T

sed -i s/floor/inlet/g p

sed -i s/floor/inlet/g p_rgh

sed -i s/floor/inlet/g U

sed -i s/ceiling/outlet/g p

29

4.2. Boundary conditions Chapter 4. 2D Bunsen flame test case

sed -i s/ceiling/outlet/g p_rgh

sed -i s/ceiling/outlet/g U

sed -i s/fixedWalls/frontAndBack/g p

sed -i s/fixedWalls/frontAndBack/g p_rgh

sed -i s/fixedWalls/frontAndBack/g U

sed -i "/\ \ \ \ frontAndBack/i \ \ \ lowerWall\n\ \ \ {\n\ \ \ }" p

sed -i "/\ \ \ \ frontAndBack/i \ \ \ lowerWall\n\ \ \ {\n\ \ \ }" p_rgh

sed -i "/\ \ \ \ frontAndBack/i \ \ \ lowerWall\n\ \ \ {\n\ \ \ }" U

sed -i "/\ \ \ lowerWall/i \ \ \ upperWall\n\ \ \ {\n\ \ \ }" p

sed -i "/\ \ \ lowerWall/i \ \ \ upperWall\n\ \ \ {\n\ \ \ }" p_rgh

sed -i "/\ \ \ lowerWall/i \ \ \ upperWall\n\ \ \ {\n\ \ \ }" U

sed -i "$(sed -n '/calculated;/ =' p | tail -n 1)"' s/calculated;/empty;/' p

sed -i "$(sed -n '/fixedFluxPressure;/ =' p_rgh | tail -n 1)"' s/fixedFluxPressure;/empty;/' p_rgh

sed -i "$(sed -n '/noSlip;/ =' U | tail -n 1)"' s/noSlip;/empty;/' U

sed -i "$(sed -n '/value \ \ \ \ \ \ \ \ \ \ $internalField;/ =' p | tail -n 1)"\

' s/value \ \ \ \ \ \ \ \ \ \ $internalField;//' p

sed -i "$(sed -n '/value \ \ \ \ \ \ \ \ \ \ uniform 1e5;/ =' p_rgh | tail -n 1)"\

' s/value \ \ \ \ \ \ \ \ \ \ uniform 1e5;//' p_rgh

For all fields, the boundary conditions are set up as symmetric on the domain sides, for upperWall
and lowerWall patches.

Sides boundary condition for upperWall and lowerWall patches

type symmetry;

In the p_rgh file, copy the wave transmissive boundary condition for the outlet patch.

p rgh outlet boundary condition

type waveTransmissive;

value $internalField;
field p;

gamma 1.3;

fieldInf 1e5;

lInf 0.1;

In the U file, copy the following boundary condition for the outlet patch.

U outlet boundary condition

type inletOutlet;

inletValue uniform (0 0 0);

value uniform (0 0 0);

A Poiseulle flow velocity will be imposed as the inlet boundary condition at U. First, the inlet
boundary condition is modified.

sed -i ' s/\ \ \ \ \ \ \ \ type \ \ \ \ \ \ \ \ \ \ \ noSlip;/ \

\ \ \ \ \ \ \ \ \#include inletPoiseulleFlow;/' U

touch inletPoiseulleFlow

Then, paste the following code in the inletPoiseulleFlow file.

bunsenFlame/0/inletPoiseulleFlow

type codedFixedValue;

value uniform (0 0 0);

name codedStuff;

codeInclude

#{

#};

code

#{

30

4.3. Thermophysical properties Chapter 4. 2D Bunsen flame test case

const fvPatch& boundaryPatch = patch();

const vectorField& Cf = boundaryPatch.Cf();

vectorField& field = *this;

const scalar r = 0.0025;

const scalar Sl_o =0.371;

const scalar uMean = 2*Sl_o;

// Poiseulle Flow

forAll(Cf, faceI)

{

const scalar y = Cf[faceI].y(); // y coordinate

const scalar u = 1.5*uMean*(1 - (pow((y - r)/r, 2)));

field[faceI] = vector(u, 0, 0);

}

#};

The progress variable PV is created from the p field. As already mentioned, the initial condition is
set up as PV=0.8 in the entire domain.

cp p PV

sed -i s/"object \ \ \ \ \ p"/"object \ \ \ \ \ PV"/g PV

sed -i s/"1 -1 -2 0 0 0 0"/"0 0 0 0 0 0 0"/g PV

sed -i s/1e5/0.8/g PV

sed -i "$(sed -n '/calculated/ =' PV | head -n 1)"' s/calculated/fixedValue/' PV

sed -i "$(sed -n '/$internalField/ =' PV | head -n 1)"' s/$internalField/uniform 0/' PV

sed -i "$(sed -n '/calculated/ =' PV | head -n 1)"' s/calculated/zeroGradient/' PV

sed -i "$(sed -n '/value \ \ \ \ \ \ \ \ \ \ $internalField;/ =' PV | head -n 1)"\

' s/value \ \ \ \ \ \ \ \ \ \ $internalField;//' PV

4.3 Thermophysical properties

The thermophysical properties are defined in constant/thermophysicalProperties. Here, for the
fgmPremixedFoam

cd ..

sed -i '17,46d' constant/thermophysicalProperties

and copy and paste the piece of code in thermophysicalProperties.

bunsenFlame/constant/thermophysicalProperties

thermoType fgm1DModelDNS;

// Lewis number of CO2

Le 1.384;

// Ideal gas mixture constant [J/Kg K]

Rgas 287.05;

// Pressure-work

dpdt false;

In this case, the gravitational effect is neglected.

rm constant/turbulenceProperties

sed -i s/"0 -9.81 0"/"0 0 0"/g constant/g

4.4 Solution and schemes

The files controlDict,fvSchemes,fvSolution are configurated in the system/ folder.

31

4.5. Running the case Chapter 4. 2D Bunsen flame test case

rm system/setFieldsDict

sed -i s/"deltaT \ \ \ \ \ \ \ \ \ 2;"/"deltaT \ \ \ \ \ \ \ \ \ 1e-15;"/g system/controlDict

sed -i s/"writeControl \ \ \ timeStep;"/"writeControl \ \ \ adjustableRunTime;"/g system/controlDict

sed -i s/"writeInterval \ \ 100;"/"writeInterval \ \ 5e-5;"/g system/controlDict

sed -i s/"endTime \ \ \ \ \ \ \ \ 2000;"/"endTime \ \ \ \ \ \ \ \ 0.01;"/g system/controlDict

sed -i s/"adjustTimeStep \ no;"/"adjustTimeStep \ yes;"/g system/controlDict

sed -i s/"maxCo \ \ \ \ \ \ \ \ \ \ 0.5;"/"maxCo \ \ \ \ \ \ \ \ \ \ 0.2;"/g system/controlDict

sed -i '51,64d' system/controlDict

In the fvSchemes, the lines between the divSchemes{...} should be replaced by

system/fvSchemes

div(phi,U) Gauss limitedLinearV 1;

div(phi,PV) Gauss limitedLinear 1;

div((thermo:mu*dev2(T(grad(U))))) Gauss linear;

div((mu*dev2(T(grad(U))))) Gauss linear;

At the end of the file, add the following lines after the snGradSchemes setup

system/fvSchemes

fluxRequired

{

default yes;

p;

}

For the numerical solution in fvSolution

sed -i s/1e-6/1e-8/g system/fvSolution

sed -i s/0.1/0.01/g system/fvSolution

sed -i s/"(U|h|e|k|epsilon|R)"/"(U|PV)"/g system/fvSolution

sed -i s/"(U|h|e|k|epsilon|R)Final"/"(U|PV)Final"/g system/fvSolution

sed -i s/"pRefCell \ \ \ \ \ \ \ 0;"/""/g system/fvSolution

sed -i s/"pRefValue \ \ \ \ \ \ 1e5;"/""/g system/fvSolution

and add the solution criteria for p in the fvSolution. The lines below should be copy and paste
inside solvers{...} setup

system/fvSolution

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-08;

relTol 1e-2;

}

pFinal

{

$p;
relTol 0;

}

4.5 Running the case

Before start the simulation, allocate the manifold fgmProperties file into constant/ directory.
Then, to run the case just type in the terminal window the following command

blockMesh

fgmPremixedFoam >& log&

32

4.5. Running the case Chapter 4. 2D Bunsen flame test case

The simulation can take more than one hour depending on the computational architecture available.
Thus, in order to speed up, the simulation can be run in parallel. Thereby, copy and paste the
tutorial case from simpleFoam/pipeCyclic/ where the processes decomposition use the scotch

method.

cp $FOAM_TUTORIALS/incompressible/simpleFoam/pipeCyclic/system/decomposeParDict system/

sed -i s/5/4/g system/decomposeParDict

decomposePar

mpirun -np 4 fgmPremixedFoam -parallel >& log&

After the simulation has finished, type in the terminal window to reconstruct the time steps

reconstructPar

The steady-state solution of the proposed test case should result in the contours according to
Fig. 4.2.

(a) Temperature field. (b) Reaction rate for the progress variable c.

Figure 4.2: 2D Bunsen flame steady-state solution.

33

Chapter 5

Results and discussions

Figure 5.1 compares the results of the FGM model with the same case performed in the EBI-DNS
(Engler-Bunte-Institute) code [16]. With EBI-DNS, the fully compressible Navier-Stokes, species
and energy equations for reacting gas mixtures are solved coupled to the chemical kinetics library
Cantera [34]. The reduced mechanism of Kee et al. [35] with 17 species and 58 elementary reactions
was used to run the EBI-DNS case. In Figs. 5.1 can be seen the comparison of the production rate
of variable c, Fig. 5.1a, with the production rate of CO2 in the detailed case, Fig. 5.1b.

(a) fgmPremixedFoam: reaction rate for the progress
variable c.

(b) EBI-DNS: reaction rate for CO2.

Figure 5.1: Comparison of steady-state solution between the solvers fgmPremixedFoam and EBI-
DNS.

The tips of both flames reach the same high with a difference in the lift-off effect. Figure 5.1b

34

Chapter 5. Results and discussions

shows that the flame base stabilizes farther from the domain inlet than it is seen in Fig. 5.1a. It
occurs because, at the base, the local flame speed of Fig. 5.1b is lower than the reference flame
speed, S0

l . At the same time, the local flame speed in the tip of Fig. 5.1b is higher than S0
l . These

variations can be observed along the flame front, where at the flame base ω̇
′′′

CO2
= 8 ·103 Kg ·m−3 ·s−1

and it varies until reach ω̇
′′′

CO2
= 10 · 103 Kg ·m−3 · s−1 at the flame tip. The changes observed in the

CO2 production rate are caused by the effects of the front stretch rate (curvature and strain rate)
coupled with thermo-diffusivity instabilities [8]. Since, for the present model, the detailed effects of
thermo-diffusivity instabilities are neglected, the flame surface has a constant production rate of c
regardless of the flame geometry. Therefore, the local flame speed keeps constant and equal to the
S0
l along the front. Nevertheless, the results showed in Fig. 5.1 prove that the model is able to

generate similar behavior when compared to a detailed model.
In terms of performance, it is noteworthy that the case of Fig. 5.1b was run in a HPC structure

with 20 cores in parallel, taking 2 days to reach the steady-state solution. On the other hand, the
fgmPremixedFoam takes around 1 hour on a personal laptop with 4 cores running in parallel.

35

Bibliography

[1] N. Peters, Reducing mechanisms, pp. 48–67. Berlin, Heidelberg: Springer Berlin Heidelberg,
1991.

[2] U. Maas and S. Pope, “Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in
composition space,” Combustion and Flame, vol. 88, no. 3, pp. 239–264, 1992.

[3] S. Lam and D. Goussis, “Understanding complex chemical kinetics with computational singular
perturbation,” Symposium (International) on Combustion, vol. 22, no. 1, pp. 931–941, 1989.

[4] J. A. van Oijen and L. de Goey, “Modelling of premixed laminar flames using flamelet-generated
manifolds,” Combustion Science and Technology, vol. 161, no. 1, pp. 113–137, 2000.

[5] J. van Oijen, A. Donini, R. Bastiaans, J. ten Thije Boonkkamp, and L. de Goey, “State-of-the-
art in premixed combustion modeling using flamelet generated manifolds,” Progress in Energy
and Combustion Science, vol. 57, pp. 30–74, 2016.

[6] R. B. Meier and A. A. Oliveira, “Detailed numerical simulation of the flame-flow interaction in
a slot-burner laminar premixed flame,” In: Proceedings of 18th Brazilian Congress of Thermal
Sciences and Engineering, 2020.

[7] N. Peters, Turbulent Combustion. United Kingdom: Cambridge University Press, 2000.

[8] T. Poinsot and D. Veynante, Combustion Theory: The Fundamental Theory of Chemically
Reacting Flow Systems. Philadelphia, USA: Edwards, 2005.

[9] C. Law, Combustion Physics. Germany: Princeton University, 2006.

[10] G. K. Giannakopoulos, A. Gatzoulis, C. E. Frouzakis, M. Matalon, and A. G. Tomboulides,
“Consistent definitions of “flame displacement speed” and “markstein length” for premixed
flame propagation,” Combustion and Flame, vol. 162, no. 4, pp. 1249–1264, 2015.

[11] N. Peters, “Laminar flamelet concepts in turbulent combustion,” Symposium (International)
on Combustion, vol. 21, no. 1, pp. 1231–1250, 1988.

[12] T. C. de Souza, Modulated Turbulence for Premixed Flames. PhD thesis, Eindhoven University
of Technology, Eindhoven, Netherlands, 2014.

[13] J. A. M. de Swart, R. J. M. Bastiaans, J. A. van Oijen, L. P. H. de Goey, and R. S. Cant, “Inclu-
sion of preferential diffusion in simulations of premixed combustion of hydrogen/methane mix-
tures with flamelet generated manifolds,” Flow, Turbulence and Combustion, vol. 85, pp. 473–
511, 2010.

[14] A. C. Contini, L. S. Donatti, C. A. Hoerlle, L. Zimmer, and F. Pereira, “Numerical study of
the laminar premixed flame stabilization on a slot burner: comparison between detailed and
fgm models,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42,
no. 189, 2020.

36

Bibliography Bibliography

[15] J. A. van Oijen, Flamelet-generated manifolds: development and application to premixed laminar
flames. PhD thesis, Eindhoven University of Technology, Eindhoven, Netherlands, 2002.

[16] T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, and D. Trimisn,
“Quasi-dns dataset of a piloted flame with inhomogeneous inlet conditions,” Flow, Turbulence
and Combustion, vol. 104, pp. 997–1027, 2020.

[17] T. T. Zirwes, Memory Effects in Premixed Flames:Unraveling Transient Flame Dynamics with
the Flame Particle Tracking Method. PhD thesis, Karlsruhe Institute of Technology, Karlsruhe,
Germany, 2021.

[18] R. Kee, M. Coltrin, and P. Glarborg., Chemically Reacting Flow: Theory and Practice. 2005.

[19] T. C. de Souza, R. Bastiaans, L. D. Goey, and B. Geurts, “Modulation of a methane bunsen
flame by upstream perturbations,” Journal of Turbulence, vol. 18, no. 4, pp. 316–337, 2017.

[20] C. J. Ball and P. M. Gill, “Chem1d: a software package for electronic structure calculations on
one-dimensional systems,” Molecular Physics, vol. 113, no. 13-14, pp. 1843–1857, 2015.

[21] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T.
Bowman, R. K. Hanson, S. Song, W. C. G. Jr, V. V. Lissianski, and Z. Quin, “Grimech 3.0
reaction mechanism,” Sandia National Laboratory, 2000.

[22] A. Vreman, J. van Oijen, L. de Goey, and R. Bastiaans, “Subgrid scale modeling in large-eddy
simulation of turbulent combustion using premixed flamelet chemistry,” Flow, Turbulence and
Combustion, vol. 82, pp. 511–535, 2009.

[23] A. Vreman, R. Bastiaans, and B. J. Geurts, “Similarity subgrid model for premixed turbulent
combustion,” Flow, Turbulence and Combustion, vol. 82, pp. 233–248, 2009.

[24] “doc.cfd.direct.” https://doc.cfd.direct/notes/cfd-general-principles/. Accessed:
2022-12-8.

[25] “openfoamwiki.” https://openfoamwiki.net/index.php/BuoyantBoussinesqPisoFoam. Ac-
cessed: 2022-12-6.

[26] “openfoamwiki.” https://openfoamwiki.net/index.php/ChtMultiRegionFoam. Accessed:
2022-12-5.

[27] C. Rhie and W. Chow, “A numerical study of the turbulent flow past an isolated airfoil with
trailing edge separation,” AIAA Journal, vol. 21, p. 1525–1532, 1983.

[28] T. Uroić, Implicitly Coupled Finite Volume Algorithms. PhD thesis, University of Zagreb,
Zagreb, Croatia, 2019.

[29] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Berlin: Springer,
2002.

[30] “caefn.” https://caefn.com/openfoam/solvers-buoyantpimplefoam. Accessed: 2022-12-8.

[31] F. Moukalled and M. Darwish, “A unified formulation of the segregated class of algorithms for
multi-fluid flow at all-speeds,” Numerical Heat Transfer Part B-fundamentals, vol. 37, p. 92, 11
1999.

[32] M. D. F. Moukalled, L. Mangani, The finite volume method in computational fluid dynamics:
An Advanced Introduction with OpenFOAM and Matlab. New York: Springer, 2016.

[33] T. Poinsot and S. Lelef, “Boundary conditions for direct simulations of compressible viscous
flows,” Journal of Computational Physics, vol. 101, no. 1, pp. 104–129, 1992.

37

https://doc.cfd.direct/notes/cfd-general-principles/
https://openfoamwiki.net/index.php/BuoyantBoussinesqPisoFoam
https://openfoamwiki.net/index.php/ChtMultiRegionFoam
https://caefn.com/openfoam/solvers-buoyantpimplefoam

Bibliography Bibliography

[34] D. G. Goodwin, Cantera C++ user’s guide. California: California Institute of Technology,
2002.

[35] R. Kee, J. Grcar, M. Smooke, J. Miller, and E. Meeks, “Premix: A fortran program for modeling
steady laminar one-dimensional premixed flames,” Sandia National Laboratories, 1985.

38

Study questions

1. Why the flame front has a cone shape?

2. How will a new table with a different equivalence ratio affect the flame shape?

3. Why is the energy equation not needed for this model?

4. What kind of behavior would be expected from a model considering the energy equation?

5. What is the effect of flame geometry over flame speed?

6. How do the thermo-diffusivity instabilities affect the local flame speed?

39

	Theory
	Introduction
	Laminar premixed flames structure and propagation speed
	Flamelet-Generated Manifold model
	Governing equations and computational arrangement
	FGM procedure and numerical structure

	Reacting flow solver
	Mass conservation
	Momentum conservation
	Chemical species conservation
	Energy conservation
	Pressure equation

	FGM solver
	Main solver changes
	Thermophysical library
	Solver compilation

	2D Bunsen flame test case
	Geometry
	Boundary conditions
	Thermophysical properties
	Solution and schemes
	Running the case

	Results and discussions

