
Cite as: Barba Piña, J.L.A.: Implementation of a mass �ux term with thermodi�usion mass transport into

the species transport equation in a compressible solver. In Proceedings of CFD with OpenSource Software,

2019, Edited by Nilsson. H., http://dx.doi.org/10.17196/OS_CFD#YEAR_2019

CFD with OpenSource software

A course at Chalmers University of Technology

Taught by Håkan Nilsson

Implementation of a mass �ux term with
thermodi�usion mass transport into the

species transport equation in a compressible
solver

Developed for OpenFOAM-v1906

Author:

J. Lorenzo Alejandro

Barba-Piña

University of Leeds

pmjlab@leeds.ac.uk

Peer reviewed by:

Pradip Aryal

Xiaoan Mao

Mohammad H.

Arabnejad-Khanouki

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying �les. The material has gone
through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 16, 2020

Learning outcomes

The reader will learn:
How to use it:

� How thermophysical properties are structured through the thermophysicalModels library and
how the thermophysicalProperties dictionary works for compressible solvers.

� How to implement a species transport equation for binary gas mixtures into a compressible
solver.

The theory of it:

� A description of the thermophysical properties in OpenFOAM context and how thermophysical
models are structured under the thermophysicalProperties dictionary entries.

� The theory of thermo-di�usion separation phenomena in �uid mixtures (also known as Ludwig-
Soret e�ect).

� The de�nition of constant mass transport coe�cients and how they are de�ned and accessed
through the thermophysicalProperties dictionary.

How it is implemented:

� The implementation of new transport coe�cients by modifying the consTransport class which
is part of the specie thermophysicalModels sub-library.

� The addition of the new transport model and the new added transport coe�cients into a main
thermophysical model, based on rhoThermo model contained in the basic thermophysicalMod-
els sub-library.

� The addition of the species transport equation for binary gas mixtures for a compressible solver
(rhoSimpleFoam) which will work with the newly added transport coe�cients.

How to modify it:

� Through the modi�cation of the thermophysicalModels library so it can include the mass
di�usion and thermodi�usion coe�cients.

� The new transport coe�cients should be accessed trhough the thermophysicalProperties library
so they can be added into the species transport equation for binary gas mixtures.

� A new compressible solver capable of solving the species transport equation should be tested
by a simple tutorial case, so mass transfer by thermodi�usion can be visualized.

Prerequisites

The reader is expected to know the following in order to get maximum bene�t out of this report:

� Basic knowledge on heat and mass transfer processes (check reference [2]).

� A general knowledge of OpenFOAM's code organization, as well as some knowledge of C++
object-oriented programming.

� It is recomended that the reader gets a general overview on thermodi�usion phenomena in gas
mixtures. References [1, 4, 5, 8, 9] can be consulted for this purpose.

� As a suggestion, if there is an extra interest in how to implement or change OpenFOAM's
thermophysicalModels library for di�erent applications, the reader can consult the works from
Hummel, D. [6] and Choquet, I. [3].

Contents

1 Theoretical background 4

1.1 Introduction . 4
1.2 Mass di�usion caused by temperature gradients . 4
1.3 Thermophysical models in OpenFOAM . 6

1.3.1 thermophysicalProperties dictionary . 8

2 Implementing constant transport coe�cients through thermophysicalProperties

library 10

2.1 Creating the thermophysicalModels user library . 10
2.1.1 specie and basic libraries . 10

2.2 Creating the new transport model: thermoDi�constTransport 12
2.2.1 Creating the new thermophysical model: thermoDi�RhoThermo 17

3 Creating a new compressible solver for binary gas-mixtures 24

3.1 Copying the compressible solver: thermoDi�RhoSimpleFoam 24
3.2 The CaEqn.H �le . 25
3.3 The createFields.H �le . 26
3.4 Final implementations in thermoDi�usionFoam.C �le and solver compilation 27

4 Tutorial set up 29

4.1 The thermophysicalproperties and initialMassFraction dictionaries 30
4.2 Simulation results post-processing . 31

Appendix: Simulation case �les 33

system folder . 33
constant folder . 37
0 folder . 38

Study Questions 41

Bibliography 42

Chapter 1

Theoretical background

1.1 Introduction

In separation processes, a general approach for getting puri�ed products most e�ciently is to take
advantage of some transport properties of the mixture system. In the speci�c case of homogeneous
�uid mixtures, there is an interesting phenomenon that can be used for the puri�cation of mixture
components, that is, by inducing temperature gradients in the �ow �eld which combined with other
molecular transport and di�usive processes can produce a total mass �ux of each component. This
process is known as thermophoresis, thermodi�usion, or the Ludwig-Soret e�ect for liquid mixtures
[9]. There are several natural and industrial processes where thermophoresis takes part as the main
driving force for mass di�usivity, such phenomena includes the thermohaline circulation which is
of highly importance in large scale ocean circulation [4], and thermogravitational columns used for
separation of gaseous mixtures, crude oil and mixtures of liquid polymers [4, 8, 9].

It would be interesting to analize this kind of processes in the context of CFD since the involvement
of energy and momentum transport a�ects the behavior of mixture separation, which makes the
problem complex enough to be tackled by numerical analysis. Luckily, OpenFOAM already counts
with a structured library that allows the simulation of cases where energy transfer can be modeled
through the coupling of thermodynamic, transport, and specie interaction models.

The purpose of this tutorial is to contribute with a basic numerical model that can be used for
the study of the thermodi�usion separation in binary gas mixtures, showing a method for code
modi�cation and addition in OpenFOAM's libraries. The writer hopes that this method can help
the interested reader to be used for similar implementations.

1.2 Mass di�usion caused by temperature gradients

Temperature gradients in �uid homogeneous mixtures results in a relative concentration di�erence
depending on the temperature �eld values, at the same time, regular mass di�usion is caused by
these concentration gradients. Terefore, it can be said that in a temperature steady-state system,
the total mass �ux equals to a balance between the ordinary mass di�usion and thermodi�usion
transport. For gas mixtures, a theoretical description of this mechanism was made by Chapman and
Enskog based on the kinetic theory of gases [1]. The mathematical expression for the net mass �ux
for a reference component a of a binary gas mixture, with constant pressure and without the e�ect
of external forces, can be expressed as in Rahman et al. [9] by the following equation,

Ja(x, y, z, Ca, T, ρ) = ρ [Dab∇Ca +DTCa0(1− Ca0)∇T] (1.1)

Where Ja(x, y, z, Ca, T, ρ) is the net mass �ux of component a which is a function of temperature,
concentration, density, and the direction of the �ow (in this case, represented by the cartesian space

CHAPTER 1. THEORETICAL BACKGROUND

coordinates of the system: x, y, z). Here, ρ = f(p, T) is the density of the mixture, Dab is the binary
mass di�usion coe�cient [ms2], Ca is the mass fraction of the reference component a, Ca0 is the initial
mass fraction of component a, and DT is the thermodi�usion coe�cient [m

K·s2]. In a steady state
system, the mass �ux is at equilibrium, so that Ja = 0 and the concentration gradient can be set on
terms of the temperature gradient and the ratio of the transport coe�cients

∇Ca = −DT

Dab
Ca0(1− Ca0)∇T (1.2)

Dimensionless quantities can help to obtain the values of the transport coe�cients needed in the
calculation of transport equations such as in equation (1.1). This feature can be used for get-
ting unknown physical properties from other known ones, which is actually done by OpenFOAM's
constTransport class for calculating the thermal conductivity for simulation cases that use the ther-
mophysicalProperties library (Something that will be used for this tutorial).

The thermodi�usion coe�cient DT can be obtained with a dimensionless number known as ther-
modi�usion ratio KT [5]. This dimensionless quantity represents the relative e�ects between ther-
modi�usion and ordinary mass di�usion at average temperature

KT = T
DT

Dab
(1.3)

Like the thermodi�usion and mass di�usivity transport coe�cients, the value of KT depends on
several molecular parameters, such as molecular masses, the molecular size, the mixture composition,
temperature and intermolecular interactions [1]. Regardless of the complexity of all of these variable
interactions, a simple interpretation of the value of this coe�cient can be given, when KT is positive,
the heaviest specie molecules tend to move toward a colder region, and when it is negative, the
heaviest molecules move toward a warmer region [1]. Equation (1.1) can be rearranged in terms of
KT

Ja = ρDab

(
∇Ca +KT

Ca0(1− Ca0)

T
∇T

)
(1.4)

If the temperature and concentration gradients are assumed to depend on one dimension only (let's
say x), for a steady state process, the equation (1.2) can be expressed as follows

∂Ca

∂x
= −KT

Ca0(1− Ca0)

T

∂T

∂x
(1.5)

If thermodi�usion ratio KT is taken as a constant value independent of the composition of the
mixture, an integration can be carried out between temperatures Tc and Th (lower to higher tem-
perature), giving the following expression

∆Ca = −KTCa0(1− Ca0) ln

(
Th
Tc

)
(1.6)

This equation, can be used for validating the thermodi�usion simulation case that will be used to
test the code implementations shown in the following chapters.

5

CHAPTER 1. THEORETICAL BACKGROUND

1.3 Thermophysical models in OpenFOAM

When simulating �ow problems where energy and mass transfer occur in compressible systems it is
necessary to implement a model that couples the requirement of a state equation, thermodynamic
�uid properties, transport properties, and energy calculation models. For this kind of problems,
OpenFOAM already counts with a broad library that allows retrieving thermophysical properties
as constant values or functions of temperature, pressure, and composition, with an additional set of
equations of state that all together can be used to obtain thermal energy calculations in terms of
enthalpy or internal energy ([3]).

The thermophysicalModels library is constituted as a set of models that allows calculating sev-
eral �uid properties that depend on temperature, pressure, and composition of a �uid (or solid)
mixture. The structure of this library is organized in such a way that the main thermophysical
models depend on other submodels for mixture properties, which in turn depend on transport,
thermodynamic properties, and state equations submodels. Table 1.1 shows which thermophysical
variables correspond to each submodel, this dependence forms a complex built library that allows
the simulation of di�erent types of problems such as compressible �ows, heat transfer, multiphase
�ows, combustion, etc.

Thermophysical Model Structure

Submodel Variables and �uid properties

Mixture models T , p, Xa, Ca, etc.
Transport models µ , κ, α, etc.

Thermodynamic properties Cp, Cv, Hf , e, etc.
Equations of state ρ calculations

Table 1.1: Basic structure of the thermophysical modelling in OpenFOAM.

OpenFOAM counts with submodels sets that are combined to form a main thermophysical model
forming the �rst layer of the model to be used, then, a second layer is necessary to de�ne the mixture
type, which is formed with the specie, thermodynamics and transport numerical value entries. As a
reference, the table 1.2 contains a list of each set of the thermophysical submodels ([7]).

6

CHAPTER 1. THEORETICAL BACKGROUND

1-Equation of State � equationOfState Description

icoPolynomial
Incompressible polynomial equation of state, e.g. for
liquids

perfectGas Perfect gas equation of state
2-Basic thermophysical properties �
thermo

Description

eConstThermo
Constant speci�c heat cp model with evaluation of
internal energy e and entropy s

hConstThermo
Constant speci�c heat cp model with evaluation of
enthalpy h and entropy s

hPolynomialThermo
cp evaluated by a function with coe�cients from
polynomi- als, from which h, s are evaluated

janafThermo
Cp evaluated by a function with coe�cients from
JANAF thermodynamic tables, from which h, s are
evaluated

3-Derived thermophysical properties �
specieThermo

Description

specieThermo
Thermophysical properties of species, derived from
Cp , h and/or s

4-Transport properties � transport Description
constTransport Constant transport properties

polynomialTransport
Polynomial based temperature-dependent transport
properties

sutherlandTransport
Sutherland's formula for temperature-dependent
transport properties

5-Mixture properties � mixture Description

pureMixture
General thermophysical model calculation for passive
gas mixtures

homogeneousMixture
Combustion mixture based on normalised fuel mass
fraction b

inhomogeneousMixture
Combustion mixture based on b and total fuel mass
fraction ft

veryInhomogeneousMixture
Combustion mixture based on b, ft and unburnt fuel
mass fraction fu

dieselMixture Combustion mixture based on ft and fu
basicMultiComponentMixture Basic mixture based on multiple components
multiComponentMixture Derived mixture based on multiple components

reactingMixture
Combustion mixture using thermodynamics and re-
action schemes

egrMixture Exhaust gas recirc ulation mixture
6-Thermophysical model � thermoModel Description

hePsiThermo
General thermophysical model calculation based on
enthalpy h or internal energy e, and compressibility
Φ

heRhoThermo
General thermophysical model calculation based on
enthalpy h or internal energy e, and density ρ

hePsiMixtureThermo
Calculates enthalpy for combustion mixture based on
enthalpy h or internal energy e, and Φ

heRhoMixtureThermo
Calculates enthalpy for combustion mixture based on
enthalpy h or internal energy e, and ρ

heheuMixtureThermo
Calculates enthalpy h or internal energy e for un-
burnt u gas and combustion mixture

Table 1.2: Submodel sets of the thermophysicalModels library, (retrieved from OpenFOAM User Guide [7])

7

CHAPTER 1. THEORETICAL BACKGROUND

1.3.1 thermophysicalProperties dictionary

The thermophysicalProperties dictionary is the �le where the user can specify the entry values for
any solver that uses the thermophysicalModels library. In a simulation case, this �le can be found in
the constant folder. The structure of this �le begins with the chosen thermophysical model, formed
by a combination of each of the thermophysical properties submodels that are speci�ed in the two
entry layers mentioned in the previous section. The following example of a thermophysicalProperties
dictionary gives a brief explanation of how this dictionary is constituted.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object thermophysicalProperties;

}

// * //

//- First layer of the thermophysical model, submodels from table 1.2

// are specified here

thermoType

{

type hePsiThermo;

mixture pureMixture;

transport const;

thermo eConst;

equationOfState perfectGas;

specie specie;

energy sensibleInternalEnergy;

}

//- Second layer of the thermophysical model, the model is constructed with the entry

// values specified here, starting with the "mixture" keyword that involves

// the "specie" , "thermodynamics", and "transport" entries, corresponding with the

// submodel settings in the first layer.

mixture

{

specie

{

molWeight 28.9;

}

thermodynamics

{

Cv 712;

Hf 0;

}

transport

{

mu 1.8e-05;

Pr 0.7;

}

}

// * //

8

CHAPTER 1. THEORETICAL BACKGROUND

It is important to mention that not all the submodel combinations are allowed. Checking the
possible combinations can be done by copying a tutorial case that uses thermophysical modelling,
(e.g. $WM_PROJECT_DIR/tutorials/compressible/rhoPimpleFoam/laminar/sineWaveDamping)
and then try to change one of the entries in the thermoPhysicalProperties dictionary (e.g. change
const for banana). Now, when running the case, the output will show an error message complaning
that the combination is not appropriate and will show a list of the possible thermophysicalProperties
combinations. An example of this error message can be seen as follows,

Create time

Create mesh for time = 68

SIMPLE: convergence criteria

field p tolerance 0.001

field U tolerance 0.0001

field e tolerance 0.001

Reading thermophysical properties

Selecting thermodynamics package

{

type heRhoThermo;

mixture pureMixture;

transport banana;

thermo hConst;

equationOfState perfectGas;

specie specie;

energy sensibleEnthalpy;

}

--> FOAM FATAL ERROR:

Unknown fluidThermo type

thermoType

{

type heRhoThermo;

mixture pureMixture;

transport banana;

thermo hConst;

equationOfState perfectGas;

specie specie;

energy sensibleEnthalpy;

}

Valid fluidThermo types are:

hePsiThermo homogeneousMixture const hConst perfectGas specie sensibleEnthalpy

hePsiThermo homogeneousMixture sutherland hConst perfectGas specie sensibleEnthalpy

hePsiThermo homogeneousMixture sutherland janaf perfectGas specie sensibleEnthalpy

hePsiThermo inhomogeneousMixture const hConst perfectGas specie sensibleEnthalpy

hePsiThermo inhomogeneousMixture sutherland hConst perfectGas specie sensibleEnthalpy

hePsiThermo inhomogeneousMixture sutherland janaf perfectGas specie sensibleEnthalpy

hePsiThermo multiComponentMixture const eConst perfectGas specie sensibleInternalEnergy

... ...

heRhoThermo homogeneousMixture const hConst incompressiblePerfectGas specie sensibleEnthalpy

heRhoThermo homogeneousMixture const hConst perfectGas specie sensibleEnthalpy

heRhoThermo homogeneousMixture sutherland janaf incompressiblePerfectGas specie sensibleEnthalpy

heRhoThermo homogeneousMixture sutherland janaf perfectGas specie sensibleEnthalpy

heRhoThermo inhomogeneousMixture const hConst incompressiblePerfectGas specie sensibleEnthalpy

heRhoThermo inhomogeneousMixture const hConst perfectGas specie sensibleEnthalpy

heRhoThermo inhomogeneousMixture sutherland janaf incompressiblePerfectGas specie sensibleEnthalpy

heRhoThermo inhomogeneousMixture sutherland janaf perfectGas specie sensibleEnthalpy

heRhoThermo multiComponentMixture const eConst adiabaticPerfectFluid specie sensibleInternalEnergy

heRhoThermo multiComponentMixture const eConst incompressiblePerfectGas specie sensibleInternalEnergy

heRhoThermo multiComponentMixture const eConst perfectFluid specie sensibleInternalEnergy

... ...

9

Chapter 2

Implementing constant transport

coe�cients through

thermophysicalProperties library

2.1 Creating the thermophysicalModels user library

Before doing any new implementation, the �rst thing to do is to make sure that the original code
will not be a�ected, this is done by copying the required library folders and substituting the original
compilation path with the users one. The following instructions are meant to show how to do this
for the specie and basic sub-libraries which are part of the thermophysicalModels library.

2.1.1 specie and basic libraries

The specie library contains models for transport properties, state equations, thermodynamics and
chemical reactions. In a terminal window with the OpenFOAM-v1906 enviriment active, copy the
following lines to get your own version of the specie library.

mkdir $WM_PROJECT_USER_DIR/src/thermophysicalModels

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels

cp -r $FOAM_SRC/thermophysicalModels/specie .

sed -i s/"FOAM_LIBBIN"/"FOAM_USER_LIBBIN"/g specie/Make/files

The thermophysical base models are de�ned in the basic library, the type of calculations depends on
the base classes that are contained here (e.g. rhoThermo or psiThermo). Copy the following lines to
get your own version of the basic library. Notice that the name of the specie and basic libraries are
not changed, it helps to avoid renaming all the �le dependencies besides the new thermophysicalModel
library coexist in parallel with the original one. Additionally, the line -L$(FOAM_USER_LIBBIN)
gives priority to the user's library when the compiler looks for the linked �les [3].

cp -r $FOAM_SRC/thermophysicalModels/basic $WM_PROJECT_USER_DIR/src/thermophysicalModels

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels/basic

sed -i s/"FOAM_LIBBIN"/"FOAM_USER_LIBBIN"/g ./Make/files

sed -i '/EXE_INC = \\/a -I$(WM_PROJECT_USER_DIR)/src/thermophysicalModels/specie/lnInclude \\' ./Make/options

sed -i '/LIB_LIBS = \\/a -L$(FOAM_USER_LIBBIN) \\' ./Make/options

Now, let's check that the sed commands have worked properly for the �les and options �les in both
libraries. We open the specie library �les �le just to check that the library code will be compiled in
the user's library directory:

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

...

atomicWeights/atomicWeights.C

specie/specie.C

reaction/reactions/makeReactions.C

reaction/reactions/makeLangmuirHinshelwoodReactions.C

LIB = $(FOAM_USER_LIBBIN)/libspecie

...

Now, we continue with the specie library options �le and we verify that no executable or library
paths are written in this �le:

...

EXE_INC =

LIB_LIBS =

...

Then, we check that the �les �le of the basic library looks as follows:

...

basicThermo/basicThermo.C

fluidThermo/fluidThermo.C

psiThermo/psiThermo.C

psiThermo/psiThermos.C

rhoThermo/rhoThermo.C

rhoThermo/rhoThermos.C

rhoThermo/liquidThermo.C

derivedFvPatchFields/fixedEnergy/fixedEnergyFvPatchScalarField.C

derivedFvPatchFields/gradientEnergy/gradientEnergyFvPatchScalarField.C

derivedFvPatchFields/mixedEnergy/mixedEnergyFvPatchScalarField.C

derivedFvPatchFields/energyJump/energyJump/energyJumpFvPatchScalarField.C

derivedFvPatchFields/energyJump/energyJumpAMI/energyJumpAMIFvPatchScalarField.C

LIB = $(FOAM_USER_LIBBIN)/libfluidThermophysicalModels

...

And �nally, we check on the options �le of the basic library:

...

EXE_INC = \

-I$(WM_PROJECT_USER_DIR)/src/thermophysicalModels/specie/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/transportModels/compressible/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/thermophysicalProperties/lnInclude \

LIB_LIBS = \

-L$(FOAM_USER_LIBBIN) \

-lfiniteVolume \

-lmeshTools \

11

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

-lcompressibleTransportModels \

-lspecie \

-lthermophysicalProperties

...

Now, we can proceed with the compilation of the new libraries, beginning with the specie library,
and then continuing with the basic library. We start with the specie library compilation by writing
the next command lines in the terminal window.

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels

wclean lib specie

wmake libso specie

If the compilation process for the specie library �nishes without errors, we can continue with the
compilation of the basic library.

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels

wclean lib basic

wmake libso basic

2.2 Creating the new transport model: thermoDi�constTrans-

port

At the user's ./thermophysicalModels/specie directory, one can �nd the transport models folder
where the const transport code model for constant transport properties is located. In this model,
thermal conductivity and thermal di�usivity are calculated from thermophysicalProperties dictio-
nary entries mu and Pr (dynamic viscosity and Prandtl number respectively).

The idea is to use the const transport model as a base for our new thermoDi�usionTransport model,
where we will de�ne two entries Dab and KT, which are the mass di�usivity and the thermodifussion
coe�cient that are going to be used for calculating the thermodi�usion coe�cient DT .

The �rst step is to copy the constTransport and rename the copied folder and the �les inside it.
Notice that it is necessary to change the class name constTransport with thermoDi�constTransport
inside the renamed �les (this is done with sed command).

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels/specie/transport

cp -r const thermoDiffconst

cd thermoDiffconst

mv constTransport.C thermoDiffconstTransport.C

mv constTransport.H thermoDiffconstTransport.H

mv constTransportI.H thermoDiffconstTransportI.H

sed -i s/constTransport/thermoDiffconstTransport/g thermoDiffconstTransport*

sed -i s/"const<"/"thermoDiffconst"/g thermoDiffconstTransport.H

cd ../..

cd include

12

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

Now, we have to include the new code in the thermophysical models types, returning to the specie
directory folder and access to the ./specie/include folder where the �le thermoPhysicsTypes.H is
located. Open the �le thermoPhysicsTypes.H �le with the text editor of your preference, and include
the thermoDi�constTransport.H header �le between constTransport.H and icoPolynomial.H like in
the following example:

...

52 |#include "sutherlandTransport.H"

53 |#include "constTransport.H"

54 |#include "thermoDiffconstTransport.H" //- New Transport Model.

55 |

56 |#include "icoPolynomial.H"

...

Then, inside the namespace Foam declaration, the following lines are added to create a thermophysics
type that contains our new transport model. For thermo-physics types based on sensibleEnthalpy:

...

62 |namespace Foam

63 |{

64 | // thermo physics types based on sensibleEnthalpy

65 | typedef

66 | thermoDiffconstTransport //- New transport model

67 | <

68 | species::thermo

69 | <

70 | hConstThermo

71 | <

72 | perfectGas<specie>

73 | >,

74 | sensibleEnthalpy

75 | >

76 | > thermoDiffconstGasHThermophysics; //- New thermophysical model name

77 |

78 | typedef

79 | constTransport

...

As well as the next lines for thermo-physics types based on sensibleInternalEnergy :

...

202| // thermo physics types based on sensibleInternalEnergy

203| typedef

204| thermoDiffconstTransport //- New transport model

205| <

206| species::thermo

207| <

208| eConstThermo

209| <

210| perfectGas<specie>

211| >,

212| sensibleInternalEnergy

213| >

214| > thermoDiffconstGasEThermoPhysics; //- New thermophysical model name

215|

216| typedef

13

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

217| constTransport

...

It is important to notice that each line of the new code has to correspond with the marked line-
numbers in the �le (this can be compared with the accompanying �les). Now, return to the folder
thermoDi�const (cd ../transport/thermoDi�const/) and open the �le thermoDi�constTransport.H.
At the thermoDi�constTransport class declaration add the following lines that correspond to Dab

and KT as new private data members:

...

87 | // Private data

88 |

89 | //- Mass diffusivity [m^2/s]

90 | scalar Dab_; //- New data member Dab

91 |

92 | //- Thermodiffusion ratio []

93 | scalar KT_; //- New data member KT

94 |

95 | //- Constant dynamic viscosity [Pa.s]

...

And at the private member function declaration add the new data members Dab and KT inside the
constructor declaration:

...

103| //- Construct from components

104| inline thermoDiffconstTransport

105| (

106| const Thermo& t,

107| const scalar Dab, //- New data member Dab

108| const scalar KT, //- New data member KT

109| const scalar mu,

110| const scalar Pr

111|);

...

Finally, at the member functions section, add the next function declarations (between typename()
and dynamic viscosity functions):

...

137| return "thermoDiffconst<" + Thermo::typeName() + '>';

138| }

139|

140| //- Mass diffusivity [m^2/s]

141| inline scalar Dab(const scalar p, const scalar T) const; //- New data member Dab

142|

143| //- thermodiffusion coefficient [m^2/s]

144| inline scalar DT(const scalar p, const scalar T) const; //- New data member DT

145|

146| //- Dynamic viscosity [kg/ms]

...

14

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

Save the �le and then open the thermoDi�constI.H �le where the inline functions of the class
thermoDi�constTransport are de�ned. Write the next code lines at the speci�ed line numbers in the
constructors declaration section:

...

31 | template<class Thermo>

32 | inline Foam::thermoDiffconstTransport<Thermo>::thermoDiffconstTransport

33 | (

34 | const Thermo& t,

35 | const scalar Dab, //- New data member Dab

36 | const scalar KT, //- New data member KT

37 | const scalar mu,

38 | const scalar Pr

39 |)

40 | :

41 | Thermo(t),

42 | Dab_(Dab), //- New data member Dab

43 | KT_(KT), //- New data member KT

44 | mu_(mu),

45 | rPr_(1.0/Pr)

46 | {}

...

49 | template<class Thermo>

50 | inline Foam::thermoDiffconstTransport<Thermo>::thermoDiffconstTransport

51 | (

52 | const word& name,

53 | const thermoDiffconstTransport& ct

54 |)

55 | :

56 | Thermo(name, ct),

57 | Dab_(ct.Dab_), //- New data member Dab

58 | KT_(ct.KT_), //- New data member KT

59 | mu_(ct.mu_),

60 | rPr_(ct.rPr_)

61 | {}

...

After this addition, two inline functions have to be de�ned in the member functions section, the �rst
one returns the constant value of Dab (speci�ed as a dictionary entry) and the second one returns
the value of DT calculated as a function of Dab, KT and T , this addition is done at the beginning
of the member functions section:

...

83 |// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

84 |

85 | template<class Thermo>

86 | inline Foam::scalar Foam::thermoDiffconstTransport<Thermo>::Dab

87 | (

88 | const scalar p,

89 | const scalar T

90 |) const

91 | {

92 | return Dab_; //- Constant mass diffusivity for binary mixtures.

93 | }

94 |

15

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

95 |

96 | template<class Thermo>

97 | inline Foam::scalar Foam::thermoDiffconstTransport<Thermo>::DT

98 | (

99 | const scalar p,

100| const scalar T

101|) const

102| {

103| return (KT_*Dab(p, T))/T; //- Thermodiffusion coefficient.

104| }

...

Finally at the member operators and the friend operators sections, the two new data members have
to be added as dictionary entries, for each operator function. Add the corresponding code lines for
Dab and KT data members, at the speci�ed line numbers:

...

149| Dab_ = ct.Dab_; //- New data member Da

150| KT_ = ct.KT_; //- New data member KT

151| mu_ = ct.mu_;

152| rPr_ = ct.rPr_;

...

171| Dab_ = Y1*Dab_ + Y2*st.Dab_; //- New data member Dab

172| KT_ = Y1*KT_ + Y2*st.KT_; //- New data member KT

173| mu_ = Y1*mu_ + Y2*st.mu_;

174| rPr_ = 1.0/(Y1/rPr_ + Y2/st.rPr_);

...

207| t,

208| 0,

209| ct1.Dab_, //- New data member Dab

210| ct1.KT_, //- New data member KT

211| ct1.rPr_

...

236| t,

237| Y1*ct1.Dab_ + Y2*ct2.Dab_, //- New data member Dab

238| Y1*ct1.KT_ + Y2*ct2.KT_, //- New data member KT

239| Y1*ct1.mu_ + Y2*ct2.mu_,

240| 1.0/(Y1/ct1.rPr_ + Y2/ct2.rPr_)

...

240| s*static_cast<const Thermo&>(ct),

241| ct.Dab_, //- New data member Dab

242| ct.KT_, //- New data member KT

243| ct.mu_,

...

Save the �le and close it. For the �nal step, open the �le thermoDi�constTransport.C and add the
next lines as part of the dictionary reading constructor and the dictionary reading member function
declaration respectively:

...

37 | Thermo(dict),

38 | Dab_(dict.subDict("transport").get<scalar>("Dab")), //- New data member Dab

39 | KT_(dict.subDict("transport").get<scalar>("KT")), //- New data member KT

40 | mu_(dict.subDict("transport").get<scalar>("mu")),

...

56 | os.beginBlock("transport");

16

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

57 | os.writeEntry("Dab", Dab_); //- New data member Dab

58 | os.writeEntry("KT", KT_); //- New data member KT

59 | os.writeEntry("mu", mu_);

...

Save the �le and close it. Now the specie library can be recompiled. Return to the main folder
thermophysicalModels using the terminal and write the following commands:

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels/

wclean lib specie

wmake libso specie

2.2.1 Creating the new thermophysical model: thermoDi�RhoThermo

In order to execute the functions de�ned in the past section with the thermophysicalProperties
dictionary, it is necessary to declare and de�ne the new data and function members in a base
thermophysical model. At the basic directory, one can �nd a folder called rhoThermo, this model
constructs a basic thermophysical model based on density, hence it can be used for compressible
�ow modelling which can be used for binary gas mixture separation modelling.

The �rst step is to copy the rhoThermo folder and rename it as thermoDi�rhoThermo, then the
liquidThermo.H and liquidThermo.C will be removed as those �les correspond to a liquid properties
selector function that is not necessary for our implementation.

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels/basic/

cp -r rhoThermo thermoDiffrhoThermo

cd thermoDiffrhoThermo

rm liquidThermo*

mv rhoThermo.H thermoDiffrhoThermo.H

mv rhoThermo.C thermoDiffrhoThermo.C

mv rhoThermos.C thermoDiffrhoThermos.C

mv heRhoThermo.H thermoDiffheRhoThermo.H

mv heRhoThermo.C thermoDiffheRhoThermo.C

sed -i s/rhoThermo/thermoDiffrhoThermo/g thermoDiffrhoThermo*

sed -i s/rhoThermo/thermoDiffrhoThermo/g thermoDiffheRhoThermo*

sed -i s/heRhoThermo/thermoDiffheRhoThermo/g thermoDiffheRhoThermo*

sed -i s/heRhoThermo/thermoDiffheRhoThermo/g thermoDiffrhoThermos.C

Now, all the �les have been modi�ed to contain the new class names that correspond to the name
of the new thermophysical model (e.g. rhoThermo changed to thermoDi�rhoThermo). We continue
with the new additions by opening the �rst �le thermoDi�rhoThermo.H and we add the next lines in
the thermoDi�rhoThermo class declaration at the protected data section and the member functions
for accessing transport variables section, following the corresponding line counter numbers:

...

65 | //- Density field [kg/m^3]

66 | // Named 'thermoDiffrhoThermo' to avoid (potential) conflict with solver density

67 | volScalarField rho_;

68 |

69 | //- Mass diffusivity [m^2/s]

70 | volScalarField Dab_; //New data member Dab

71 |

72 | //- Thermodiffusion coefficient [m^2/s*K]

73 | volScalarField DT_; //New data member DT

74 |

75 | //- Compressibility [s^2/m^2]

17

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

...

199| //- Dynamic viscosity of mixture for patch [kg/m/s]

200| virtual tmp<scalarField> mu(const label patchi) const;

201|

202| //- Mass diffusivity [m^2/s]

203| virtual tmp<volScalarField> Dab() const; //- New data member Dab

204|

205| //- Mass diffusivity for patch [m^2/s]

206| virtual tmp<scalarField> Dab(const label patchi) const; //- New data member Dab

207|

208| //- Thermodiffusion coefficient [m^2/s*K]

209| virtual tmp<volScalarField> DT() const; //- New data member DT

210|

211| //- Thermodiffusion coefficient for patch [m^2/s*K]

212| virtual tmp<scalarField> DT(const label patchi) const; //- New data member DT

213| };

...

Save and close the �le. Now, open the thermoDi�rhoThermo.C �le and add the Dab and DT

function object de�nitions in the constructors section to construct the new transport coe�cients as
dimensioned scalars, then at the memeber functions section, add the member function declarations
for both Dab and DT :

...

60 | Dab_ //- New data member Dab

61 | (

62 | IOobject

63 | (

64 | phasePropertyName("thermo:Dab"),

65 | mesh.time().timeName(),

66 | mesh,

67 | IOobject::NO_READ,

68 | IOobject::NO_WRITE

69 |),

70 | mesh,

71 | dimensionSet(0, 2, -1, 0, 0)

72 |),

73 |

74 | DT_ //- New data member DT

75 | (

76 | IOobject

77 | (

78 | phasePropertyName("thermo:DT"),

79 | mesh.time().timeName(),

80 | mesh,

81 | IOobject::NO_READ,

82 | IOobject::NO_WRITE

83 |),

84 | mesh,

85 | dimensionSet(0, 2, -1, -1, 0)

86 |),

...

140| Dab_ //- New data member Dab

141| (

142| IOobject

18

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

143| (

144| phasePropertyName("thermo:Dab"),

145| mesh.time().timeName(),

146| mesh,

147| IOobject::NO_READ,

148| IOobject::NO_WRITE

149|),

150| mesh,

151| dimensionSet(0, 2, -1, 0, 0)

152|),

153|

154| DT_ //- New data member DT

155| (

156| IOobject

157| (

158| phasePropertyName("thermo:DT"),

159| mesh.time().timeName(),

160| mesh,

161| IOobject::NO_READ,

162| IOobject::NO_WRITE

163|),

164| mesh,

165| dimensionSet(0, 2, -1, -1, 0)

166|),

...

220| Dab_ //- New data member Dab

221| (

222| IOobject

223| (

224| phasePropertyName("thermo:Dab"),

225| mesh.time().timeName(),

226| mesh,

227| IOobject::NO_READ,

228| IOobject::NO_WRITE

229|),

230| mesh,

231| dimensionSet(0, 2, -1, 0, 0)

232|),

233|

234| DT_ //- New data member DT

235| (

236| IOobject

237| (

238| phasePropertyName("thermo:DT"),

239| mesh.time().timeName(),

240| mesh,

241| IOobject::NO_READ,

242| IOobject::NO_WRITE

243|),

244| mesh,

245| dimensionSet(0, 2, -1, -1, 0)

246|),

...

344| Foam::tmp<Foam::volScalarField> Foam::thermoDiffrhoThermo::Dab() const

19

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

345| {

346| return Dab_; //- New member function Dab

347| }

348|

349|

350| Foam::tmp<Foam::scalarField> Foam::thermoDiffrhoThermo::Dab(const label patchi) const

351| {

352| return Dab_.boundaryField()[patchi]; //- New member function Dab

353| }

354|

355|

356| Foam::tmp<Foam::volScalarField> Foam::thermoDiffrhoThermo::DT() const

357| {

358| return DT_; //- New member function DT

359| }

360|

361|

362| Foam::tmp<Foam::scalarField> Foam::thermoDiffrhoThermo::DT(const label patchi) const

363| {

364| return DT_.boundaryField()[patchi]; //- New member function DT

365| }

...

Now, open the next �le thermoDi�heRhoThermo.H and add the following code lines in the class
thermoDi�heRhoThermo declaration:

...

69 | volScalarField& alpha,

70 | volScalarField& Dab, //- New member function Dab

71 | volScalarField& DT, //- New member function DT

72 | const bool doOldTimes

...

Then, we follow with the thermoDi�heRhoThermo.C where the new transport coe�cients are cal-
culated and updated adding the next lines (Make sure that the previous declarations have a comma
at the end, e.g. volScalarField& mu,):

...

42 | volScalarField& alpha,

43 | volScalarField& Dab, //- New data member Dab

44 | volScalarField& DT, //- New data member DT

45 | const bool doOldTimes

...

60 | alpha.oldTime(),

61 | Dab.oldTime(), //- New data member Dab

62 | DT.oldTime(), //- New data member DT

63 | true

...

74 | scalarField& alphaCells = alpha.primitiveFieldRef();

75 | scalarField& DabCells = Dab.primitiveFieldRef(); //- New data member Dab

76 | scalarField& DTCells = DT.primitiveFieldRef(); //- New data member DT

77 |

78 | forAll(TCells, celli)

...

97 | alphaCells[celli] = mixture_.alphah(pCells[celli], TCells[celli]);

98 | DabCells[celli] = mixture_.Dab(pCells[celli], TCells[celli]); //- New data member Dab

20

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

99 | DTCells[celli] = mixture_.DT(pCells[celli], TCells[celli]); //- New data member DT

100| }

...

108| volScalarField::Boundary& alphaBf = alpha.boundaryFieldRef();

109| volScalarField::Boundary& DabBf = Dab.boundaryFieldRef(); //- New data member Dab

110| volScalarField::Boundary& DTBf = DT.boundaryFieldRef(); //- New data member DT

111|

112| forAll(pBf, patchi)

...

120| fvPatchScalarField& palpha = alphaBf[patchi];

121| fvPatchScalarField& pDab = DabBf[patchi]; //- New data member Dab

122| fvPatchScalarField& pDT = DTBf[patchi]; //- New data member DT

123|

124| if (pT.fixesValue())

...

136| palpha[facei] = mixture_.alphah(pp[facei], pT[facei]);

137| pDab[facei] = mixture_.Dab(pp[facei], pT[facei]); //- New data member Dab

138| pDT[facei] = mixture_.DT(pp[facei], pT[facei]); //- New data member DT

139| }

...

156| palpha[facei] = mixture_.alphah(pp[facei], pT[facei]);

157| pDab[facei] = mixture_.Dab(pp[facei], pT[facei]); //- New data member Dab

158| pDT[facei] = mixture_.DT(pp[facei], pT[facei]); //- New data member DT

159| }

...

183| this->alpha_,

184| this->Dab_, //- New data member Dab

185| this->DT_, //- New data member DT

186| true // Create old time fields

...

209| this->alpha_,

210| this->Dab_, //- New data member Dab

211| this->DT_, //- New data member DT

212| true // Create old time fields

...

239| this->alpha_,

240| this->Dab_, //- New data member Dab

241| this->DT_, //- New data member DT

242| false // No need to update old times

...

Save the �le and close it. Finally, we proceed to modify the thermoDi�rhoThermos.C �le, where
the new model is constructed. First, all the unnecessary headers are commented as shown in the
following example. Then, inside the Foam namespace, two new thermophysical models will be
added and all the current models inside the �le can be commented or erased. As the comment
lines show in the example, each new model are based on constant enthalpy and a constant internal
energy respectively, and each one includes the created thermodi�usion transport model, and the
thermodi�usion energy model based on density (thermoDi�rhoThermo and thermoDi�heRhoThermo
respectively), the thermoDi�rhoThermos.C �le should looks as follows:

26 | *---*/

27 |

28 | #include "thermoDiffrhoThermo.H"

29 | #include "makeThermo.H"

30 |

21

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

31 | #include "specie.H"

32 | #include "perfectGas.H"

33 | //#include "incompressiblePerfectGas.H"

34 | //#include "Boussinesq.H"

35 | //#include "rhoConst.H"

36 | //#include "perfectFluid.H"

37 | //#include "PengRobinsonGas.H"

38 | //#include "adiabaticPerfectFluid.H"

39 |

40 | #include "hConstThermo.H"

41 | #include "eConstThermo.H"

42 | //#include "janafThermo.H"

43 | #include "sensibleEnthalpy.H"

44 | #include "sensibleInternalEnergy.H"

45 | #include "thermo.H"

46 |

47 | //#include "constTransport.H"

48 | //#include "sutherlandTransport.H"

49 | //#include "WLFTransport.H"

50 | #include "thermoDiffconstTransport.H" //- New transport model for thermodiffusion

51 |

52 | //#include "icoPolynomial.H"

53 | //#include "hPolynomialThermo.H"

54 | //#include "polynomialTransport.H"

55 |

56 | #include "thermoDiffheRhoThermo.H"

57 | #include "pureMixture.H"

58 |

59 | // * //

60 |

61 | namespace Foam

62 | {

63 |

64 | /* * * * * * * * * * * * * * * private static data * * * * * * * * * * * * * */

65 |

66 | makeThermos

67 | (

68 | thermoDiffrhoThermo, //- Thermophysical model with thermodiffusion

69 | thermoDiffheRhoThermo,

70 | pureMixture,

71 | thermoDiffconstTransport, //- Constant transport model with thermodiffusion

72 | sensibleEnthalpy,

73 | hConstThermo,

74 | perfectGas,

75 | specie

76 |);

77 |

78 | makeThermos

79 | (

80 | thermoDiffrhoThermo, //- Thermophysical model with thermodiffusion

81 | thermoDiffheRhoThermo,

82 | pureMixture,

83 | thermoDiffconstTransport, //- Constant transport model with thermodiffusion

84 | sensibleInternalEnergy,

22

CHAPTER 2. IMPLEMENTING CONSTANT TRANSPORT COEFFICIENTS THROUGH
THERMOPHYSICALPROPERTIES LIBRARY

85 | eConstThermo,

86 | perfectGas,

87 | specie

88 |);

89 |

90 | // * //

91 |

92 | } // End namespace Foam

93 |

94 | // *** //

...

Save this �le and then proceed with the recompilation of basic library, adding the new thermophysical
model thermoDi�heRhoThermo to the �les which is the �le that contains the main .C source �les list
of the library. Open the �le $WM_PROJECT_USER_DIR/src/thermophysicalModels/basic/Make/�les
with the text editor of your choice and make sure that it looks like in the following example:

...

basicThermo/basicThermo.C

fluidThermo/fluidThermo.C

psiThermo/psiThermo.C

psiThermo/psiThermos.C

rhoThermo/rhoThermo.C

rhoThermo/rhoThermos.C

rhoThermo/liquidThermo.C

thermoDiffrhoThermo/thermoDiffrhoThermo.C

thermoDiffrhoThermo/thermoDiffrhoThermos.C

derivedFvPatchFields/fixedEnergy/fixedEnergyFvPatchScalarField.C

derivedFvPatchFields/gradientEnergy/gradientEnergyFvPatchScalarField.C

derivedFvPatchFields/mixedEnergy/mixedEnergyFvPatchScalarField.C

derivedFvPatchFields/energyJump/energyJump/energyJumpFvPatchScalarField.C

derivedFvPatchFields/energyJump/energyJumpAMI/energyJumpAMIFvPatchScalarField.C

LIB = $(FOAM_USER_LIBBIN)/libfluidThermophysicalModels

...

Finally, at the terminal window, write the following command lines to recompile the new basic
library.

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels

wclean lib basic

wmake libso basic

23

Chapter 3

Creating a new compressible solver

for binary gas-mixtures

The implementation of the species transport equation for binary gas mixtures will be made into one
of the current OpenFOAM's compressible solvers, which are one of the set of solvers that allows
the utilization of the thermophysicalProperties dictionary. The chosen solver is the rhoSimpleFoam
solver, which is a steady state compressible solver that is used for solving �uid problems with variable
density.

3.1 Copying the compressible solver: thermoDi�RhoSimple-

Foam

The �rst thing to do, is avoiding compilation errors that can cause important issues to OpenFOAM's
correct performance. One of the most common errors happens when the compilation paths are du-
plicated or wrongly targeted, causing bugs and interference with OpenFOAM's main code structure.
The usual way to do this is to copy the solver code �les that will work as the base code for the
new implementations, then the main .C �le should be renamed, making the necessary changes inside
this �le and the Make folder �les, where not only the name of the new solver should be added, the
executable address should be changed as well.

In a terminal window, set the OpenFOAM environment (e.g. by typing of-v1906) and add the
next lines in order to set the base code �les for the new solver.

mkdir -p $WM_PROJECT_USER_DIR/applications/solvers/compressible/thermoDiffRhoSimpleFoam

cd $FOAM_SOLVERS/compressible/rhoSimpleFoam

cp -r . $WM_PROJECT_USER_DIR/applications/solvers/compressible/thermoDiffRhoSimpleFoam

cd $WM_PROJECT_USER_DIR/applications/solvers/compressible/thermoDiffRhoSimpleFoam

rm -r overRhoSimpleFoam

rm -r rhoPorousSimpleFoam

mv rhoSimpleFoam.C thermoDiffRhoSimpleFoam.C

sed -i s/"rhoSimpleFoam"/"thermoDiffRhoSimpleFoam"/g thermoDiffRhoSimpleFoam.C

sed -i s/"rhoSimpleFoam"/"thermoDiffRhoSimpleFoam"/g Make/files

sed -i s/"FOAM_APPBIN"/"FOAM_USER_APPBIN"/g Make/files

wclean

wmake

CHAPTER 3. CREATING A NEW COMPRESSIBLE SOLVER FOR BINARY
GAS-MIXTURES

Then, check for any error messages at the compilation output in the terminal window, After this, it
is a good practice to check that the new solver works with one of the available tutorial cases, this
can be done by following the next lines.

cd $WM_PROJECT_USER_DIR/run

cp -r $FOAM_TUTORIALS/compressible/rhoSimpleFoam/squareBendLiq ./thermoDiffSquareBendLiq

cd thermoDiffSquareBendLiq

cd thermoDiffSquareBendLiq

sed -i s/"rhoSimpleFoam"/"thermoDiffRhoSimpleFoam"/g system/controlDict

blockMesh

thermoDiffRhoSimpleFoam >& log &

Finally, we can have a look at the log �le just to see if the new solver is running properly.

3.2 The CaEqn.H �le

The species transport equation will be written in terms of the mass fraction of the reference com-
ponent Ca, considering a variable density, this equation can be represented as follows,

∂(ρCa)

∂t
+∇ · (ΦCa) = ∇ · (ρDab∇Ca + ρDTCa0(1− Ca0)∇T) (3.1)

Where Φ represents the total mass �ux of the mixture (Φ = ρ~v). The expression can be rearranged to
let all the terms that depend on Ca at the left hand side of the equation so that the thermodi�usion
term can be solved explicitly by the solver.

∂(ρCa)

∂t
+∇ · (ΦCa)−∇ · (ρDab∇Ca) = ∇ · (ρDTCa0(1− Ca0)∇T) (3.2)

Since the chosen solver which will be used for the new implementation is a steady state solver, the
time derivative term will be removed from the last equation, so that, the expression to be used for
the new solver looks like the following one,

∇ · (ΦCa)−∇ · (ρDab∇Ca) = ∇ · (ρDTCa0(1− Ca0)∇T) (3.3)

Now, continue by opening the text editor of your chice, create a new �le called CaEqn.H and add
the following lines,

...

//Species transport equation in terms of the reference component 'Ca' mass fraction.

fvScalarMatrix CaEqn

(

fvm::div(phi, Ca)

- fvm::laplacian(thermo.Dab()*rho, Ca)

);

solve(CaEqn == fvc::laplacian(thermo.DT()*Ca0*(1-Ca0)*rho, thermo.T()));

CaEqn.relax();

...

Save this �le inside the same folder that contains the thermoDi�RhoSimpleFoam solver.

25

CHAPTER 3. CREATING A NEW COMPRESSIBLE SOLVER FOR BINARY
GAS-MIXTURES

3.3 The createFields.H �le

The �rst thing to do is to modify the �rst lines of the createFields.H �le to make that the new solver
can work with the new thermophysical model. With the text editor of your preference, open the
createFields.H �le and then change the text line �uidThermo by thermoDi�rhoThermo, it should
looks like in the next example:

...

Info<< "Reading thermophysical properties\n" << endl;

autoPtr<thermoDiffrhoThermo> pThermo

(

thermoDiffrhoThermo::New(mesh)

);

thermoDiffrhoThermo& thermo = pThermo();

thermo.validate(args.executable(), "h", "e");

...

The mass fraction of the two components are created inside the createFields.H �le, this is done by
adding the following lines after the de�nition of the velocity �eld, notice that the second component
is de�ned depending on the value of the reference component a.

...

//Reference component mass fraction

volScalarField Ca

(

IOobject

(

"Ca",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

mesh

);

//Second component mass fraction

volScalarField Cb

(

IOobject

(

"Cb",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

1-Ca

);

...

The initial mass fraction of the reference component can be de�ned as a constant entry in a cus-
tomized dictionary called initialMassFraction, the value of the initial mass fraction can be easily
changed by creating a dictionary �le called (initialMassFraction) inside the constant folder of any

26

CHAPTER 3. CREATING A NEW COMPRESSIBLE SOLVER FOR BINARY
GAS-MIXTURES

simulation case that works with the thermoDi�RhoSimpleFoam solver. For this purpose, add the
next code lines after the turbulence model de�nition, in the createFields.H �le:

...

Info<< "Reading initialMassFraction of Ca\n" << endl;

IOdictionary initialMassFraction

(

IOobject

(

"initialMassFraction",

runTime.constant(),

mesh,

IOobject::MUST_READ,

IOobject::NO_WRITE

)

);

Info<< "Reading initial mass fraction of component 'a'\n" << endl;

dimensionedScalar Ca0

(

"Ca0", dimensionSet(0, 0, 0, 0, 0, 0 ,0), initialMassFraction

);

...

We �nally save the createFields.H �le with the new implementations and proceed with the next
modi�cations.

3.4 Final implementations in thermoDi�usionFoam.C �le and

solver compilation

In this step, the thermoDi�usionFoam.C �le should be opened. The header �le of the new thermo-
physical model is included at the begining of the �le replacing the "�uidThermo.H" header, and the
CaEqn.H �le has to be added before the end of the time-loop, as solution values of temperature and
velocity will be needed for the species transport equation calculations. the boundary conditions are
corrected as well as the thermophysical variables.

...

#include "fvCFD.H"

//#include "fluidThermo.H" (fluidThermo.H is commented or erased)

#include "turbulentFluidThermoModel.H"

#include "simpleControl.H"

#include "pressureControl.H"

#include "fvOptions.H"

#include "thermoDiffrhoThermo.H" //- New thermophysical model

// * //

int main(int argc, char *argv[])

...

turbulence->correct();

//New additions

27

CHAPTER 3. CREATING A NEW COMPRESSIBLE SOLVER FOR BINARY
GAS-MIXTURES

U.correctBoundaryConditions();

thermo.T().correctBoundaryConditions();

p.correctBoundaryConditions();

thermo.correct();

#include "CaEqn.H" //Include the species transport equation

Cb = 1 - Ca; //Calculate the mass fraction of the second component b

Ca.correctBoundaryConditions(); //Correct boundary conditions after calculations

//End of new additions

runTime.write();

runTime.printExecutionTime(Info);

...

Now, let's open the �le Make/options and replace the link path to the basic library with the
user directory path (Change the line: -I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \ with
-I$(WM_PROJECT_USER_DIR)/src/thermophysicalModels/basic/lnInclude \), then, after the line
"EXE_LIBS = \" add the link path to the user's library "-L$(FOAM_USER_LIBBIN) \". Make
sure that the options �le looks like in the following example:

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/cfdTools \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude \

-I$(LIB_SRC)/transportModels/compressible/lnInclude \

-I$(WM_PROJECT_USER_DIR)/src/thermophysicalModels/basic/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \

EXE_LIBS = \

-L$(FOAM_USER_LIBBIN) \

-lfiniteVolume \

-lfvOptions \

-lmeshTools \

-lsampling \

-lcompressibleTransportModels \

-lturbulenceModels \

-lcompressibleTurbulenceModels \

-latmosphericModels

Save the �le and proceed with the compilation of the new solver by entering the following command
lines in the terminal window.

cd $WM_PROJECT_USER_DIR/applications/solvers/compressible

wclean thermoDiffRhoSimpleFoam

wmake thermoDiffRhoSimpleFoam

28

Chapter 4

Tutorial set up

To test the new implementations made in the thermophysicalModels library, a basic test case will
be set up. The case consist on a simple 2-D simulation of a thermodi�usion cell with a 50%− 50%
mass fraction mixture of He and N2 entering to the domain at 4 · 10−06 kg

s . The domain resembles a
parallel plate �ow system where a temperature gradient is induced by setting the higher temperature
in the upper wall and the lower temperature in the bottom wall. Table 4.1 shows the thermophysical
constant values that are necessary as initial conditions for this test case.

Figure 4.1: Sketch of the thermodi�usion cell, 2-D geometry.

Since the purpose of this tutorial is to show how the thermophysicalModels library works with the
new de�ned mass transport coe�cients in a compressible solver, only the thermophysicalProperties
and the custom initialMassFraction dictionaries are explained here, the rest of the case �les are
compelled in the Appendix section.

CHAPTER 4. TUTORIAL SET UP

Description Symbol Value and units

Mass fraction of He Ca 0.5
Mass fraction of N2 Cb 0.5

Mixture mole weight M 7.00125[kg
mol]

Mixture dynamic viscosity µ 1.969 · 10−5[kgms]

Mass di�usivity Dab 1.969 · 10−5[m
2

s]

Entalpy of formation hf 0[kgm
2

s2mol]

Mixture speci�c heat cp 3112.452[m2

s2K]
Prandtl Pr 0.45

Thermodi�usion ratio KT 20.33

Table 4.1: Mixture therrmophysical properties

4.1 The thermophysicalproperties and initialMassFraction dic-

tionaries

In the thermoPhysicalProperties dictionary, one has to specify the entries for the new thermophysical
and transport models, the reader can compare the values given in table 4.1 with the entry values of
the following example of the thermophysicalProperties dictionary.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object thermophysicalProperties;

}

// * //

thermoType

{

type thermoDiffheRhoThermo; //- New thermophysical model

mixture pureMixture;

transport thermoDiffconst; //- New transport model

thermo hConst;

equationOfState perfectGas;

specie specie;

energy sensibleEnthalpy;

}

mixture

{

specie

{

molWeight 7.00125;

}

thermodynamics

{

Cp 3112.452;

Hf 0;

}

transport

{

mu 1.969e-05;

Pr 0.45;

Dab 7.5e-5;

KT 20.3;

}

}

30

CHAPTER 4. TUTORIAL SET UP

As mentioned in the previous chapter, the initial mass fraction of the reference component can be
speci�ed in a user-de�ned dictionary, called initialMassFraction, thereby, that parameter can be
easily changed without recurring to solver modi�cations.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object initialMassFraction;

}

// * //

//Initial mass fraction of component "a" N2 : mixture N2-He

Ca0 0.5;

4.2 Simulation results post-processing

Since the initial mass fraction of the reference component and the maximum and minimum values
of temperature are known, the equation (1.6) can be easily integrated to get the �nal mass fraction
value of the reference component. The integrated equation is given below,

Ca − Ca0 = −KTCa0(1− Ca0) ln

[
TH
TC

]
(4.1)

By substituting the values given in table 4.1 the mass fraction value of the reference component is
C{a,calc} = 0.5328, this value can be compared with the maximum value of the component a curve,
shown in the �gure 4.2 which is approximately C{a,sim} = 0.54. This gives a relative error value of
approximately 1.35%.

Therefore, not only the new implementation works �ne with the solver, but also it is possible to get
accurate results for a simple steady state simulation case.

Figure 4.2: Mass fraction variation along the domain center line in the X direction, for both mixture
components (He−N2)

With the help of �gures 4.3 and 4.4, it is easy to see how the concentration variation depends on
the temperature �eld. While the temperature reaches a uniform gradient value along Y axis, the
mass fraction of the reference component settles on an averaged value along the same direction, thus,

31

CHAPTER 4. TUTORIAL SET UP

according to equation 4.1, in a steady state �ow, the concentration of species depends on the averaged
temperature value and it is independent of the gradient direction. Finally, one last observation is
that in accordance to the theory [4], when the value of KT is positive, the light component will
move towards the hotter region and the heavy component will move towards the coldest region,
causing a spatial concentration variation of the mixture depending on the local temperature values
(the contrary e�ect takes place when the value of KT is negative). The reader can run his own test
case by copying all the case �les given in the Appendix section (Or preferably, by downloading the
complementary �les that come with this document).

Figure 4.3: Temperature countour �eld.

Figure 4.4: Contour �eld of He mass fraction.

Figure 4.5: Contour �eld of N2 Mass fraction.

The method shown in this report can be extended for further additions to the thermophysicalModels
library, such as new transport models that include calculation models for a variable mass di�usivity
and a variable thermodi�usion coe�cient. Further coupling between these thermodi�usion transport
models, and other thermodynamic and mixture models can be done to assure stronger calculations
that can deliver more accurate results. The interested reader is invited to test this new implemen-
tations for di�erent �uid mixture types and for di�erent thermodi�usion problems, if there is an
interest in extend this work for more complex problems, enquires can be made to the author via
email (pmjlab@leeds.ac.uk).

32

Appendix: Simulation case �les

system folder

controlDict �le

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// * //

application thermoDiffrhoSimpleFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

//endTime 0.4;

//deltaT 1e-04;

writeControl adjustableRunTime;

//writeInterval 2e-3;

purgeWrite 0;

writeFormat ascii; //binary;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 1;

// SIMPLE LOOP

endTime 2000;

deltaT 1;

writeInterval 10;

// *** //

blockMesh �le

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * //

convertToMeters 1;

vertices

(

(-0.05 -0.005 0)

(0.05 -0.005 0)

(0.05 0.005 0)

(-0.05 0.005 0)

(-0.05 -0.005 0.005)

(0.05 -0.005 0.005)

(0.05 0.005 0.005)

(-0.05 0.005 0.005)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (400 40 1) simpleGrading (

1

(

(0.2 0.35 4) // 20% y-dir, 35% cells, expansion = 4

(0.6 0.3 1) // 60% y-dir, 30% cells, expansion = 1

(0.2 0.35 0.25) // 20% y-dir, 35% cells, expansion = 0.25 (1/4)

)

1

)

);

edges

(

);

boundary

(

topWall

{

type wall;

faces

(

(3 7 6 2)

);

}

bottomWall

{

type wall;

faces

(

(0 1 5 4)

);

}

inlet

{

type patch;

faces

(

(0 4 7 3)

);

}

outlet

{

type patch;

faces

(

(2 6 5 1)

);

}

frontAndBack

{

type empty;

faces

(

(0 3 2 1)

(4 5 6 7)

);

}

);

mergePatchPairs

(

);

// *** //

fvSchemes �le

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;

}

// * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default leastSquares;

grad(U) fourth ;

}

divSchemes

{

default none;

div(phi,U) Gauss limitedLinearV 1;

div(phi,e) Gauss limitedLinear 1;

div(phi,K) Gauss limitedLinear 1;

div(phiv,p) Gauss limitedLinear 1;

div(phi,Ca) Gauss limitedLinear 1;

div(meshPhi,p) Gauss limitedLinear 1;

div(phi,h) Gauss limitedLinear 1;

div(phi,Ekp) Gauss limitedLinear 1;

div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default limitedLinear phi 1;

}

snGradSchemes

{

default orthogonal;

}

fvSolution �le

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * //

solvers

{

"(p|rho|Ca)"

{

solver GAMG;

tolerance 1e-06;

relTol 0.05;

smoother symGaussSeidel;

nCellsInCoarsestLevel 200;

}

U

{

solver smoothSolver;

smoother symGaussSeidel;

nSweeps 4;

tolerance 1e-05;

relTol 0.1;

minIter 1;

}

h

{

solver PBiCGStab;

preconditioner DILU;

nSweeps 2;

tolerance 1e-05;

relTol 0.1;

minIter 1;

}

"(p|rho|Ca)Final"

{

$p;

tolerance 1e-05;

relTol 0;

minIter 1;

}

UFinal

{

$U;

tolerance 1e-05;

relTol 0.1;

minIter 1;

}

hFinal

{

$e;

tolerance 1e-05;

relTol 0;

minIter 1;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 4;

rhoMin 0.3;

rhoMax 1.4;

pMin 90000;

pMax 110000;

transonic false;

pRefCell = 0;

pRefValue = 1e5;

//consistent yes;

residualControl

{

p 1e-3;\\

U 1e-4;\\

e 1e-3;

Ca 1e-3;

// possibly check turbulence fields

// "(k|epsilon|omega)" 1e-3;

}

// 2.4.x

rhoMin rhoMin [1 -3 0 0 0 0 0] 0.3;

rhoMax rhoMax [1 -3 0 0 0 0 0] 1.4;

}

relaxationFactors-SIMPLE

{

fields

{

p 0.3;

rho 0.05;

}

equations

{

U 0.7;

// "(k|epsilon)" 0.7;

e 0.5;

Ca 0.5;

".*Final" 1.0;

}

}

relaxationFactors-PIMPLE

{

equations

{

U 0.95;

// "(k|epsilon)" 0.95;

e 0.95;

Ca 0.95;

".*Final" 1.0;

}

}

relaxationFactors { $relaxationFactors-SIMPLE }

constant folder

thermoPhysicalProperties �le

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object thermophysicalProperties;

}

// * //

thermoType

{

type thermoDiffheRhoThermo;

mixture pureMixture;

transport thermoDiffconst;

thermo hConst;

equationOfState perfectGas;

specie specie;

energy sensibleEnthalpy;

}

mixture

{

specie

{

molWeight 7.00125;

}

thermodynamics

{

Cp 3112.452;

Hf 0;

}

transport

{

mu 1.969e-05;

Pr 0.45;

Dab 7.5e-5;

KT 20.3;

}

}

initialMassFraction �le

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object initialMassFraction;

}

// * //

//Initial mass fraction of component "a" N2 : mixture N2-He

Ca0 0.5;

turbulenceProperties

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object turbulenceProperties;

}

// * //

simulationType laminar;

0 folder

Ca �le

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object Ya;

}

// * //

dimensions [0 0 0 0 0 0 0];

internalField uniform 0.5;

boundaryField

{

inlet

{

type uniformFixedValue;

uniformValue constant 0.5;

}

outlet

{

type inletOutlet;

value $internalField;

inletValue uniform 0;

}

topWall

{

type zeroGradient;

}

bottomWall

{

type zeroGradient;

}

frontAndBack

{

type empty;

}

}

U �le

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

inlet

{

type flowRateInletVelocity;

massFlowRate constant 4e-06;

value uniform (0 0 0);

}

outlet

{

type inletOutlet;

value $internalField;

inletValue uniform (0 0 0);

}

topWall

{

type noSlip;

}

bottomWall

{

type noSlip;

}

frontAndBack

{

type empty;

}

}

P �le

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p;

}

// * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 101325;

boundaryField

{

inlet

{

type zeroGradient;

}

outlet

{

type fixedValue;

value $internalField;

}

topWall

{

type zeroGradient;

}

bottomWall

{

type zeroGradient;

}

frontAndBack

{

type empty;

}

}

T �le

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object T;

}

// * //

dimensions [0 0 0 1 0 0 0];

internalField uniform 298.15;

boundaryField

{

inlet

{

type uniformFixedValue;

uniformValue constant 298.15;

}

outlet

{

type inletOutlet;

value $internalField;

inletValue uniform 298.15;

}

topWall

{

type uniformFixedValue;

uniformValue constant 310;

}

bottomWall

{

type uniformFixedValue;

uniformValue constant 298.15;

}

frontAndBack

{

type empty;

}

}

Study questions

1. How do temperature gradients a�ect mass di�usivity in binary gas mixtures?

2. What is the thermodi�usion ratio? How is it related to mass di�usivity processes?

3. Describe brie�y the structure of the thermophysicalModels library, how are the thermophysical
properties of a �uid obtained/calculated when running a simulation case?

4. In the thermophysicalModels code context, why is it necessary to declare the data members
and member functions of a transport model in a base thermophysical model? (it can also be
a thermodynamic or state equation model).

5. In a solver code where thermophysical models are required, how are thermophysical models
declared? Which �le contains that declaration?

6. Explain brie�y the entries of the thermophysicalProperties dictionary (this is related with the
structure of thermophysicalModels library) .

Bibliography

[1] V.I. Kaljasin. Thermal di�usion. Thermopedia, http://www.thermopedia.com/content/1189/,
2019

[2] R.B. Bird, W.E. Stewart, and E.N. Lightfoot. Transport Phenomena. Wiley International edition.
Wiley, 2006.

[3] I. Choquet. ThermophysicalModels library in openFOAM-2.3.x (or 2.4.x),
www.tfd.chalmers.se/∼hani/kurser/OS_CFD_2015/IsabelleChoquet/thermophysicalModels-
OF-2.3-or-2.4.x.pdf, 2015.

[4] P. Costeséque, A. Mojtabi, and J.K. Platten. Thermodi�usion phenomena. Comptes Rendus
Mécanique, 339(5):275 � 279, 2011.

[5] H. Davarzani, M. Marcoux, P. Costeséque, and M. Quintard. Experimental measurement of
the e�ective di�usion and thermodi�usion coe�cients for binary gas mixture in porous media.
Chemical Engineering Science, 65(18):5092�5104, 2010.

[6] D. Humel. Modifying buoyantPimpleFoam for the Simulation of Solid-Liquid Phase Change
with Temperature-dependent Thermophysical Properties, Proceedings of CFD with OpenSource
Software, dx.doi.org/10.17196/OS_CFD#YEAR_2017, 2017.

[7] OpenCFD. OpenFOAM - The Open Source CFD Toolbox - User Guide. OpenCFD Ltd., United
Kingdom, v1906 edition, 25 June 2019.

[8] J. K. Platten. The Soret E�ect: A Review of Recent Experimental Results. Journal of Applied
Mechanics, 73(1):5�15, 04 2005.

[9] M.A. Rahman and M.Z. Saghir. Thermodi�usion or soret e�ect: Historical review. International
Journal of Heat and Mass Transfer, 73:693�705, 2014.

	Theoretical background
	Introduction
	Mass diffusion caused by temperature gradients
	Thermophysical models in OpenFOAM
	thermophysicalProperties dictionary

	Implementing constant transport coefficients through thermophysicalProperties library
	Creating the thermophysicalModels user library
	specie and basic libraries

	Creating the new transport model: thermoDiffconstTransport
	Creating the new thermophysical model: thermoDiffRhoThermo

	Creating a new compressible solver for binary gas-mixtures
	Copying the compressible solver: thermoDiffRhoSimpleFoam
	The CaEqn.H file
	The createFields.H file
	Final implementations in thermoDiffusionFoam.C file and solver compilation

	Tutorial set up
	The thermophysicalproperties and initialMassFraction dictionaries
	Simulation results post-processing

	Appendix: Simulation case files
	system folder
	constant folder
	0 folder

	Study Questions
	Bibliography

