
Cite as: Lucchese, L.: Implementation of non-reflecting boundary conditions in OpenFOAM. In

Proceedings of CFD with OpenSource Software, 2022, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS CFD#YEAR 2022

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Implementation of non-reflecting
boundary conditions in OpenFOAM

Developed for OpenFOAM-v2112

Author:
Leandro Lucchese
Sapienza University of Rome
leandro.lucchese@uniroma1.it

Peer reviewed by:
Saeed Salehi

Pietro Paolo Ciottoli
Iason Tsiapkinis

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 13, 2023

http://dx.doi.org/10.17196/OS_CFD#YEAR_2022

Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• how and when to use OpenFOAM’s native non-reflecting boundary conditions.

• the difference between OpenFOAM’s native advective and waveTransmissive boundary con-
ditions, when and for what flow variables to use them.

• how to use the new LODI boundary conditions when running a case.

The theory of it:

• the theory on which characteristic based boundary conditions are based.

• the difference between LODI equations for inviscid flow and the general characteristics equa-
tions.

• the limitations of current OpenFOAM non-reflecting boundary conditions.

How it is implemented:

• an in depth description of how non reflecting boundary conditions are currently implemented
in OpenFOAM in the form of advective and waveTransmissive boundary conditions.

• how these boundary conditions are used as a reference to build a new class of boundary
conditions based on the characteristic analysis of the N-S equations.

How to modify it:

• how to modify these and other boundary conditions for various cases of interest

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Comprehensive understanding of the Navier-Stokes equations and general fluid dynamics.

• General knowledge of computational fluid dynamics (CFD) and numerical methods for dis-
cretizing the equations.

• Basic understanding of C++ programming.

• How to compile a top-level OpenFOAM application.

2

Contents

1 N-S characteristic BC’s 6
1.1 Characteristic analysis of NS equations . 6
1.2 LODI relations . 10

1.2.1 NR and PNR boundary conditions . 11

2 NRBC’s in OpenFOAM 13
2.1 General boundary conditions in OpenFOAM . 13
2.2 Mixed boundary conditions in OpenFOAM . 14

2.2.1 Advective boundary conditions in OpenFOAM 17
2.2.2 WaveTransmissive boundary conditions in OpenFOAM 20

2.3 Usage of NRBC’s in OpenFOAM . 21

3 Implementation 24
3.1 Necessary modifications to the OpenFOAM approach 24
3.2 modified mixed boundary condition . 25
3.3 LODI2D boundary condition . 30
3.4 Compilation of the custom boundary conditions . 35

4 Test cases setup and results 37
4.1 2-D circle simulation . 37

4.1.1 simulation setup . 37
4.1.2 Results of the 2-D circle simulation . 42

4.2 2-D turbulent flow around bluff body . 43
4.2.1 Results of the 2-D bluff body simulation . 46

4.3 Conclusions . 48

A Developed codes 52
A.1 The singleSinusoidalPressureInlet boundary condition 52

3

Nomenclature

Acronyms
CFD Computational fluid dynamics
FVM Finite volume method
LODI Local one dimensional inviscid
N-S Navier-Stokes
PDE Partial differential equation

English symbols
Li Amplitude of the i− th wave
c Speed of sound . m/s
Cp Specific heat capacity . J ·K/kg
E Specific total energy. .J/kg
mi i− th direction momentum density . kg/m2s
Pr Prandtl number
qi Heat flux along i− th direction .W/m2

U Cartesian velocity vector .m/s
ui i− th Component of the cartesian velocity vector . m/s
un Component of the cartesian velocity vector normal to the patch surface m/s
ut Component of the cartesian velocity vector tangent to the patch surface m/s

Greek symbols
δij Kronercker’s delta
γ Specific heat ratio
λi Characteristic velocity of wave i
µ Fluid dynamic viscosity . kg · s/m
ν Fluid kinematic viscosity .m2/s
ϕ Generic field variable
ρ Fluid density . kg/m3

τ Stress tensor . Pa

Superscripts
n previous time-step
n+1 current time-step

Subscripts
c cell center
f face center

4

Introduction

When performing a CFD analysis of any of flow and geometry there will have to be, at some point,
boundaries. These boundaries can be physical, given by the geometry that is being studied, like
walls, or numerical, e.g an outlet from which the flow exits the domain of interest. When performing
simulations of compressible flows in closed geometries, dealing with these outlets can be particularly
problematic when the goal is to have no reflection of waves at the boundary. This is especially true
when dealing with the turbulent reacting flows in combustion chambers, in which a large amount
of experimental evidence shows that there is a strong coupling between acoustic waves and other
mechanisms of the flow. There are many ways to solve this issue, like considering a larger domain
and also simulating the external ambient hence not having to deal with the outlet of the chamber,
or considering a sponge acting on a certain non-physical region in order to damp the flow variables
to a known reference solution, as discussed extensively by Mani in [1]. These approaches, however,
usually increase the computational cost significantly while adding no benefits since the equations
have to be solved in a part of the domain that is of no interest to the study.
For these reasons, one possible solution is introducing non-reflecting or partially-non reflecting
boundary conditions, which are obtained by exploiting the hyperbolic nature of the Navier-Stokes
equations in order to obtain a formulation in terms of waves entering and exiting the domain that can
be used to write a set of conditions on the primitive variables that ensures a high level of accuracy.

5

Chapter 1

Characteristic based boundary
conditions for Navier-Stokes
equations

1.1 Characteristic analysis of the Navier-Stokes equations

What follows is a description of the characteristic analysis of the Navier-Stokes equations as described
by Poinsot and Lele [2], Lodato et al. [3] and Valorani and Favini [4].
For a compressible viscous flow the fluid dynamics equations in Cartesian coordinates are given by

∂ρ

∂t
+

∂

∂xi
(mi) = 0, (1.1)

∂ρE

∂t
+

∂

∂xi
[(ρE + p)ui] =

∂

∂xi
(ujτij)−

∂qi
∂xi

, (1.2)

∂mi

∂t
+

∂

∂xj
(miuj) +

∂p

∂xi
=
∂τij
∂xj

, (1.3)

with

ρE =
1

2
ρukuk +

p

γ − 1
,

mi = ρui,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

)
,

where p is the thermodynamic pressure, mi is the momentum per unit volume in the xi direction,
ρE is the total energy per unit volume (kinetic + thermal). The heat flux qi along xi is given by

qi = −λ ∂T
∂xi

,

where λ is the thermal conductivity and is obtained from the viscosity coefficient µ through

λ = µCp/Pr,

where Pr is the Prandtl number.
Equations (1.1)-(1.3) can be conveniently written in vector form as

∂Ũ

∂t
+
∂F̃

i

∂xi
+
∂D̃

i

∂xi
= 0, (1.4)

6

1.1. Characteristic analysis of NS equations Chapter 1. N-S characteristic BC’s

where Ũ = |ρ ρu1 ρu2 ρu3 ρE|T is the vector of conservative variables, F̃
k
is the flux

vector of the conservative variables along the xk direction and the vectors D̃
k
contain the viscous

and diffusive terms, these two can be explicitly written as

F̃
k
=


ρuk

m1uk + δ1kp
m2uk + δ2kp
m3uk + δ3kp
(ρE + p)uk

 , D̃
k
=


0

−2µA1k

−2µA2k

−2µA3k

−2µujAkj + qk

 ,

where δij is Kronecker’s delta and Aij = τij/2µ.

If one defines the vector of primitive variables as U =
∣∣ ρ u1 u2 u3 p

∣∣T, by following the
procedure described by Thompson [5], equation (1.1) can be rewritten in terms of primitive variables
as

∂U

∂t
+ F i ∂U

∂xi
+D = 0, (1.5)

where D = P−1∂D̃
i
/∂xi is a vector that includes all the viscous and diffusive terms and F k

represents the non-conservative Jacobian matrix related to the k th direction which in this case can
be expressed as

F k =


uk δ1kρ δ2kρ δ3kρ 0
0 uk 0 0 δ1k/ρ
0 0 uk 0 δ2k/ρ
0 0 0 uk δ3k/ρ
0 δ1kγp δ2kγp δ3kγp uk

 . (1.6)

The matrix P = ∂Ũ/∂U is the Jacobian matrix that allows to change coordinates between
primitive and conservative variables and is given by

P =


1 0 0 0 0
u1 ρ 0 0 0
u2 0 ρ 0 0
u3 0 0 ρ 0

1
2ukuk ρu1 ρu2 ρu3

1
γ−1

 . (1.7)

Each non-conservative Jacobian matrix F k related to every direction k can be diagonalized
through

S−1
k F kSk = Λk, (1.8)

and the eigenvalues are given by

λk1 = uk − c,

λk2,3,4 = uk,

λk5 = uk + c,

where c =
√

γp
ρ is the speed of sound and the two matrixes Sk and S−1

k can be explicitly written
as

Sk =


1

2c2
δ1k
c2

δ2k
c2

δ3k
c2

1
2c2

− δ1k
2ρc 1− δ1k 0 0 δ1k

2ρc

− δ2k
2ρc 0 1− δ2k 0 δ2k

2ρc

− δ3k
2ρc 0 0 1− δ3k

δ3k
2ρc

1
2 0 0 0 1

2

 , (1.9)

7

1.1. Characteristic analysis of NS equations Chapter 1. N-S characteristic BC’s

S−1
k =


0 −δ1kρc −δ2kρc −δ3kρc 1

δ1kc
2 1− δ1k 0 0 −δ1k

δ2kc
2 0 1− δ2k 0 −δ2k

δ3kc
2 0 0 1− δ3k −δ3k

0 δ1kρc δ2kρc δ3kρc 1

 . (1.10)

With this theoretical foundation laid down, depending on the type of boundary that is being
considered (face, corner, etc.) a wide variety of different boundary conditions can be considered by
taking into account different numbers of characteristic directions.

Figure 1.1: 2D domain with waves leaving and entering the domain

When considering a boundary with normal vector parallel to x1 as in Fig. 1.1, the characteristic
waves considered will be those traveling along the x1 direction and therefore only F 1 needs to be
diagonalized, Equation (1.5) can be hence written as

∂U

∂t
+ S1Λ

1S−1
1

∂U

∂x1
+ F 2 ∂U

∂x2
+ F 3 ∂U

∂x3
+D = 0, (1.11)

and a vector L whose components Li represent the amplitude time variations of the character-
istic waves can be defined as

L = Λ1S−1
1

∂U

∂x1
=



λ1

(
∂p
∂x1

− ρc∂u1

∂x1

)
λ2

(
c2 ∂ρ

∂x1
− ∂p

∂x1

)
λ3

∂u2

∂x1

λ4
∂u3

∂x1

λ5

(
∂p
∂x1

+ ρc∂u1

∂x1

)


. (1.12)

Equation (1.11) can finally be written as a function of the wave amplitude variations obtaining

∂U

∂t
+ d+ F 2 ∂U

∂x2
+ F 3 ∂U

∂x3
+D = 0, (1.13)

where

d = S1L =


∂m1

∂x1

∂(c2m1)
∂x1

+ (1− γ)µ ∂p
∂x1

u1
∂u1

∂x1
+ 1

ρ
∂p
∂x1

u1
∂u2

∂x1

u1

 =


1
c2

[
L2 +

1
2 (L5 + L1)

1
2 (L5 + L1)
1

2ρc (L5 − L1)

L3

L4

 , (1.14)

8

1.1. Characteristic analysis of NS equations Chapter 1. N-S characteristic BC’s

By explicitly writing all the terms, the full system becomes

∂ρ

∂t
+ d1 +

∂

∂x2
(m2) +

∂

∂x3
(m3) = 0, (1.15)

∂ρE

∂t
+

1

2
(ukuk) d1+

d2
γ − 1

+m1d3 +m2d4 +m3d5

+
∂

∂x2
[(ρE + p)u2] +

∂

∂x3
[(ρE + p)u3] =

∂

∂xi
(ujτij)−

∂qi
∂xi

,

(1.16)

∂m1

∂t
+ u1d1 + ρd3 +

∂

∂x2
(m1u2) +

∂

∂x3
(m1u3) =

∂τ1j
∂xj

, (1.17)

∂m2

∂t
+ u2d1 + ρd4 +

∂

∂x2
(m2u2) +

∂

∂x3
(m2u3) +

∂p

∂x2
=
∂τ2j
∂xj

, (1.18)

∂m3

∂t
+ u3d1 + ρd5 +

∂

∂x2
(m3u2) +

∂

∂x3
(m3u3) +

∂p

∂x3
=
∂τ3j
∂xj

, (1.19)

Here the explicit contribution of the waves becomes clear. The Li’s are the amplitudes of the
waves entering and exiting the domain and for each wave is associated a characteristic velocity λi
given by

λ1 = u1 − c, (1.20)

λ2 = λ3 = λ4 = u1, (1.21)

λ5 = u1 + c, (1.22)

λ1 and λ5 are the velocities of the waves moving in the x1 direction (positive and negative) and
λ3 and λ4 are the velocities at which the x2 and x3 components of the velocity are advected in the
x1 direction (this will be very important later). The expressions of the Li’s are given by

L1 = λ1

(
∂p

∂x1
− ρc

∂u1
∂x1

)
, (1.23)

L2 = λ2

(
c2
∂ρ

∂x1
− ∂p

∂x1

)
, (1.24)

L3 = λ3
∂u2
∂x1

, (1.25)

L4 = λ4
∂u3
∂x1

, (1.26)

L5 = λ5

(
∂p

∂x1
+ ρc

∂u1
∂x1

)
, (1.27)

Equations (1.15) - (1.19) are the conservation equations written in terms of characteristic vari-
ables and wave amplitude variations (in the standard reference frame) and are extremely useful since
they make it extremely easy to impose different types of boundary conditions in terms of the values
that are assigned to the Li’s.

9

1.2. LODI relations Chapter 1. N-S characteristic BC’s

1.2 Local One-Dimensional Inviscid Relations (LODI)

When a 1D inviscid flow (Euler flow) is considered, Equation (1.13) becomes much easier and the
system arising from this description is called the LODI system which in terms of primitive variables
becomes

∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
= 0, (1.28)

∂p

∂t
+

1

2
(L5 + L1) = 0, (1.29)

∂u1
∂t

+
1

2ρc
(L5 − L1) = 0, (1.30)

∂u2
∂t

+ L3 = 0, (1.31)

∂u3
∂t

+ L4 = 0, (1.32)

These equations can be also written in another extremely useful form in terms of gradients normal
to the boundary, as

∂ρ

∂x1
=

1

c2

[
L2

u1
+

1

2

(
L5

u1 + c
+

L1

u1 − c

)]
, (1.33)

∂p

∂x1
=

1

2

(
L5

u1 + c
+

L1

u1 − c

)
, (1.34)

∂u1
∂x1

=
1

2ρc

(
L5

u1 + c
− L1

u1 − c

)
, (1.35)

∂T

∂x1
=

T

ρc2

[
−L2

u1
+

1

2
(γ − 1)

(
L5

u1 + c
+

L1

u1 − c

)]
, (1.36)

By imposing different conditions to the amplitudes of characteristic waves Li’s a series of phys-
ically meaningful boundary conditions can be imposed, a fixed pressure boundary condition for
example can be obtained by setting L5 = −L1 to fix the amplitude variation of the wave entering
the domain, or for a perfectly non-reflecting boundary condition the incoming wave ampli-
tude has to be set to 0 L1 = 0.
When solving a compressible, viscous flow using a finite difference method or a node-centered finite
volume method for discretizing the N-S equations, the characteristic-based conservation Equations
(1.15) - (1.19) have to be used by imposing the desired conditions on the wave amplitudes since
the equations will actually be solved at the node that is being considered. When using a cell cen-
tered finite volume method though, the equations are not solved at the boundary and instead the
contribution of every boundary face enters the linear system in the form of either a coefficient that
sums the diagonal part of the coefficient matrix or the source term (or both). For this reason, it
could be said that utilizing inviscid equations like the LODI system to determine the values of the
primitive variables at the boundary implies a smaller error when utilizing a cell centered FVM since
the contribution of the boundary face is only one of many faces.

10

1.2. LODI relations Chapter 1. N-S characteristic BC’s

1.2.1 Non-reflecting and partially non-reflecting boundary conditions

Supposing a subsonic flow in a simple domain like the one shown in Fig. 1.1 4 waves will be exiting
the domain L2, L3, L4 and L5, and only one will enter the domain L1. If a perfectly non-reflecting
boundary condition is to be implemented, the upcoming wave amplitude has to be set to zero L1 = 0,
this condition should in theory be applied to the full N-S Equations (1.15) - (1.19) to find an equation
for the primitive variables at the boundary, but if one considers a simplified boundary non-viscous
boundary and applies the condition to the LODI Equations (1.28) - (1.32), the pressure and velocity
Equations (1.29) and (1.31) become simply

∂p

∂t
+

1

2
(L5) = 0, (1.37)

∂u1
∂t

+
1

2ρc
(L5) = 0, (1.38)

which can be combined with Equations (1.34) and (1.35) and, using λ5 = u1 + c, become

∂p

∂t
+ (u1 + c)

∂p

∂x
= 0, (1.39)

∂u1
∂t

+ (u1 + c)
∂u1
∂x

= 0, (1.40)

Showing that when considering a 1-D inviscid flow and perfectly non-reflecting boundary condi-
tions, the equations for pressure and velocity at the boundary are very simple and imply that these
quantities are simply transported with a speed given by a velocity equal to λ5. These equations
are actually the ones implemented in OpenFOAM in the waveTransmissive boundary conditions,
while the advective boundary conditions are identical but transporting the variables with u, as will
be further discussed and shown in Sections 2.2.1 and 2.2.2.
Using perfectly non-reflecting conditions for Navier-Stokes equations is dangerous and often non rec-
ommendable since it may lead to an ill-posed problem as also explained by Rudy [6] and Poinsot [2].
One can easily understand why when imagining a domain where the mass flow rate is assigned at
inlet and a perfectly non-reflecting boundary condition is employed at the outlet, the result will be
that there is no way for the flow to determine what the pressure will be, and as result it will drift
randomly form the initial value that one assigns.
In order to solve this problem and add some physical information on the mean static pressure, par-
tially non-reflective boundary conditions can be applied as shown by Rudy and Strikwerda [7]. This
is equivalent to imagining an outlet at a certain distance from the domain with pressure p∞ that
sends waves into the domain whose intensity depends on how different the pressure in the domain
is with respect to p∞, in order to do so the upcoming wave L1 is set as

L1 = K(p− p∞), (1.41)

When this is applied, by following the same procedure as before one can find expressions for the
primitive variables, for example the pressure reads

∂p

∂t
+ (u1 + c)

∂p

∂x
+K(p− p∞) = 0, (1.42)

If one were to discretize Equation (1.40) written for a general flow variable ϕ with an Euler time
scheme, the results would be

ϕn+1
f − ϕnf
δt

+ Un

ϕn+1
f − ϕn+1

c

δx
= 0, (1.43)

That, when manipulated becomes

ϕn+1
f = ϕnf

1

1 + α
+

α

1 + α
ϕn+1
c , (1.44)

11

1.2. LODI relations Chapter 1. N-S characteristic BC’s

With α = δtUn/d.
Applying the same procedure to Equation (1.42) and introducing the α parameter as done before,
after some manipulations the result becomes

ϕn+1
f = (ϕnf + kϕ∞)

1

1 + α+ k
+

α

1 + α+ k
ϕn+1
c , (1.45)

These two formulas are extremely important since it will be shown that they correspond exactly
to the way OpenFOAM defines its boundary conditions.

12

Chapter 2

Non-reflecting boundary conditions
in OpenFOAM

In this chapter, a general description of how boundary conditions are implemented in OpenFOAM
is presented by showing the points in the code where the functions of these classes are called, and
by discussing the implementation of the mixed boundary conditions. Then, a detailed description
of non-reflecting boundary conditions in OpenFOAM is presented, with a major focus on the two
classes advective and waveTransmissive. The important parts of the codes of these calsses are
discussed and compared to the theory, and the correct way of utilizing these boundary conditions is
investigated through two simple test-cases.

2.1 General boundary conditions in OpenFOAM

The two main functions used for discretizing the PDE’s in OpenFOAM are the fvm::div and
fvm::laplacian functions that can be seen in every top level solver. What this functions do is,
for every primitive variable that is being solved, creating the linear system corresponding to the
discretized PDE in terms of coefficient matrix and source term. In this context, as explained in
detail in the CFD with open source software course slides, the boundary conditions contribute either
to the diagonal coefficients of the coefficient matrix, to the source term, or both. This can be clearly
seen in the fvmDiv function of the gaussConvectionScheme:

fvmDiv function of the gaussConvectionScheme class

116 template<class Type>

117 tmp<fvMatrix<Type>>

118 gaussConvectionScheme<Type>::fvmDiv

119 (

120 const surfaceScalarField& faceFlux,

121 const GeometricField<Type, fvPatchField, volMesh>& vf

122) const

123 {

124 tmp<surfaceScalarField> tweights = tinterpScheme_().weights(vf);

125 const surfaceScalarField& weights = tweights();

126

127 tmp<fvMatrix<Type>> tfvm

128 (

129 new fvMatrix<Type>

130 (

131 vf,

132 faceFlux.dimensions()*vf.dimensions()

133)

134);

135 fvMatrix<Type>& fvm = tfvm.ref();

136

137 fvm.lower() = -weights.primitiveField()*faceFlux.primitiveField();

13

2.2. Mixed boundary conditions in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

138 fvm.upper() = fvm.lower() + faceFlux.primitiveField();

139 fvm.negSumDiag();

140

141 forAll(vf.boundaryField(), patchi)

142 {

143 const fvPatchField<Type>& psf = vf.boundaryField()[patchi];

144 const fvsPatchScalarField& patchFlux = faceFlux.boundaryField()[patchi];

145 const fvsPatchScalarField& pw = weights.boundaryField()[patchi];

146

147 fvm.internalCoeffs()[patchi] = patchFlux*psf.valueInternalCoeffs(pw);

148 fvm.boundaryCoeffs()[patchi] = -patchFlux*psf.valueBoundaryCoeffs(pw);

149 }

150

151 if (tinterpScheme_().corrected())

152 {

153 fvm += fvc::surfaceIntegrate(faceFlux*tinterpScheme_().correction(vf));

154 }

155

156 return tfvm;

157 }

In line 143, the psf object of the fvPatchField<Type> class is introduced and two functions of
that class are used to fill the diagonal coefficients and the source terms of the coefficient matrix:
valueInternalCoeffs() and valueBoundaryCoeffs() (lines 147-148). These two functions are
two of the main functions of any boundary condition in OpenFOAM. The same can be said for
the laplacian term, where the contribution of the boundary conditions to the diagonal part of the
coefficient matrix and the source term are provided by the functions gradientInternalCoeffs()
and gradientBoundaryCoeffs().

2.2 Mixed boundary conditions in OpenFOAM

Every boundary condition in OpenFOAM is either a fixedValue, a fixedGradient, or a mixture
of the two, namely mixed boundary condition (otherwise referred to as Robin condition). Boundary
conditions in OpenFOAM can be found in the /src/finiteVolume/fields/fvPatchFields folder,
and the boundary conditions we are interested in are the advective and waveTranmissive that
can be found in the fvPatchFields/derived folder and are sub-classes of the mixed that is instead
found in the fvPatchFields/basic folder.
The way mixed boundary conditions work in OpenFOAM is by defining the value of the field at the
boundary face as

ϕf = wϕref + (1− w)(ϕc + d∇(ϕref)), (2.1)

where:

• ϕf is the boundary face value,

• ϕc is the boundary cell value,

• ϕref is a reference value,

• d is the face-to-cell distance,

• w is the ”value fraction”.

When applying this boundary condition directly these quantities have to be specified by the
user, but the main scope of this boundary condition is to function as a base-class for other classes
which will define their own values for these quantities. The declaration file for the mixed boundary
conditions is mixedFvPatchField.H:

14

2.2. Mixed boundary conditions in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

member data of the mixedFvPatchField class

87 template<class Type>

88 class mixedFvPatchField

89 :

90 public fvPatchField<Type>

91 {

92 // Private data

93

94 //- Value field

95 Field<Type> refValue_;

96

97 //- Normal gradient field

98 Field<Type> refGrad_;

99

100 //- Fraction (0-1) of value used for boundary condition

101 scalarField valueFraction_;

102

103 //- Source field

104 Field<Type> source_;

Here can be seen that the mixed boundary condition is a templated class, meaning that the
definition is described only once through this file but at compilation it will be defined for many
types of data (scalars, vectors, etc), and the member data of the class are those just described. The
main functions of the class are:

• evaluate: Evaluates the patch Field.

• snGrad: Returns the patch normal gradient.

• valueInternalCoeffs: Returns the contribution to the coefficient matrix of the linear system
of the divergence term at boundary patch.

• valueBoundaryCoeffs: Returns the contribution to the source term of the linear system of
the divergence term at boundary patch.

• gradientInternalCoeffs: Returns the contribution to the coefficient matrix of the linear
system of the laplacian term at boundary patch.

• gradientBoundaryCoeffs: Returns the contribution to the source term of the linear system
of the laplacian term at boundary patch.

The definition of these functions is in the mixedFvPatchField.C:

main functions of the mixedFvPatchField class

157 template<class Type>

158 void Foam::mixedFvPatchField<Type>::evaluate(const Pstream::commsTypes)

159 {

160

161 if (!this->updated())

162 {

163 this->updateCoeffs();

164 }

165

166 Field<Type>::operator=

167 (

168 valueFraction_*refValue_

169 + (1.0 - valueFraction_)

170 *(

171 this->patchInternalField()

172 + refGrad_/this->patch().deltaCoeffs()

173)

174);

175

176 fvPatchField<Type>::evaluate();

15

2.2. Mixed boundary conditions in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

177 }

178

179

180 template<class Type>

181 Foam::tmp<Foam::Field<Type>>

182 Foam::mixedFvPatchField<Type>::snGrad() const

183 {

184 return

185 valueFraction_

186 *(refValue_ - this->patchInternalField())

187 *this->patch().deltaCoeffs()

188 + (1.0 - valueFraction_)*refGrad_;

189 }

190

191

192 template<class Type>

193 Foam::tmp<Foam::Field<Type>>

194 Foam::mixedFvPatchField<Type>::valueInternalCoeffs

195 (

196 const tmp<scalarField>&

197) const

198 {

199 return Type(pTraits<Type>::one)*(1.0 - valueFraction_);

200 }

201

202

203 template<class Type>

204 Foam::tmp<Foam::Field<Type>>

205 Foam::mixedFvPatchField<Type>::valueBoundaryCoeffs

206 (

207 const tmp<scalarField>&

208) const

209 {

210 return

211 valueFraction_*refValue_

212 + (1.0 - valueFraction_)*refGrad_/this->patch().deltaCoeffs();

213 }

214

215

216 template<class Type>

217 Foam::tmp<Foam::Field<Type>>

218 Foam::mixedFvPatchField<Type>::gradientInternalCoeffs() const

219 {

220 return -Type(pTraits<Type>::one)*valueFraction_*this->patch().deltaCoeffs();

221 }

222

223

224 template<class Type>

225 Foam::tmp<Foam::Field<Type>>

226 Foam::mixedFvPatchField<Type>::gradientBoundaryCoeffs() const

227 {

228 return

229 valueFraction_*this->patch().deltaCoeffs()*refValue_

230 + (1.0 - valueFraction_)*refGrad_;

231 }

As shown in lines 192 − 213, in OpenFOAM mixed boundary conditions are written in a stan-
dardized form that depends on these member data. If for simplicity we call the valueFraction_

member data f the expression of the boundary condition can be written as

valueInternalCoeffs = 1-f,

valueBoundaryCoeffs = f*refValue + (1-f)*refGrad*d,

Remembering that the valueInternalCoeffs() function corresponds to the diagonal term and
the valueBoundaryCoeffs() to the source term, if the two expressions are merged in order to obtain

16

2.2. Mixed boundary conditions in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

a single formula for the value that this boundary condition imposes to the field at the boundary
patch, we obtain

ϕn+1
f = f ∗ refValue + (1− f)(ϕn+1

c + refGrad ∗ d), (2.2)

ϕn+1
c is the value of the field that is being solved at the current time step at the cell center (the

implicit term), ϕn+1
f is the value of the field at the boundary face at the current time step (our

unknown) and ϕnf is the value of the field at the boundary patch at the previous time step (for
the first time step it is provided by the user). This same formula is also written explicitly in the
evaluate() function (lines 166-176) which evaluates the value of the patch field at the boundary
face.
In general, when a mixed boundary condition has to be defined in OpenFOAM, the expression
will have to be manipulated in order to get to a formula similar to that in Equation (2.2), where
valueFraction_, refValue and refGrad have to be defined for each case.

2.2.1 Advective boundary conditions in OpenFOAM

The advective boundary condition in OpenFOAM is located in fvPatchFields/derived and the
header file advectiveFvPatchField.H reads:

main functions of the mixedFvPatchField class

95 template<class Type>

96 class advectiveFvPatchField

97 :

98 public mixedFvPatchField<Type>

99 {

100 protected:

101

102 // Private data

103

104 //- Name of the flux transporting the field

105 word phiName_;

106

107 //- Name of the density field used to normalise the mass flux

108 //- if necessary

109 word rhoName_;

110

111 //- Field value of the far-field

112 Type fieldInf_;

113

114 //- Relaxation length-scale

115 scalar lInf_;

Hence, the advectiveFvPatchField is a mixedFvPatchField (it inherits from the mixed class) and
beyond the member data of the mixed class it has four added ones.
The two main functions of the advectiveFvPatchField class are:

• advectionSpeed(): calculates and returns the value of the advection speed at the boundary.

• updateCoeffs(): updates the coefficients associated to the patch field, i.e the refValue,
valueFraction and refGrad used in the mixedFvPatchField boundary condition.

The definition of the advectionSpeed() function is here shown:

advectionSpeed function of the mixedFvPatchField class

155 template<class Type>

156 Foam::tmp<Foam::scalarField>

157 Foam::advectiveFvPatchField<Type>::advectionSpeed() const

158 {

159 const surfaceScalarField& phi =

160 this->db().objectRegistry::template lookupObject<surfaceScalarField>

17

2.2. Mixed boundary conditions in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

161 (phiName_);

162

163 fvsPatchField<scalar> phip =

164 this->patch().template lookupPatchField<surfaceScalarField, scalar>

165 (

166 phiName_

167);

168

169 if (phi.dimensions() == dimDensity*dimVelocity*dimArea)

170 {

171 const fvPatchScalarField& rhop =

172 this->patch().template lookupPatchField<volScalarField, scalar>

173 (

174 rhoName_

175);

176

177 return phip/(rhop*this->patch().magSf());

178 }

179 else

180 {

181 return phip/this->patch().magSf();

182 }

183 }

The function can take as input either a massflow rate or a velocity, and in both cases it uses the
flux and simply returns the velocity at the boundary face.
The updateCoeffs() function is way more complex and long since it has to return the output of
the procedure shown in Equations (1.44) and (1.45). This changes based on whether one wants a
perfectly or partially non-reflecting condition, and also based on the time discretization scheme that
is being applied. For the sake of brevity, only the parts of the function concerning the Euler time
discretization are reported:

main functions of the mixedFvPatchField class

186 template<class Type>

187 void Foam::advectiveFvPatchField<Type>::updateCoeffs()

188 {

189 if (this->updated())

190 {

191 return;

192 }

193

194 const fvMesh& mesh = this->internalField().mesh();

195

196 word ddtScheme

197 (

198 mesh.ddtScheme(this->internalField().name())

199);

200 scalar deltaT = this->db().time().deltaTValue();

201

202 const GeometricField<Type, fvPatchField, volMesh>& field =

203 this->db().objectRegistry::template

204 lookupObject<GeometricField<Type, fvPatchField, volMesh>>

205 (

206 this->internalField().name()

207);

208

209 // Calculate the advection speed of the field wave

210 // If the wave is incoming set the speed to 0.

211 const scalarField w(Foam::max(advectionSpeed(), scalar(0)));

212

213 // Calculate the field wave coefficient alpha (See notes)

214 const scalarField alpha(w*deltaT*this->patch().deltaCoeffs());

215

216 label patchi = this->patch().index();

217

218 // Non-reflecting outflow boundary

18

2.2. Mixed boundary conditions in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

219 // If lInf_ defined setup relaxation to the value fieldInf_.

220 if (lInf_ > 0)

221 {

222 // Calculate the field relaxation coefficient k (See notes)

223 const scalarField k(w*deltaT/lInf_);

224

225 if

226 (

227 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

228 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

229)

230 {

231 this->refValue() =

232 (

233 field.oldTime().boundaryField()[patchi] + k*fieldInf_

234)/(1.0 + k);

235

236 this->valueFraction() = (1.0 + k)/(1.0 + alpha + k);

237 }

238 else if (ddtScheme == fv::backwardDdtScheme<scalar>::typeName)

239 {

240 .

241 .

242 .

243 }

244 else if

245 (

246 ddtScheme == fv::localEulerDdtScheme<scalar>::typeName

247)

248 {

249 .

250 .

251 .

252 }

253 .

254 .

255 .

256 }

257 else

258 {

259 if

260 (

261 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

262 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

263)

264 {

265 this->refValue() = field.oldTime().boundaryField()[patchi];

266

267 this->valueFraction() = 1.0/(1.0 + alpha);

268 }

269 else if (ddtScheme == fv::backwardDdtScheme<scalar>::typeName)

270 {

271 this->refValue() =

272 (

273 2.0*field.oldTime().boundaryField()[patchi]

274 - 0.5*field.oldTime().oldTime().boundaryField()[patchi]

275)/1.5;

276

277 this->valueFraction() = 1.5/(1.5 + alpha);

278 }

279 else if

280 .

281 .

282 .

283 }

284

285 mixedFvPatchField<Type>::updateCoeffs();

286 }

19

2.2. Mixed boundary conditions in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

In line 211, the advection speed is defined through the advectionSpeed() function of the same
class and is then used to define the parameter alpha (line 214) as

α =
w∆t

d
, (2.3)

which is exactly the one introduced in Equation (1.44). Then, an if statement is introduced to
separate the perfectly or partially non-reflecting cases, according to whether the lInf parameter is
defined or not.
In the case of lInf_ > 0 (partially non-reflecting), the function first defines parameter k as

k =
w∆t

lInf
, (2.4)

and then changes the values of refValue and valueFraction which are member data inherited
from the base class mixedFvPatchField as

refValue = (ϕf + kϕ∞)
1

1 + k
(2.5)

valueFraction =
1 + k

1 + α+ k
(2.6)

It is easily verified that when inserting this values in Equation (2.2) the result is exactly that
obtained in Equation (1.45) which shows that the way the advective boundary conditions operate is
consistent with the theory. By applying the same procedure to the other if statement it is easy to
verify that the same can be said for the case with lInf = 0 (perfectly non-reflecting case).

2.2.2 WaveTransmissive boundary conditions in OpenFOAM

The waveTransmissive boundary condition is also found in the fvPatchFields/derived directory
and it inherits directly from the advective boundary condition. The first rows of definition file are
here presented together with the class’ member data:

member data of the waveTransmissiveFvPatchField class

95 template<class Type>

96 class waveTransmissiveFvPatchField

97 :

98 public advectiveFvPatchField<Type>

99 {

100

101 // Private data

102

103 //- Name of the compressibility field used to calculate the wave speed

104 word psiName_;

105

106 //- Heat capacity ratio

107 scalar gamma_;

The class only has one function called advectionSpeed() which overrides the same function of
its base class advectiveFvPatchField. The definition of this function is:

advectionSpeed function of the waveTransmissiveFvPatchField class

108 template<class Type>

109 Foam::tmp<Foam::scalarField>

110 Foam::waveTransmissiveFvPatchField<Type>::advectionSpeed() const

111 {

112 // Lookup the velocity and compressibility of the patch

113 const fvPatchField<scalar>& psip =

114 this->patch().template

115 lookupPatchField<volScalarField, scalar>(psiName_);

116

20

2.3. Usage of NRBC’s in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

117 const surfaceScalarField& phi =

118 this->db().template lookupObject<surfaceScalarField>(this->phiName_);

119

120 fvsPatchField<scalar> phip =

121 this->patch().template

122 lookupPatchField<surfaceScalarField, scalar>(this->phiName_);

123

124 if (phi.dimensions() == dimDensity*dimVelocity*dimArea)

125 {

126 const fvPatchScalarField& rhop =

127 this->patch().template

128 lookupPatchField<volScalarField, scalar>(this->rhoName_);

129

130 phip /= rhop;

131 }

132

133 // Calculate the speed of the field wave w

134 // by summing the component of the velocity normal to the boundary

135 // and the speed of sound (sqrt(gamma_/psi)).

136 return phip/this->patch().magSf() + sqrt(gamma_/psip);

137 }

since phip is the flux at the face, when divided by the area of the face gives the velocity parallel
to the patch (the flux in OpenFOAM is calculated as U · Sf). The advection speed is hence
obtained as

w = U +

√
γ

ψ
,

where ψ is the compressibility and in general is simply given by ψ = p/ρ, resulting in an advection
speed which is w = U + c.
Since the waveTransmissive boundary condition does not override any other function, it provides
the same implementation of the advective boundary condition but with a different advection speed.

2.3 Usage of non-reflecting boundary conditions in Open-
FOAM

It has been shown that the way non-reflecting boundary conditions work in OpenFOAM is by apply-
ing the LODI relations, and it is up to the user to apply the advective or the waveTransmissive

boundary conditions to each variable.
According to the theory discussed in Section 1.2.1, the way these boundary conditions should be
used is by applying an advective boundary condition to the variables that travel with an advection
speed equal to u and a waveTransmissive boundary conditions to those that travel with u+c. When
reviewing the tutorials available in the OpenFOAM-v2112 version though, the waveTransmissive

boundary condition is used in 10 tutorials and is always only applied to the pressure while for ve-
locity, temperature and other variables the inletOutlet boundary condition is used.
In order to understand why this choice has been made in the tutorials and how to properly use this
boundary conditions, two test cases have been studied:

• A 1-D duct with a sinusoidal pressure inlet, for which a simple custom boundary condition
has been implemented in order to have a sinusoidal input with a single period of oscillation
(source code in appendix).

• A 2-D square domain with a fixed temperature constraint at the center of 3000 K (a so-called
”spark”) acting for some instants, in order to cause a pressure wave traveling towards the
output.

For both test cases, the rhoPimpleFoam unsteady compressible solver is used and the simulations
are carried out with two different sets of boundary conditions for the outflow shown in Table 2.1

21

2.3. Usage of NRBC’s in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

Table 2.1: Outflow conditions

Case 1 Case 2
p waveTransmissive waveTransmissive
U pressureInletOutletVelocity waveTransmissive
T inletOutlet advective

Case 1 sets the outflow conditions as is done in the OpenFOAM tutorials, while Case 2 are the
conditions that should be applied according to theory. The lInf parameter is set to the length
of the duct for both cases and for both waveTransmissive and advective boundary conditions.
The results of the first simulation in terms of pressure at the center of the duct are shown for two
successive time steps in fig. 2.1.

(a) t0 (b) t1

Figure 2.1: Pressure and velocity oscillation in a 1-D duct with two different sets of outlet boundary
conditions

The results show that for Case 1, the behavior in terms of reflection at the output is far worse
than that of Case 2, with both pressure and velocity showing some clear disturbances in the shape
of the bell at the outflow, which results in a reflection of the wave into the computational domain.
It is worth pointing out that this discrepancy between the two solutions tends to decrease the more
the mesh is refined, with case 1 boundary conditions providing a solution almost as good as case 2
when the number of cells is quadrupled with respect to the mesh presented here which has 50 cells
in the longitudinal direction.

This difference in behavior between the two cases is even more visible in the second, two-
dimensional test case for which the results reported in fig. 2.2 show almost no reflection of the
pressure wave for case 2, and a very prominent reflection at all four boundaries for Case 1.
As a result, it is clear that, for compressible simulations, the correct way to utilize the currently
implemented non-reflecting boundary conditions in OpenFOAM is to apply a waveTransmissive

boundary condition to pressure and velocity, and an advective boundary condition to the other
variables.

22

2.3. Usage of NRBC’s in OpenFOAM Chapter 2. NRBC’s in OpenFOAM

Figure 2.2: Propagation of pressure waves in the domain in the two cases

23

Chapter 3

Implementation of the custom
non-reflecting boundary conditions

The way to properly apply non-reflecting boundary conditions in OpenFOAM has been discussed in
Section 2.3, which is to use waveTransmissive for velocity and pressure and advective for the other
variables (T , species Yi etc.). The problem with this approach is that according to the LODI theory
and as shown in Equations (1.30), (1.31) and (1.32), the only velocity component that should travel
with an advection speed w = U + c, and therefore be treated with a waveTransmissive boundary
condition, is the one normal to the outlet patch. Instead, the components of the velocity orthogonal
to the outlet patch should travel with w = U and hence an advective boundary condition.
One possible solution to fix this problem is modifying the mixed boundary condition so that instead
of simply solving the transport equation with a given advection speed for the whole velocity vector,
it first projects the velocity on a reference frame normal to the patch, transports component of
the velocity normal to the patch un with a U + c advection speed and the tangential components
with u, and finally projects the results back to the Cartesian reference frame. This approach is
indeed the one that has been implemented in the present work. The ”improved” LODI boundary
conditions have been implemented for a two-dimensional case in order to preliminarily study the
behavior and consistency of this theory, with the intention to eventually extend the application to
a general three-dimensional case.

3.1 Necessary modifications to the OpenFOAM approach

What currently happens in OpenFOAM is that the velocity vector is taken into account as a whole,
and for a 2-D case it is hence transported at the boundary following[

u
v

]n+1

f

=

[
u
v

]n
f

1

1 + α
+

[
u
v

]n+1

c

α

1 + α
, (3.1)

with α = δtUn/d if the boundary condition is advective and α = δt(Un + c)/d if the boundary
condition is waveTransmissive.
What we want to do is instead transporting the velocity components normal and tangential to every
boundary face separately, with different advection speeds. This can be done by identifying the patch
normal vector n and projecting the velocity onto it. Figure 3.1 shows that the components of the
patch normal and tangential vectors n and t in the Cartesian reference frame are

n =

[
cos(θ)
sin(θ)

]
, t =

[
− sin(θ)
cos(θ)

]
, (3.2)

These can be used to project the velocity vector and obtain un and ut as

24

3.2. modified mixed boundary condition Chapter 3. Implementation

Figure 3.1: Patch normal vector with respect to the Cartesian reference frame

[
un
ut

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
u
v

]
, (3.3)

Once these two velocity components are calculated, they have to be transported at the boundary
face according to the LODI relations (1.30), (1.31), which for a fully non-reflecting case are

∂un
∂t

+ (un + c)
∂un
∂n

= 0, (3.4)

When discretized through an Euler time discretization this yields

(un)
n+1
f = (un)

n
f

1

1 + αuc
+

αuc

1 + αuc
(un)

n+1
c , (3.5)

(ut)
n+1
f = (ut)

n
f

1

1 + αu
+

αu

1 + αu
(ut)

n+1
c , (3.6)

with αu = δtun

d and αuc =
δt(un+c)

d . Once the velocity components are transported, it’s necessary
to transform them back the Cartesian reference frame in order to finally obtain the values of the
velocity at the boundary face

[
u
v

]n+1

f

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
un
ut

]n+1

f

= (un)
n+1
f

[
cos(θ)
sin(θ)

]
+ (ut)

n+1
f

[
− sin(θ)
cos(θ)

]
, (3.7)

This procedure has been implemented in the custom non-reflecting boundary conditions, namely
in the two classes ”basic/mixedV2D” and ”derived/LODI2D” which have been created by modifying,
adding functionalities and merging with the mixed, advective and waveTransmissive boundary
conditions.

3.2 Implementation of the modified mixedFvPatchField bound-
ary conditions

The mixed boundary condition is a templated class, meaning that it is compiled through a series of
macros that allows for the boundary condition to be applicable to different data types. The template
parameter ”Type” serves as a keyword that can change its meaning (scalar, vector, etc.) in order to

25

3.2. modified mixed boundary condition Chapter 3. Implementation

make the implementation more dynamic and flexible.
The new mixedV2D boundary condition does not need this flexibility since it is supposed to be ap-
plied only to the velocity, hence the ”Type” parameter has to be ”vector”. In order to make the
new boundary condition applicable only for vector fields, the class from which it inherits has to be
changed from the templated class fvPatchField<Type> to fvPatchVectorField. The definition
of the member data of the class and the output of its functions also have to change, in particu-
lar the five functions: valueInternalCoeffs, valueBoundaryCoeffs, gradientInternalCoeffs,
gradientBoundaryCoeffs and snGrad, are all of type virtual tmp<Field<Type>> since they have
to provide an output that is coherent with the type of field that is being considered. These functions
all have to be changed into type virtual tmp<vectorField> (where tmp indicates a smart pointer
and virtual indicates that these functions are dynamically binded).
As shown in Sections 2.2, and 2.2.1, in the case of a vector type of field, the functions currently
use the member data refValue_, refGrad_ and valueFraction_ to apply the transport equation
to the field at the boundary with one advection speed for all components of the vector. This has to
be changed in order to apply a different advection speed to every component, hence these functions
have to be defined twice, once for the u+ c advection speed and once for u.
The declaration of the member data of the new ”mixedV2DFvPatchVectorField” is here presented:

Member data declaration of the mixedV2DFvPatchVectorField class

89 class mixedV2DFvPatchVectorField

90 :

91 public fvPatchVectorField

92 {

93 // Private data

94

95 //- Velocity normal to the patches

96 scalarField Un_;

97

98 //- Velocity tangential to the patches

99 scalarField Ut_;

100

101 //- Patch normal vector

102 vectorField n_;

103

104 //- Value field for the quantities that travel with U

105 scalarField refValueU_;

106

107 //- Value field for the quantities that travel with U +- C

108 scalarField refValueUC_;

109

110 //- Normal gradient field

111 vectorField refGrad_;

112

113 //- valueFraction calculated with velocity U

114 scalarField valueFractionU_;

115

116 //- valueFraction calculated with velocity U +- C

117 scalarField valueFractionUC_;

118

119 //- Source field

120 vectorField source_;

121

122 //- First vector for coordinate change

123 vectorField vector1_;

124

125 //- Second vector for coordinate change

126 vectorField vector2_;

127

128 //- Third vector for coordinate change

129 vectorField vector3_;

Where

• Un_ and Ut_ are the velocities normal and tangential to the patch.

26

3.2. modified mixed boundary condition Chapter 3. Implementation

• n_ is the patch normal vector.

• refValueU_ and refValueUC_ are the value fields necessary to build the transport equations of
the normal and tangential velocity components with different advection speeds (note that the
type of these data is now scalarField since they have to be applied to velocity components
not vectors).

• valueFractionU_ and valueFractionUC_ are the weights necessary to build the transport
equations of the normal and tangential velocity components.

• vector1_, vector2_ and vector3_ are the three vectors that define the rotation matrix to
go back to Cartesian coordinates (the functions of the class provide outputs that are directly
applied to the velocity components in the Cartesian coordinates).

The definitions of the constructors in the *.C file have to be modified for initializing the newly
added variables, one of the modified constructors from the file mixedV2DFvPatchVectorField.C is
reported here:

Definition of the first constructor in the file mixedV2DFvPatchVectorField.C class

37 Foam::mixedV2DFvPatchVectorField::mixedV2DFvPatchVectorField

38 (

39 const fvPatch& p,

40 const DimensionedField<vector, volMesh>& iF

41)

42 :

43 fvPatchVectorField(p, iF),

44 Un_(p.size()),

45 Ut_(p.size()),

46 n_(p.size()),

47 refValueU_(p.size()),

48 refValueUC_(p.size()),

49 refGrad_(p.size()),

50 valueFractionU_(p.size()),

51 valueFractionUC_(p.size()),

52 source_(p.size(), Zero),

53 vector1_(p.size()),

54 vector2_(p.size()),

55 vector3_(p.size())

56 {

57 n_ = this->patch().nf();

58 forAll(vector1_, i)

59 {

60 vector1_[i][0] = n_[i][0];

61 vector1_[i][1] = n_[i][1];

62 vector1_[i][2] = n_[i][2];

63 }

64 forAll(vector2_, i)

65 {

66 vector2_[i][0] = -n_[i][1];

67 vector2_[i][1] = n_[i][0];

68 vector2_[i][2] = n_[i][2];

69 }

70 forAll(vector3_, i)

71 {

72 vector3_[i][0] = 0.0;

73 vector3_[i][1] = 0.0;

74 vector3_[i][2] = 1.0;

75 }

76 }

Where from the initialization of the member data it can be seen that vector1_, vector2_ and
vector3_ are the vectors obtained in Equation (3.7) that allow to go back from the patch to the
Cartesian reference frame (vector3_ being simply [0, 0, 1]T since this implementation is for a 2-D
case).

27

3.2. modified mixed boundary condition Chapter 3. Implementation

All of the six member functions of the class have also been modified in order to perform the operations
described in Section 3.1 and are shown here:

Definition of the evaluate function of the mixedV2DFvPatchVectorField class

312 void Foam::mixedV2DFvPatchVectorField::evaluate(const Pstream::commsTypes)

313 {

314 if (!this->updated())

315 {

316 this->updateCoeffs();

317 }

318

319 vectorField n = this->patch().nf();

320 vectorField U = this->patchInternalField();

321 scalarField Un = Un_;

322 scalarField Ut = Ut_;

323 forAll(U, i)

324 {

325 Un[i] = U[i][0]*n[i][0] + U[i][1]*n[i][1]; //ucos+vsin

326 Ut[i] = -U[i][0]*n[i][1] + U[i][1]*n[i][0]; //-usin+vcos

327 }

328

329 Foam::scalarField valueU =

330 (

331 valueFractionU_*refValueU_

332 + (1.0 - valueFractionU_)

333 *(

334 Ut

335)

336);

337

338 Foam::scalarField valueUC =

339 (

340 valueFractionUC_*refValueUC_

341 + (1.0 - valueFractionUC_)

342 *(

343 Un

344)

345);

346

347 vectorField::operator=

348 (

349 vector1_ * valueUC + vector2_ * valueU

350);

351

352 fvPatchVectorField::evaluate();

353 }

In the evaluate function, first of all the normal and tangential velocity components are obtained
as in Equation (3.3), then two scalar fields valueU and valueUC representing the right hand sides of
Equations (3.5) and (3.6) are created, and finally the output of the function is obtained multiplying
these values for the two vectors, as in Equation (3.7).

Definition of the snGrad function of the mixedV2DFvPatchVectorField

356 Foam::tmp<Foam::vectorField>

357 Foam::mixedV2DFvPatchVectorField::snGrad() const

358 {

359 vectorField n = this->patch().nf();

360 vectorField U = this->patchInternalField();

361 scalarField Un = Un_;

362 scalarField Ut = Ut_;

363 forAll(U, i)

364 {

365 Un[i] = U[i][0]*n[i][0] + U[i][1]*n[i][1]; //ucos+vsin

366 Ut[i] = -U[i][0]*n[i][1] + U[i][1]*n[i][0]; //-usin+vcos

367 }

368

28

3.2. modified mixed boundary condition Chapter 3. Implementation

369 Foam::scalarField valueU =

370 (valueFractionU_

371 *(refValueU_ - Ut)

372 *this->patch().deltaCoeffs());

373

374 Foam::scalarField valueUC =

375 (valueFractionUC_

376 *(refValueUC_ - Un)

377 *this->patch().deltaCoeffs());

378

379 return

380 vector1_ * valueUC + vector2_ * valueU;

381 }

The snGrad function, which calculates the patch normal gradient at the face, is modified similarly
to the evaluate function, through the usage of the normal and tangential velocity components.

Definition of the other member functions of the mixedV2DFvPatchVectorField class

384 Foam::tmp<Foam::vectorField>

385 Foam::mixedV2DFvPatchVectorField::valueInternalCoeffs

386 (

387 const tmp<scalarField>&

388) const

389 {

390 scalarField valueU =

391 (1.0 - valueFractionU_);

392

393 scalarField valueUC =

394 (1.0 - valueFractionUC_);

395

396 return vector1_ * valueUC + vector2_ * valueU;

397 }

398

399

400 Foam::tmp<Foam::vectorField>

401 Foam::mixedV2DFvPatchVectorField::valueBoundaryCoeffs

402 (

403 const tmp<scalarField>&

404) const

405 {

406 scalarField valueU =

407 valueFractionU_*refValueU_;

408

409 scalarField valueUC =

410 valueFractionUC_*refValueUC_;

411

412 return vector1_ * valueUC + vector2_ * valueU;

413 }

414

415

416 Foam::tmp<Foam::vectorField>

417 Foam::mixedV2DFvPatchVectorField::gradientInternalCoeffs() const

418 {

419 scalarField valueU =

420 -valueFractionU_*this->patch().deltaCoeffs();

421

422 scalarField valueUC =

423 -valueFractionUC_*this->patch().deltaCoeffs();

424

425 return vector1_ * valueUC + vector2_ * valueU;

426 }

427

428

429 Foam::tmp<Foam::vectorField>

430 Foam::mixedV2DFvPatchVectorField::gradientBoundaryCoeffs() const

431 {

432 scalarField valueU =

29

3.3. LODI2D boundary condition Chapter 3. Implementation

433 valueFractionU_*this->patch().deltaCoeffs()*refValueU_;

434

435 scalarField valueUC =

436 valueFractionUC_*this->patch().deltaCoeffs()*refValueUC_;

437

438 return vector1_ * valueUC + vector2_ * valueU;

439 }

The remaining functions are also modified for projecting and dividing the contributions of the
different components of the velocity.

3.3 Implementation of the LODI2D boundary condition

The member variables valueFractionU_, valueFractionUC_, refValueU_ and refValueUC_ that
are used inside the member functions of mixedV2D are not defined inside the class itself but are instead
defined inside a second class that inherits from mixedV2D called LODI2D. This is done in order to keep
the same structure adopted by OpenFOAM when dealing with non-reflecting boundary conditions.
advective and waveTransmissive boundary conditions are also templated classes, while the LODI2D
class which merges these two and adds a series of functionalities is supposed to be used only for
vectorField type of inputs, meaning that the declaration and definition of all member data and
member functions of the advective class have to be modified. Moreover, as discussed previously,
the class has to take into account both a transport of the velocity component with the two different
advection speeds.
The declaration of the member data of the new LODI2D class is reported here:

Member data declaration of the LODI2DFvPatchVectorField class

90 class LODI2DFvPatchVectorField

91 :

92 public mixedV2DFvPatchVectorField

93 {

94 protected:

95

96 // Private data

97

98 //- Normal velocity vector at old time

99 scalarField Unold_;

100

101 //- Normal velocity vector at oold time

102 scalarField Unoold_;

103

104 //- Tangential velocity vector at old time

105 scalarField Utold_;

106

107 //- Tangential velocity vector at oold time

108 scalarField Utoold_;

109

110 //- Normal Velocity at infinite for every patch

111 scalarField UnInf_;

112

113 //- Name of the flux transporting the field

114 word phiName_;

115

116 //- Name of the density field used to normalise the mass flux

117 //- if necessary

118 word rhoName_;

119

120 //- Field value of the far-field

121 vector fieldInf_;

122

123 //- Relaxation length-scale

124 scalar lInf_;

125

126 //- waveTransmissive member data ------------------------------------

30

3.3. LODI2D boundary condition Chapter 3. Implementation

127

128 //- Name of the compressibility field used to calculate the wave speed

129 word psiName_;

130

131 //- Heat capacity ratio

132 scalar gamma_;

Where

• Unold_, Utold_, Unoold_ and Utoold_ are the normal and tangential velocity vectors at the
previous and even previous times.

• fieldInf_ is the field (the velocity in this case) at infinity.

• UnInf_ is the component of the velocity at infinity normal to the boundary patch.

• lInf_ is the relaxation length used to calculate the strength of the reflecting wave when
considering partially non-reflecting boundary conditions.

Once again, the definitions of the constructors have been modified to take into account the new
member data:

Definition of a constructor in the file LODI2DFvPatchVectorField.C class

90 Foam::LODI2DFvPatchVectorField::LODI2DFvPatchVectorField

91 (

92 const fvPatch& p,

93 const DimensionedField<vector, volMesh>& iF,

94 const dictionary& dict

95)

96 :

97 mixedV2DFvPatchVectorField(p, iF),

98 Unold_(p.size()),

99 Unoold_(p.size()),

100 Utold_(p.size()),

101 Utoold_(p.size()),

102 UnInf_(p.size()),

103 phiName_(dict.getOrDefault<word>("phi", "phi")),

104 rhoName_(dict.getOrDefault<word>("rho", "rho")),

105 fieldInf_(Zero),

106 lInf_(-GREAT),

107 psiName_(dict.getOrDefault<word>("psi", "thermo:psi")),

108 gamma_(dict.get<scalar>("gamma"))

109 {

110 if (dict.found("value"))

111 {

112 fvPatchVectorField::operator=

113 (

114 vectorField("value", dict, p.size())

115);

116 }

117 else

118 {

119 fvPatchVectorField::operator=(this->patchInternalField());

120 }

121 vectorField U = this->patchInternalField();

122 scalarField Un = Unold_; //initialize them

123 scalarField Ut = Utold_;

124 vectorField n = this->n();

125 forAll(Un, i)

126 {

127 Un[i] = U[i][0]*n[i][0] + U[i][1]*n[i][1];

128 Ut[i] = -U[i][0]*n[i][1] + U[i][1]*n[i][0];

129 }

130

131 this->refValueU() = Un;

132 this->refValueUC() = Ut;

31

3.3. LODI2D boundary condition Chapter 3. Implementation

133 this->refGrad() = Zero;

134 this->valueFractionU() = 0.0;

135 this->valueFractionUC() = 0.0;

136

137 if (dict.readIfPresent("lInf", lInf_))

138 {

139 dict.readEntry("fieldInf", fieldInf_);

140

141 if (lInf_ < 0.0)

142 {

143 FatalIOErrorInFunction(dict)

144 << "unphysical lInf specified (lInf < 0)" << nl

145 << " on patch " << this->patch().name()

146 << " of field " << this->internalField().name()

147 << " in file " << this->internalField().objectPath()

148 << exit(FatalIOError);

149 }

150 }

151 }

Where, once again, the construction of the scalar fields containing the components of the velocity
normal and tangential to the boundary patch can be seen, together with an error message that occurs
if the user defines a negative value for lInf_.
The LODI2D class has three member functions, two of them are the advectionSpeed functions of the
advective and the waveTransmissive classes, the first of which returns a scalar field containing
un, the second one containing un + c for every boundary patch.

advectionSpeed() and advectionSpeedWT functions of the LODI2DFvPatchVectorField class

197 //- Adective advectionSpeed function ---------------------------------------

198 Foam::tmp<Foam::scalarField>

199 Foam::LODI2DFvPatchVectorField::advectionSpeed() const

200 {

201 const surfaceScalarField& phi =

202 this->db().objectRegistry::template lookupObject<surfaceScalarField>

203 (phiName_);

204

205 fvsPatchField<scalar> phip =

206 this->patch().template lookupPatchField<surfaceScalarField, scalar>

207 (

208 phiName_

209);

210

211 if (phi.dimensions() == dimDensity*dimVelocity*dimArea)

212 {

213 const fvPatchScalarField& rhop =

214 this->patch().template lookupPatchField<volScalarField, scalar>

215 (

216 rhoName_

217);

218

219 return phip/(rhop*this->patch().magSf());

220 }

221 else

222 {

223 return phip/this->patch().magSf();

224 }

225 }

226

227 //- WaveTransmissive advectionSpeed function ------------------------------

228 Foam::tmp<Foam::scalarField>

229 Foam::LODI2DFvPatchVectorField::advectionSpeedWT() const

230 {

231 // Lookup the velocity and compressibility of the patch

232 const fvPatchField<scalar>& psip =

233 this->patch().template

234 lookupPatchField<volScalarField, scalar>(psiName_);

32

3.3. LODI2D boundary condition Chapter 3. Implementation

235

236 const surfaceScalarField& phi =

237 this->db().template lookupObject<surfaceScalarField>(this->phiName_);

238

239 fvsPatchField<scalar> phip =

240 this->patch().template

241 lookupPatchField<surfaceScalarField, scalar>(this->phiName_);

242

243 if (phi.dimensions() == dimDensity*dimVelocity*dimArea)

244 {

245 const fvPatchScalarField& rhop =

246 this->patch().template

247 lookupPatchField<volScalarField, scalar>(this->rhoName_);

248

249 phip /= rhop;

250 }

251

252 // Calculate the speed of the field wave w

253 // by summing the component of the velocity normal to the boundary

254 // and the speed of sound (sqrt(gamma_/psi)).

255 return phip/this->patch().magSf() + sqrt(gamma_/psip); // U + C

256 }

The last and most important function is the updateCoeffs function, responsable of updating the
coefficients shown in the mixedV2D class that provide the output of the most important functions.
The first part of the updateCoeffs function is shown here

First part of the updateCoeffs function of the LODI2DFvPatchVectorField class

258 void Foam::LODI2DFvPatchVectorField::updateCoeffs()

259 {

260 if (this->updated())

261 {

262 return;

263 }

264

265 const fvMesh& mesh = this->internalField().mesh();

266

267

268 word ddtScheme

269 (

270 mesh.ddtScheme(this->internalField().name())

271);

272 scalar deltaT = this->db().time().deltaTValue();

273

274 const GeometricField<vector, fvPatchField, volMesh>& field =

275 this->db().objectRegistry::template

276 lookupObject<GeometricField<vector, fvPatchField, volMesh>>

277 (

278 this->internalField().name()

279);

280

281 // Calculate the advection speed of the field wave

282 // If the wave is incoming set the speed to 0.

283 // advection speed U

284 const scalarField wU(Foam::max(advectionSpeed(), scalar(0)));

285 // advection speed U +- C

286 const scalarField wUC(Foam::max(advectionSpeedWT(), scalar(0)));

287

288 // Calculate the field wave coefficient alpha with U and U+-C(See notes)

289 const scalarField alphaU(wU*deltaT*this->patch().deltaCoeffs());

290 const scalarField alphaUC(wUC*deltaT*this->patch().deltaCoeffs());

291

292 label patchi = this->patch().index();

293

294 vectorField Uold = field.oldTime().boundaryField()[patchi];

295 vectorField Uoold = field.oldTime().oldTime().boundaryField()[patchi];

296

33

3.3. LODI2D boundary condition Chapter 3. Implementation

297 vectorField n = this->n();

298 vectorField t = n;

299 forAll(t, i)

300 {

301 t[i][0] = -n[i][1];

302 t[i][1] = n[i][0];

303 }

304

305 forAll(Unold_, i)

306 {

307 Unold_[i] = Uold[i][0]*n[i][0] + Uold[i][1]*n[i][1];

308 Utold_[i] = -Uold[i][0]*n[i][1] + Uold[i][1]*n[i][0];

309 Unoold_[i] = Uoold[i][0]*n[i][0] + Uoold[i][1]*n[i][1];

310 Utoold_[i] = -Uoold[i][0]*n[i][1] + Uoold[i][1]*n[i][0];

311 }

312

313 forAll(UnInf_, i)

314 {

315 UnInf_[i] = fieldInf_[0]*n[i][0] + fieldInf_[1]*n[i][1];

316 }

Where the two advection speeds are introduced using the two advectionSpeed functions, then
the two field wave coefficients alphaU and alphaUC are calculated, which correspond exactly to the
αu and αuc of Equations (3.5) and (3.6). The scalar fields Unold, Utold, Unoold, Utoold and finally
the velocity of the far field UnInf are calculated, the latter by using the fieldInf_ variable provided
by the user, which is the whole velocity vector in the Cartesian coordinates and must therefore also
be projected.
As shown for the advective class, the core of the function corresponds to a series of if statements
that fill the valueFraction_ and refValue_ scalar fields with the quantities corresponding to
Equations (3.5) and (3.6), the first of which (the one corresponding to a partially non-reflecting
condition with lInf ̸= 0 and an Euler time discretization) is reported here:

First part of the if statement of the updateCoeffs function

320 if (lInf_ > 0)

321 {

322 // Calculate the field relaxation coefficient k (See notes)

323 // K calculated with the advection speed U +- C (not U)

324 const scalarField k(wUC*deltaT/lInf_); // was calculated with wU initially

325

326 if

327 (

328 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

329 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

330)

331 {

332 this->refValueU() = Utold_;

333

334 this->refValueUC() =

335 (

336 Unold_ + k*UnInf_

337)/(1.0 + k);

338

339 this->valueFractionU() = 1.0/(1.0 + alphaU);

340

341 this->valueFractionUC() = (1.0 + k)/(1.0 + alphaUC + k);

342 }

This quantities, when inserted in the expression of the evaluate function of the mixedV2D class
shown before, yield the following expressions for the normal and tangential velocity components

(un)
n+1
f = ((un)

n
f + k(un)

∞)
1

1 + αuc + k
+

αuc

1 + αuc + k
(un)

n+1
c , (3.8)

(ut)
n+1
f = (ut)

n
f

1

1 + αu
+

αu

1 + αu
(ut)

n+1
c , (3.9)

34

3.4. Compilation of the custom boundary conditions Chapter 3. Implementation

Meaning that the normal component of the velocity is being transported with un + c, and sees
a partially non-reflecting boundary having assigned a value to the wave entering the domain as per
Equation (1.41), while the tangential component is transported with u and is not influenced by the
upcoming wave.
The case with lInf = 0 and an Euler time discretization is shown here:

Second part of the if statement of the updateCoeffs function

405 else // if lInf = 0

406 {

407 if

408 (

409 ddtScheme == fv::EulerDdtScheme<scalar>::typeName

410 || ddtScheme == fv::CrankNicolsonDdtScheme<scalar>::typeName

411)

412 {

413 this->refValueU() = Utold_;

414

415 this->refValueUC() = Unold_;

416

417 this->valueFractionU() = 1.0/(1.0 + alphaU);

418

419 this->valueFractionUC() = 1.0/(1.0 + alphaUC);

420 }

When these expressions are inserted in the evaluate function it yields the same results shown
in Equations (3.5) and (3.6).

3.4 Compilation of the custom boundary conditions

As explained at the beginning of Section 3.2, OpenFOAM’s mixed and advective boundary condi-
tions are a templated classes, meaning that they need macros and typedefs to be compiled, which
are contained in the files *FvPatchFields.H, *FvPatchFields.C and *FvPatchFieldsFwd.H, for
example:

finiteVolume

Make

files

pptions

fields

fvPatchFields

basic

mixed

mixedFvPatchField.H

mixedFvPatchField.C

mixedFvPatchFields.H

mixedFvPatchFields.C

mixedFvPatchFieldsFwd.H

The mixedV2D and LODI2D boundary conditions however are not templated and therefore do not
need these additional files for compilation. In order to compile these custom boundary conditions is
sufficient to place the mixedV2D and LODI2D folders with theirs *.C and *.H files inside the user’s
folder

src/finiteVolume/fields/fvPatchFields/basic

In order to create a directory structure as the following
finiteVolume

Make

files

options

35

3.4. Compilation of the custom boundary conditions Chapter 3. Implementation

fields

fvPatchFields

basic

mixedV2D

mixedV2DFvPatchVectorField.H

mixedV2DFvPatchVectorField.C

derived

LODI2D

LODI2D2DFvPatchVectorField.H

LODI2D2DFvPatchVectorField.C

Where, just like in the main installation folder, there is one only Make folder for all fields, with
the Make/files that must contain:

src/finiteVolume/Make/files

1 fvPatchFields = fields/fvPatchFields

2 derivedFvPatchFields = $(fvPatchFields)/derived
3 basicFvPatchFields = $(fvPatchFields)/basic
4

5 $(basicFvPatchFields)/mixedV2D/mixedV2DFvPatchVectorField.C
6 $(derivedFvPatchFields)/LODI2D/LODI2DFvPatchVectorField.C
7

8 LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume

And the Make/options file must contain:

src/finiteVolume/Make/files

1 EXE_INC = \

2 -I$(LIB_SRC)/fileFormats/lnInclude \

3 -I$(LIB_SRC)/surfMesh/lnInclude \

4 -I$(LIB_SRC)/meshTools/lnInclude \

5 -I$(LIB_SRC)/dynamicMesh/lnInclude \

6 -I$(LIB_SRC)/finiteVolume/lnInclude
7

8 LIB_LIBS = \

9 -lOpenFOAM \

10 -lfileFormats \

11 -lmeshTools \

12 -lfiniteVolume

Once this directory structure have been set up, the custom boundary conditions can be compiled
by simply executing the wmake command inside the finiteVolume directory.

36

Chapter 4

Test cases setup and results

This chapter presents the setup of the test cases and some preliminary findings and results ob-
tained by executing these cases with both OpenFOAM native non-reflecting boundary conditions
and the custom LODI2D conditions. It is important to keep in mind that although the differ-
ence in terms of implementation and theoretical model between the custom LODI2D and the native
waveTransmissive boundary conditions is substantial, most of the problems become numerically
extremely similar since in most practical cases the velocity is already normal to the outlet patches,
and the tangential components tend to be very small. Moreover, the here presented boundary con-
ditions up to this point have only been implemented for a 2-D case on the x − y plane, whilst
turbulence and other flow phenomena are intrinsically three-dimensional.
For these reasons, defining a test case on which performing a proper study on the performance of
the newly implemented boundary conditions is a procedure that certainly requires more time and
focus, and will be part of future work, together with an implementation of the full three-dimensional
implementation of the LODI relations.

4.1 2-D circle simulation

The first test case that has been studied is a simple two-dimensional circle with a diameter of 2 m
and a temperature spark in the center that causes a series of pressure waves to travel towards the
boundaries. The simulation has been performed with two different setups, once with the OpenFOAM
native boundary conditions and once with the new LODI2D boundary conditions for the velocity as
reported in Table 4.1.

Table 4.1: Boundary conditions of 2D-circle test-case

Case 1 Case 2
p waveTransmissive waveTransmissive
U waveTransmissive LODI2D
T advective advective
lInf 10 10

The mesh, shown in figure 4.1 has been created with blockMesh and is composed of 12 blocks.

4.1.1 simulation setup

In this section the setup of the simulations will be presented, for the sake of brevity, only the most
important and characteristic files will be shown explicitly, while the rest can be found and read by
the reader in the accompanying files.
The simulation consists of a single-phase laminar flow. The cells on which to apply the circu-
lar fixed temperature constraint are identified through the topoSet utility, controlled through the

37

4.1. 2-D circle simulation Chapter 4. Test cases setup and results

Figure 4.1: Mesh of 2D-circle test case

system/topoSetDict file as shown here:

system/topoSetDict file of the 2-D circle simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https://openfoam.org

5 \\ / A nd | Version: 7

6 \\/ M anipulation |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object topoSetDict;

14 }

15 // * //

16

17

18 actions

19 (

20 {

21 name spark1;

22 type cellSet;

23 action new;

24

25 source sphereToCell;

26 sourceInfo

27 {

28 centre (0.0 0.0 0.0);

29 radius 0.05;

30 }

31 }

32);

33

34 // *** //

The constraint itself is assigned in the constant/fvOptions file, which in this case sets a fixed
temperature constraint of 3000 K for a duration of 0.0002 seconds.

constant/fvOptions file of the 2-D circle simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

38

4.1. 2-D circle simulation Chapter 4. Test cases setup and results

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https://openfoam.org

5 \\ / A nd | Version: 7

6 \\/ M anipulation |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object fvOptions;

15 }

16 // * //

17

18 source1

19 {

20 type fixedTemperatureConstraint;

21

22 timeStart 0;

23 duration 0.0002;

24 selectionMode cellSet;

25 cellSet spark1;

26 mode uniform;

27 temperature 3000;

28 }

29

30 // *** //

The boundary conditions are assigned in the files inside the 0 folder. For Case 2, the velocity
conditions are assigned as follows:

0/U file of Case 2 of the 2-D circle simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 object U;

14 }

15 // * //

16

17 dimensions [0 1 -1 0 0 0 0];

18

19 internalField uniform (0 0 0);

20

21 boundaryField

22 {

23 outlet

24 {

25 type LODI2D;

26 value $internalField;
27 field U;

28 gamma 1.4;

29 rho rho;

30 lInf 10;

31 fieldInf (0 0 0);

32 }

33

39

4.1. 2-D circle simulation Chapter 4. Test cases setup and results

34 frontAndBack

For Case 1 the velocity boundary conditions are:

0/U file of Case 1 of the 2-D circle simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 object U;

14 }

15 // * //

16

17 dimensions [0 1 -1 0 0 0 0];

18

19 internalField uniform (0 0 0);

20

21 boundaryField

22 {

23 outlet

24 {

25 type waveTransmissive;

26 gamma 1.4;

27 fieldInf (0 0 0);

28 lInf 10;

29 value $internalField;
30 }

31

32 frontAndBack

33 {

34 type empty;

The temperature and pressure boundary conditions are identical for the two test-cases, with
the pressure at the outlet being waveTransmissive and the temperature being advective, and are
reported here:

0/p file of the 2-D circle simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object p;

14 }

15 // * //

16

17 dimensions [1 -1 -2 0 0 0 0];

18

19 internalField uniform 101325;

20

21 boundaryField

40

4.1. 2-D circle simulation Chapter 4. Test cases setup and results

22 {

23 outlet

24 {

25 type waveTransmissive;

26 gamma 1.4;

27 fieldInf 101325;

28 lInf 10;

29 value $internalField;
30 }

31

32 frontAndBack

33 {

34 type empty;

35 }

36 }

0/T file of the 2-D circle simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object T;

14 }

15 // * //

16

17 dimensions [0 0 0 1 0 0 0];

18

19 internalField uniform 300;

20

21 boundaryField

22 {

23 outlet

24 {

25 type advective;

26 fieldInf 300;

27 lInf 10;

28 value $internalField;
29 }

30

31 frontAndBack

32 {

33 type empty;

34 }

35 }

36

37

38 // *** //

The lInf parameter regulates the extent of the reflected wave, ideally representing the distance
after which the field will reach the fieldInf value assigned by the user. This implies that the larger
lInf the lower the reflection at the boundaries will be. However, an extremely high value of lInf
is not recommendable since, as explained in section 1.2.1, the complete lack of a constraint on the
value of the pressure would lead to an ill-posed problem and, therefore, to a drift in the value of the
pressure inside the computational domain.

41

4.1. 2-D circle simulation Chapter 4. Test cases setup and results

4.1.2 Results of the 2-D circle simulation

The simulation has been performed with the rhoPimpleFoam solver for a time interval of t = 0.01s
and a ∆t = 2e− 6.
The results in terms of pressure propagating in the circular domain for four consecutive time steps
are shown in Fig. 4.2a, while Fig. 4.2b shows the evolution of the waves along the horizontal axis.

(a) Propagation of pressure waves in the domain.

(b) Propagation of pressure waves along the horizontal axis.

Figure 4.2: 2D circle results for Case 1 and Case 2.

The pressure waves created by the spark travel towards the boundary and, for both cases, exit
the domain with no visible reflection.
The two solutions are almost identical, which can be explained by the fact that because of the ge-
ometry of the domain, the velocity is always perfectly parallel to the outlet patches, implying that
transporting both components of the velocity with an advection speed w = u+a becomes equivalent
to what is obtained by rotating the velocity and transporting the normal component with u+ a and
going back to the Cartesian reference frame, since the velocity component tangential to the patch
is always null and therefore gives no contribution.
In order to further investigate the correct usage of OpenFOAM’s native set of non-reflecting bound-
ary conditions, the same simulation has been also performed with the setup implemented in all the
tutorials, shown in Table 4.2

The resulting pressure fields are shown in Fig. 4.3a and 4.3b where, once the pressure waves
hit the boundary, a clear reflection can be seen with waves traveling back towards the center of the

42

4.2. 2-D turbulent flow around bluff body Chapter 4. Test cases setup and results

Table 4.2: Boundary conditions used by OpenFOAM tutorials

p waveTransmissive
U pressureInletOutletVelocity
T inletOutlet
lInf 10

domain. This shows again that the correct way to apply OpenFOAM’s native set of non-reflecting
boundary conditions is that shown in Case 1 of table 4.1, namely using waveTransmissive for
velocity and pressure, and advective for temperature.

(a) Propagation of pressure waves in the domain

(b) Propagation of pressure waves on the x axis.

Figure 4.3: 2D circle results for the improper boundary conditions used in OpenFOAM tutorials.

Ultimately, although this simulation gives no significant information about the performance of
the custom boundary conditions with respect to OpenFOAM’s waveTransmissive it serves as a
proof of the fact that the theory is consistent, and that the newly implemented LODI2D conditions
are indeed suited for simulating non-reflecting, non planar boundaries.

4.2 2-D turbulent flow around bluff body

The second test case that has been studied is inspired by the work done by Lysenko in 2011 [8] and
Pirozzoli in 2012 [9] and consists of a bluff body inside a turbulent free-stream flow. The mesh is
shown in figure 4.4.

The characteristic length of the body is L = 0.1 m while the length of the domain is LD = 115L.
The overall computational cost of the simulation is kept small by applying a strong mesh refinement
in correspondence of the body and its wake, which limits the overall cell count to 38200 cells.
The simulation is performed with a free stream Mach number of M∞ = 0.34, and turbulence has
been modeled through Menter’s k − ω SST model [10]. Under these flow conditions, vortices are
periodically shed in the bluff body wake and preventing spurious reflection of pressure waves from

43

4.2. 2-D turbulent flow around bluff body Chapter 4. Test cases setup and results

Figure 4.4: Mesh of 2-D turbulent flow around bluff body case

the outflow is challenging for numerical boundary conditions.
The patches composing the domain or the body are:

• inlet: the left boundary of the domain.

• outlet: the right boundary of the domain.

• upperAndLower: the upper and lower boundaries of the domain.

• obstacle: the walls of the bluff body.

The outflow boundary conditions for velocity, pressure and temperature are the same as those
reported in Table 4.1. The full set of boundary conditions for velocity and pressure as written in
the 0 folder are shown here:

0/U file of the 2-D bluff body simulation (LODI2D outlet case)

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 object U;

14 }

15 // * //

16

17 dimensions [0 1 -1 0 0 0 0];

18

44

4.2. 2-D turbulent flow around bluff body Chapter 4. Test cases setup and results

19 internalField uniform (120 0 0);

20

21 boundaryField

22 {

23 inlet

24 {

25 type fixedValue;

26 value uniform (120 0 0);

27 }

28

29 outlet

30 {

31 type LODI2D;

32 value $internalField;
33 field U;

34 gamma 1.4;

35 rho rho;

36 lInf 10;

37 fieldInf (120 0 0);

38 }

39

40 upperAndLower

41 {

42 type freestreamVelocity;

43 freestreamValue $internalField;
44 }

45

46 obstacle

47 {

48 type noSlip;

49 }

50

51 frontAndBack

52 {

53 type empty;

54 }

55 }

For the velocity, the upper and lower walls are simulated through a freestreamVelocity which
is an inlet-outlet condition that uses the velocity orientation to continuously blend between fixed
value for normal inlet and zero gradient for normal outlet flow. This condition is designed to operate
with the freestreamPressure condition, which has been applied to pressure as shown in the 0/p

file:

0/p file of the 2-D bluff body simulation

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 object p;

14 }

15 // * //

16

17 dimensions [1 -1 -2 0 0 0 0];

18

19 internalField uniform 101325;

20

21 boundaryField

45

4.2. 2-D turbulent flow around bluff body Chapter 4. Test cases setup and results

22 {

23 inlet

24 {

25 type zeroGradient;

26 }

27

28 outlet

29 {

30 type waveTransmissive;

31 gamma 1.4;

32 fieldInf 101325;

33 lInf 10;

34 value $internalField;
35 }

36

37 upperAndLower

38 {

39 type freestreamPressure;

40 freestreamValue $internalField;
41 }

42

43 obstacle

44 {

45 type zeroGradient;

46 }

47

48 frontAndBack

49 {

50 type empty;

51 }

52 }

53

54

55 // *** //

The complete set of boundary conditions can be found in the accompanying files.

4.2.1 Results of the 2-D turbulent flow around bluff body simulation

The simulation has been performed with the rhoPimpleFoam solver, with a maximum Courant
number of Co = 0.3 and an initial timestep of 2e− 6. The system/controlDict file is shown here:

system/controlDict file of the 2-D bluff body simulation

1 application rhoPimpleFoam;

2

3 startFrom latestTime;

4

5 startTime 0;

6

7 stopAt endTime;

8

9 endTime 0.1;

10

11 deltaT 2e-6;

12

13 writeControl runTime;

14

15 writeInterval 0.0005;

16

17 purgeWrite 0; // was 10

18

19 writeFormat ascii;

20

21 writePrecision 16;

22

23 writeCompression off;

46

4.2. 2-D turbulent flow around bluff body Chapter 4. Test cases setup and results

24

25 timeFormat general;

26

27 timePrecision 6;

28

29 runTimeModifiable true;

30

31 adjustTimeStep yes;

32

33 maxCo 0.3;

34

35 maxDeltaT 1;

36

37 functions

38 {

39 fieldAverage

40 {

41 type fieldAverage;

42 libs (fieldFunctionObjects);

43 writeControl writeTime;

44 fields

45 (

46 U

47 {

48 mean on;

49 prime2Mean on;

50 base time;

51 }

52

53 p

54 {

55 mean on;

56 prime2Mean on;

57 base time;

58 }

59

60);

61 }

62 }

63

64 libs ("libmyFiniteVolume.so");

Where the fieldAverage function with the prime2Mean on flag provides the prime squared
mean of the fields. The last line libs ("libmyFiniteVolume.so"); is required for the solver to
link to the custom boundary conditions and hence allows it to use them.

Figure 4.5 shows the evolution of the density field of the two cases during four different time
steps. The overall structure of the flow is still very similar between the two cases, with two big
vortices forming downstream of the body at t0. At t1, the vortices are fully detached and moving
towards the outlet. At times t3 and t4 the process of the first vortex leaving the computational
domain can be observed.
Other then some density waves being produced by the wake, no significant reflection phenomena
can be observed at the outlet for both sets of boundary conditions.

Figure 4.6 shows the same phenomenon, but in terms of the y-component of the velocity vector
Uy. It is worth noting that for this particular geometry the outlet patch is perfectly parallel to
the Cartesian reference frame and the only difference between the two simulations is that in the
waveTransmissive case, Uy at the boundary is transported with an advection speed u + c, while
in the LODI2D case, it is transported with u. Regardless of this, the overall behavior of the two
simulations is similar, with the vortexes leaving the domain and causing no significant reflecting
waves.

Finally, the pPrime2Mean field, corresponding to the time-averaged square of the pressure oscil-
lation p′2 is shown in figure 4.7. The field shows how the pressure oscillation is fully concentrated in
the wave area and around the body. Once again, for both cases there is no significant contribution
of the boundary to be seen for any of the two cases, confirming that the performance of both the

47

4.3. Conclusions Chapter 4. Test cases setup and results

Figure 4.5: Density field of the 2-D bluff body simulation for four successive time steps for the
LODI2D case (top) and the waveTranmissive case (bottom)

Figure 4.6: Uy field of the 2-D bluff body simulation for four successive time intervals, for the two
cases. The iso contours are shown for Uy ranging from 10 to 100 m/s.

boundary conditions is sufficient for studying this particular test case.

4.3 Conclusions

In conclusion, both the simulations performed have shown very similar results in terms of reflected
waves at the boundary with both boundary conditions. This shows that regardless of the difference
between the implementation of OpenFOAM’s native non-reflecting boundary conditions and the
theoretical boundary condition, the performance of these boundary conditions is already satisfac-
tory for most applications. It is crucial to keep in mind, however, that the way OpenFOAM’s native
boundary conditions have to be applied is different to the way they are applied in the tutorials, where

48

4.3. Conclusions Chapter 4. Test cases setup and results

Figure 4.7: pPrime2Mean field of the 2-D bluff body simulation for one time instant, for the two
cases.

the waveTransmissive conditions are applied only to the pressure, and the rest of the variables are
handled with an inletOutlet approach.
Although the simulations show a similar performance of the two boundary conditions, further investi-
gation is required in order to properly assess the capabilities of the new LODI2D boundary conditions
and eventually an extension of their implementation to a three-dimensional case could provide even
more space for studying their performance.

49

Bibliography

[1] A. Mani, “Analysis and optimization of numerical sponge layers as a nonreflective boundary
treatment,” Journal of Computational Physics, vol. 231, no. 2, pp. 704–716, 2012.

[2] T. J. Poinsot and S. Lelef, “Boundary conditions for direct simulations of compressible viscous
flows,” Journal of computational physics, vol. 101, no. 1, pp. 104–129, 1992.

[3] G. Lodato, P. Domingo, and L. Vervisch, “Three-dimensional boundary conditions for direct
and large-eddy simulation of compressible viscous flows,” Journal of computational physics,
vol. 227, no. 10, pp. 5105–5143, 2008.

[4] M. Valorani and B. Favini, “On the numerical integration of multi-dimensional, initial boundary
value problems for the euler equations in quasi-linear form,” Numerical Methods for Partial
Differential Equations: An International Journal, vol. 14, no. 6, pp. 781–814, 1998.

[5] K. W. Thompson, “Time dependent boundary conditions for hyperbolic systems,” Journal of
computational physics, vol. 68, no. 1, pp. 1–24, 1987.

[6] D. H. Rudy and J. C. Strikwerda, “A nonreflecting outflow boundary condition for subsonic
navier-stokes calculations,” Journal of Computational Physics, vol. 36, no. 1, pp. 55–70, 1980.

[7] D. H. Rudy and J. C. Strikwerda, “Boundary conditions for subsonic compressible navier-stokes
calculations,” Computers & Fluids, vol. 9, no. 3, pp. 327–338, 1981.

[8] D. Lysenko, I. S. Ertesv̊ag, and K. E. Rian, “Turbulent bluff body flows modeling using open-
foam technology,” MekIT, pp. 189–208, 2011.

[9] S. Pirozzoli and T. Colonius, “Generalized characteristic relaxation boundary conditions for
unsteady compressible flow simulations,” Journal of Computational Physics, vol. 248, pp. 109–
126, 2013.

[10] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,”
AIAA journal, vol. 32, no. 8, pp. 1598–1605, 1994.

50

Study questions

1. What type of boundary conditions exist in OpenFOAM?

2. What does the updateCoeffs function do?

3. What equation does the advective boundary condition solve at the boundary face?

4. What is the difference between the advective and the waveTransmissive boundary condi-
tions?

5. What is a templated class, and why are many boundary conditions templated?

6. What type of field does the valueInternalCoeffs function of the waveTransmissive bound-
ary condition return when applied to the velocity field?

7. What is the difference between the newly implemented LODI2D and OpenFOAM’s waveTransmissive
boundary conditions?

51

Appendix A

Developed codes

A.1 The singleSinusoidalPressureInlet boundary condition

These are the *.C and *.H files necessary to implement the singleSinusoidalPressureInlet which
has been utilized in the 1-D conduct simulation presented in section 2.3. The boundary condition is
extremely simple and is based on the oscillatingParabolicVelocity boundary condition devel-
oped by professor H. Nilsson during the ”CFD with OpenSource software” coruse.

singleSinusoidalPressureInlet.H file

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2022 Hrvoje Jasak, Wikki Ltd.

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "singleSinusoidalPressureInletFvPatchScalarField.H"

#include "addToRunTimeSelectionTable.H"

#include "fvPatchFieldMapper.H"

#include "volFields.H"

#include "surfaceFields.H"

// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

52

A.1. The singleSinusoidalPressureInlet boundary condition Appendix A. Developed codes

Foam::singleSinusoidalPressureInletFvPatchScalarField::

singleSinusoidalPressureInletFvPatchScalarField

(

const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF

)

:

fixedValueFvPatchScalarField(p, iF),

meanValue_(0),

amplitude_(101325),

tstart_(0),

f_(0)

{

}

Foam::singleSinusoidalPressureInletFvPatchScalarField:: //constructor used when the BC is set through

the dictionary file in the time dir

singleSinusoidalPressureInletFvPatchScalarField

(

const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF,

const dictionary& dict

)

:

fixedValueFvPatchScalarField(p, iF),

meanValue_(readScalar(dict.lookup("meanValue"))),

amplitude_(readScalar(dict.lookup("amplitude"))),

tstart_(readScalar(dict.lookup("tstart"))),

f_(readScalar(dict.lookup("f")))

{

fixedValueFvPatchScalarField::evaluate();

}

Foam::singleSinusoidalPressureInletFvPatchScalarField::

singleSinusoidalPressureInletFvPatchScalarField

(

const singleSinusoidalPressureInletFvPatchScalarField& ptf,

const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF,

const fvPatchFieldMapper& mapper

)

:

fixedValueFvPatchScalarField(ptf, p, iF, mapper),

meanValue_(ptf.meanValue_),

amplitude_(ptf.amplitude_),

tstart_(ptf.tstart_),

f_(ptf.f_)

{}

Foam::singleSinusoidalPressureInletFvPatchScalarField::

singleSinusoidalPressureInletFvPatchScalarField

(

const singleSinusoidalPressureInletFvPatchScalarField& ptf

)

:

fixedValueFvPatchScalarField(ptf),

meanValue_(ptf.meanValue_),

amplitude_(ptf.amplitude_),

tstart_(ptf.tstart_),

f_(ptf.f_)

{}

Foam::singleSinusoidalPressureInletFvPatchScalarField::

53

A.1. The singleSinusoidalPressureInlet boundary condition Appendix A. Developed codes

singleSinusoidalPressureInletFvPatchScalarField

(

const singleSinusoidalPressureInletFvPatchScalarField& ptf,

const DimensionedField<scalar, volMesh>& iF

)

:

fixedValueFvPatchScalarField(ptf, iF),

meanValue_(ptf.meanValue_),

amplitude_(ptf.amplitude_),

tstart_(ptf.tstart_),

f_(ptf.f_)

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::singleSinusoidalPressureInletFvPatchScalarField::updateCoeffs()

{

if (updated())

{

return;

}

scalar pi = constant::mathematical::pi;

const scalar t = this->db().time().timeOutputValue();

scalar A = amplitude_/2;

const scalar tt = t - tstart_;

if (tt < 0)

{

scalarField::operator=(meanValue_);

}

else if (tt > 1/f_)

{

scalarField::operator=(meanValue_);

}

else

{

scalarField::operator=(meanValue_ + A + A*(sin(2 * pi * f_ * tt - pi/2)));

}

}

void Foam::singleSinusoidalPressureInletFvPatchScalarField::write

(

Ostream& os

) const

{

fvPatchScalarField::write(os);

os.writeKeyword("meanValue") << meanValue_ << token::END_STATEMENT << nl;

os.writeKeyword("amplitude") << amplitude_ << token::END_STATEMENT << nl;

os.writeKeyword("tstart") << tstart_ << token::END_STATEMENT << nl;

os.writeKeyword("f") << f_ << token::END_STATEMENT << nl;

writeEntry("value", os);

}

// * * * * * * * * * * * * * * Build Macro Function * * * * * * * * * * * * //

namespace Foam

{

makePatchTypeField

(

fvPatchScalarField,

54

A.1. The singleSinusoidalPressureInlet boundary condition Appendix A. Developed codes

singleSinusoidalPressureInletFvPatchScalarField

);

}

// *** //

singleSinusoidalPressureInlet.H file

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | www.openfoam.com

\\/ M anipulation |

Copyright (C) 2022 Hrvoje Jasak, Wikki Ltd.

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class

Foam::singleSinusoidalPressureInletFvPatchVectorField

Group

grpGenericBoundaryConditions

Description

Boundary condition specifies a parabolic velocity inlet profile

(fixed value) that oscillates in time, given maximum velocity value

(peak of the parabola), flow direction n and direction of the parabolic

coordinate y and frequency of the time oscillation

Usage

\table

Property | Description | Req'd | Default

scalarData | single scalar value | yes |

data | single vector value | yes |

fieldData | vector field across patch | yes |

timeVsData | vector function of time | yes |

wordData | word, eg name of data object | no | wordDefault

\endtable

Example of the boundary condition specification:

{

type singleSinusoidalPressureInlet;

scalarData -1;

data (1 0 0);

fieldData uniform (3 0 0);

timeVsData table (

(0 (0 0 0))

(1 (2 0 0))

);

wordName anotherName;

value uniform (4 0 0); // optional initial value

}

55

A.1. The singleSinusoidalPressureInlet boundary condition Appendix A. Developed codes

\endverbatim

SourceFiles

singleSinusoidalPressureInletFvPatchVectorField.C

---/

#ifndef singleSinusoidalPressureInletFvPatchScalarField_H

#define singleSinusoidalPressureInletFvPatchScalarField_H

#include "fixedValueFvPatchFields.H"

#include "Function1.H"

// * //

namespace Foam

{

/*---*\

Class singleSinusoidalPressureInletFvPatchScalarField Declaration

---/

class singleSinusoidalPressureInletFvPatchScalarField

:

public fixedValueFvPatchScalarField

{

// Private Data

//- pressure mean value

scalar meanValue_;

//- Amplitude of oscillation

scalar amplitude_;

//- Start of the oscillation

scalar tstart_;

//- Frequency of the oscillation in time

scalar f_;

// Private Member Functions

public:

//- Runtime type information

TypeName("singleSinusoidalPressureInlet");

// Constructors

//- Construct from patch and internal field

singleSinusoidalPressureInletFvPatchScalarField

(

const fvPatch&,

const DimensionedField<scalar, volMesh>&

);

//- Construct from patch, internal field and dictionary

singleSinusoidalPressureInletFvPatchScalarField

(

const fvPatch&,

const DimensionedField<scalar, volMesh>&,

const dictionary&

);

//- Construct by mapping onto a new patch

singleSinusoidalPressureInletFvPatchScalarField

(

56

A.1. The singleSinusoidalPressureInlet boundary condition Appendix A. Developed codes

const singleSinusoidalPressureInletFvPatchScalarField&,

const fvPatch&,

const DimensionedField<scalar, volMesh>&,

const fvPatchFieldMapper&

);

//- Copy construct

singleSinusoidalPressureInletFvPatchScalarField

(

const singleSinusoidalPressureInletFvPatchScalarField&

);

//- Construct and return a clone

virtual tmp<fvPatchScalarField> clone() const

{

return tmp<fvPatchScalarField>

(

new singleSinusoidalPressureInletFvPatchScalarField(*this)

);

}

//- Construct as copy setting internal field reference

singleSinusoidalPressureInletFvPatchScalarField

(

const singleSinusoidalPressureInletFvPatchScalarField&,

const DimensionedField<scalar, volMesh>&

);

//- Construct and return a clone setting internal field reference

virtual tmp<fvPatchScalarField> clone

(

const DimensionedField<scalar, volMesh>& iF

) const

{

return tmp<fvPatchScalarField>

(

new singleSinusoidalPressureInletFvPatchScalarField

(

*this,

iF

)

);

}

// Member Functions

// functions that can be used to return the values of the member data and to change them

//

//- Return max value

scalar meanValue()

{

return meanValue_;

}

//- Return amplitude

scalar& amplitude()

{

return amplitude_;

}

//- Return flow direction

scalar& tstart()

{

return tstart_;

}

57

A.1. The singleSinusoidalPressureInlet boundary condition Appendix A. Developed codes

//- Return frequency

scalar& f()

{

return f_;

}

// Evaluation functions

//- Update the coefficients associated with the patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream& os) const;

};

// * //

} // End namespace Foam

// * //

#endif

// *** //

58

Index

advective, 13, 14, 20–22, 24, 25, 30, 32, 34,
35, 40, 43, 51

Cartesian, 6, 24, 25, 27, 34

LODI, 10, 11, 21, 24, 25
LODI2D, 30, 32, 35, 37, 43, 47, 49, 51

mixed, 14, 24, 25, 35
mixedV2D, 26, 30, 33–35

valueBoundaryCoeffs, 15
valueInternalCoeffs, 15, 26, 51

waveTransmissive, 11, 13, 20–22, 24, 25, 30,
32, 37, 40, 43, 47, 49, 51

59

	N-S characteristic BC's
	Characteristic analysis of NS equations
	LODI relations
	NR and PNR boundary conditions

	NRBC's in OpenFOAM
	General boundary conditions in OpenFOAM
	Mixed boundary conditions in OpenFOAM
	Advective boundary conditions in OpenFOAM
	WaveTransmissive boundary conditions in OpenFOAM

	Usage of NRBC's in OpenFOAM

	Implementation
	Necessary modifications to the OpenFOAM approach
	modified mixed boundary condition
	LODI2D boundary condition
	Compilation of the custom boundary conditions

	Test cases setup and results
	2-D circle simulation
	simulation setup
	Results of the 2-D circle simulation

	2-D turbulent flow around bluff body
	Results of the 2-D bluff body simulation

	Conclusions

	Developed codes
	The singleSinusoidalPressureInlet boundary condition

