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Learning outcomes

The main requirements of a tutorial in the course is that it should teach the four points: How to
use it, The theory of it, How it is implemented, and How to modify it. Therefore the list of learning
outcomes is organized with those headers.

The reader will learn:

How to use it:

• How to use the interfaceTrackingFvMesh class and the accompanying freeSurface bound-
ary conditions.

• How to set up a test case including free surface mesh deformation using interfaceTrackingFvMesh.

• How to set up contact conditions at the liquid-gas-solid interface.

The theory of it:

• The theory behind the interface tracking method for finite volumes.

• The theory behind the methods of the Finite-Area-Method utilized in this class.

• The numerical technique for a contact angle constrained by an adapted pressure boundary
condition.

How it is implemented:

• How the interface tracking class interfaceTrackingFvMesh is designed and implemented in
OpenFOAM.

• How the freeSurfaceVelocity and freeSurfacePressure boundary conditions are imple-
mented and applied.

• The differences between the interTrackFoam solver in foam-extend and the
interfaceTrackingFvMesh class.

How to modify it:

• How to modify the class to calculate, write and use additional variables

• How to write out additional surface data.

• How to modify the implementation of the contact angle condition to make it more strict

• How to implement the contact angle condition inside the pressure boundary condition
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• How to run standard document tutorials like the damBreak tutorial with OpenFOAM

• A basic understanding of the Finite-Volume-Method

• An understanding of the PIMPLE method
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Chapter 1

Introduction

Materials for various technological applications, e.g., power devices, detector applications, and laser
materials, are produced in high-temperature crystal growth furnaces involving multiple materials
in different phases. For example, in the Floating Zone (FZ) crystal growth process, a silicon feed
rod is melted by high-frequency induction heating and solidifies as a single crystal. Figure 1.1 (left)
shows a sketch of this process, where the liquid melt is held between the feed rod and the growing
crystal and has only contact with the surrounding gas [1]. The free surface between the melt and
the gas plays a decisive role in this technique [2]. As shown in Figure 1.1 (right), the free surface is
deformed by an electromagnetic pressure pEM. Furthermore, the electrically conducting liquid melt
is influenced by Lorenz forces, adding momentum to the melt flow. The contact angles θ between
the solid and the liquid are fixed, and the internal triple point (ITP) can move depending on the
location of the solid-liquid phase boundary. This process involves high-density ratios between the
solid and the liquid (∼ 104) and high surface tension (0.88 N/m). Existing publications use the
interFoam solver to predict the 3D free surface shape in FZ silicon growth in Han et al. 2020 [3],
while in a PhD thesis by Beckstein 2018 [4] the interTrackFoam solver is modified and applied to
simulate the surface shape in a similar process.

This report aims to investigate the interface tracking method as it is implemented in OpenFOAM
and its possible application to the above-described problem. Additional modifications to the li-
brary are done in order to satisfy the boundary conditions in Figure 1.1 (right). In Chapter 2
the theory behind the interface tracking method is described. Chapter 4 shows a tutorial using
the interfaceTrackingFvMesh library together with pimpleFoam. The files, classes, and functions
contained in this library are explained in Chapter 3. In Chapter 5 it is shown how to implement
modifications to the library, like calculating a surface field or writing out the surface data. Addi-
tionally, the contact angle boundary condition is restructured for more functionality, and a different
approach to this boundary condition is implemented via a pressure boundary condition.
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Chapter 1. Introduction

Figure 1.1: Left: Sketch of FZ process. Right: Free surface deformation due to electromagnetic
forces on the liquid with a fixed contact angle and a moving internal triple point (ITP).
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Chapter 2

Interface Tracking Method

Interface tracking methods use a boundary-fitted moving mesh, resulting in a sharp interface, as op-
posed to other multiphase methods, like the Volume-of-Fluids (VOF) method, where the interface is
diffusive. Interface tracking methods can therefore provide the most precise results as the boundary
between phases is represented by the computational boundary.

The mathematical model and numerical methods for a fluid flow with a sharp free surface
are presented, as it is implemented in the solver interTrackFoam in foam-extend and the library
interfaceTrackingFvMesh in OpenFOAM. This chapter follows the description of the interface
tracking method by Tukovic and Jasak 2012 [5] and by Muzaferija and Perić 1997 [6] primarily.

2.1 Mathematical model

This section describes the mathematical model for a two-phase fluid flow with a sharp interface.
With this model, the governing equations of a flow can be solved separately by the Finite-Volume-
Method on each region, defined by a combined mesh. Coupling of the fluid velocities and pressure
is accomplished by applying proper boundary conditions at the interface. In the following sections,
the term free surface describes an interface between two fluids, where only one fluid is simulated.
This assumption is valid for a large difference in dynamic viscosity as is shown in Section 2.1.3.

2.1.1 Navier-Stokes equations

The governing equations for each phase are given by the incompressible and isothermal Navier-Stokes
equations [7] for a Newtonian fluid as

∇ · u = 0 (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · τ , (2.2)

where ρ is the fluid density and u is the fluid velocity. The stress tensor is defined in terms of the
local fluid pressure and velocity fields as

τ = η
(
∇u+ (∇u)

T
)
− pI, (2.3)

where η is the dynamic viscosity of the fluid and p is the dynamic pressure obtained by subtracting
the hydrostatic pressure ρg · x from the absolute pressure. Here, g is the gravitational acceleration
vector, and x is the position vector.
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2.1. Mathematical model Chapter 2. Interface Tracking Method

2.1.2 Kinematic and dynamic conditions on the free surface

The conditions on a free surface for immiscible fluids can be split into kinematic and dynamic
conditions [8]. To derive these conditions the jump J·K of a quantity ψ is defined as

JψK = ψ+ − ψ−. (2.4)

The suffixes + and − describe one of the fluids on each side of the interface respectively. The surface
normal vector n however is always pointing from - to +, and being therefore associated with the
fluid ”-”.

n = n− = −n+ (2.5)

The kinematic condition requires the free surface to not ”break” and relates the fluid velocities on
the two sides of the interface. Since, in the case of two immiscible fluids, there is no mass flux
through the phase boundaries, the velocity must be continuous across the interface and therefore

JuK = 0. (2.6)

The dynamic condition is derived from the momentum conservation law on the surface and states
that forces acting on the fluid from the surface are in equilibrium. The general form at the interface,
which gives the fundamental relationship between the jump of the stress tensor τ across an interface
and the surface tension force, is given by

Jnτ K = ∇̄σ − σκn, (2.7)

where σ is the surface tension and ∇̄ is surface gradient operator (or tangential gradient operator)
given by

∇̄ = (I − nn) · ∇ = ∇− n
∂

∂n
, (2.8)

and κ is twice the mean curvature of the interface given by

κ = −∇̄ · n. (2.9)

The gradient of the surface tension coefficient ∇̄σ captures changes in surface tension due to a tem-
perature gradient or non-uniform distribution of surfactants at the interface.

The normal force balance of Eq. 2.7, together with the definition of the stress tensor (Eq. 2.3)
yields a jump condition for the pressure given by

JpK = −2JηK
(
∇̄ · u

)
+ σκ. (2.10)

This equation shows that there is a jump in dynamic pressure due to the surface divergence of the
velocity u and, together with the surface tension σ, of the local curvature κ. The surface divergence
∇̄·u is not zero, as supposed to the volume divergence in Eq. 2.1, because it accounts for the pressure
jump and surface tension forces that create a net flow at the surface. Additionally, the flow of the
fluid near the surface can cause the surface to move horizontally, resulting in non-zero divergence.
From the tangential force balance of Eq. 2.7, a condition for the normal velocity gradient can be
derived as

Jn · η∇uK = −JηK(∇̄ · u)n− JηK∇̄u · n− ∇̄σ. (2.11)

A jump in the normal gradient of the velocity u is determined by the surface gradient of its normal
component

(
∇̄u · n

)
, its surface divergence

(
∇̄ · u

)
, and the change of surface tension along the

curvature
(
∇̄σ

)
. The jump in viscosity η has to be accounted for in both conditions.
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2.1. Boundary conditions Chapter 2. Interface Tracking Method

2.1.3 Boundary Conditions for the free surface of a fluid

In the implementation of interfaceTrackingFvMesh, the external Fluid ”+” is not included in
the simulation. By assuming a large difference in dynamic viscosity η+ ≪ η− and introducing an
external dynamic pressure p+ = pdyna = pa − ρg · xf , the jump conditions in Eqs. 2.10 and 2.11 can
be written as boundary conditions for the fluid ”−”:

n · η∇u = −
(
∇̄ · u

)
n− ∇̄u · n+

1

η
∇̄σ (2.12)

p = pa − ρg · xf − 2η
(
∇̄ · u

)
− σκ (2.13)

It is interesting to note that for a stationary free surface and by neglecting the surface tension,
Eq. 2.13 and 2.12 are reduced to a slip condition. Furthermore, by neglecting most of the flow-
related terms (i.e. the ones with u), Eq. 2.13 is reduced to the Young-Laplace equation describing
the pressure difference ∆p across the interface between two static fluids as

∆p = −σκ. (2.14)

2.2 Numerical methods

In this section, the numerical methods for the discretization of the governing equations described in
Section 2 are presented. The final solution procedure is described in 3.1. The discretization of the
governing Eqs. 2.1 and 2.2 is done according to the finite-volume discretization methods [8]. The
equations are solved using the PISO algorithm after Issa 1986 [9] in the Arbitrary-Lagrangian-Euler
formulation [5]. The free surface and the two boundary conditions (equations 2.13 and 2.12) are
discretized with the Finite-Area-Method (FAM). Section 2.2.1 gives a brief introduction to the FAM
and shows the discretization of the surface gradient operator.

Section 2.2.2 describes the interface tracking procedure of the free surface and Section 2.3 intro-
duces a new method for modelling a constant contact angle.

2.2.1 Finite-Area-Method: calculation of surface derivatives and surface
tension

The Eq.s 2.12 and 2.13 contain surface derivatives of the fluid velocity u. The surface divergence
∇̄ ·u, the surface gradient ∇̄u as well as the curvature κ = ∇̄ ·n have to be calculated. For simplic-
ity, only constant surface tension is considered in Eq. 2.12 (∇̄σ = 0). The surface derivatives are
discretized based on Gauss’ integral theorem on the surface ΓF and are calculated explicitly using
the Finite-Area-Method (FAM). In principle, the FAM is nothing more than the FVM: instead of
control volumes and surfaces between the volumes, there are control surfaces separated by edges.

The Gauss’ integral theorem for a general quantity ψ defined on the region Γf of the surface f
bounded by the closed line ∂Γ is given by [6]∫

Γf

∇̄ ◦ ψ dS =

∫
∂Γf

m ◦ ψ dL−
∫
Γf

κn ◦ ψ dS, (2.15)

where ◦ can be any product (inner product ·, cross product × or outer product ⊗), and m is the
unit vector pointing from the edge center e to the face centre (see Figure 2.1). Assuming a locally
linearly varying function ψ the value of ψe on an edge centre xe can be approximated, similarly to
the value in cell centres or face centres in the FVM with an integral across the edge Λe, as

ψe = ψ (t, xe) ≈
1

Le

∫
Λe

ψ(t, x)dL. (2.16)
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2.2. Numerical methods Chapter 2. Interface Tracking Method

Here, Le is the length of the edge e. Furthermore, analogous to integrals over a volume in the FVM,
integrals over a face f can be approximated by∫

Γf

ψdS ≈ ψfSf . (2.17)

Line integrals over the whole boundary ∂Γf of the face region f can first be interpreted as the sum
of the piecewise connected boundary edges Λe. The edge integrals can then be approximated with
Eq. 2.16, which yields

∫
∂Γf

dL ◦ ψ =

Λe∈∂Γf∑
e

∫ Λe∈∂Γf

Λe

dL ◦ ψ ≈
∑
e

Le ◦ ψe, (2.18)

where ψe is the field value on the edge and Le = meLe is the binormal vector weighted with the
edge length Le in the centroid xe of the edge e. The normalised binormal vector me = te ×ne with
|me| = 1 is calculated using the tangetial vector te pointing along the edge and the mean normal
vector ne in the edge centre. The latter is calculated as

ne =
ne,0 + ne,1

|ne,0 + ne,1|
, (2.19)

where ne,i are obtained by averaging the normal vectors nf of the neighbouring faces on the start-
and endpoints xe,i of edge e. The vectors needed for this calculation are shown in Figure 2.1. For
simplicity, only a curvature in one direction is considered.

With Eq.s 2.16 and 2.17, and together with Gauss’ integral theorem in Eq. 2.15 any gradient,
divergence, or curl of a quantity on the surface f needed in Eq.s 2.13 and 2.12 can be discretized
with {

∇̄ ◦ ψ
}
f
≈ 1

Sf

∫
Γf

∇̄ ◦ ψ dS ≈ 1

Sf

∑
e

me ◦ ψeLe − κfnf ◦ ψf (2.20)

The main difference to the FVM is the additional term that considers the surface curvature, which
can also be calculated using Eq. 2.20 with ψ=̂1 and ◦ being the outer product. Multiplying the
inner product of nf to both sides of the equation yields

κf = −
{
∇̄ · n

}
f
=

∑
e

nf ·meLe. (2.21)

The surface divergence ∇̄ · u and the surface gradient ∇̄u can therefore be discretised using the
geometric mesh parameters me, ne and Le. The edge-center velocity ue can be linearly interpolated
from the face values uf , which in turn are extrapolated with common FVM methods from the cell-
center values.

face f

nn
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mj

ie

t

N
O

ffN
e

e

e

Figure 2.1: Surface area mesh with a one-dimensional curvature. Normal vector ne is calculated
using the normal vectors of neighboring faces.
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2.2.2 Interface tracking procedure

The interface tracking procedure for the sharp interface in a two-phase fluid flow is implemented
in OpenFOAM after the work of Tukovic and Jasak 2012 [5] and is an extension of the work of
Muzaferija and Perić 1997 [6]. The basis of the algorithm is the kinematic condition in Eq. 2.6. A
schematic of the procedure is schown in Figure 2.2.

In order to realize the interface tracking technique, when there is a free surface that moves with
a fluid velocity of u, the corresponding mesh has to move with an identical velocity v, meaning

vf = uf . (2.22)

By multiplying both sides of the equation with the face area Sf , a relation between the volume face

flux V̇ , that is, the rate of change of the cell volume between two-time steps due to the face moving
and the mass flux through the face ṁf for each cell on the free surface is given by

V̇f = Sf · vf = Sf · uf =
mf

ρf
. (2.23)

The mass flux mf through the face f on the boundary is calculated at the end of the PISO algorithm
in the corrector step, where the velocity and face flux fields are corrected. In general, these mass
fluxes will not be zero due to the prescribed boundary conditions, and the volume flux has to be
corrected to satisfy Eq. 2.23. As shown by Tukovic and Jasak 2012 [5], this is accomplished by
introducing a volume flux correction as

V̇ ′
f =

mf

ρf
− V̇f . (2.24)

With this volume flux correction V̇ ′
f , the required absolute change in the cell volume δV ′

f can be
calculated with

δV ′
f = CddtV̇

′
f∆t, (2.25)

where Cddt is a constant that depends ont the time differencing scheme. For an Euler differencing
scheme this constant is Cddt =

2
3 . The required displacement of the face δh′f can be calculated using

Eq. 2.25, the face area Sf and face normal vector nf as

δh′f =
δV ′

f

Sfnf · df
. (2.26)

The motion direction vector df can be used to restrict the mesh motion direction. According to
Muzaferija and Perić 1997 [6], the motion direction vector should be as parallel as possible to the
effective force acting on the surface, for example, in the direction of the gravitational vector g. If
there is no clear preferred direction or in the case of a closed free surface, the mesh motion direction
can be equal to the surface normal vector of the previous time step (df = nf ).

The direct displacement of the mesh points with Eq. 2.26 does not guarantee a smooth surface.
The interface point displacement is therefore calculated based on the procedure in Muzaferija and
Perić 1997 [6], where instead control points rf are used that are attached on top of the centroid
at xf of each face (see Figure 2.2). The corrected position of the control points is calculated with
Eq. 2.26 according to

rf = xf + δh′fdf . (2.27)

In other words, first, each surface is shifted from its initial position by a distance δh′f in the direction
of df , so that the volume of the prism formed with Sf equals the change δV ′

f . The grid point
adjustment is then calculated based on the position of the control points of neighboring faces using
the least squares method [5]. In two dimensions, this is reduced to linear interpolation. Figure 2.2
shows the procedure in two dimensions.
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Figure 2.2: The motion direction of the interface points is either in direction of di (specified by
the user) or ni. The control points start in the face center; mirror points are placed outside of the
boundary. Control points are then moved according to Eq. 2.27. The displacement of the interface
points is calculated using adjacent control points.
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2.3 Contact angle boundary condition with pressure force

In a two-dimensional case, i.e., a one-dimensional curvature, the curvature calculated in Eq. 2.21 is
reduced to

κf =
1

R′
f

, (2.28)

where the curvature radius R′
f is the radius of a circle drawn through the face center of interest and

its two neighboring face centers. At the boundaries, this circle would go through the boundary face
center, its inner neighbor, and the mirror face center outside the region (see Figure 2.3b). It follows
that the pressure boundary condition in Eq. 2.13 can be expressed for each face f as

pf = pa − ρg · xf − 2η
(
∇̄ · uf

)
− σ

1

R′
f

. (2.29)

The value pa can be seen as the pressure of the surrounding fluid or as an unknown in the pressure
jump condition. The pressure pa might also include an arbitrary pressure level pgconst from the hydro-
static pressure, which depends on the reference point of the coordinate xf and has no influence on
the flow itself. By introducing the gauge pressure p0 = pa + pgconst, the unknown value of the gauge
pressure can be used to introduce an additional geometric boundary condition on the free surface [10].

At a liquid-vapor-solid triple point, the contact angle θ is formed between these boundaries, as
seen in Figure 2.3c. In the case described in Figure 1.1, this corresponds to the constant growth angle
at the fixed external triple point and a constant crystal diameter. From Figure 2.3c it follows, that
the curvature at the boundary point BP can be expressed through a circle with a radius, such that
its tangent at BP makes the angle θ with the vertical and the circle goes through both vertices of the
boundary face. The curvature can be expressed from geometric considerations following Ratnieks
2007 [10] as

1

R′
BP

=
2 sin (θ − α1)

L1
, (2.30)

where α1 is the current angle of the first face and L1 is its length in the tangential direction. The
total pressure at this face has to satisfy the Eq. 2.29 with the curvature calculated in Eq. 2.30. The
pressure jump at this point can be calculated as

pBP = p0 − ρg · xBP − 2η
(
∇̄ · uBP

)
− σ

1

R′
BP

, (2.31)

which can be interpreted as a pressure force, or gauge pressure acting on the free surface to reach
the desired contact angle.
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(a) Curvature at the first face center f1

(b) Curvature at the first face center f1

(c) curvature at the boundary point BP, defined by
contact angle θ

Figure 2.3: Discretized free surface and curvature radii at the first face center and the first boundary
point in two dimensions.
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Chapter 3

Implementation of interface
tracking in OpenFOAM

The theory described in Chapter 2 is common to both the InterfaceTrackingFvMesh library in
OpenFOAMand also by the interTrackFoam solver in foam-extend. This chapter focuses on the
implementation in OpenFOAM. First, the solution procedure is presented in a concise manner in
Section 3.1 and some of the differences between the OpenFOAM and the foam-extend implementation
are discussed in Section 3.2. Next, an overview of the library and its files are given in Section 3.3.
The implementation of the boundary conditions is described in Section 3.4. Lastly, in Section 3.5,
the interFaceTrackingFvMesh class and some relevant functions are described.

3.1 Solution procedure

The mathematical models and numerical methods shown in Chapter 2 are implemented in Open-
FOAM using the dynamic motion library interfaceTrackingFvMesh that is called in the outer
PIMPLE iteration. The procedure of one the outer iteration together with interface tracking is as
follows:

1. Start dynamic mesh motion

(a) Update displacement direction df , mesh Courant number, transport properties and cur-
vature κ

(b) Interface Tracking procedure (see Section 2.2.2)

i. Calculate the necessary cell volume change correction δV̇ ′
f to account for current

relative flux through the interface cells (Eq. 2.25)

ii. Calculate the required displacement δḣ′f (Eq. 2.26, define the controlPoints and

move them by δḣ′f (Eq. 2.27)

iii. If a contact angle θC is specified: rotate the face-normal vector of the faces adjacent
to the edges, where the contact angle is specified

iv. Calculate patchMirrorPoints mirroring controlPoints for boundary mesh points
with neighboring face normal vectors (see Section 3.5.6.2)

v. Do a least-squares plane fit (or linear interpolation for a two-dimensional case) for
each mesh point using controlPoints and patchMirrorPoints and calculate the
displacement of free surface mesh points (see Figure 2.2)

(c) Displacement of the inner mesh with mesh motion solver. The displacement of the inter-
face points is used as boundary conditions for the solution of the mesh motion problem

2. Update the pressure (Eq. 2.13) and velocity (Eq. 2.12) boundary conditions with the discretiza-
tion methods described in 2.2.1
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3. Assemble the discretised momentum Eq. 2.2, solve for ut using the pressure pt−1 and the mass
fluxes ṁt−1 on the new interface shape

4. Do at least 2 PISO iteration loops

5. Calculate new mass fluxes through the faces at the interfaces and restart the outer loop at
point 1 if the number of outer correction loops is not reached.

An issue with this implementation is, that it is not checked if Eq. 2.23 is satisfied and the net
mass flux through the free surface is converged to a small value. For a sufficient number of outer
correction loops, this value converges to zero according to Muzaferija and Perić 1997 [6], but there
is no convergence criterion implemented.

3.2 Differences between the interfaceTrackingFvMesh library
and the interTrackFoam solver

The differences between the interfaceTrackingFvMesh library and the interTrackFoam solver in
foam-extend-4.1 are mainly structural differences in the implementation. interfaceTrackingFvMesh
is a motion solver library that inherits from dynamicMotionSolverFvMesh and includes the free
surface boundary conditions for p and u. The library can be used with any fluid solver, e.g.,
pimpleFoam. interTrackFoam is a solver with a modified PIMPLE algorithm described in Tukovic
and Jasak 2012 [5]. It uses the freeSurface library with the freeSurface class, which is similar
to the interfaceTrackingFvMesh described in this project, and the boundary conditions. Some
major differences are that interTrackFoam can solve for the fluids on both sides of the interfaces,
but it does not include a contact angle condition.

3.3 File structure

All files mentioned in this chapter are in reference to the directory

$FOAM_SCR/dynamicFaMesh/interfaceTrackingFvMesh.

The files contained in this directory are listed here:

interTrackingFvMesh directory

1 Make

2 files

3 options

4 boundaryProcessorFaPatchPoints.H

5 freeSurfacePointDisplacement.C

6 functionObjects

7 pointHistory

8 pointHistory.C

9 pointHistory.H

10 writeFreeSurface

11 writeFreeSurface.C

12 writeFreeSurface.H

13 fvPatchFields

14 freeSurfacePressure

15 freeSurfacePressureFvPatchScalarField.C

16 freeSurfacePressureFvPatchScalarField.H

17 freeSurfaceVelocity

18 freeSurfaceVelocityFvPatchVectorField.C

19 freeSurfaceVelocityFvPatchVectorField.H

20 interfaceTrackingFvMesh.C

21 interfaceTrackingFvMesh.H

22 solveBulkSurfactant.H

23 surfactantProperties.H
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In the interfaceTrackingFvMesh.* files the actual interfaceTrackingFvMesh class is defined.
The file freeSurfacePointDisplacement.C includes additional member functions for the
interfaceTrackingFvMesh class that handle the actual point displacement calculations described
in Section 2.2.2. The freeSurfacePressure and freeSurfaceVelocity classes contain the def-
initions of the pressure boundary condition (see Eq. 2.13) and velocity boundary condition (see
Eq. 2.12), respectively. In the file surfactantProperties.H, the surfactantProperties class is
declared. This class handles different properties of surfactants on the surface and their effect on
the surface tension. The solveBulkSurfactant.H file solves for the surfactant concentration on the
surface and is included in the interfaceTrackingFvMesh.C file. The function object pointHistory
can be used to track the absolute position of a point on the free surface, while the function object
writeFreeSurface can be used to write the locations of the control points to a vtk file.

3.4 Boundary conditions in fvPatchFields

The classes for the pressure and velocity boundary conditions are inside the fvPatchField di-
rectory. Both boundary conditions inherit from the classes fixedValueFvPatchScalarField and
fixedValueFvPatchVectorField respectively and use functions from the interfaceTrackingFvMesh
class.

3.4.1 freeSurfacePressure

This boundary condition calculates the surface pressure jump in Eq. 2.13 and sets the pressure
boundary condition. This is done in the updateCoeffs() function of the class:

freeSurfacePressureFvPatchScalarField.C

140 void Foam::freeSurfacePressureFvPatchScalarField::updateCoeffs()

141 {

142 if (updated())

143 {

144 return;

145 }

146

147 const fvMesh& mesh = patch().boundaryMesh().mesh();

148

149 interfaceTrackingFvMesh& itm =

150 refCast<interfaceTrackingFvMesh>

151 (

152 const_cast<dynamicFvMesh&>

153 (

154 mesh.lookupObject<dynamicFvMesh>("fvSolution")

155 )

156 );

157

158 operator==

159 (

160 pa_ + itm.freeSurfacePressureJump()

161 );

162

163 fixedValueFvPatchScalarField::updateCoeffs();

164 }

The first if statement makes sure that the matrix coefficients are updated only once. Next, an object
containing a constant reference to the boundary mesh is created. In the following lines, the current
object itm of the interfaceTrackingFvMesh class is created. This enables access to functions and
data of the object. The actual pressure at the boundary is specified in line 160. pa_ is an externally
applied pressure, specified in the boundary condition dictionary. freeSurfacePressureJump is a
member function of the interfaceTrackingFvMesh class and is described in Section 3.5.3
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3.4.2 freeSurfaceVelocity

This boundary condition calculates and sets the velocity gradient boundary condition according to
Eq. 2.12. This is done in the updateCoeffs() function of the class:

freeSurfaceVelocityFvPatchVectorField.C

90 void Foam::freeSurfaceVelocityFvPatchVectorField::updateCoeffs()

91 {

92 if (updated())

93 {

94 return;

95 }

96

97 const fvMesh& mesh = patch().boundaryMesh().mesh();

98

99 interfaceTrackingFvMesh& itm =

100 refCast<interfaceTrackingFvMesh>

101 (

102 const_cast<dynamicFvMesh&>

103 (

104 mesh.lookupObject<dynamicFvMesh>("fvSolution")

105 )

106 );

107

108 gradient() = itm.freeSurfaceSnGradU();

109

110 fixedGradientFvPatchVectorField::updateCoeffs();

111 }

Here again, first an object of the interfaceTrackingFvMesh class is constructed (see Section 3.5.2).
The applied gradient is calculated by the freeSurfaceSnGradU member function of the
interfaceTrackingFvMesh class and is described in Section 3.5.5

3.5 interfaceTrackingFvMesh class

This class handles the interface tracking, displacement calculation, varying surface tension forces,
and calculations needed for the free surface boundary conditions. This class inherits from the
dynamicMotionSolverFvMesh class. In short, the necessary displacement of the free surface bound-
ary is calculated and supplied to the dynamicMotionSolverFvMesh class as a boundary condition
for the mesh motion problem of the entire mesh.

In the following sections, the class’s member data and constructor are described as well as the
most important functions:

• freeSurfacePressureJump(): Return free surface pressure jump

• freeSurfaceSnGradUn(): Return free surface normal derivative of the normal velocity com-
ponent

• freeSurfaceSnGradU(): Return free surface normal derivative of velocity

• pointDisplacement(): Calculate free surface points displacement for given new control points
position

• maxCourantNumber(): Calculates the maximal surface tension based Courant number

• update(): Update the mesh for both mesh motion and topology change. This is the function
called by the top-level solver when using the library

How member data is accessed and handled is described later, in Section 5.3, where a new variable
is implemented.
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3.5.1 interfaceTrackingFvMesh.H

The class uses the following header files:

• dynamicMotionSolverFvMesh.H: includes the dynamicMotionSolverFvMesh class, which is a
subclass of the dynamicFvMesh class and the superclass of interfaceTrackingFvMesh. In this
class the motion of the mesh is solved by specifying a boundary condition and a diffusivity
model. For more information on the dynamicFvMesh and dynamicMotionSolverFvMesh class
the reader is referred to another project by Larsen 2016 [11]

• regIOobject.H: includes the abstract class regIOobject derived from the IOobject class.
This object can handle automatic object registration with the objectRegistry.

• faCFD.H: This file includes, similarly to fvCFD.H, all necessary class declarations and methods
for the Finite-Area-Method

• volFields.H: Volume fields are also needed for some fields, despite the FAM formulation

• surfaceFields.H: This includes the surfaceFields templated class that defines fields on
surfaces similar to the volFields templated class

• surfactantProperties.H: This file includes the surfactantProperties which handles dif-
ferent properties of surfactants on the surface and their effect on the surface tension

• singlePhaseTransportModel.H: This file is needed to include a single-phase transport model
based on the viscosityModel class

• demandDrivenData.H: This file includes the template functions to aid in the implementation
of demand-driven data.

The member data included in this class is listed in the Table A.1. All member data in this class
is private. The file furthermore includes the declaration of constructors for this class, some private
member functions, some public member functions to return references to private member data and
some additional public member functions. All relevant member functions will be discussed in the
following sections together with their definition.

3.5.2 interfaceTrackingFvMesh constructor

The object constructor is declared as:

interfaceTrackingFvMesh.H: constructor declaration

253 //- Construct from IOobject

254 interfaceTrackingFvMesh(const IOobject& io, const bool doInit=true);

Here, the object is constructed from an IOobject and also takes a boolean variable doInit. This
flag controls if the init() function should also be called in the constructor. In the definition of the
constructor default values for the member data are set and the init() function is called:

interfaceTrackingFvMesh.C: constructor definition

1554 Foam::interfaceTrackingFvMesh::interfaceTrackingFvMesh

1555 (

1556 const IOobject& io,

1557 const bool doInit

1558 )

1559 :

1560 dynamicMotionSolverFvMesh(io, doInit),

1561 aMeshPtr_(nullptr),

1562 fsPatchIndex_(-1),

1563 fixedFreeSurfacePatches_(),

1564 nonReflectingFreeSurfacePatches_(),

1565 pointNormalsCorrectionPatches_(),
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1566 normalMotionDir_(false),

1567 motionDir_(Zero),

1568 smoothing_(false),

1569 pureFreeSurface_(true),

1570 rigidFreeSurface_(false),

1571 correctContactLineNormals_(false),

1572 sigma0_("zero", dimForce/dimLength/dimDensity, Zero),

1573 rho_("one", dimDensity, 1.0),

1574 timeIndex_(-1),

1575 UsPtr_(nullptr),

1576 controlPointsPtr_(nullptr),

1577 motionPointsMaskPtr_(nullptr),

1578 pointsDisplacementDirPtr_(nullptr),

1579 facesDisplacementDirPtr_(nullptr),

1580 fsNetPhiPtr_(nullptr),

1581 phisPtr_(nullptr),

1582 surfactConcPtr_(nullptr),

1583 bulkSurfactConcPtr_(nullptr),

1584 surfaceTensionPtr_(nullptr),

1585 surfactantPtr_(nullptr),

1586 contactAnglePtr_(nullptr)

1587 {

1588 if (doInit)

1589 {

1590 init(false); // do not initialise lower levels

1591 }

1592 }

The init() function is located in the file interfaceTrackingFvMesh.C. Here, first, the object
is constructed from its superclass dynamicMotionSolverFvMesh, if specified by init flag (true by
default), which also constructs the pointer to the motionSolver object. The aMeshPtr_ is (re)set to
the finite area mesh of the current object. Next, the variables are read from the dynamicMeshDict.
Variables read with get are mandatory, while variables read with getOrDefault are set to a default
value if not specified:

interfaceTrackingFvMesh.C: init function

1662 bool Foam::interfaceTrackingFvMesh::init(const bool doInit)

1663 {

1664 if (doInit)

1665 {

1666 dynamicMotionSolverFvMesh::init(doInit);

1667 }

1668

1669 aMeshPtr_.reset(new faMesh(*this));

1670

1671 // Set motion-based data

1672 fixedFreeSurfacePatches_ =

1673 motion().get<wordList>("fixedFreeSurfacePatches");

1674

1675 pointNormalsCorrectionPatches_ =

1676 motion().get<wordList>("pointNormalsCorrectionPatches");

1677

1678 normalMotionDir_ = motion().get<bool>("normalMotionDir");

1679 smoothing_ = motion().getOrDefault("smoothing", false);

1680 pureFreeSurface_ = motion().getOrDefault("pureFreeSurface", true);

1681

1682 initializeData();

1683

1684 return true;

1685 }

The initializeData() function is called, which is located in interfaceTrackingFvMesh.C as well
(lines 75-127). In this function, some additional member data is initialized and checked, the vector
for the required motion direction is read, if normalMotionDir was set to false. Additionnally,
the function makeContactAngle is called (located in lines 531-630), which reads the contactAngle
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boundary conditions, from the current time directory (i.e., 0/contactAngle), if present. This is the
function that creates the contactAnglePtr_:

3.5.3 freeSurfacePressureJump() function

This member function returns the free pressure jump to be used in the boundary condition
freeSurfacePressure (see Section 3.4.1) and is defined as follows:

interfaceTrackingFvMesh.C: freeSurfacePressureJump()

1874 Foam::tmp<scalarField>

1875 Foam::interfaceTrackingFvMesh::freeSurfacePressureJump()

1876 {

1877 auto tPressureJump = tmp<scalarField>::New(aMesh().nFaces(), Zero);

1878 auto& pressureJump = tPressureJump.ref();

1879

1880 const scalarField& K = aMesh().faceCurvatures().internalField();

1881

1882 const uniformDimensionedVectorField& g =

1883 meshObjects::gravity::New(mesh().time());

1884

1885 const turbulenceModel& turbulence =

1886 mesh().lookupObject<turbulenceModel>("turbulenceProperties");

1887

1888 scalarField nu(turbulence.nuEff(fsPatchIndex()));

1889

1890 pressureJump =

1891 - (g.value() & mesh().Cf().boundaryField()[fsPatchIndex()])

1892 + 2.0*nu*freeSurfaceSnGradUn();

1893

1894 if (pureFreeSurface())

1895 {

1896 pressureJump -= sigma().value()*K;

1897 }

1898 else

1899 {

1900 pressureJump -= surfaceTension().internalField()*K;

1901 }

1902

1903 return tPressureJump;

1904 }

In this function, first, the necessary fields are created: the curvature κ is calculated in line 1880 from
the area mesh aMesh, the gravitational acceleration g is read, and the viscosity ν is calculated based
on the turbulence model. The pressure jump is then calculated either with a constant surface tension
σ, if the surface should be pure, or with a variable surface tension reurned by surfaceTension().
The body force g · xf , where xf are the positions of the face centres returned by

mesh().Cf().boundaryField()[fsPatchIndex()],

is subtracted, since the specified pressure pa_ is only a static pressure. The equation for the pressure
jump is already very reminiscent of Eq. 2.13.

3.5.4 freeSurfaceSnGradUn()

This function calculates the surface divergence of the surface velocity (∇̄ ·u) The code is as follows:

interfaceTrackingFvMesh.C: freeSurfaceSnGradUn()

1857 Foam::interfaceTrackingFvMesh::freeSurfaceSnGradUn()

1858 {

1859 auto tSnGradUn = tmp<scalarField>::New(aMesh().nFaces(), Zero);

1860 auto& SnGradUn = tSnGradUn.ref();

1861

1862 areaScalarField divUs
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1863 (

1864 fac::div(Us())

1865 - aMesh().faceCurvatures()*(aMesh().faceAreaNormals()&Us())

1866 );

1867

1868 SnGradUn = -divUs.internalField();

1869

1870 return tSnGradUn;

1871 }

First, a pointer to a scalarField of the size of the area mesh is created together with its reference.
divUs is the surface divergence of the surface velocity, calculated with Eq. 2.15. It can be seen
that fac::div(Us()) returns the first term on the right side and the correction needed due to a
surface curvature is done in line 1865. Since this term is subtracted in the pressure jump, but in
freeSurfacePressureJump() the term is added, the function returns the negative value.

3.5.5 freeSurfaceSnGradU

This member function returns the free surface normal derivative of velocity to be used in the bound-
ary condition freeSurfaceVeloctityFvPatchVectorField.C (see Section 3.4.2). The code is as
follows:

interfaceTrackingFvMesh.C: freeSurfaceSnGradU

1813 Foam::tmp<Foam::vectorField>

1814 Foam::interfaceTrackingFvMesh::freeSurfaceSnGradU()

1815 {

1816 auto tSnGradU = tmp<vectorField>::New(aMesh().nFaces(), Zero);

1817 auto& SnGradU = tSnGradU.ref();

1818

1819 const vectorField& nA = aMesh().faceAreaNormals().internalField();

1820

1821 areaScalarField divUs

1822 (

1823 fac::div(Us())

1824 - aMesh().faceCurvatures()*(aMesh().faceAreaNormals()&Us())

1825 );

1826

1827 areaTensorField gradUs(fac::grad(Us()));

1828

1829 // Remove component of gradient normal to surface (area)

1830 const areaVectorField& n = aMesh().faceAreaNormals();

1831 gradUs -= n*(n & gradUs);

1832 gradUs.correctBoundaryConditions();

1833

1834 const turbulenceModel& turbulence =

1835 mesh().lookupObject<turbulenceModel>("turbulenceProperties");

1836

1837 scalarField nu(turbulence.nuEff(fsPatchIndex()));

1838

1839 vectorField tangentialSurfaceTensionForce(nA.size(), Zero);

1840

1841 if (!pureFreeSurface() && max(nu) > SMALL)

1842 {

1843 tangentialSurfaceTensionForce =

1844 surfaceTensionGrad()().internalField();

1845 }

1846

1847 SnGradU =

1848 tangentialSurfaceTensionForce/(nu + SMALL)

1849 - nA*divUs.internalField()

1850 - (gradUs.internalField()&nA);

1851

1852 return tSnGradU;

1853 }

24



3.5. interfaceTrackingFvMesh class Chapter 3. Implementation in OpenFOAM

The final gradient can be seen on lines 1847-1850 and resembles Eq. 2.12. The term
tangentialSurfaceTensionForce is 0 for pure surfaces or calculated in surfaceTensionGrad and
divUs is calculated as in 3.5.4. The surface gradient of Us is calculated as only the tangential part
of the gradient on the surface. As a note, this is the same as the surface gradient defined in 2.8. In
the code, gradUs=̂∇′us is calculated as follows and can be rearranged to show the surface gradient
operator defined in Eq. 2.8:

∇′us = ∇us − nf (nf · ∇us) = (∇− nf (nf · ∇))us = ((I − nfnf ) · ∇)us = ∇̄us (3.1)

3.5.6 pointDisplacement() function in freeSurfacePointDisplacement.C

The pointDisplacement() function is located in the file freeSurfacePointDisplacement.C. This
function calculates the displacement of the free surface points for given control points (the last step
in figure 2.2) together with the lsPlanePointAndNormal function. The largest part of the function
handles finding the corresponding controlPoints for each free surface point. controlPoints are
specified for each face on the free surface. For boundary points, additional patchMirrorPoints have
to be specified. The free surface points are split into four categories:

1. Inner points are the internal points of the aMesh and can be accessed with

53 labelList internalPoints = aMesh().internalPoints();

The controlPoints for these points can be found by looping through the owning faces of a
point. The labeling of points to faces is handled by the variable

45 const labelListList& pointFaces = aMesh().patch().pointFaces();

which contains a list of all face labels of all points.

2. Boundary points are the points on the boundary of the aMesh. These points are shared with
other boundary fields. They can be accessed with

232 labelList boundaryPoints = aMesh().boundaryPoints();

The controlPoints of these points include the controlPoints of their inner faces and their
patchMirrorPoints, which are the controlPoints mirrored at the boundary edge (see fig-
ure 2.2).

3. Points on a processor patch. The controlPoints for these points have to be grabbed from
neighboring processor patches

4. Global processor patch points. The controlPoints for these points are either global points
themselves, or have to be accessed from other processor patches.

3.5.6.1 patchMirrorPoints

The patchMirrorPoints are calculated as follows:

87 // Mirror control points

88 FieldField<Field, vector> patchMirrorPoints(aMesh().boundary().size());

89

90 // Old faMesh points

91 vectorField oldPoints(aMesh().nPoints(), Zero);

92 const labelList& meshPoints = aMesh().patch().meshPoints();

93 forAll(oldPoints, pI)

94 {

95 oldPoints[pI] =

96 mesh().oldPoints()[meshPoints[pI]];

97 }

98

99 forAll(patchMirrorPoints, patchI)
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100 {

101 patchMirrorPoints.set

102 (

103 patchI,

104 new vectorField

105 (

106 aMesh().boundary()[patchI].faPatch::size(),

107 Zero

108 )

109 );

110

111 vectorField N

112 (

113 aMesh().boundary()[patchI].ngbPolyPatchFaceNormals()

114 );

115

116 const labelList& eFaces =

117 aMesh().boundary()[patchI].edgeFaces();

118

119 // Correct N according to specified contact angle

120 if (contactAnglePtr_)

121 {

197 }

198

199 const labelList peFaces =

200 labelList::subList

201 (

202 aMesh().edgeOwner(),

203 aMesh().boundary()[patchI].faPatch::size(),

204 aMesh().boundary()[patchI].start()

205 );

206

207 const labelList& pEdges = aMesh().boundary()[patchI];

208

209 vectorField peCentres(pEdges.size(), Zero);

210 forAll(peCentres, edgeI)

211 {

212 peCentres[edgeI] =

213 edges[pEdges[edgeI]].centre(points);

214 }

215

216 vectorField delta

217 (

218 vectorField(controlPoints(), peFaces)

219 - peCentres

220 );

221

222 // Info<< aMesh().boundary()[patchI].name() << endl;

223 // Info<< vectorField(controlPoints(), peFaces) << endl;

224

225 patchMirrorPoints[patchI] =

226 peCentres + ((I - 2*N*N)&delta);

227

228 // Info<< patchMirrorPoints[patchI] << endl;

229 }

The outer forAll loop loops through all free surface boundary patches (Remember: the fa-boundaries
of the free surface mesh are edges). The locations of the patchMirrorPoints are stored in a
FieldField<Field, vector>, meaning it is a field of the size of the total fa-boundary patches (4).
Each of these fields contains a number of vectors (coordinates) equal to the number of edges in that
fa-patch. Each edge on that fa-boundary has a neighboring face from another fv-boundary. The
face normals of these faces are stored in N. The next lines calculate the vectorField delta which
points from the edge center to the controlPoint of the inner face. This point is that mirrored at
the edge and written to patchMirrorPoints.
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3.5.6.2 patchMirrorPoints with specified contact angle

The code in lines 119-197 handles the contact angle boundary condition if specified in the current
time directory. The vector N, which is used for calculating the patchMirrorPoints, is rotated with
Rodriguez formula as

N rot = N cos θ + er (er ·N) (1− cos θ) + (er ×N) , (3.2)

with θ beeing the angle as seen in figure 1.1 and equal to 90 - contactAngle and er is the axis
of rotation. This is only done if the contactAnglePtr_ exists, the neighboring fv-Patch is of
type wall, and the contactAngle boundary is of type calculated. The location rPMP of the
patchMirrorPoints is then calculated with

rPMP = reC +
(
I − 2N rotN rot

)
· δ, (3.3)

where reC is the center of the edge, and δ is the vector pointing from the edge center to the
inner controlPoint. As can be seen from this formulation, the contact angle condition is applied
in an indirect way by setting the patchMirrorPoints, which in turn are used to calculate the
optimal displacement of the face centers. In the tutorial presented in Section 4 this contact angle
is not reached. It seems this condition is not strong enough; some alternative implementations are
discussed in Sections 5.5 and 5.5.
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Chapter 4

Tutorial Case

4.1 Description

This tutorial describes preparing and running a case using the interTrackFvMesh library and the
freeSurfaceVelocity and freeSurfacePressure boundary conditions. The tutorial case deals
with the formation of a free surface in a cavity with a specified contact angle. The top boundary
is the free surface, while for the other boundaries the slip condition is set. The results after a
simulation time of t = 0.2 s are shown in figure 4.1. The boundary with the freeSurface condition
is at the top, while the other boundaries are set to slip. The frontAndBack boundaries are type
empty. It should be noted that the freeSurface starts horizontally and, while it changes a bit over
time, it converges to the shown result. Since this report focuses on the free surface simulation, the
actual flow in the domain is not be shown.

4.2 Setup

In order to run this tutorial you can execute the following commands in your run directory:

cp -r $FOAM_TUTORIALS/incompressible/pimpleFoam/laminar/contactAngleCavity .

./Allrun

The tutorial can also be run with the accompanying files, including some post-processing:

cd contactAngleCavity

./Allrun

4.3 Files

The file structure of the case is as follows:

1 0.orig

2 U

3 contactAngle

4 p

5 pointMotionU

6 Allclean

7 Allrun

8 constant

9 dynamicMeshDict

10 g

11 transportProperties

12 turbulenceProperties

13 system

14 blockMeshDict
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15 controlDict

16 decomposeParDict

17 faMeshDefinition

18 faSchemes

19 faSolution

20 fvSchemes

21 fvSolution

This is in the standard OpenFOAM structure. Some additional files are faSolution, faSchemes,
faMeshDefinition, dynamicMeshDict and contactAngle. In order to use the
interFaceTrackingFvMesh library, it is included in the controlDict as

libs (interFaceTrackingFvMesh);

4.3.1 faMeshDefinition file

This file includes the definition of the finite-area-mesh. It has two subdictionaries polyMeshPatches
and boundary. In polyMeshPatches the name of the polyPatch that is converted to a FA-mesh is
provided. The boundary dictionary is similar to the one in a blockMeshDict, but here the defined
patches are boundaries of the FA-mesh, meaning they are the edges of the free surface. Additionally
the neighboring polyPatch has to be specified. In the below example the boundary left is created
and contains all the edges that are between the polyPatch top and the polyPatch left. By
running makeFaMesh in the terminal, the FA-mesh is created. This includes the files faBoundary

and faFaceLabels. faFaceLabels contains the poly patch face labels of the free surface boundary.
faBoundary contains the boundary mesh.

system/faMeshDefinition

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object faMeshDefinition;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 polyMeshPatches ( top );

18

19 boundary

20 {

21 left

22 {

23 type patch;

24 neighbourPolyPatch left;

25 }

26

27 right

28 {

29 type patch;

30 neighbourPolyPatch right;

31 }

32

33 frontAndBack

34 {

35 type empty;

36 neighbourPolyPatch frontAndBack;

37 }
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38 }

39

40

41 // ************************************************************************** //

4.3.2 faSolution file

This file is empty in this tutorial. It can include solution settings for transport equations that are
solved on the free surface, like a surfactant transport equation. This is done in another tutorial:

$FOAM_TUTORIALS/incompressible/pimpleFoam/laminar/contaminatedDroplet2D

4.3.3 faSchemes file

This file contains the numerical schemes used to discretize the operators on the FA-mesh. If the
surfactant transport equation is solved, additional divSchemes have to be specified.

4.3.4 dynamicMeshDict file

In this file, the settings for the dynamic mesh motion solver are set. First, the motionSolverLibs

are specified. The dynamicFvMesh is the class type of the dynamic mesh. In this case, it should be
of type interfaceTrackingFvMesh. The motionSolver and diffusivity settings are specifying
the type of motion solver.

dynamicMeshDict

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object dynamicMeshDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 motionSolverLibs (fvMotionSolvers interfaceTrackingFvMesh);

18

19 dynamicFvMesh interfaceTrackingFvMesh;

20

21 motionSolver velocityLaplacian;

22

23 diffusivity uniform; //onTimeChange inverseDistance 1(top);

24

25

26 // Free surface data

27

28 fsPatchName top;

29

30 fixedFreeSurfacePatches ( );

31

32 pointNormalsCorrectionPatches ();

33 // pointNormalsCorrectionPatches ( left right );

34

35 normalMotionDir false;

36

37 motionDir (0 1 0);

38
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39

40 // ************************************************************************* //

The settings for the interfaceTrackingFvMesh class are:

• fsPatchName: Name of free surface polyPatch

• fixedFreeSurfacePatches: Names of fixed free surfaces. Here a free surface patch can be
specified to not move

• pointNormalCorrectionPatches: Free surface patches for which point normals must be cor-
rected

• pointNormalCorrectionPatches: Free surface patches where a wave should not be reflected

• normalMotionDir:
true: motion is in point normal direction (see ni in figure 2.2)
false: motion is in direction of motionDir (see di in figure 2.2)

Additional entries are

• pureFreeSurface of type boolean. This is false by default. If set to true the surface
tension is dependent on the surfactant concentrations. The properties can be set in the
surfactantProperties dictionary as can be seen in

$FOAM_TUTORIALS/incompressible/pimpleFoam/laminar/contaminatedDroplet2D/\

constant/dynamicMeshDict

4.3.5 contactAngle file

In this file, the boundary condition for the contact angle is set. This angle is specified as the angle
between the free surface tangent and the wall. It is specified for the boundaries of the FA-mesh,
i.e., the edges of the free surface, denoted as left and right. The condition is activated if this file
exists.

contactAngle

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2112 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class areaScalarField;

13 object contactAngle;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 dimensions [0 0 0 0 0 0 0];

18

19 internalField uniform 0;

20

21 boundaryField

22 {

23 left

24 {

25 type calculated;

26 value uniform 70;

27 }
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28

29 right

30 {

31 type calculated;

32 value uniform 70;

33 }

34

35 frontAndBack

36 {

37 type empty;

38 }

39 }

40

41

42 // ************************************************************************* //

4.4 Results

Run the tutorial provided in the accompanying files by

cd contactAngleCavity

./Allrun

This includes a sample utility that writes out the free surface location and pressure values.
The resulting files in a one time directory are:

1 U_0

2 Uf

3 Uf_0

4 Us

5 V0

6 cellMotionU

7 contactAngle

8 controlPoints

9 freeSurfaceControlPoints.vtk

10 fsNetPhi

11 meshPhi

12 p

13 phi

14 pointMotionU

15 polyMesh/

16 uniform/

Some of those files are fields of the FA-mesh and can not be loaded into paraFoam. This is addressed
in a modification described in section 5.4. The file freeSurfaceControlPoints.vtk contains the
locations of the controlPoints. The actual free surface shape has to be extracted from the polyMesh
with foamToVTK, as seen in the Allrun script. Figure 4.2 shows the resulting free surface shape in
this tutorial. It should be noted that this shape results only from the contact angle condition.
There is no gravity. Figure 4.3 shows the point history of the two leftmost mesh points and the
contact angle calculated between the tangent formed by those points and the horizontal wall. The
set contact angle of 70 is not reached in this simulation, despite the boundary conditions, requiring
further investigations and possible modifications.
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Figure 4.1: Result of contactAngleCavity tutorial case with gravity after t = 0.2 s
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Figure 4.2: Resulting free surface shape of the contactAngleCavity tutorial case with after t = 0.2 s)
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Modifications

5.1 Handling the code

In order to use the developed code please download the accompanying files, and run

tar xf Report_IasonTsiapkinis.tar

cd Report_IasonTsiapkinis

./Allwmake

./Allrun

5.2 New case setup contactAngleColumn

A new test case was set up for testing and showing the implemented modifications, resembling the
process described in Figure 1.1 with a modified contactAngleCavity tutorial. In the new case, the

working fluid is silicon with a density of ρ = 2580 kg
m3 , kinematic viscosity of ν = 3.333 · 10−7 m2

s ,

surface tension of σ = 0.88N
m , and contact angle θ = 11◦. In this setup, gravity is included by adding

it in the constant/g file.

(a) Setup (b) Free surface shape

Figure 5.1: contactAngleColumn case for demonstrating the modifications

Run the case with the ./Allrun command and look at the results with paraFoam.
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5.3 Calculate face angles

This section describes how to calculate, store and access a new variable inside the library. The free
surface fields are handled with mutable pointers and accessed through public member functions of
that class. The value that should be calculated is the angle between each face and a direction, which
the user specifies as verticalDir in the dynamicMeshDict. Calculating these values helps with
checking the contact angle without additional and complicated post-processing. It is also needed
for the implementation of the pressure boundary conditions described in Section 5.6. The following
additional private member data needs to be declared in myInterfaceTrackingFvMesh.H, anywhere
before the public area:

• vector verticalDir_;: This is the vertical vector provided by the user for the calculation of
the face angle. It is provided in the dynamicMeshDictionary.

• mutable areaScalarField* faceAnglesPtr_;: This is the pointer to the face angle values

To access the user-defined variable verticalDir, it has to be added to the init() function as seen
below. By using getOrDefault, this variable is not necessarily required. The default value is a zero
vector, in which case the calculated face angles will also be all zero.

1729 verticalDir_ = normalised(motion().getOrDefault<vector>("verticalDir",Zero));

Additionally, the member data verticalDir_ has to be added to the constructor (see line 1610).
Additionally the following private member functions need to be declared in the file

interfaceTrackingFvMesh.H, again, anywhere before the public area:

• void makeFaceAngles() const; This function creates the field to store the face angles

• void updateFaceAngles(): This function calculates the face angles and updates them

In order to access the field, two public member functions are declared:

• const areaScalarField& faceAngles() const;: This function returns a constant reference
to the faceAnglesPtr_ field

• areaScalarField& faceAngles();: This function returns a reference to the faceAnglesPtr_
field

The member functions are defined in myInterfaceTrackingFvMesh.C. The two functions named
faceAngles() return either a constant reference or a reference to an areaScalarField. If it does
not exist, they also create the pointer by calling the makeFaceAngles() function. These are the
functions that should be called to return the face angle field.

interfaceTrackingFvMesh.C - faceAngles() member function

1780 Foam::areaScalarField& Foam::myInterfaceTrackingFvMesh::faceAngles()

1781 {

1782 if (!faceAnglesPtr_)

1783 {

1784 makeFaceAngles();

1785 }

1786

1787 return *faceAnglesPtr_;

1788 }

1789

1790

1791 const Foam::areaScalarField& Foam::myInterfaceTrackingFvMesh::faceAngles() const

1792 {

1793 if (!faceAnglesPtr_)

1794 {

1795 makeFaceAngles();

1796 }

1797

1798 return *faceAnglesPtr_;

1799 }
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In the makeFaceAngles() function, a new areaScalarField object is created as an IOobject,
which is in turn set to AUTO_WRITE to be written together with the other variables. The object is
assigned to the pointer faceAnglesPtr_. This function also makes sure, that the allocation happens
only once and prints additional information.

interfaceTrackingFvMesh.C - makeFaceAngles() member function

284 void Foam::myInterfaceTrackingFvMesh::makeFaceAngles() const

285 {

286 DebugInFunction

287 << "making surface face angles" << nl;

288

289 if (faceAnglesPtr_)

290 {

291 FatalErrorInFunction

292 << "surface face angles already exists"

293 << abort(FatalError);

294 }

295

296 Info<< "Making surface face angles" << endl;

297

298 faceAnglesPtr_ = new areaScalarField

299 (

300 IOobject

301 (

302 "faceAngles",

303 mesh().time().timeName(),

304 mesh(),

305 IOobject::NO_READ,

306 IOobject::AUTO_WRITE

307 ),

308 aMesh(),

309 dimensionedScalar(Zero)

310 );

311 }

The updateFaceAngles() calculates the current face angles and ensures that the field is only
updated when specified and not every time the face angle is called. It is added in the update()

function of the class after the call of the updateProperties() function. The angles are calculated
between the face-normal vector Nf of each face and the direction verticalDir_ specified by the
user by taking the inner product of these two vectors and calculating the angle between them. The
result is in degrees. The sign of the angle is set to the sign of the curvature.

interfaceTrackingFvMesh.C - updateFaceAngles() member function

660 void Foam::myInterfaceTrackingFvMesh::updateFaceAngles()

661 {

662 // Calculate local angle of face

663 const vectorField& Nf = aMesh().faceAreaNormals().internalField();

664

665 forAll(faceAngles(), faceI)

666 {

667 faceAngles()[faceI] = 90 - radToDeg(acos((Nf[faceI]&verticalDir_)));

668 faceAngles()[faceI] *= sign(aMesh().faceCurvatures()[faceI]);

669 }

670 }

5.4 Write out additional surface data

The areaFields written to the time directories are not picked up by paraFoam. The writeVTK()

function in the file interfaceTrackingFvMesh.C is expanded into writing out the free surface ge-
ometry and some of the fields. The type of the writer object needs to be changed to be able to
write out areaFields to vtk format.

36



5.5. New contact angle condition inside pointDisplacement Chapter 5. Modifications

interfaceTrackingFvMesh.C - writeVTK() member function

2450 void Foam::myInterfaceTrackingFvMesh::writeVTK() const

2451 {

2452 // GenericPatchGeoFieldsWriter<uindirectPrimitivePatch>

2453 vtk::GenericPatchGeoFieldsWriter<uindirectPrimitivePatch> writer

2454 (

2455 aMesh().patch(),

2456 vtk::formatType::LEGACY_ASCII,

2457 mesh().time().timePath()/"freeSurface",

2458 false // serial only

2459 );

2460 writer.writeGeometry();

2461 writer.beginCellData(3);

2462 writer.write(Us());

2463 writer.write(fsNetPhi());

2464 writer.write(aMesh().faceCurvatures());

2465 writer.write(faceAngles());

2466 }

This function is called in the writeFreeSurface functionObject after the call to
itm.writeVTKControlPoints();:

itm.writeVTKControlPoints();

itm.writeVTK();

It can be added to the system/controlDict.functionObjects as

writeFreeSurface

{

type writeFreeSurface;

}

The file freeSurface.vtk, which includes the above fields, is written in each time directory and can
be imported into ParaView. Figure 5.2 shows the face curvatures and angles loaded into ParaView
through the freeSurface.vtk file of the last time step. It is the same free surface as in Figure 5.1b.
Creating these files and writing out the fields enables easier post-processing.

Figure 5.2: Face curvature and face angles loaded into ParaView through freeSurface.vtk

5.5 New contact angle condition inside pointDisplacement

In this section, a new condition to calculate the controlPoints at a patch, with a specified contact
angle, is proposed and implemented inside the pointDisplacement() function. The following code
is added after the calculation of delta:
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pointDisplacement()— in freeSurfacePointDisplacement.C

234 if (contactAnglePtr_)

235 {

236 label ngbPolyPatchID =

237 aMesh().boundary()[patchI].ngbPolyPatchIndex();

238 if

239 (

240 mesh().boundary()[ngbPolyPatchID].type()

241 == wallFvPatch::typeName

242 &&

243 contactAnglePtr_->boundaryField()[patchI].type()

244 == "fixedValue"

245 )

246 {

247 forAll(peCentres, edgeI)

248 {

249 controlPoints()[eFaces[edgeI]] = peCentres[edgeI]

250 - ((-1*N[edgeI])&delta[edgeI])*N[edgeI];

251 }

252 }

253 }

The new type fixedValue for the contactAngle can be specified in the 0/contactAngle file. The
forAll loop goes through all edges on the current FA-Patch. The new controlPoints are placed
such that the angle between δ = rCP − reC and the adjacent wall is equal to the contact angle.
The vector delta points from the edge center to the control point and is calculated previously (see
Section 3.5.6.1) by using the normal vector N, which was already rotated by the contactAngle (see
Section 3.5.6.2). This is analogous to the calculation of the patchMirrorPoints, albeit here, the
inner control points are set in order to satisfy the angle. This ensures that for the face at a bound-
ary, the patchMirrorPoint, the edge center, and the controlPoint are on one line (this yields
the configuration on the right boundary of Figure 2.2 (top). The angle between this line and the
neighboring wall is the contactAngle as shown in Figure 2.3c.

It is not always desired to specify a contact angle at every boundary. Adding the 0/contactAngle
file to a simulation requires the user to supply a contactAngle for every FA-patch. Adding an if-
statement (as seen in the code below), such that N is only rotated for these two types, allows
the user to specify another type, e.g., type zeroGradient. For this FA-Patch type, there will
be no calculations based on a contact angle. Therefore, the following types are available in the
0/contactAngle file:

• type calculated: uses the default calculation explained in Section 2.3

• type fixedValue: uses the calculation explained in this Section

• type zeroGradient: no contact angle calculation is done at this FA-Patch

pointDisplacement() in freeSurfacePointDisplacement.C

120 if (contactAnglePtr_)

121 {

122 label ngbPolyPatchID =

123 aMesh().boundary()[patchI].ngbPolyPatchIndex();

124

125 if (ngbPolyPatchID != -1)

126 {

127 if

128 (

129 mesh().boundary()[ngbPolyPatchID].type()

130 == wallFvPatch::typeName

131 &&

132 (

133 contactAnglePtr_->boundaryField()[patchI].type()

134 == "fixedValue"
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135 ||

136 contactAnglePtr_->boundaryField()[patchI].type()

137 == "calculated"

138 )

139 )

Figure 5.3 shows the contact angle and the free surface shape of the cavity tutorial case from
Chapter 4 with a fixed contact angle of 70◦ and for the three different boundary conditions. The
fixedGradient condition works as intended, i.e., the code setting the contactAngle is skipped. The
new type fixedValue condition performs worse than the default type calculated and requires
further development.
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Figure 5.3: contactAngleCavity case with a contact angle of 70◦ and for the three contact angel
boundary condition types

5.6 Pressure boundary condition for constant contact angle

Implementing this boundary condition follows the theory described in Section 2.3. Start with the
existing freeSurfacePressure boundary condition and rename the files and the type name to
freeSurfaceContactAnglePressure:

cp -r fvPatchFields/freeSurfacePressure \

fvPatchFields/freeSurfaceContactAnglePressure

mv fvPatchFields/freeSurfaceContactAnglePressure/freeSurfacePressure.H \

fvPatchFields/freeSurfaceContactAnglePressure/freeSurfaceContactAnglePressure.H
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mv fvPatchFields/freeSurfaceContactAnglePressure/freeSurfacePressure.C \

fvPatchFields/freeSurfaceContactAnglePressure/freeSurfaceContactAnglePressure.C

sed -i "s/freeSurfacePressure/freeSurfaceContactAnglePressure/g"

\ freeSurfaceContactAnglePressure/*

Two additional variables need to be declared. contactAnglePatch_ is of type word and defines the
FA-patch, i.e., the edge, on which the contact angle should be applied. The variable contactAngle_
stores the desired contact angle in degrees. Both variables are declared as protected member data
in the file freeSurfaceContactAnglePressureFvPatchScalarField.H:

freeSurfaceContactAnglePressureFvPatchScalarField.H

89 class freeSurfaceContactAnglePressureFvPatchScalarField

90 :

91 public fixedValueFvPatchScalarField

92 {

93 protected:

94

95 // Protected data

96

97 //- Ambient pressure

98 scalarField pa_;

99

100 //- Name of fa boundary for contact angle condition

101 word contactAnglePatch_;

102

103 //- Desired contact angle

104 scalar contactAngle_;

The default values for the two variables are set in the first constructor in lines 48-49 of
freeSurfaceContactAnglePressureFvPatchScalarField.C. The second constructor reads the
boundary dictionary and checks if the contactAnglePatch_ is valid. In the updateCoeff seen
below, first, an object to the current interfaceTrackingFvMesh is created. This enables the use
of its function inside this boundary condition. In line 174, the ID for the contactAnglePatch_ is
searched for in the FA-mesh and written to patchI. In line 176 it is checked if the patchI is valid.
In lines 186-192, the face next to the contactAnglePatch_ is returned. The currentAngleDiff of
this face is then calculated. Next, the edge length Le is calculated using delta. The pressureForce
is calculated according to Eq. 2.30 in lines 218-219, and multiplied by the surface tension and added
to the pressureJump in lines 221-228 yielding Eq. 2.31.

updateCoeffs() in freeSurfaceContactAnglePressureFvPatchScalarField.C

156 void Foam::freeSurfaceContactAnglePressureFvPatchScalarField::updateCoeffs()

157 {

158 if (updated())

159 {

160 return;

161 }

162

163 const fvMesh& mesh = patch().boundaryMesh().mesh();

164

165 myInterfaceTrackingFvMesh& itm =

166 refCast<myInterfaceTrackingFvMesh>

167 (

168 const_cast<dynamicFvMesh&>

169 (

170 mesh.lookupObject<dynamicFvMesh>("fvSolution")

171 )

172 );

173

174 const label& patchI = itm.aMesh().boundary().findPatchID(contactAnglePatch_);

175 // fvPatch patch = this->patch();

176 if (patchI==-1)

177 {

178 FatalErrorInFunction
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179 << "contactAnglePatch '" << contactAnglePatch_

180 << "'in contactAnglePatch"

181 << " in p." << this->patch().name()

182 << "not found in faMesh"

183 << abort(FatalError);

184 }

185

186 const labelList peFaces =

187 labelList::subList

188 (

189 itm.aMesh().edgeOwner(),

190 itm.aMesh().boundary()[patchI].faPatch::size(),

191 itm.aMesh().boundary()[patchI].start()

192 );

193

194 const scalar currentAngleDiff(90-contactAngle_-itm.faceAngles()[peFaces[0]]);

195 Info << "Current faceAngle of faPatch '" << contactAnglePatch_

196 << "' of fvPatch '" << this->patch().name()

197 << "' = " << itm.faceAngles()[peFaces[0]]

198 << endl;

199

200 const pointField& points = itm.aMesh().patch().localPoints();

201 const edgeList& edges = itm.aMesh().patch().edges();

202 const labelList& pEdges = itm.aMesh().boundary()[patchI]; // the one edge

203 vectorField peCentres(pEdges.size(), Zero);

204 forAll(peCentres, edgeI)

205 {

206 peCentres[edgeI] =

207 edges[pEdges[edgeI]].centre(points);

208 }

209

210 scalarField pressureJump = itm.freeSurfacePressureJump();

211 vectorField delta

212 (

213 itm.aMesh().areaCentres().internalField()[peFaces[0]]

214 - peCentres

215 );

216 scalarField Le(2*mag(delta));

217

218 scalarField pressureForce(pressureJump.size(),

219 2/Le[0]*sin(currentAngleDiff*constant::mathematical::pi/180));

220

221 if (itm.pureFreeSurface())

222 {

223 pressureJump -= itm.sigma().value()*pressureForce;

224 }

225 else

226 {

227 pressureJump -= itm.surfaceTension().internalField()*pressureForce;

228 }

229

230 Info << "Current angle diff = " << currentAngleDiff

231 << "; Current curvature correction = "

232 << pressureForce[peFaces[0]]

233 << "; Current gauge pressure = "

234 << pressureJump[peFaces[0]]

235 << endl;

236

237 operator==

238 (

239 pa_ + pressureJump

240 );

241

242 fixedValueFvPatchScalarField::updateCoeffs();

243 }

244

245

246 void Foam::freeSurfaceContactAnglePressureFvPatchScalarField::write(Ostream& os) const
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247 {

248 fvPatchScalarField::write(os);

249 pa_.writeEntry("pa", os);

250 os.writeEntry("contactAnglePatch_", contactAnglePatch_);

The freeSurfaceContactAnglePressure boundary condition can be used in the case by select-
ing it in the file 0.orig/p and providing the contactAnglePatch and the desired contactAngle:

0.orig/p

23 top

24 {

25 type freeSurfaceContactAnglePressure;

26 pa uniform 0;

27 gaugePressurePatch right;

28 contactAngle 79;

29 }

Figure 5.4 shows the face angle at the specified gaugePressurePatch in comparison with the
default implementation of the contactAngle and without a specified contactAngle. The free surface
is almost exactly the same and all contact angles converge to a value of around 76◦. This hints at
an issue with contact angle conditions in general, when gravity is defining the shape.
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Figure 5.4: contactAngleColumn case with a desired contact angle of 79◦ and for the three boundary
condition types: (1) freeSurfaceContactAnglePressure boundary condition for the pressure (see
Section 5.6, (2) type calculated boundary condition for the contactAngle, i.e., with the default
code, and (3) no contactAngle file specified.
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[1] A. Muiznieks, J. Virbulis, A. Lüdge, H. Riemann, and N. Werner, “Floating Zone Growth of
Silicon,” in Handbook of Crystal Growth, pp. 241–279, Elsevier, 2015.

[2] V. N. Kurlov, S. N. Rossolenko, N. V. Abrosimov, and K. Lebbou, “Shaped Crystal Growth,”
in Crystal Growth Processes Based on Capillarity (T. Duffar, ed.), pp. 277–354, Chichester,
UK: John Wiley & Sons, Ltd, Apr. 2010.

[3] X.-F. Han, X. Liu, S. Nakano, H. Harada, Y. Miyamura, and K. Kakimoto, “3D numerical
study of the asymmetric phenomenon in 200 mm floating zone silicon crystal growth,” Journal
of Crystal Growth, vol. 532, p. 125403, Feb. 2020.

[4] P. Beckstein, “Methodenentwicklung zur Simulation von Strömungen mit freier Oberfläche unter
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Study questions

1. What is an interface tracking technique?

2. How are the boundary conditions for a free surface derived?

3. What is the difference between the Finite-Area-Method and the Finite-Volume-Method?

4. What is the purpose of the Finite-Area-Method inside the interfaceTrackingFvMesh library?

5. What is the difference between interfaceTrackingFvMesh in OpenFOAM and interTrackFoam
in foam-extend?

44



Appendix A

Member data

member data type description
aMeshPtr autoPtr<faMesh> Finite area mesh
fsPatchIndex label Free surface patch index
fixedFreeSurfacePatches wordList Free surface faPatches which do

not move
nonReflectingFreeSurfacePatches wordList Free surface faPatches where

wave should not reflect
pointNormalsCorrectionPatches wordList Free surface patches for which

point normals must be corrected
normalMotionDir Switch True: free-surface points dis-

placement direction is parallel
with free-surface point normals;
False: motionDir has to be
specified

motionDir vector Free-surface points displace-
ment direction if not normal
motion direction

smoothing Switch Interface smoothing at the be-
ginning of time step

pureFreeSurface Switch Pure free-surface
rigidFreeSurface Switch Rigid free-surface
correctContactLineNormals Switch Correct contact line point nor-

mals
sigma0 dimensionedScalar Surface tension coefficient of

pure free-surface
rho dimensionedScalar Fluid density
timeIndex label Current interface tracking time

index
areaVectorField* UsPtr mutable Free-surface velocity field
controlPointsPtr mutable vectorIOField* Points which are attached to

the free-surface A side faces and
which defines the free-surface
shape

motionPointsMaskPtr mutable labelList* Field which additionally deter-
mines the motion of free-surface
points

pointsDisplacementDirPtr mutable vectorField* Displacement direction of free-
surface points
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Appendix A. Member data

facesDisplacementDirPtr mutable vectorField* Displacement direction of free-
surface control points

fsNetPhiPtr mutable areaScalarField* Free-surface net flux
phisPtr mutable edgeScalarField* Free-surface flux
surfactConcPtr mutable areaScalarField* Free-surface surfactant conce-

tration
bulkSurfactConcPtr mutable volScalarField* Volume surfactant concetration
surfaceTensionPtr mutable areaScalarField* Surface tension field
surfactantPtr mutable surfactantProperties* Surfactant properties
contactAnglePtr mutable areaScalarField* Contact angle

Table A.1: Private member data in interfaceTrackingFvMesh class
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