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Learning outcomes

The reader will learn:

How to use it:

� How to specify the Gauss Laplacian discretization scheme in system/fvSchemes.

� How to find the available for scheme options for the interpolation of the diffusion coefficient
to cell face centres and explicit non orthogonal mesh correction.

The theory of it:

� The theoretical background for the Gauss Laplacian discretization scheme, both for a scalar
diffusivity and a tensorial diffusivity.

� The theoretical background for the modified Gauss Laplacian discretization scheme with the
Ghost Fluid Method (GFM) [1], which improves the dynamic pressure calculation at the
interface between two fluids in an incompressible two-phase flow.

How it is implemented:

� How the standard Gauss Laplacian discretization scheme is implemented for both scalar and
tensor diffusion.

� How the base class for Laplacian schemes work.

� How a keyword, used in system/fvSchemes, is defined in the code and how this links to the
run-time selection mechanism.

How to modify it:

� How to make a copy of the Gauss Laplacian scheme in the user directory.

� How remove the template functionality in the Gauss Laplacian discretization class and limit
the class to scalar diffusion and scalar dependent variable.

� How to implement the GFM method in the Gauss Laplacian discretization scheme.

� How a matrix is handled in OpenFOAM.
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Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

� How to run standard document tutorials like damBreak tutorial.

� How to find source files with the find command.

� How to customize a solver and do top-level application programming.

� Fundamentals of Computational Methods for Fluid Dynamics, Book by J. H. Ferziger and M.
Peric

It is also recommended that the reader knows the following in order to get maximum benefit out of
this report:

� How OpenFOAM discretize equations from Ph.D. theses: Error Analysis and Estimation for
the Finite Volume Method with Applications to Fluid Flows, 1996, H. Jasak.

� Basic knowledge of two-phase flows from Ph.D. thesis: Computational fluid dynamics of dis-
persed two-phase flows at high phase fractions, 2002, H. Rusche.

� Basic knowledge of C++.

� Know what macro is.
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Chapter 1

Introduction

I was inspired to make this tutorial after reading about a method, which improves the way Open-
FOAM treats the dynamic pressure close to the free surface [1]. The OpenFOAM solver interIsoFoam
solves an incompressible two-phase flow problem, where the two phases are condensed into a single
momentum equation.

The momentum equation for each of the two phases in a single computational cell is condensed into
a single momentum equation by introducing the Volume Of Fluid method (VOF). In this method
a volume fraction for each cell defines the fraction of the cell volume which is occupied by phase 1,
α1. The volume fraction for phase 2 is defined as α2 = 1− α1, such that the total volume fraction
is 1. This works very well when we are not at an interface between two phases with a large density
difference.

The dynamic pressure [1] is defined as

p = ptotal − ρg • x (1.1)

where ρ is the fluid density, g is the gravitational vector and x is the position in space with respect
to origin of the coordinate system. It is observed that the definition of the dynamic pressure depends
on the density field. The density field in a two-phase flow is by nature discontinuous at the interface
between the two phases, as long as the free surface remains well defined. The discontinuity is not
captured in interIsoFoam, because the dynamic pressure gradient and dynamic pressure laplacian
operators performs a continuous linear interpolation of the dynamic pressure field across the free
surface. Thereby it indirectly applies a continuous linear interpolation of the density field, since
Gauss’ theorem is used for the discretization, and here we need to interpolate the dynamic pres-
sure from cell-centres to face-centres. The interpolation inconsistency leads to unphysical behavior
at the fluid interface for two-phase flows with a high density ratio as mentioned by Vukcevic et al. [1].

In this tutorial we will only work with the Gauss Laplacian operator used in the dynamic pres-
sure equation, which has been derived from the continuity equation and momentum equation. The
final test case is a still water surface.

In this work I need to refer to many different files. I have only specified the names of the files
to avoid that the report gets too messy. The full paths can be found by opening a new terminal
window and using the command

find $FOAM_SRC -name <Filename>

where you need to replace <Filename> with the name of the relevant file, that you are searching
for. All the modified are not part of the source code and should be found in the files related to this
report.
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Chapter 2

Gauss scheme

This chapter describes the standard Gauss discretization scheme used to discretize the laplacian
operator in OpenFOAM.

2.1 How to use it

The specification of schemes is performed in the dictionary file system/fvSchemes in all case setups.
The laplacian schemes is specified in the sub-dictionary laplacianSchemes of system/fvSchemes.
The sub-dictionary is created by

laplacianSchemes

{

// Specify schemes here

}

Now lets say you want to specify the scheme for

∇ • (γ∇φ) (2.1)

which is part of the governing equation you want to solve. In your OpenFOAM application you have
specified the term as

fvm::laplacian(gamma,phi)

where the diffusion coefficient γ corresponds to gamma and the dependent variable φ corresponds to
phi. The required entry in sub-dictionary laplacianSchemes is in this case

laplacian(gamma,phi)

The dictionary now reads

laplacianSchemes

{

laplacian(gamma,phi)

}

However we have not defined any discretization yet. We will continue with the scheme options in
next section.

6



2.1. HOW TO USE IT CHAPTER 2. GAUSS SCHEME

2.1.1 Find available scheme options

Now we need to specify discretization scheme. This is quite simple, since the only valid choice is
Gauss, which tells the code to use Gauss’ theorem in the discretization practice. We can figure out
what options we have by inserting a scheme name, which does not exist, for example

laplacianSchemes

{

laplacian(gamma,phi) giveMeOptions;

}

When executing a case using this scheme, the code will return an error message saying

--> FOAM FATAL IO ERROR:

Unknown laplacian scheme giveMeOptions

Valid laplacian schemes are :

1(Gauss)

This tells us that there is 1 laplacian scheme and the name is Gauss. We replace giveMeOptions

with Gauss, so now we have

laplacianSchemes

{

laplacian(gamma,phi) Gauss;

}

We can now try to run our case again, which causes OpenFOAM to return another error message
that says

--> FOAM FATAL IO ERROR:

discretization scheme not specified

Valid schemes are :

58

(

CoBlended

Gamma

Gamma01

LUST

MUSCL

MUSCL01

Minmod

OSPRE

QUICK

SFCD

SuperBee

UMIST

biLinearFit

blended

cellCoBlended

clippedLinear

cubic

cubicUpwindFit
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2.1. HOW TO USE IT CHAPTER 2. GAUSS SCHEME

deferredCorrection

downwind

filteredLinear

filteredLinear2

filteredLinear3

fixedBlended

harmonic

interfaceCompression

limitWith

limitedCubic

limitedCubic01

limitedGamma

limitedLimitedCubic

limitedLimitedLinear

limitedLinear

limitedLinear01

limitedMUSCL

limitedVanLeer

limiterBlended

linear

linearFit

linearPureUpwindFit

linearUpwind

localBlended

localMax

localMin

midPoint

outletStabilised

pointLinear

quadraticFit

quadraticLinearFit

quadraticLinearUpwindFit

quadraticUpwindFit

reverseLinear

skewCorrected

upwind

vanAlbada

vanLeer

vanLeer01

weighted

)

OpenFOAM requires a keyword that describes how to interpolate the coefficient gamma from cell-
centres to cell-faces. Later when we will look at the implementation, I will explain how to see this
from the source code, but for now we will choose the scheme linear and continue. Our dictionary
now reads

laplacianSchemes

{

laplacian(gamma,phi) Gauss linear;

}

When we execute our case again, we get yet another error message that says

--> FOAM FATAL IO ERROR:
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2.2. THEORY CHAPTER 2. GAUSS SCHEME

discretization scheme not specified

Valid schemes are :

7(corrected faceCorrected limited linearFit orthogonal quadraticFit uncorrected)

Again it is not obvious to us what the scheme should be used for. This options tells the code how we
want to treat the non-orthogonal correction term k•(∇U)f , which can be seen from Equation (3.17).
The vector k comes from a split of the surface normal area vector in an orthogonal component and a
non-orthogonal component. The split can be performed in different ways, one of which is described
in Section 2.2.1.

2.2 Theory

The theoretical section presents the theoretical background for the Gauss Laplacian discretization
scheme presented so that it fits with the code implementation. The diffusion term from Equation
(2.1) is the starting point, and I will consider scalar and tensor diffusion types. The code implemen-
tation of the Gauss Laplacian discretization is found in the source files

$FOAM_SRC/finiteVolume/finiteVolume/laplacianSchemes/gaussLaplacianScheme

/gaussLaplacianScheme.C

$FOAM_SRC/finiteVolume/finiteVolume/laplacianSchemes/gaussLaplacianScheme

/gaussLaplacianScheme.H

$FOAM_SRC/finiteVolume/finiteVolume/laplacianSchemes/gaussLaplacianScheme

/gaussLaplacianSchemes.C

2.2.1 Gauss discretization of Laplacian with scalar diffusion coefficient

The theory behind the laplacian operator of a scalar field φ with a scalar diffusion coefficient γ is
presented in this section. Gauss’s theorem is used to convert a volume integral to a surface integral
as given by ∫

VP

∇ • (γ∇φ) dV =

∫
SP

dS • (γ∇φ) (2.2)

where VP is the cell volume and SP is the cell surface.
The divergence operator ∇ • () of a function f(x, y, z) in a Cartesian coordinate system is given by

∇ • (f(x, y, z)) =
∂f(x, y, z)

∂x
+
∂f(x, y, z)

∂y
+
∂f(x, y, z)

∂z
(2.3)

The gradient operator ∇() of a function f(x, y, z) in a Cartesian coordinate system is given by

∇(f(x, y, z)) =


∂f(x,y,z)

∂x
∂f(x,y,z)

∂y
∂f(x,y,z)

∂z

 (2.4)

The integral over the cell surface can be evaluated as a summation over the cell faces, which are
plane surfaces. The surface integral of each cell face is evaluated using the midpoint rule. This
means that we in the sum over all cell faces use the values at the face centroid. This gives∫

SP

dS • (γ∇φ) =

nf∑
f=1

Sf • (γ∇φ)f (2.5)

where Sf is the face normal vector with magnitude equal to the face area. The common name is
the surface area vector. nf is the number of faces of the cell. Subscript f indicates that the variable
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2.2. THEORY CHAPTER 2. GAUSS SCHEME

should be defined at the cell face centre. The equation can be rearranged so that the interpolated
diffusion coefficient γf is separated from Sf • (∇φ)f , since it is just a scalar.

nf∑
f=1

Sf • (γ∇φ)f =

nf∑
f=1

γfSf • (∇φ)f (2.6)

The term Sf • (∇φ)f can be rewritten to

nf∑
f=1

Sf • (γ∇φ)f =

nf∑
f=1

γf |Sf |nf • (∇φ)f (2.7)

where nf =
Sf

|Sf | is the face normal vector. |Sf | is the face area. nf•(∇φ)f is the surface normal gradi-

ent at the face. In OpenFOAM γf |Sf | corresponds to gammaMagSf in the file gaussLaplacianScheme.C.
The surface normal gradient at the face nf • (∇φ)f is treated according to the mesh complexity.
Figure 2.1 illustrates three cases with increasing mesh complexity.

Figure 2.1: Three mesh configurations presented in increasing complexity

Orthogonal meshes

The simplest case is an orthogonal mesh, where the line between owner and neighbour cell centre
intersects the face centre, as presented in Figure 2.1. An orthogonal cell only has right angles
between the cell faces. Each face is shared by a pair of cells, where the cell with the lowest index
is defined as the face owner cell and the other cell the face neighbour cell. In this case the surface
normal gradient can be calculated as the difference between the nodal values over the distance

nf • (∇φ)f = |nf |︸︷︷︸
=1

φN − φP
|d|

(2.8)

where the magnitude of the normal |nf | = 1, and |d| is the magnitude of the vector from owner
cell-centre P to neighbour cell-centre N . Equation (2.7) reduces to∫

VP

∇ • (γ∇φ) dV =

nf∑
f=1

γf |Sf |
φN − φP
|d|

(2.9)

which is the final discretization of the laplacian term for an orthogonal mesh.
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2.2. THEORY CHAPTER 2. GAUSS SCHEME

The discretization of the laplacian term can be separated in an uncorrected discretization and a
corrected discretization. The uncorrected part of the discretization includes the implicit discretiza-
tion and contributions from boundary conditions. The corrected part of the discretization includes
the explicit discretization, which is used to correct the implicit discretization, for example due to
mesh non orthogonolity. The member function fvmLaplacianUncorrected takes care of the uncor-
rected discretization, where the implicit discretization for an orthogonal mesh is given by Equation
(2.9). The function declaration is given by

gaussLaplacianScheme.H
118 static tmp<fvMatrix<Type>> fvmLaplacianUncorrected

119 (

120 const surfaceScalarField& gammaMagSf,

121 const surfaceScalarField& deltaCoeffs,

122 const GeometricField<Type, fvPatchField, volMesh>&

123 );

The function is static, so it applies to all objects, when it is called from the class. The function

needs gammaMagSf = γf |Sf |, deltaCoeffs =
|nf |
|d| = 1

|d| and the dependent variable φ, which is a

volume field. The implementation is described by the following pieces of code. First
gaussLaplacianScheme.C

46 template<class Type, class GType>

47 tmp<fvMatrix<Type>>

48 gaussLaplacianScheme<Type, GType>::fvmLaplacianUncorrected

49 (

50 const surfaceScalarField& gammaMagSf,

51 const surfaceScalarField& deltaCoeffs,

52 const GeometricField<Type, fvPatchField, volMesh>& vf

53 )

54 {

tells the code which function we are defining and its input and output. vf is short for ”Volume
Field” and denotes the dependent variable φ. Next section

gaussLaplacianScheme.C
55 tmp<fvMatrix<Type>> tfvm

56 (

57 new fvMatrix<Type>

58 (

59 vf,

60 deltaCoeffs.dimensions()*gammaMagSf.dimensions()*vf.dimensions()

61 )

62 );

63 fvMatrix<Type>& fvm = tfvm.ref();

creates a new matrix in the memory managed by the class tmp and a reference to the matrix is
saved. Next section is

gaussLaplacianScheme.C
65 fvm.upper() = deltaCoeffs.primitiveField()*gammaMagSf.primitiveField();

66 fvm.negSumDiag();

67

Line 65 sets all the off-diagonal coefficient above the matrix diagonal, and line 66 sets the diagonal
coefficients from the off diagonal coefficients. The details of exactly how those line work according
to the code will not be described. In stead we will have a look at how the matrix assembly can
be made more transparent and link it to the theory in the section about matrix assembly, which is
found in Section 2.4.
The next piece of code treats the boundary faces.
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2.2. THEORY CHAPTER 2. GAUSS SCHEME

gaussLaplacianScheme.C
68 forAll(vf.boundaryField(), patchi)

69 {

70 const fvPatchField<Type>& pvf = vf.boundaryField()[patchi];

71 const fvsPatchScalarField& pGamma = gammaMagSf.boundaryField()[patchi];

72 const fvsPatchScalarField& pDeltaCoeffs =

73 deltaCoeffs.boundaryField()[patchi];

74

75 if (pvf.coupled())

76 {

77 fvm.internalCoeffs()[patchi] =

78 pGamma*pvf.gradientInternalCoeffs(pDeltaCoeffs);

79 fvm.boundaryCoeffs()[patchi] =

80 -pGamma*pvf.gradientBoundaryCoeffs(pDeltaCoeffs);

81 }

82 else

83 {

84 fvm.internalCoeffs()[patchi] = pGamma*pvf.gradientInternalCoeffs();

85 fvm.boundaryCoeffs()[patchi] = -pGamma*pvf.gradientBoundaryCoeffs();

86 }

87 }

88

89 return tfvm;

90 }

Line 68-87 loops through the faces at the boundary patches and sets the matrix and source con-
tribution from the boundary conditions, that we have specified. Line 75-81 is used if the patch
is coupled, for example a cyclic inlet and outlet condition. Line 83-86 is used for the boundary
patches, where we only have cells on one side of the face, hence this is the boundary faces of our
computational domain. The matrix assembly which takes place in this function is described in more
detail in Section 2.4, where it also related to theory.

Non orthogonal meshes

In Figure 2.1 case b) the mesh is non orthogonal, because the cell face is not orthogonal to the vector
d from P to N, however it still intersect with the face centre, so we still get the value at the face
centre, when we interpolate. The surface normal gradient nf • (∇φ)f is separated in an orthogonal
part, which is treated implicitly, and a non orthogonal part, which is treated explicitly. To account
for the non-orthogonality a separation of the normal vector is performed according to

nf = ∆ + k (2.10)

which separates the normal vector nf in an orthogonal projection ∆ and a non orthogonal projection
k. Figure 2.2 illustrates the separation of the normal vector using the over relaxed approach, which
is the one used as default in OpenFOAM.
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2.2. THEORY CHAPTER 2. GAUSS SCHEME

Figure 2.2: Illustration of the over relaxed approach to separate the normal in a face orthogonal and a face
non orthogonal component.

The surface normal gradient nf • (∇φ)f is now found by

nf • (∇φ)f = ∆ • (∇φ)f + k • (∇φ)f (2.11)

where the implicit orthogonal term ∆ • (∇φ)f is given by

∆ • (∇φ)f = |∆|φN − φP
|d|

(2.12)

and this expands the expression for the surface normal gradient to

nf • (∇φ)f = |nf |
φN − φP
|d|

= |∆|φN − φP
|d|︸ ︷︷ ︸

Orthogonal

+ k • (∇φ)f︸ ︷︷ ︸
Non orthogonal

(2.13)

where the non orthogonality is accounted for explicitly. The explicit evaluation of the gradient term
(∇φ)f in the non orthogonal term is calculated from a linear interpolation of the gradient

(∇φ)f = fx(∇φ)P + (1− fx)(∇φ)N (2.14)

where the interpolation factor fx is defined as

fx =
fN

d
(2.15)

The vector fN is the vector from the face-centre to the neighbour cell-centre. The explicit evaluation
of the cell-centred gradients (∇φ)P and (∇φ)N is calculated with Gauss’ theorem

(∇φ)P =
1

VP

nf∑
f=1

Sfφf (2.16)

(∇φ)N =
1

VN

nf∑
f=1

Sfφf (2.17)

where VP is the volume of cell P and VN is the volume of cell N . The interpolation of φ is given by

φf = fxφP + (1− fx)φN (2.18)

The discretization of the laplacian operator now reads∫
VP

∇ • (γ∇φ) dV =

nf∑
f=1

γf |Sf |
(
|∆|φN − φP

|d|
+ k • (∇φ)f

)
(2.19)

The calculation of ∆ and k can be performed in various ways as seen from H. Jasak’s PhD thesis
[2, p. 84-86]. The implementation in OpenFOAM is slightly different from the presentation given
by H. Jasak [2, p. 84-86], since OpenFOAM separates the normal vector into an orthogonal and an
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2.2. THEORY CHAPTER 2. GAUSS SCHEME

non orthogonal vectorial projection, instead of separating the surface area vector.

In OpenFOAM it has been decided that the vectors nf and k should be orthogonal to each other.
This way of determining the vectorial projections is called the Over-relaxed approach according
to H. Jasak [2, p. 85]. However remember that we use the surface normal vector instead of the
surface area vector. ∆ is given by

∆ =
d

d • nf
|nf |2 (2.20)

which is exactly the same expression presented by H. Jasak [2, (3.32)] after substituting S with nf ,
and remembering that |nf |2 = 1, so the expression for the orthogonal projection reduces to

∆ =
d

d • nf
(2.21)

The implementation in OpenFOAM further splits the vector ∆ in

∆ = d︸︷︷︸
delta

1

d • nf︸ ︷︷ ︸
nonOrthDeltaCoeffs

(2.22)

and applies a stabilising condition for the product d • nf to avoid zero division in the fraction. We
finally arrive at the implemented expression given by

∆ = d︸︷︷︸
delta

1

max (d • nf , 0.05|d|)︸ ︷︷ ︸
nonOrthDeltaCoeffs

(2.23)

The implicit as well as the explicit discretization of the laplacian term is handled by the function
fvmLaplacian in the file gaussLaplacianSchemes.C line 37-86. The function fvmLaplacian calls
the function fvmLaplacianUncorrected, which performs the implicit discretization, at line 52-57.
The code reads

gaussLaplacianSchemes.C
52 tmp<fvMatrix<Type>> tfvm = fvmLaplacianUncorrected \

53 ( \

54 gammaMagSf, \

55 this->tsnGradScheme_().deltaCoeffs(vf), \

56 vf \

57 );

The orthogonal vector ∆ enters the implicit discretization through the second function input
this->tsnGradScheme_().deltaCoeffs(vf), which corresponds to ∆

d . I will now explain how I
figured this out from inspecting the code implementation.
At line 55 the code calls the function deltaCoeffs(vf) from the private data member tsnGradScheme_,
which is a surface normal gradient scheme according to the base class declaration laplacianScheme.H,
where line 82 reads

tmp<snGradScheme<Type>> tsnGradScheme_;

The class snGradScheme is the abstract base class for surface normal gradient schemes, and the
function deltaCoeffs(vf) is defined as pure virtual function in the snGradScheme class declaration,
as seen by

snGradScheme.H
152 //- Return the interpolation weighting factors for the given field

153 virtual tmp<surfaceScalarField> deltaCoeffs

154 (

155 const GeometricField<Type, fvPatchField, volMesh>&

156 ) const = 0;
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Hence, all surface normal gradient schemes derived from this base class must define this function.
To find an actual implementation of the function deltaCoeffs(vf), we need to look at one of the
surface normal gradient schemes derived from the base class snGradScheme. The available surface
normal gradient schemes are found in source code in the folder

$FOAM_SRC/finiteVolume/finiteVolume/snGradSchemes

The surface normal gradient scheme called correctedSnGrad is used when the keyword corrected

is used as the last keyword when defining a laplacian scheme in system/fvSchemes. In the class
declaration of correctedSnGrad, the declaration and definition of the function deltaCoeffs(vf) is
found in the same file and is given by

correctedSnGrad.H
98 //- Return the interpolation weighting factors for the given field

99 virtual tmp<surfaceScalarField> deltaCoeffs

100 (

101 const GeometricField<Type, fvPatchField, volMesh>&

102 ) const

103 {

104 return this->mesh().nonOrthDeltaCoeffs();

105 }

The function returns this->mesh().nonOrthDeltaCoeffs();, which is a call to the function
nonOrthDeltaCoeffs() available from the constant reference to the mesh object mesh(). The
function nonOrthDeltaCoeffs() is in fact declared and defined in the class surfaceInterpolation,
that the mesh class fvMesh inherits from, and therefore the mesh has access to this function. The
function nonOrthDeltaCoeffs() is defined in surfaceInterpolation.C by the code

surfaceInterpolation.C
100 const Foam::surfaceScalarField&

101 Foam::surfaceInterpolation::nonOrthDeltaCoeffs() const

102 {

103 if (!nonOrthDeltaCoeffs_)

104 {

105 makeNonOrthDeltaCoeffs();

106 }

107

108 return (*nonOrthDeltaCoeffs_);

109 }

This function ensures that nonOrthDeltaCoeffs_ is only evaluated, if it is not defined, and it returns
a pointer to the private data member nonOrthDeltaCoeffs_. If the data member nonOrthDeltaCoeffs_
is not defined , it is calculated by the function makeNonOrthDeltaCoeffs(), which is also defined
in surfaceInterpolation.C. The code reads

surfaceInterpolation.C
254 void Foam::surfaceInterpolation::makeNonOrthDeltaCoeffs() const

255 {

256 if (debug)

257 {

258 Pout<< "surfaceInterpolation::makeNonOrthDeltaCoeffs() : "

259 << "Constructing differencing factors array for face gradient"

260 << endl;

261 }

262

263 // Force the construction of the weighting factors

264 // needed to make sure deltaCoeffs are calculated for parallel runs.

265 weights();
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266

267 nonOrthDeltaCoeffs_ = new surfaceScalarField

268 (

269 IOobject

270 (

271 "nonOrthDeltaCoeffs",

272 mesh_.pointsInstance(),

273 mesh_,

274 IOobject::NO_READ,

275 IOobject::NO_WRITE,

276 false // Do not register

277 ),

278 mesh_,

279 dimless/dimLength

280 );

281 surfaceScalarField& nonOrthDeltaCoeffs = *nonOrthDeltaCoeffs_;

282 nonOrthDeltaCoeffs.setOriented();

283

284

285 // Set local references to mesh data

286 const volVectorField& C = mesh_.C();

287 const labelUList& owner = mesh_.owner();

288 const labelUList& neighbour = mesh_.neighbour();

289 const surfaceVectorField& Sf = mesh_.Sf();

290 const surfaceScalarField& magSf = mesh_.magSf();

291

292 forAll(owner, facei)

293 {

294 vector delta = C[neighbour[facei]] - C[owner[facei]];

295 vector unitArea = Sf[facei]/magSf[facei];

296

297 // Standard cell-centre distance form

298 //NonOrthDeltaCoeffs[facei] = (unitArea & delta)/magSqr(delta);

299

300 // Slightly under-relaxed form

301 //NonOrthDeltaCoeffs[facei] = 1.0/mag(delta);

302

303 // More under-relaxed form

304 //NonOrthDeltaCoeffs[facei] = 1.0/(mag(unitArea & delta) + VSMALL);

305

306 // Stabilised form for bad meshes

307 nonOrthDeltaCoeffs[facei] = 1.0/max(unitArea & delta, 0.05*mag(delta));

308 }

309

310 surfaceScalarField::Boundary& nonOrthDeltaCoeffsBf =

311 nonOrthDeltaCoeffs.boundaryFieldRef();

312

313 forAll(nonOrthDeltaCoeffsBf, patchi)

314 {

315 fvsPatchScalarField& patchDeltaCoeffs = nonOrthDeltaCoeffsBf[patchi];

316

317 const fvPatch& p = patchDeltaCoeffs.patch();

318

319 const vectorField patchDeltas(mesh_.boundary()[patchi].delta());
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320

321 forAll(p, patchFacei)

322 {

323 vector unitArea =

324 Sf.boundaryField()[patchi][patchFacei]

325 /magSf.boundaryField()[patchi][patchFacei];

326

327 const vector& delta = patchDeltas[patchFacei];

328

329 patchDeltaCoeffs[patchFacei] =

330 1.0/max(unitArea & delta, 0.05*mag(delta));

331 }

332 }

333 }

The term nonOrthDeltaCoeffs from Equation (2.23) is implemented at line 307 above, where
unitArea is nf and delta is d. The discretization from Equation (2.19) can be rewritten to

nf∑
f=1

γf |Sf |
(
|∆|φN − φP

|d|
+ k • (∇φ)f

)
=

nf∑
f=1

γf |Sf |
(∣∣∣∣ d

max (d • nf , 0.05|d|)

∣∣∣∣ φN − φP|d|
+ k • (∇φ)f

)
=

nf∑
f=1

γf |Sf |
(
|d|
|d|

∣∣∣∣ 1

max (d • nf , 0.05|d|)

∣∣∣∣ (φN − φP ) + k • (∇φ)f

)
=

nf∑
f=1

γf |Sf |
(∣∣∣∣ 1

max (d • nf , 0.05|d|)

∣∣∣∣ (φN − φP ) + k • (∇φ)f

)
where we now can identify nonOrthDeltaCoeffs as the term

nonOrthDeltaCoeffs =
∆

d
=

1

max (d • nf , 0.05|d|)

The expression for ∆ is also used to compute k at line 375 in the function makeNonOrthCorrectionVectors()

in surfaceInterpolation.C. The code reads
surfaceInterpolation.C

375 corrVecs[facei] = unitArea - delta*NonOrthDeltaCoeffs[facei];

This corresponds exactly to

k = nf −∆ = nf − d
d

max (nf • d, 0.05d)
(2.24)

In OpenFOAM, the non orthogonal correction in Equation (2.19) is performed in the function
fvmLaplacian specialised to scalar diffusion found in gaussLaplacianSchemes.C and the first part
of the code performing the uncorrected discretization with fvmLaplacianUncorrected is given by

gaussLaplacianSchemes.C
37 template<> \

38 Foam::tmp<Foam::fvMatrix<Foam::Type>> \

39 Foam::fv::gaussLaplacianScheme<Foam::Type, Foam::scalar>::fvmLaplacian \

40 ( \

41 const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma, \

42 const GeometricField<Type, fvPatchField, volMesh>& vf \

17



2.2. THEORY CHAPTER 2. GAUSS SCHEME

43 ) \

44 { \

45 const fvMesh& mesh = this->mesh(); \

46 \

47 GeometricField<scalar, fvsPatchField, surfaceMesh> gammaMagSf \

48 ( \

49 gamma*mesh.magSf() \

50 ); \

51 \

52 tmp<fvMatrix<Type>> tfvm = fvmLaplacianUncorrected \

53 ( \

54 gammaMagSf, \

55 this->tsnGradScheme_().deltaCoeffs(vf), \

56 vf \

57 ); \

58 fvMatrix<Type>& fvm = tfvm.ref(); \

59 \

At line 45 the code creates a reference to the mesh object. The term γ|Sf | is computed in line 47-50.
The uncorrected matrix discretization is performed at line 52-57, and a reference to the created
matrix object is returned in line 58.

The explicit non orthogonal correction for scalar diffusion is implemented inside an if statement
starting at line 60 in gaussLaplacianSchemes.C as seen by

gaussLaplacianSchemes.C
60 if (this->tsnGradScheme_().corrected()) \

61 { \

The code now enters another if statement given by
gaussLaplacianSchemes.C

62 if (mesh.fluxRequired(vf.name())) \

63 { \

mesh.fluxRequired(vf.name()) is related to the dictionary fluxRequired in the case file
system/fvSchemes. An example of this is found in the tutorial standingWave which is found at
$FOAM_TUTORIALS/multiphase/interIsoFoam/standingWave. In system/fvSchemes, we find

system/fvSchemes
50 fluxRequired

51 {

52 default no;

53 p_rgh;

54 pcorr;

55 alpha.water;

56 }

It is seen that fluxRequired is turned off as default, however it is turned on for p rgh, pcorr and
alpha.water. p rgh could for example correspond to vf in the code section line 62 just above from
gaussLaplacianSchemes.C.

When fluxRequired is turned on, the code executes
gaussLaplacianSchemes.C

64 fvm.faceFluxCorrectionPtr() = new \

65 GeometricField<Type, fvsPatchField, surfaceMesh> \

66 ( \
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67 gammaMagSf*this->tsnGradScheme_().correction(vf) \

68 ); \

69 \

70 fvm.source() -= \

71 mesh.V()* \

72 fvc::div \

73 ( \

74 *fvm.faceFluxCorrectionPtr() \

75 )().primitiveField(); \

76 } \

At line 64-68 the non orthogonal face flux correction is assigned to the face flux field for non
orthogonal correction, which is a private data member declared at

fvMatrix.H
143 //- Face flux field for non-orthogonal correction

144 mutable GeometricField<Type, fvsPatchField, surfaceMesh>

145 *faceFluxCorrectionPtr_;

Access to this private member data is provided by
fvMatrix.H

338 //- Return pointer to face-flux non-orthogonal correction field

339 surfaceTypeFieldPtr& faceFluxCorrectionPtr()

340 {

341 return faceFluxCorrectionPtr_;

342 }

The face flux correction assigned to faceFluxCorrectionPtr is
gammaMagSf*this->tsnGradScheme ().correction(vf)

and this corresponds to the non orthogonal term inside the summation over faces from Equation
(2.19) which reads

γf |Sf |︸ ︷︷ ︸
(gammaMagSf)

k • (∇φ)f︸ ︷︷ ︸
(this->tsnGradScheme ().correction(vf))

(2.25)

This is the non orthogonal correction to the face flux, thereby the name: faceFluxCorrectionPtr.
The face flux correction pointer faceFluxCorrectionPtr is used when we are calling the flux()

method in the fvMatrix class. The flux() method returns the flux calculated from the matrix
coefficients, and therefore we have to add the explicit contribution to get the correct flux, when we
want to account for mesh non orthogonality. The flux() method is implemented in fvMatrix.C at
Line 923-1009, and faceFluxCorrectionPtr is used at Line 1005, where it is added to the flux
computed from the matrix coefficients.

At line 70-75 in gaussLaplacianSchemes.C the non orthogonal correction is subtracted from
the matrix source vector, because it is moved from left to right side of the equal sign in the system
equation Ax = b. Now we need the cell centred non orthogonal correction according to Equation
(2.19), where the non orthogonal term is

nf∑
f=1

γf |Sf |k • (∇φ)f (2.26)

The explicit divergence fvc::div at line 72 gaussLaplacianSchemes.C calls the surface integration
function fvc::surfaceIntegrate, and in this function the sum is divided by the cell volume. That
is why the cell volume is multiplied with the internal field returned from the divergence operation
at line 70-75 in gaussLaplacianSchemes.C.

When fluxRequired is turned off, the code executes
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gaussLaplacianSchemes.C
77 else \

78 { \

79 fvm.source() -= \

80 mesh.V()* \

81 fvc::div \

82 ( \

83 gammaMagSf*this->tsnGradScheme_().correction(vf) \

84 )().primitiveField(); \

85 } \

86 } \

In this case the code just adds the non orthogonal source term to the matrix source vector, as just
described for the previous section of code.

Non orthogonal and skew meshes

In Figure 2.1 case c) the mesh is non orthogonal and the vector from P to N (denoted d) does not
intersect the face centre. In this case we will make an error when estimating the gradient at the
cell face, because we are interpolating to the intersection point between the face and d instead of
interpolating to the face centre which has been assumed when applying the mid point rule for the
face integration.
Skewness correction is mentioned at page 254 [3] in relation to the description of the diffusion
term. The skewness correction of the gradient is discussed at page 275-280 [3] and a presentation
of how to implement a gradient computed using Gauss’ theorem and interpolation that account for
mesh skewness is presented at page 297 [3]. The face gradient in the non orthogonal term from
the laplacian discretization can be corrected for mesh skewness using the following settings for a
dependent variable φ

gradSchemes

{

default none;

grad(phi) Gauss skewCorrected linear;

}

The source files of this scheme is found in the folder

$FOAM_SRC/finiteVolume/interpolation/surfaceInterpolation/schemes/skewCorrected

and the description from skewCorrected.H reads
skewCorrected.H

32 Description

33 Skewness-corrected interpolation scheme that applies an explicit

34 correction to given scheme.

Explicit evaluation with scalar diffusion

The definition of the specialisation of the explicit evaluation function for scalar diffusion fvcLaplacian

is given by
gaussLaplacianSchemes.C

92 template<> \

93 Foam::tmp<Foam::GeometricField<Foam::Type, Foam::fvPatchField, Foam::volMesh>> \

94 Foam::fv::gaussLaplacianScheme<Foam::Type, Foam::scalar>::fvcLaplacian \

95 ( \

96 const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma, \

97 const GeometricField<Type, fvPatchField, volMesh>& vf \
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98 ) \

99 { \

100 const fvMesh& mesh = this->mesh(); \

101 \

102 tmp<GeometricField<Type, fvPatchField, volMesh>> tLaplacian \

103 ( \

104 fvc::div(gamma*this->tsnGradScheme_().snGrad(vf)*mesh.magSf()) \

105 ); \

106 \

107 tLaplacian.ref().rename \

108 ( \

109 "laplacian(" + gamma.name() + ',' + vf.name() + ')' \

110 ); \

111 \

112 return tLaplacian; \

113 }

At line 102-105 the code evaluates the Laplacian term explicitly according to

nf∑
f=1

γf |Sf |nf • (∇φ)f (2.27)

where fvc::div =
∑nf

f=1, gamma = γf , mesh.magSf() = |Sf | and
this->tsnGradScheme_().snGrad(vf) = nf • (∇φ)f .

2.2.2 Gauss discretization of Laplacian with diffusion tensor coefficient

The laplacian operator can handle scalar diffusion, as presented in previous section, however it can
also handle directional diffusion represented by a tensor. This is for example needed in continuum
mechanics for anisotropic materials or in fluid mechanics for fluid shear stresses.

As before Gauss’s theorem is used to convert the volume integral into a surface integral, which
gives ∫

VP

∇ • (γ∇φ) dV =

∫
SP

dS • (γ∇φ) (2.28)

and as before we calculate the surface integral as a summation over the cell faces and use the
midpoint rule to calculate the integral over each face, which gives∫

SP

dS • (γ∇φ) =

nf∑
f=1

Sf • (γ∇φ)f (2.29)

The diffusion coefficient γf is a second rank tensor

γf =

γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

 (2.30)

which consists of two bases as illustrated in Figure 2.3.
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Figure 2.3: Illustration of tensor bases.

The cube with three surfaces that are orthogonal to each other represent the first basis. The second
basis is the three directions in space which are orthogonal to each other. The two bases are combined
and we thereby end up with 9 components in the tensor, as illustrated by the 9 arrows on the cube.

The implicit discretization of the laplacian operator with a diffusion tensor is performed in the func-
tion fvmLaplacian, which is one of the pure virtual functions in the base class laplacianScheme.
The declaration of fvmLaplacian is given by

gaussLaplacianScheme.H
130 tmp<fvMatrix<Type>> fvmLaplacian

131 (

132 const GeometricField<GType, fvsPatchField, surfaceMesh>&,

133 const GeometricField<Type, fvPatchField, volMesh>&

134 );

where we see that it takes a surface field at line 132, that corresponds to γf in the theory. The
second input at line 133 is a volume field, which corresponds to the dependent variable φ. The
function returns a finite volume matrix, which represents a Laplacian term defined in a solver for
example. The implementation of the function is given by

gaussLaplacianScheme.C
157 template<class Type, class GType>

158 tmp<fvMatrix<Type>>

159 gaussLaplacianScheme<Type, GType>::fvmLaplacian

160 (

161 const GeometricField<GType, fvsPatchField, surfaceMesh>& gamma,

162 const GeometricField<Type, fvPatchField, volMesh>& vf

163 )

164 {

165 const fvMesh& mesh = this->mesh();

166

167 const surfaceVectorField Sn(mesh.Sf()/mesh.magSf());

168

169 const surfaceVectorField SfGamma(mesh.Sf() & gamma);

170 const GeometricField<scalar, fvsPatchField, surfaceMesh> SfGammaSn

171 (

172 SfGamma & Sn

173 );
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174 const surfaceVectorField SfGammaCorr(SfGamma - SfGammaSn*Sn);

175

176 tmp<fvMatrix<Type>> tfvm = fvmLaplacianUncorrected

177 (

178 SfGammaSn,

179 this->tsnGradScheme_().deltaCoeffs(vf),

180 vf

181 );

182 fvMatrix<Type>& fvm = tfvm.ref();

183

184 tmp<GeometricField<Type, fvsPatchField, surfaceMesh>> tfaceFluxCorrection

185 = gammaSnGradCorr(SfGammaCorr, vf);

186

187 if (this->tsnGradScheme_().corrected())

188 {

189 tfaceFluxCorrection.ref() +=

190 SfGammaSn*this->tsnGradScheme_().correction(vf);

191 }

192

193 fvm.source() -= mesh.V()*fvc::div(tfaceFluxCorrection())().primitiveField();

194

195 if (mesh.fluxRequired(vf.name()))

196 {

197 fvm.faceFluxCorrectionPtr() = tfaceFluxCorrection.ptr();

198 }

199

200 return tfvm;

201 }

I will now explain the theory, and relate it to the above code. Equation (2.29) can be rewritten to

nf∑
f=1

Sf • (γ∇φ)f =

nf∑
f=1

(Sf • γf ) • (∇φ)f (2.31)
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after some matrix algebra which I have written out to enhance the understanding.

Sf • (γ∇φ)f = (Sf )T(γ∇φ)f

Sf • (γ∇φ)f =
[
Sf,1 Sf,2 Sf,3

] γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33



(
∂φ
∂x

)
f(

∂φ
∂y

)
f(

∂φ
∂z

)
f



Sf • (γ∇φ)f =
[
Sf,1 Sf,2 Sf,3

]

(
∂φ
∂x

)
f
γ11 +

(
∂φ
∂y

)
f
γ21 +

(
∂φ
∂z

)
f
γ31(

∂φ
∂x

)
f
γ12 +

(
∂φ
∂y

)
f
γ22 +

(
∂φ
∂z

)
f
γ32(

∂φ
∂x

)
f
γ13 +

(
∂φ
∂y

)
f
γ23 +

(
∂φ
∂z

)
f
γ33


Sf • (γ∇φ)f = Sf,1

((
∂φ

∂x

)
f

γ11 +

(
∂φ

∂y

)
f

γ21 +

(
∂φ

∂z

)
f

γ31

)

+ Sf,2

((
∂φ

∂x

)
f

γ12 +

(
∂φ

∂y

)
f

γ22 +

(
∂φ

∂z

)
f

γ32

)

+ Sf,3

((
∂φ

∂x

)
f

γ13 +

(
∂φ

∂y

)
f

γ23 +

(
∂φ

∂z

)
f

γ33

)

Sf • (γ∇φ)f =

Sf,1γ11 + Sf,2γ21 + Sf,3γ31

Sf,1γ12 + Sf,2γ22 + Sf,3γ32

Sf,1γ13 + Sf,2γ23 + Sf,3γ33



(
∂φ
∂x

)
f(

∂φ
∂y

)
f(

∂φ
∂z

)
f



Sf • (γ∇φ)f =

[Sf,1 Sf,2 Sf,3
] γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33



(
∂φ
∂x

)
f(

∂φ
∂y

)
f(

∂φ
∂z

)
f


Sf • (γ∇φ)f = ((Sf )Tγf )(∇φ)f

Sf • (γ∇φ)f = (Sf • γf ) • (∇φ)f

The term Sf • γf represent the inner product of a vector Sf and a tensor γf which is defined in
OpenFOAM as

SfGamma = Sf • γf =
[
Sf,1 Sf,2 Sf,3

] γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

 =

Sf,1γ11 + Sf,2γ21 + Sf,3γ31

Sf,1γ12 + Sf,2γ22 + Sf,3γ32

Sf,1γ13 + Sf,2γ23 + Sf,3γ33

 (2.32)

The equivalent line in the code is
gaussLaplacianScheme.C

169 const surfaceVectorField SfGamma(mesh.Sf() & gamma);

Figure 2.4 gives a visual representation of SfGamma, along with the projected vectors SfGammaSn*Sn
and SfGammaCorr. The calculation of the projected vectors is explained after the figure.

24



2.2. THEORY CHAPTER 2. GAUSS SCHEME

Figure 2.4: Illustration of mathematical operations performed when the diffusion coefficient is a tensor γf .
The operations are performed in the function fvmLaplacian in gaussLaplacianScheme.C, Line: 167 -

174.

SfGamma represent the diffusion vector through the cell face (f) defined by the surface area vector
Sf . Note here that SfGamma does not have to be orthogonal to the cell face. The face summation
in Equation (2.31) is separated in the face orthogonal diffusion (Sf • γf )⊥ and the face parallel

diffusion (Sf • γf )‖, because we cannot express the face parallel diffusion from the value of φ in the
straddling cell centres owner and neighbour. The separation gives

nf∑
f=1

(Sf • γf ) • (∇φ)f =

nf∑
f=1

(Sf • γf )⊥ • (∇φ)f + (Sf • γf )‖ • (∇φ)f (2.33)

where (Sf • γf )⊥ = SfGammaSn*Sn and (Sf • γf )‖ = SfGammaCorr. The face orthogonal diffusion

(Sf • γf )⊥ • (∇φ)f can be corrected for mesh non orthogonality, using the same procedure as

performed for the scalar diffusion case, where nf • (∇φ)f = |∆|φN−φP

|d| + k • (∇φ)f . The non

orthogonal mesh correction gives

(Sf • γf )⊥ • (∇φ)f = |(Sf • γf )⊥| nf • (∇φ)f

= |(Sf • γf )⊥|∆ • (∇φ)f + |(Sf • γf )⊥|k • (∇φ)f

= |(Sf • γf )⊥||∆|nf • (∇φ)f + |(Sf • γf )⊥|k • (∇φ)f

= |(Sf • γf )⊥||∆|φN − φP
|d|

+ |(Sf • γf )⊥|k • (∇φ)f

= |(Sf • γf )⊥,∆|φN − φP
|d|

+ (Sf • γf )⊥,k • (∇φ)f (2.34)

and the full summation now reads
nf∑
f=1

(Sf • γf ) • (∇φ)f =

nf∑
f=1

|(Sf • γf )⊥,∆|φN − φP
|d|

+ (Sf • γf )⊥,k • (∇φ)f + (Sf • γf )‖ • (∇φ)f

(2.35)
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where (Sf •γf )⊥ = |(Sf •γf )⊥| nf , and |(Sf •γf )⊥| is SfGammaSn. SfGammaSn is the magnitude of
the projection of SfGamma on to the surface normal vector nf . The calculation is given by

SfGammaSn = (Sf • γf ) • nf =

Sf,1γ11 + Sf,2γ21 + Sf,3γ31

Sf,1γ12 + Sf,2γ22 + Sf,3γ32

Sf,1γ13 + Sf,2γ23 + Sf,3γ33

nf,1nf,2
nf,3


= (Sf,1γ11 + Sf,2γ21 + Sf,3γ31)nf,1

+ (Sf,1γ12 + Sf,2γ22 + Sf,3γ32)nf,2

+ (Sf,1γ13 + Sf,2γ23 + Sf,3γ33)nf,3 (2.36)

The normal vector nf is defined as Sn in line 167, which reads
gaussLaplacianScheme.C

167 const surfaceVectorField Sn(mesh.Sf()/mesh.magSf());

and SfGammaSn is calculated by the code
gaussLaplacianScheme.C

170 const GeometricField<scalar, fvsPatchField, surfaceMesh> SfGammaSn

171 (

172 SfGamma & Sn

173 );

To get the projected magnitude SfGammaSn as a vector SfGammaSn*Sn we need to scale it with the
surface normal vector nf , as given by

SfGammaSn*Sn = ((Sf • γf ) • nf ) · nf =Sf,1γ11 + Sf,2γ21 + Sf,3γ31

Sf,1γ12 + Sf,2γ22 + Sf,3γ32

Sf,1γ13 + Sf,2γ23 + Sf,3γ33

 ·
nf,1nf,2
nf,3

 =

((Sf,1γ11 + Sf,2γ21 + Sf,3γ31)nf,1 + (Sf,1γ12 + Sf,2γ22 + Sf,3γ32)nf,2 + (Sf,1γ13 + Sf,2γ23 + Sf,3γ33)nf,3) nf,1
((Sf,1γ11 + Sf,2γ21 + Sf,3γ31)nf,1 + (Sf,1γ12 + Sf,2γ22 + Sf,3γ32)nf,2 + (Sf,1γ13 + Sf,2γ23 + Sf,3γ33)nf,3) nf,2
((Sf,1γ11 + Sf,2γ21 + Sf,3γ31)nf,1 + (Sf,1γ12 + Sf,2γ22 + Sf,3γ32)nf,2 + (Sf,1γ13 + Sf,2γ23 + Sf,3γ33)nf,3) nf,3


(2.37)

Figure 2.4 shows the geometrical representation of SfGammaSn*Sn, which represents the diffusion in
the direction orthogonal to the cell face. The cross diffusion parallel to the cell face (Sf • γf )‖ has
the name SfGammaCorr in the code, and it is calculated as

SfGammaCorr = Sf • γf − ((Sf • γf ) • nf ) · nf = (2.38)

SfGamma - SfGammaSn*Sn =Sf,1γ11 + Sf,2γ21 + Sf,3γ31

Sf,1γ12 + Sf,2γ22 + Sf,3γ32

Sf,1γ13 + Sf,2γ23 + Sf,3γ33

− (2.39)

((Sf,1γ11 + Sf,2γ21 + Sf,3γ31)nf,1 + (Sf,1γ12 + Sf,2γ22 + Sf,3γ32)nf,2 + (Sf,1γ13 + Sf,2γ23 + Sf,3γ33)nf,3) nf,1
((Sf,1γ11 + Sf,2γ21 + Sf,3γ31)nf,1 + (Sf,1γ12 + Sf,2γ22 + Sf,3γ32)nf,2 + (Sf,1γ13 + Sf,2γ23 + Sf,3γ33)nf,3) nf,2
((Sf,1γ11 + Sf,2γ21 + Sf,3γ31)nf,1 + (Sf,1γ12 + Sf,2γ22 + Sf,3γ32)nf,2 + (Sf,1γ13 + Sf,2γ23 + Sf,3γ33)nf,3) nf,3


(2.40)

SfGammaCorr is illustrated in Figure 2.4, which shows that the vector will point in some direction
in a plane parallel to the cell face. The calculation of SfGammaCorr involves SfGammaSn*Sn and it
is performed by the code

gaussLaplacianScheme.C
174 const surfaceVectorField SfGammaCorr(SfGamma - SfGammaSn*Sn);
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The diffusion through each face has now been separated in an orthogonal diffusion magnitude
SfGammaSn and cross diffusion vector parallel to the face SfGammaCorr. Furthermore the orthogonal
diffusion has been separated in a orthogonal and a non orthogonal contribution with respect to the
vector d from owner to neighbour cell centre.

Face orthogonal diffusion

The first term in Equation (2.35), |(Sf • γf )⊥,∆|φN−φP

|d| f , is treated implicitly and it is handled by

the same function as for scalar diffusion. The function is called at line 176 where the code reads.
gaussLaplacianScheme.C

176 tmp<fvMatrix<Type>> tfvm = fvmLaplacianUncorrected

177 (

178 SfGammaSn,

179 this->tsnGradScheme_().deltaCoeffs(vf),

180 vf

181 );

182 fvMatrix<Type>& fvm = tfvm.ref();

The code accounts for the orthogonal vector ∆ in the same way as presented for scalar diffusion, via
the surface normal gradient scheme in the input this->tsnGradScheme_().deltaCoeffs(vf). This
input is linked to whatever type of surface normal gradient which we choose to use in system/fvSchemes.

Face parallel diffusion

The third term in Equation (2.35), (Sf •γf )‖•(∇φ)f can only be handled explicitly and it is handled
by the code

gaussLaplacianScheme.C
184 tmp<GeometricField<Type, fvsPatchField, surfaceMesh>> tfaceFluxCorrection

185 = gammaSnGradCorr(SfGammaCorr, vf);

186

187 if (this->tsnGradScheme_().corrected())

188 {

189 tfaceFluxCorrection.ref() +=

190 SfGammaSn*this->tsnGradScheme_().correction(vf);

191 }

192

193 fvm.source() -= mesh.V()*fvc::div(tfaceFluxCorrection())().primitiveField();

194

195 if (mesh.fluxRequired(vf.name()))

196 {

197 fvm.faceFluxCorrectionPtr() = tfaceFluxCorrection.ptr();

198 }

The function gammaSnGradCorr is called in line 184-185. This function is defined by
gaussLaplacianScheme.C

95 template<class Type, class GType>

96 tmp<GeometricField<Type, fvsPatchField, surfaceMesh>>

97 gaussLaplacianScheme<Type, GType>::gammaSnGradCorr

98 (

99 const surfaceVectorField& SfGammaCorr,

100 const GeometricField<Type, fvPatchField, volMesh>& vf

101 )

102 {

103 const fvMesh& mesh = this->mesh();

104
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105 tmp<GeometricField<Type, fvsPatchField, surfaceMesh>> tgammaSnGradCorr

106 (

107 new GeometricField<Type, fvsPatchField, surfaceMesh>

108 (

109 IOobject

110 (

111 "gammaSnGradCorr("+vf.name()+')',

112 vf.instance(),

113 mesh,

114 IOobject::NO_READ,

115 IOobject::NO_WRITE

116 ),

117 mesh,

118 SfGammaCorr.dimensions()

119 *vf.dimensions()*mesh.deltaCoeffs().dimensions()

120 )

121 );

122 tgammaSnGradCorr.ref().oriented() = SfGammaCorr.oriented();

123

124 for (direction cmpt = 0; cmpt < pTraits<Type>::nComponents; cmpt++)

125 {

126 tgammaSnGradCorr.ref().replace

127 (

128 cmpt,

129 fvc::dotInterpolate(SfGammaCorr, fvc::grad(vf.component(cmpt)))

130 );

131 }

132

133 return tgammaSnGradCorr;

134 }

The function creates a new surface field in line 105-121 as an instance of the dependent variable
vf. In line 122 the settings in oriented() is transferred. Then the function loops through each
component of the dependent variable vf and computes the parallel diffusion correction face flux
(Sf • γf )‖ • ∇(φ)f with the code

fvc::dotInterpolate(SfGammaCorr, fvc::grad(vf.component(cmpt)))

Non orthogonal correction of orthogonal diffusion

The second term in Equation (2.35), (Sf •γf )⊥,k • (∇φ)f , accounts for mesh non orthogonality and
SfGammaSn is corrected according to the chosen surface normal gradient scheme. The implementation
is given by the lines

gaussLaplacianScheme.C
187 if (this->tsnGradScheme_().corrected())

188 {

189 tfaceFluxCorrection.ref() +=

190 SfGammaSn*this->tsnGradScheme_().correction(vf);

191 }

The contributions from diffusion parallel to the face and possibly mesh non orthogonality correction
is added to the matrix source vector by the code

gaussLaplacianScheme.C
193 fvm.source() -= mesh.V()*fvc::div(tfaceFluxCorrection())().primitiveField();
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As in the case with scalar diffusion, we need to account for the explicit fluxes in the fvMatrix

method flux(). So the explicit flux corrections is assigned to the face flux pointer by the code
gaussLaplacianScheme.C

195 if (mesh.fluxRequired(vf.name()))

196 {

197 fvm.faceFluxCorrectionPtr() = tfaceFluxCorrection.ptr();

198 }

Explicit evaluation without diffusion parameter

This function must be defined according to the base class, and it evaluates the Laplacian operator
explicitly without any diffusion coefficient, hence it corresponds to evaluating

∇ • (∇φ) (2.41)

The function declaration is given by
gaussLaplacianScheme.H

125 tmp<GeometricField<Type, fvPatchField, volMesh>> fvcLaplacian

126 (

127 const GeometricField<Type, fvPatchField, volMesh>&

128 );

where it is seen that the function only takes one input which is a volume field φ. The function
returns a geometric field of same type as the input field. The function definition is given by

gaussLaplacianScheme.C
137 template<class Type, class GType>

138 tmp<GeometricField<Type, fvPatchField, volMesh>>

139 gaussLaplacianScheme<Type, GType>::fvcLaplacian

140 (

141 const GeometricField<Type, fvPatchField, volMesh>& vf

142 )

143 {

144 const fvMesh& mesh = this->mesh();

145

146 tmp<GeometricField<Type, fvPatchField, volMesh>> tLaplacian

147 (

148 fvc::div(this->tsnGradScheme_().snGrad(vf)*mesh.magSf())

149 );

150

151 tLaplacian.ref().rename("laplacian(" + vf.name() + ')');

152

153 return tLaplacian;

154 }

The code tells us that output is calculated as the divergence of the surface normal gradient of φ
multiplied with the magnitude of the surface area vector, i.e. the face area.

Explicit evaluation with diffusion tensor

The function must be defined according to the base class, and it evaluates the Laplacian operator
explicitly including a diffusion coefficient, hence it corresponds to evaluating

∇ • (γ∇φ) (2.42)

The function is declared by
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gaussLaplacianScheme.H
136 tmp<GeometricField<Type, fvPatchField, volMesh>> fvcLaplacian

137 (

138 const GeometricField<GType, fvsPatchField, surfaceMesh>&,

139 const GeometricField<Type, fvPatchField, volMesh>&

140 );

141 };

and the function definition is given by
gaussLaplacianScheme.C

204 template<class Type, class GType>

205 tmp<GeometricField<Type, fvPatchField, volMesh>>

206 gaussLaplacianScheme<Type, GType>::fvcLaplacian

207 (

208 const GeometricField<GType, fvsPatchField, surfaceMesh>& gamma,

209 const GeometricField<Type, fvPatchField, volMesh>& vf

210 )

211 {

212 const fvMesh& mesh = this->mesh();

213

214 const surfaceVectorField Sn(mesh.Sf()/mesh.magSf());

215 const surfaceVectorField SfGamma(mesh.Sf() & gamma);

216 const GeometricField<scalar, fvsPatchField, surfaceMesh> SfGammaSn

217 (

218 SfGamma & Sn

219 );

220 const surfaceVectorField SfGammaCorr(SfGamma - SfGammaSn*Sn);

221

222 tmp<GeometricField<Type, fvPatchField, volMesh>> tLaplacian

223 (

224 fvc::div

225 (

226 SfGammaSn*this->tsnGradScheme_().snGrad(vf)

227 + gammaSnGradCorr(SfGammaCorr, vf)

228 )

229 );

230

231 tLaplacian.ref().rename

232 (

233 "laplacian(" + gamma.name() + ',' + vf.name() + ')'

234 );

235

236 return tLaplacian;

237 }

The code performs exactly the same operations as in fvmLaplacian, hence they are not repeated
again. The only difference is that the terms is evaluated explicitly.

2.3 Implementation

This chapter describes aspects in the source code of the Gauss discretization scheme for the laplacian
operator, its base class and how the call gets from an application to the discretization scheme. The
scheme is found in the class gaussLaplacianScheme, which is located at
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$FOAM_SRC/finiteVolume/finiteVolume/laplacianSchemes/gaussLaplacianScheme

There are three files in the folder, which are

gaussLaplacianScheme.H

gaussLaplacianScheme.C

gaussLaplacianSchemes.C

gaussLaplacianScheme.H is the class declaration, gaussLaplacianScheme.C is the class definition
and gaussLaplacianSchemes.C is a class specialisation, that makes a special definition only used
when the diffusion parameter is scalar.
The gaussLaplacianScheme class is a templated class with two template parameters Type and
GType, and it is derived from a templated abstract base class laplacianScheme with the same
template parameters. Macros are used to emulate partial specialisation of the laplacian functions
for scalar diffusion, where GType = scalar. We will go into some code details, when we go through
the source code in the coming sections, however the link between code and theory is found in the
theoretical section.

2.3.1 From solver call to source code

Before going into the details with the source code, I would like to explain how the laplacian operator is
called from an application and what happens inside the code when we run a simulation. The laplacian
operator can be called in the construction of an fvMatrix<Type> object, where the available matrix
types for the template parameter Type are

scalar

vector

sphericalTensor

symTensor

tensor

For example we could express the equation

∇ • (γ ∇φ) = 0 (2.43)

where γ (gamma) is a scalar diffusivity and φ (phi) is a scalar field, as

fvMatrix<scalar> phiEqn

(

fvm::laplacian(gamma, phi)

);

When the right hand side is not specified, OpenFOAM automatically knows that it is zero.
The call fvm::laplacian(gamma, phi) will look for a function with matching input and output
types in the namespace definition fvmLaplacian, which declares and defines the function laplacian

in namespace fvm. The source code of this class is found at

$FOAM_SRC/finiteVolume/finiteVolume/fvm

The function laplacian in fvmLaplacian is overloaded, and the namespace definition defines 16
different declarations. I will not go through the specific path through all these functions as it will
vary depending on the specific call, but the laplacian functions call each other, and at some point
on the way, we will end up in the function

template<class Type, class GType>

tmp<fvMatrix<Type>>

laplacian

(

31



2.3. IMPLEMENTATION CHAPTER 2. GAUSS SCHEME

const GeometricField<GType, fvPatchField, volMesh>& gamma,

const GeometricField<Type, fvPatchField, volMesh>& vf,

const word& name

)

{

return fv::laplacianScheme<Type, GType>::New

(

vf.mesh(),

vf.mesh().laplacianScheme(name)

).ref().fvmLaplacian(gamma, vf);

}

if the diffusivity γ is a volume field, i.e. the values are placed in the cell-centres. The func-
tion returns the output from the function laplacianScheme<Type, GType>::fvmLaplacian in
the class laplacianScheme. The call to laplacianScheme<Type, GType>::fvmLaplacian is per-
formed by first calling the selector function fv::laplacianScheme<Type, GType>::New, which
returns an output of type tmp<laplacianScheme<Type, GType>>. This output calls the func-
tion ref() from the class tmp. The output of ref() is a reference to the new object of type
laplacianScheme<Type, GType>. From this new object we call the function
laplacianScheme<Type, GType>::fvmLaplacian with input gamma and vf.

The function laplacianScheme<Type, GType>::fvmLaplacian returns

fvmLaplacian(tinterpGammaScheme_().interpolate(gamma)(), vf)

which is a call to the function fvmLaplacian in the class, that is associated with the type name,
which has been specified in the system/fvSchemes under laplacianSchemes, since this input is
being passed to the New function in laplacianScheme<Type, GType>. If we write the keyword
Gauss in laplacianSchemes, then

fvmLaplacian(tinterpGammaScheme_().interpolate(gamma)(), vf)

is a call to the function gaussLaplacianScheme<Type, GType>::fvmLaplacian in the class
gaussLaplacianScheme.
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2.3.2 Description of laplacianScheme class

In the previous section we found that an object of the class laplacianScheme was created from our
call to the function laplacian in the namespace fvm (declared in fvmLaplacian). laplacianScheme
is an abstract base class, and the source code is found in the folder

$FOAM_SRC/finiteVolume/finiteVolume/laplacianSchemes/laplacianScheme

The purpose of this class is to create a common interface for all laplacian discretization schemes.
It is thus the intention that all laplacian discretization schemes should inherit from this abstract
base class, which will provide some basic functionality and enforce a certain structure, so that we
can always call the laplacian operator in the same way no matter what scheme we choose. Now
I will go through the declaration and the source, since we need to know about the underlying
abstract base class, before we can start to modify the Gauss scheme for the laplacian operator
(gaussLaplacianScheme).

First part of declaration file

We will start in the class declaration laplacianScheme.H. The class is protected against multiple
includes via

laplacianScheme.H
40 #ifndef laplacianScheme_H

41 #define laplacianScheme_H

that first examine if laplacianScheme_H is defined in line 40, and if not, it is defined in line 41. If
laplacianScheme_H is defined, the code will jump to the end of the file at line 264.

laplacianScheme.H
264 #endif

If laplacianScheme_H is not defined, the declaration will be included. First the needed class dec-
larations are specified in line 43-49.

laplacianScheme.H
43 #include "tmp.H"

44 #include "volFieldsFwd.H"

45 #include "surfaceFieldsFwd.H"

46 #include "linear.H"

47 #include "correctedSnGrad.H"

48 #include "typeInfo.H"

49 #include "runTimeSelectionTables.H"

The next section of code is
laplacianScheme.H

53 namespace Foam

54 {

55

56 template<class Type>

57 class fvMatrix;

58

59 class fvMesh;

60

61 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

62

63 namespace fv

64 {
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The code enters namespace Foam and makes two forward declarations of the classes
template<class Type> class fvMatrix and class fvMesh. Now the class laplacianScheme will
know about these two classes, even though they may not have been declared yet. They should just be
declared at some point. At line 63 the code enters the namespace fv. This means, that if we want to
call the class without being inside a namespace we need to access it by Foam::fv::laplacianScheme.

The class declaration of laplacianScheme is found between the code
laplacianScheme.H

70 template<class Type, class GType>

71 class laplacianScheme

72 :

73 public refCount

74 {

and the closing bracket
laplacianScheme.H

206 };

template<class Type, class GType> defines that the class is a templated class with two tem-
plate parameters, that is named Type and GType in this case. Type specifies the matrix type
in the templated matrix class fvMatrix<Type>. If Type=scalar, we have an fvMatrix<scalar>,
which is better known by the typedef fvScalarMatrix. GType is related to the diffusion parame-
ter γ, hence for a scalar diffusion parameter GType=scalar, we would have an object of the class
GeometricField<scalar, fvPatchField, volMesh>. This more commonly known by the typedef
name volScalarField.
class laplacianScheme defines the name of the class, and the colon at line 72 should be read as
”is derived from”. Hence the class is derived from refCount with maximum visibility defined by the
keyword public.

Protected member data

The class has three protected data members as seen from
laplacianScheme.H

76 protected:

77

78 // Protected data

79

80 const fvMesh& mesh_;

81 tmp<surfaceInterpolationScheme<GType>> tinterpGammaScheme_;

82 tmp<snGradScheme<Type>> tsnGradScheme_;

Line 80 declares a constant reference to the mesh. Line 81 declares a temporary surface interpolation
scheme object, which is related to the interpolation of γ from cell-centres to face-centres. Line
82 declares a temporary surface normal gradient scheme, which is related to the non orthogonal
correction of the surface normal gradient in the laplacian operator. The protected data members
are initialised in the initialiser list of the constructors.

Runtime type information

In the next section of code we now enter the public part of the class, and the first public declaration
is a pure virtual function named type with no inputs and it returns a constant word reference, as
seen by

laplacianScheme.H
96 public:

97
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98 //- Runtime type information

99 virtual const word& type() const = 0;

The declarations tells, that all classes derived from this class must define this function. It is not easy
to see how this function is redefined in the derived classes, however the redefinition is performed at
line 82 in gaussLaplacianScheme.H, where the code reads

gaussLaplacianScheme.H
81 //- Runtime type information

82 TypeName("Gauss");

TypeName is a macro that needs a string input, which is "Gauss". In short the macro declares
a function type_() that returns the word "Gauss". The function type is redefined to a virtual
function that returns a static const ::Foam::word typeName. I will get back to this in more
detail in Section 2.4.4.

Declare run-time constructor selection tables

The code below declares the run-time constructor selection tables
laplacianScheme.H

102 // Declare run-time constructor selection tables

103

104 declareRunTimeSelectionTable

105 (

106 tmp,

107 laplacianScheme,

108 Istream,

109 (const fvMesh& mesh, Istream& schemeData),

110 (mesh, schemeData)

111 );

The code creates a run-time selection table for the laplacianScheme base class, which holds con-
structor pointers on the table. The definition is given by

runTimeSelectionTables.H
47 //- Declare a run-time selection

48 #define declareRunTimeSelectionTable(autoPtr,baseType,argNames,argList,parList)\

49 \

50 /* Construct from argList function pointer type */ \

51 typedef autoPtr<baseType> (*argNames##ConstructorPtr)argList; \

52 \

53 /* Construct from argList function table type */ \

54 typedef HashTable<argNames##ConstructorPtr, word, string::hash> \

55 argNames##ConstructorTable; \

56 \

57 /* Construct from argList function pointer table pointer */ \

58 static argNames##ConstructorTable* argNames##ConstructorTablePtr_; \

59 \

60 /* Table constructor called from the table add function */ \

61 static void construct##argNames##ConstructorTables(); \

62 \

63 /* Table destructor called from the table add function destructor */ \

64 static void destroy##argNames##ConstructorTables(); \

65 \

66 /* Class to add constructor from argList to table */ \

67 template<class baseType##Type> \

68 class add##argNames##ConstructorToTable \
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69 { \

70 public: \

71 \

72 static autoPtr<baseType> New argList \

73 { \

74 return autoPtr<baseType>(new baseType##Type parList); \

75 } \

76 \

77 add##argNames##ConstructorToTable \

78 ( \

79 const word& lookup = baseType##Type::typeName \

80 ) \

81 { \

82 construct##argNames##ConstructorTables(); \

83 if (!argNames##ConstructorTablePtr_->insert(lookup, New)) \

84 { \

85 std::cerr<< "Duplicate entry " << lookup \

86 << " in runtime selection table " << #baseType \

87 << std::endl; \

88 error::safePrintStack(std::cerr); \

89 } \

90 } \

91 \

92 ~add##argNames##ConstructorToTable() \

93 { \

94 destroy##argNames##ConstructorTables(); \

95 } \

96 }; \

97 \

98 /* Class to add constructor from argList to table */ \

99 /* Remove only the entry (not the table) upon destruction */ \

100 template<class baseType##Type> \

101 class addRemovable##argNames##ConstructorToTable \

102 { \

103 /* retain lookup name for later removal */ \

104 const word& lookup_; \

105 \

106 public: \

107 \

108 static autoPtr<baseType> New argList \

109 { \

110 return autoPtr<baseType>(new baseType##Type parList); \

111 } \

112 \

113 addRemovable##argNames##ConstructorToTable \

114 ( \

115 const word& lookup = baseType##Type::typeName \

116 ) \

117 : \

118 lookup_(lookup) \

119 { \

120 construct##argNames##ConstructorTables(); \

121 argNames##ConstructorTablePtr_->set(lookup, New); \

122 } \
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123 \

124 ~addRemovable##argNames##ConstructorToTable() \

125 { \

126 if (argNames##ConstructorTablePtr_) \

127 { \

128 argNames##ConstructorTablePtr_->erase(lookup_); \

129 } \

130 } \

131 };

Later when we have declared the derived classes in the run-time selection table, we look in this
table every time we implement a term in an equation, because the selector function New looks in this
run-time selection table for a scheme that matches the given input by the user. If the scheme is not
defined, the code will return a list defined by the run-time selection table with the possible options.
Note the places with baseType##Type::typeName, as this will be defined later, at the construction
of the actual scheme.

Constructors

The constructors are declared and defined by the code shown below:
laplacianScheme.H

114 // Constructors

115

116 //- Construct from mesh

117 laplacianScheme(const fvMesh& mesh)

118 :

119 mesh_(mesh),

120 tinterpGammaScheme_(new linear<GType>(mesh)),

121 tsnGradScheme_(new correctedSnGrad<Type>(mesh))

122 {}

123

124 //- Construct from mesh and Istream

125 laplacianScheme(const fvMesh& mesh, Istream& is)

126 :

127 mesh_(mesh),

128 tinterpGammaScheme_(nullptr),

129 tsnGradScheme_(nullptr)

130 {

131 tinterpGammaScheme_ = tmp<surfaceInterpolationScheme<GType>>

132 (

133 surfaceInterpolationScheme<GType>::New(mesh, is)

134 );

135

136 tsnGradScheme_ = tmp<snGradScheme<Type>>

137 (

138 snGradScheme<Type>::New(mesh, is)

139 );

140 }

141

142 //- Construct from mesh, interpolation and snGradScheme schemes

143 laplacianScheme

144 (

145 const fvMesh& mesh,

146 const tmp<surfaceInterpolationScheme<GType>>& igs,

147 const tmp<snGradScheme<Type>>& sngs
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148 )

149 :

150 mesh_(mesh),

151 tinterpGammaScheme_(igs),

152 tsnGradScheme_(sngs)

153 {}

There are three different ways to construct a new object. The difference between the constructors
is how the member data tinterpGammaScheme_ and tsnGradScheme_ are initialised.

Selectors

A selector function is used in the run-time selection mechanism to construct schemes defined by the
user. If the scheme is a valid option according to the run-time selection table, an instance of this
scheme is created. If the scheme is invalid the program will abort and throw an error message to
the user. The code to declare the selector function New is given by

laplacianScheme.H
156 // Selectors

157

158 //- Return a pointer to a new laplacianScheme created on freestore

159 static tmp<laplacianScheme<Type, GType>> New

160 (

161 const fvMesh& mesh,

162 Istream& schemeData

163 );

From a C++ perspective this is just another member function. However it is seen that it is static,
which means that the function can be called by the class, and then it will apply to all objects of the
class.

The definition is found in laplacianScheme.C and is given by
laplacianScheme.C

45 template<class Type, class GType>

46 tmp<laplacianScheme<Type, GType>> laplacianScheme<Type, GType>::New

47 (

48 const fvMesh& mesh,

49 Istream& schemeData

50 )

51 {

52 if (fv::debug)

53 {

54 InfoInFunction << "Constructing laplacianScheme<Type, GType>" << endl;

55 }

56

57 if (schemeData.eof())

58 {

59 FatalIOErrorInFunction(schemeData)

60 << "Laplacian scheme not specified" << endl << endl

61 << "Valid laplacian schemes are :" << endl

62 << IstreamConstructorTablePtr_->sortedToc()

63 << exit(FatalIOError);

64 }

65

66 const word schemeName(schemeData);
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67

68 auto cstrIter = IstreamConstructorTablePtr_->cfind(schemeName);

69

70 if (!cstrIter.found())

71 {

72 FatalIOErrorInFunction(schemeData)

73 << "Unknown laplacian scheme "

74 << schemeName << nl << nl

75 << "Valid laplacian schemes are :" << endl

76 << IstreamConstructorTablePtr_->sortedToc()

77 << exit(FatalIOError);

78 }

79

80 return cstrIter()(mesh, schemeData);

81 }

The first if statement returns a debug massage if it is turned on. The second if statement is activated
if we have not specified the entry for a term used in the application. The code will tell us which
scheme is missing and give us our options. In line 66 the scheme name is extracted, and the code
looks for the scheme name in the run-time selection table in line 68. The third if statement forces
the code execution to stop and returns an error message with a sorted list of the available options
found in IstreamConstructorTablePtr_, if the user specified scheme is not available. The pointer
IstreamConstructorTablePtr_ is linked to the run-time selection table, which contains information
about available schemes. If the scheme name is found, the selector function will return a temporary
object of class tmp with the run-time selected laplacian scheme.

Member functions

The first member function is an access function, see below:
laplacianScheme.H

172 //- Return mesh reference

173 const fvMesh& mesh() const

174 {

175 return mesh_;

176 }

It returns a constant reference to the protected data member mesh_.
The class then declares a pure virtual and a virtual function fvmLaplacian that returns a matrix
from the discretization, see below:

laplacianScheme.H
178 virtual tmp<fvMatrix<Type>> fvmLaplacian

179 (

180 const GeometricField<GType, fvsPatchField, surfaceMesh>&,

181 const GeometricField<Type, fvPatchField, volMesh>&

182 ) = 0;

183

184 virtual tmp<fvMatrix<Type>> fvmLaplacian

185 (

186 const GeometricField<GType, fvPatchField, volMesh>&,

187 const GeometricField<Type, fvPatchField, volMesh>&

188 );

The virtual function is defined in laplacianScheme.C as seen from

39



2.3. IMPLEMENTATION CHAPTER 2. GAUSS SCHEME

laplacianScheme.C
86 template<class Type, class GType>

87 tmp<fvMatrix<Type>>

88 laplacianScheme<Type, GType>::fvmLaplacian

89 (

90 const GeometricField<GType, fvPatchField, volMesh>& gamma,

91 const GeometricField<Type, fvPatchField, volMesh>& vf

92 )

93 {

94 return fvmLaplacian(tinterpGammaScheme_().interpolate(gamma)(), vf);

95 }

The virtual function receives a volumetric diffusion field gamma, which is interpolated to the cell
faces using the user specified interpolation scheme for gamma. The interpolated gamma field is used
in the call to the pure virtual fvmLaplacian function that is returned from the virtual function
fvmLaplacian. Hence it is just a matter of reformatting the input.

The function fvcLaplacian is used to evaluate the laplacian term explicitly, and therefore it returns
a geometric field. The declaration is seen below:

laplacianScheme.H
190 virtual tmp<GeometricField<Type, fvPatchField, volMesh>> fvcLaplacian

191 (

192 const GeometricField<Type, fvPatchField, volMesh>&

193 ) = 0;

194

195 virtual tmp<GeometricField<Type, fvPatchField, volMesh>> fvcLaplacian

196 (

197 const GeometricField<GType, fvsPatchField, surfaceMesh>&,

198 const GeometricField<Type, fvPatchField, volMesh>&

199 ) = 0;

200

201 virtual tmp<GeometricField<Type, fvPatchField, volMesh>> fvcLaplacian

202 (

203 const GeometricField<GType, fvPatchField, volMesh>&,

204 const GeometricField<Type, fvPatchField, volMesh>&

205 );

The declaration forces the derived classes to redefine the two pure virtual functions, where there
is an option to evaluate a laplacian term explicitly with or without the diffusion coefficient gamma.
The virtual function fvcLaplacian serves the same purpose as the virtual function fvmLaplacian.
The definition of fvcLaplacian is found in laplacianScheme.C, see below:

laplacianScheme.C
98 template<class Type, class GType>

99 tmp<GeometricField<Type, fvPatchField, volMesh>>

100 laplacianScheme<Type, GType>::fvcLaplacian

101 (

102 const GeometricField<GType, fvPatchField, volMesh>& gamma,

103 const GeometricField<Type, fvPatchField, volMesh>& vf

104 )

105 {

106 return fvcLaplacian(tinterpGammaScheme_().interpolate(gamma)(), vf);

107 }
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The cell-centred gamma field is interpolated to the cell faces, and a call to the second fvcLaplacian

pure virtual function is returned with the interpolated gamma field.

Add the patch constructor functions to the hash tables

After the laplacianScheme class declaration, we find two macro definitions, seen below:
laplacianScheme.H

221 #define makeFvLaplacianTypeScheme(SS, GType, Type) \

222 typedef Foam::fv::SS<Foam::Type, Foam::GType> SS##Type##GType; \

223 defineNamedTemplateTypeNameAndDebug(SS##Type##GType, 0); \

224 \

225 namespace Foam \

226 { \

227 namespace fv \

228 { \

229 typedef SS<Type, GType> SS##Type##GType; \

230 \

231 laplacianScheme<Type, GType>:: \

232 addIstreamConstructorToTable<SS<Type, GType>> \

233 add##SS##Type##GType##IstreamConstructorToTable_; \

234 } \

235 }

236

237

238 #define makeFvLaplacianScheme(SS) \

239 \

240 makeFvLaplacianTypeScheme(SS, scalar, scalar) \

241 makeFvLaplacianTypeScheme(SS, symmTensor, scalar) \

242 makeFvLaplacianTypeScheme(SS, tensor, scalar) \

243 makeFvLaplacianTypeScheme(SS, scalar, vector) \

244 makeFvLaplacianTypeScheme(SS, symmTensor, vector) \

245 makeFvLaplacianTypeScheme(SS, tensor, vector) \

246 makeFvLaplacianTypeScheme(SS, scalar, sphericalTensor) \

247 makeFvLaplacianTypeScheme(SS, symmTensor, sphericalTensor) \

248 makeFvLaplacianTypeScheme(SS, tensor, sphericalTensor) \

249 makeFvLaplacianTypeScheme(SS, scalar, symmTensor) \

250 makeFvLaplacianTypeScheme(SS, symmTensor, symmTensor) \

251 makeFvLaplacianTypeScheme(SS, tensor, symmTensor) \

252 makeFvLaplacianTypeScheme(SS, scalar, tensor) \

253 makeFvLaplacianTypeScheme(SS, symmTensor, tensor) \

254 makeFvLaplacianTypeScheme(SS, tensor, tensor)

The first macro definition makeFvLaplacianTypeScheme(SS, GType, Type) adds a single patch
constructor function to a hash table. Again this is related to the run-time selection mechanism. In
the beginning of laplacianScheme.H, the tables where declared, and now the code defines macros
that will be used by the derived classes to add the derived class scheme options to the run-time
selection table. The macro makeFvLaplacianScheme(SS) calls makeFvLaplacianTypeScheme for
all the possible combinations of the template parameters Type and GType. The field gamma can
be a scalar, symmTensor or tensor. The created fvMatrix can be a matrix of scalar, vector,
spericalTensor, symmTensor or tensor. The input SS is a scheme string with the name of the
class derived from laplacianScheme.

End of laplacianScheme.H

At the end of the declaration we find the code:
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laplacianScheme.H
258 #ifdef NoRepository

259 #include "laplacianScheme.C"

260 #endif

For templated classes, the source code is included at the end of the declaration, if the repository is
not already known, because a templated class is not compiled. To compile a templated class, we
need to supply valid template parameters.

2.3.3 Description of gaussLaplacianScheme

In the previous section, we learned about the abstract base class laplacianScheme, which enforces
a certain code structure to supply some functionality to all the classes derived from it. We will now
take a look at the derived class gaussLaplacianScheme, which is the only existing class derived
from laplacianScheme in the official release of OpenFOAM-1906, i.e. Gauss discretization is the
only option for the laplacian operator. The section will only cover code, that is not related to theory.

The first section of code in gaussLaplacianScheme.H is
gaussLaplacianScheme.H

40 #ifndef gaussLaplacianScheme_H

41 #define gaussLaplacianScheme_H

42

43 #include "laplacianScheme.H"

44

45 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

46

47 namespace Foam

48 {

49

50 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

51

52 namespace fv

53 {

54

55 /*---------------------------------------------------------------------------*\

56 Class gaussLaplacianScheme Declaration

57 \*---------------------------------------------------------------------------*/

58

59 template<class Type, class GType>

60 class gaussLaplacianScheme

61 :

62 public fv::laplacianScheme<Type, GType>

63 {

The class is guarded against multiple inclusions in the code. The class needs to know about the
laplacianScheme class declaration. The code enters first the namespace Foam and next namespace
fv. The class declaration starts at line 59 with the template specification, the class name at line
60 and finally it is specified that the class is derived publicly from laplacianScheme. The class
declaration is then performed after the open bracket at line 63.

Remove defaults

When a class is derived from a base class it inherits a lot of functionality from the base classes (The
base class can also inherit from other classes). In this case there is a default copy and assignment
constructor, which is deleted as seen below:
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gaussLaplacianScheme.H
72 //- No copy construct

73 gaussLaplacianScheme(const gaussLaplacianScheme&) = delete;

74

75 //- No copy assignment

76 void operator=(const gaussLaplacianScheme&) = delete;

Runtime type name

The next piece of code defines the keyword for our scheme, which we need to specify in our case
directory file system/fvSchemes. The code is:

gaussLaplacianScheme.H
81 //- Runtime type information

82 TypeName("Gauss");

There is a more detailed discussion of the macro TypeName in Section 2.4.4.

Constructors

The declaration and definition of the class constructors is seen below:
gaussLaplacianScheme.H

87 //- Construct null

88 gaussLaplacianScheme(const fvMesh& mesh)

89 :

90 laplacianScheme<Type, GType>(mesh)

91 {}

92

93 //- Construct from Istream

94 gaussLaplacianScheme(const fvMesh& mesh, Istream& is)

95 :

96 laplacianScheme<Type, GType>(mesh, is)

97 {}

98

99 //- Construct from mesh, interpolation and snGradScheme schemes

100 gaussLaplacianScheme

101 (

102 const fvMesh& mesh,

103 const tmp<surfaceInterpolationScheme<GType>>& igs,

104 const tmp<snGradScheme<Type>>& sngs

105 )

106 :

107 laplacianScheme<Type, GType>(mesh, igs, sngs)

108 {}

There are the same three constructors, as for the base class, and it is seen that constructor calls
the base class constructor. No additional input is initialised in the initialiser list. If we want some
private member data in our class, we can initialise them after the initialising call to the base class
constructor.

Emulate partial-specialisation

After the class declaration in gaussLaplacianScheme.H, we find the macro definition shown below:
gaussLaplacianScheme.H

147 #define defineFvmLaplacianScalarGamma(Type) \

148 \
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149 template<> \

150 tmp<fvMatrix<Type>> gaussLaplacianScheme<Type, scalar>::fvmLaplacian \

151 ( \

152 const GeometricField<scalar, fvsPatchField, surfaceMesh>&, \

153 const GeometricField<Type, fvPatchField, volMesh>& \

154 ); \

155 \

156 template<> \

157 tmp<GeometricField<Type, fvPatchField, volMesh>> \

158 gaussLaplacianScheme<Type, scalar>::fvcLaplacian \

159 ( \

160 const GeometricField<scalar, fvsPatchField, surfaceMesh>&, \

161 const GeometricField<Type, fvPatchField, volMesh>& \

162 );

The macro function declares the functions fvmLaplacian and fvcLaplacian for a scalar diffusion
coefficient γ, as function of the template parameter Type. After the macro has been defined, it is
called, see below.

gaussLaplacianScheme.H
165 defineFvmLaplacianScalarGamma(scalar);

166 defineFvmLaplacianScalarGamma(vector);

167 defineFvmLaplacianScalarGamma(sphericalTensor);

168 defineFvmLaplacianScalarGamma(symmTensor);

169 defineFvmLaplacianScalarGamma(tensor);

Now the code declares five different versions of fvmLaplacian and fvcLaplacian according to the
five different finite volume matrix template options. This is called emulation of a partial specialisa-
tion. The definition of these functions are performed in the file gaussLaplacianSchemes.C, where
it will become clear, why this specialisation is made.

End of gaussLaplacianScheme.H

The header file ends with the code:
gaussLaplacianScheme.H

172 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

173

174 } // End namespace fv

175

176 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

177

178 } // End namespace Foam

179

180 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

181

182 #ifdef NoRepository

183 #include "gaussLaplacianScheme.C"

184 #endif

185

186 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

187

188 #endif

The namespaces are closed, and the source file is included, if it is needed. Finally the include
guarding if statement is closed.

44



2.3. IMPLEMENTATION CHAPTER 2. GAUSS SCHEME

gaussLaplacianSchemes.C

This file is compiled by the finiteVolume library in OpenFOAM. The file adds the derived class
schemes to the run-time selection table, and defines the implementation of the partial specialisations
for the cases where γ is of type scalar. The file starts by including the necessary declarations.

gaussLaplacianSchemes.C
28 #include "gaussLaplacianScheme.H"

29 #include "fvMesh.H"

Then a call is made to the macro makeFvLaplacianScheme with SS = gaussLaplacianScheme, as
given by

gaussLaplacianSchemes.C
33 makeFvLaplacianScheme(gaussLaplacianScheme)

makeFvLaplacianScheme is defined in base class header file laplacianScheme.H, and it adds all the
possible combinations of the template parameters to the run-time selection tables.

The next piece of code is
gaussLaplacianSchemes.C

35 #define declareFvmLaplacianScalarGamma(Type) \

36 \

The macro declareFvmLaplacianScalarGamma(Type) is defined and it contains the implementation
for the template specialisations of fvmLaplacian and fvcLaplacian when the diffusion coefficient
is a surface scalar field. After the macro definition, it is used to define the fvmLaplacian and
fvcLaplacian function for each possible finite volume matrix template parameter Type, as seen
below:

gaussLaplacianSchemes.C
116 declareFvmLaplacianScalarGamma(scalar);

117 declareFvmLaplacianScalarGamma(vector);

118 declareFvmLaplacianScalarGamma(sphericalTensor);

119 declareFvmLaplacianScalarGamma(symmTensor);

120 declareFvmLaplacianScalarGamma(tensor);
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2.4 Description of matrix assembly in OpenFOAM

The matrix discretization in OpenFOAM is based on ldu-adressing. A description of the matrix
assembly is found in the book by Moukalled et al. [3, p. 191-202] and in the slideshow presentation
by Dr. Thorsten Grahs [4].

A matrix made with the fvMatrix class in OpenFOAM is based on the class lduMatrix. The
class is based on the concept that a matrix can be separated into the lower triangle with coefficients
below the diagonal (l = lower), the coefficients in the diagonal (d = diagonal) and the upper triangle
with coefficients above the diagonal (u = upper). Equation (2.44) shows the ldu matrix separation
with color coding.

A =


a0,0 a0,1 a0,2 · · · a0,j

a1,0 a1,1 a1,2 · · · a1,j

a2,0 a2,1 a2,2 · · · a2,j

...
...

...
. . .

...
ai,0 ai,1 ai,2 · · · ai,j

 (2.44)

The blue coefficients are the lower matrix off diagonal elements, the red coefficients are the upper
matrix off diagonal elements and the black coefficients are the matrix diagonal. The matrix is
treated as a sparse matrix, where only the non-zero components are saved in three vectors l, d and
u representing the lower off diagonal, the diagonal and the upper off diagonal. Lets consider the
example in Figure 2.5, which shows a 2D domain with 9 cells and the numbering of the internal faces
and boundary faces. I have left out the faces on the front and the back, they would be in patch 5
and 6.

Figure 2.5: Example domain with 9 cells, 11 internal faces and 30 boundary faces. The top, bottom, left
and right side of the domain is 4 patches, and each patch has 3 boundary faces. The remaining 18 boundary
faces, not included in the illustration, are found on the back side and front side of the cells.

First I will discuss how the internal faces are handled, and then the boundary faces.

2.4.1 Internal cell faces

OpenFOAM numbers the internal faces according to ascending cell number. Face number 0 is
between cell 0 and 1, and the lowest cell number owns face 0, hence cell 0 is the owner of face 0 and
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cell 1 is the neighbour of face 0. The system matrix for this mesh is presented in Equation (2.45).

A =



a0,0 a0,1 0 a0,3 0 0 0 0 0
a1,0 a1,1 a1,2 0 a1,4 0 0 0 0

0 a2,1 a2,2 0 0 a2,5 0 0 0
a3,0 0 0 a3,3 a3,4 0 a3,6 0 0

0 a4,1 0 a4,3 a4,4 a4,5 0 a4,7 0
0 0 a5,2 0 a5,4 a5,5 0 0 a5,8

0 0 0 a6,3 0 0 a6,6 a6,7 0
0 0 0 0 a7,4 0 a7,6 a7,7 a7,8

0 0 0 0 0 a8,5 0 a8,7 a8,8


(2.45)

Each row in the matrix corresponds to a cell in the mesh. So for instance in cell 3 there are 3 internal
faces. a3,0 comes from face 1 looking from cell 3 to 0, a3,3 comes from cell 3, a3,4 comes from face 5
looking from cell 3 to 4 and a3,6 comes from face 6 looking from cell 3 to 6.

The non-zero coefficients are saved in three data members of the lduMatrix class, which are lower(),
diag() and upper(). For this example matrix the coefficients would be arranged as

lower() = (a1,0 a3,0 a2,1 a4,1 a5,2 a4,3 a6,3 a5,4 a7,4 a8,5 a7,6 a8,7) (2.46)

diag() = (a0,0 a1,1 a2,2 a3,3 a4,4 a5,5 a6,6 a7,7 a8,8) (2.47)

upper() = (a0,1 a0,3 a1,2 a1,4 a2,5 a3,4 a3,6 a4,5 a4,7 a5,8 a6,7 a7,8) (2.48)

The off-diagonal coefficients are sorted with respect to ascending face index 0 .. 11. The diagonal
coefficients are sorted with respect to the cell index 0 .. 8.

The sub-indices for the coefficients a are the location in the matrix (row,column). They are saved in
two vectors lowerAddr() and upperAddr(). lowerAddr() keeps the sub-indices that describe the
matrix row number (first sub-index) for all elements from the lower triangle lower(). upperAddr()
keeps the indices that describe the matrix row number (first sub-index) for all elements from the
upper triangle upper().

The matrix position of the elements from the lower triangle of the matrix, a, is described by

alowerAddr(),upperAddr() (2.49)

Likewise the position of the elements from the upper triangle of the matrix, a, is described by

aupperAddr(),lowerAddr() (2.50)

So the matrix is forced to have a symmetric structure, but it does not have to be symmetric in terms
of the coefficient values.

The last addressing vector is ownerStartAddr(), which keeps the element position at which a
new row starts in upper() and at which a new column starts in lower(). So for the example the
addressing vectors are

upperAddr() = (0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 7)

lowerAddr() = (1, 3, 2, 4, 5, 4, 6, 5, 7, 8, 7, 8)

ownerStartAddr() = (0, 2, 4, 5, 7, 9, 10, 11)

So upperAddr() is the first index of the elements in upper() and the second index in lower().
lowerAddr() is the first index of the elements in lower() and the second index in upper().
It important to understand that upper() contains the coefficients that belongs to the owner cell of
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each face. Likewise lower() contains the coefficients that belongs to the neighbour cell of each face.
Furthermore we can see that an off diagonal coefficient is non-zero when a face is shared between
an owner and neighbour cell corresponding to the position in the matrix.

For the addressing vectors it is important to realise that upperAddr() contains the owner cell
index for each face index sorted in ascending order. Likewise lowerAddr() contains the neighbour
cell index for each face index sorted in ascending order.

The discretization of a term in each cell will give a contribution to the diagonal, but we may
also have contributions to the matrix source vector. These contributions are added to source(),
which has an entry for each cell.

2.4.2 Boundary cell faces

The boundary cell faces are treated differently from the internal faces. The coefficients from the
boundary face that goes into the system matrix is saved in internalCoeffs()[patchI][patchFaceI],
and the contribution source vector is saved in boundaryCoeffs()[patchI][patchFaceI]. patchI
refers to the patch indices and a patch is a group of faces that represent a part of the domain bound-
ary for instance the bottom of the domain. The patches are defined during the meshing process.
patchFaceI is the index of each face in a patch, so for instance Patch 2 contains the face indices
faceI = (21 22 23) and the corresponding patch face index is then patchFaceI = (0 1 2). This
is important to remember!

A boundary face has no neighbour cell, only a owner cell. This means that the boundary faces
in each cell only contributes to the discretization of the governing equation in the cell to which the
boundary face belongs, i.e. the diagonal matrix coefficients. The exception is coupled boundaries,
which do have a cell on both sides of the boundary.

2.4.3 Matrix assembly of laplacian operator on orthogonal mesh

The discretization in OpenFOAM is based on the faces instead of the cells, so for each internal
face we have to specify the contribution associated with the owner cell and the neighbour cell. For
each cell we have to specify the contribution to the diagonal and the matrix source vector. For the
boundary faces we have to assign the contribution of the matrix diagonal and the matrix source
vector. When we have done this for all faces, the matrix is assembled.

Let us take a look at how the matrix is assembled, when the laplacian operator is discretized
with the standard Gauss scheme in OpenFOAM. The laplacian operates on a scalar field φ which
is associated with scalar diffusion field γ. The mesh is assumed to be orthogonal, as illustrated in
Figure 2.1 case a), where vector from owner cell centre to neighbour cell centre passes through the
shared face centre. The discretization valid for orthogonal meshes when looking from owner cell (P)
towards neighbour cell (N) is given by∫

VP

∇ • (γ∇φ) dV =

nf∑
f=1

γf |Sf |
φN − φP
|d|

=

nf∑
f=1

γf |Sf |
1

|d|
(φN − φP )

=

nf∑
f=1

γf |Sf |
1

|d|︸ ︷︷ ︸
aP,N

φN −γf |Sf |
1

|d|︸ ︷︷ ︸
aP,P

φP (2.51)
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The discretization looking from neighbour towards owner cell is given by∫
VN

∇ • (γ∇φ) dV =

nf∑
f=1

γf (|Sf |)
φP − φN
|d|

=

nf∑
f=1

γf (−|Sf |)
1

|d|
(φN − φP )

=

nf∑
f=1

−γf |Sf |
1

|d|︸ ︷︷ ︸
aN,N

φN +γf |Sf |
1

|d|︸ ︷︷ ︸
aN,P

φP (2.52)

Note how the sign of the surface area vector magnitude is changed in the second line of Equation
(2.51). This treatment of the surface area vector is implicitly accounted for in the OpenFOAM
summations. The sub-indices of the matrix coefficients a gives the matrix row as the first index and
matrix column as the second index. Sub-index N is the neighbour cell index and P is the owner
cell index. It is important to note that the off-diagonal coefficients aP,N and aN,P , arising from
the discretization at each face, are equal to each other. Combined with the fact that boundary
conditions only contribute to the matrix diagonal, it is now known that the resulting matrix from
the discretization of the entire domain is symmetric.

The code which implements the presented discretization is now described in relation to theory.
First the code constructs a new matrix object in the lines

gaussLaplacianScheme.C
55 tmp<fvMatrix<Type>> tfvm

56 (

57 new fvMatrix<Type>

58 (

59 vf,

60 deltaCoeffs.dimensions()*gammaMagSf.dimensions()*vf.dimensions()

61 )

62 );

63 fvMatrix<Type>& fvm = tfvm.ref();

where a new matrix object is created at some location in memory, which is managed by the tmp
class object tfvm. A reference to the matrix object is saved in the variable fvm. The link between
the theoretical expression in Equation (2.51) and variable names in the code is presented in Table
2.1.

Table 2.1: Link between theoretical terms and variable names in OpenFOAM.

Code variable Theoretical term
vf φ

deltaCoeffs
|nf |
|d| = 1

|d|
gammaMagSf γf |Sf |

The matrix assembly in the original gaussLaplacianScheme class is performed by the lines
gaussLaplacianScheme.C

65 fvm.upper() = deltaCoeffs.primitiveField()*gammaMagSf.primitiveField();

66 fvm.negSumDiag();

where fvm.upper() contains the off diagonal coefficients aP,N related with the owner cell (P) of
each internal face (f). fvm.negSumDiag() is a function that computes the diagonal coefficients
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based on the off-diagonal coefficients. The contribution to the diagonal coefficient in each cell from
the internal faces can be computed by

aC = −
nf∑
f=1

aC,N (2.53)

where the summation run through the internal faces of a cell.
This fact should be clear from Equation (2.51) and (2.52), where the off-diagonal term is identical
to the diagonal term except for change in sign. It is noted that fvm.lower() is not assigned,
and this tells the code that the matrix is symmetric. It is important to avoid accessing
the field fvm.lower(), because this will turn on a switch which makes the code think
that the matrix is asymmetric.

The current implementation does not facilitate a direct link between theory and implementation.

Internal faces

All the pieces of code presented in this section is located in the same file. The matrix assembly with
contribution from internal faces can be programmed starting with a loop given by

for(label facei=0; facei<fvm.lduAddr().upperAddr().size(); facei++)

{

which runs through all internal faces of the mesh from 0 to the number of internal faces. In the next
section of code I define the cell index of the owner index of facei using the matrix ldu adressing
vector upperAddr(), and the neighbour cell index to facei using ldu adressing vector lowerAddr().

// Cell indices P (owner) and N (neighbour)

label owner = fvm.lduAddr().upperAddr()[facei]; // P index

label neighbour = fvm.lduAddr().lowerAddr()[facei]; // N index

Now we can start assigning the coefficients presented in Equation (2.51) and (2.52). The next section
of code shows the assignment of aP,P from Equation (2.51)

// Assign contributions to the diagonal matrix coefficient:

//- Looking from P -> N (a_(P,P))

fvm.diag()[owner] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei];

The coefficient is subtracted from the element in the diagonal vector diag() at element with index
owner. The next code listing shows similarly how aN,N is subtracted

//- Looking from N -> P (a_(N,N))

fvm.diag()[neighbour] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei];

from element with index neighbour in the diagonal vector diag(). The next code listing shows how
the off diagonal coefficient aP,N is added to the matrix.

// Assign contributions to off diagonal matrix coefficient:

//- Looking from P -> N (a_(P,N))

// Assigning matrix coefficient in upper triangle.

fvm.upper()[facei] += deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei];
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The off diagonal coefficient aP,N is associated with cell P and it is therefore added to element facei
in vector upper(). The next listing of code is only given to show how the lower matrix triangle
would be assembled, if the matrix had been asymmetric.

/* ========================================================================== *\

| NOTE: THIS PART SHOULD ONLY BE ACTIVE IF YOU HAVE AN ASYMMETRIC MATRIX! |

| //- Looking from N -> P (a_(N,P)) |

| // Assigning matrix coefficient in lower triangle. |

| fvm.lower()[facei] += deltaCoeffs.primitiveField()[facei] |

| * gammaMagSf.primitiveField()[facei]; |

\* ========================================================================== */

The off diagonal coefficient aN,P is associated with cell N and it is therefore added to element facei
in vector lower(). Finally the loop over internal faces is closed as given by

}

Boundary faces

The matrix contribution from the boundary faces is handled separately. The first listing of code
initiates a loop over the patches of the field vf which corresponded to φ in the theory.

gaussLaplacianScheme.C
68 forAll(vf.boundaryField(), patchi)

69 {

The loop is specified using the forAll macro. boundaryField() contains a fvPatchField<Type>

field for each patch. Each patch is linked to a boundary condition specification in the files of the
standard case directory folder 0/. The loop runs over the patch index patchi. The next section of
code defines constant references to the boundary fields of patchi from the fields vf, gammaMagSf
and deltaCoeffs.

gaussLaplacianScheme.C
70 const fvPatchField<Type>& pvf = vf.boundaryField()[patchi];

71 const fvsPatchScalarField& pGamma = gammaMagSf.boundaryField()[patchi];

72 const fvsPatchScalarField& pDeltaCoeffs =

73 deltaCoeffs.boundaryField()[patchi];

The reference pvf refers to the boundary field of vf for patchi. pGamma refers to the values
of gammaMagSf at the boundary face centres in patchi. pDeltaCoeffs refers to the values of
deltaCoeffs at the boundary face centres in patchi.
Figure 2.6 shows how the boundary condition specification can separated in two cases

Figure 2.6: Illustration of a coupled and external boundary condition.
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which are a) a 2-sided boundary face (coupled) b) a 1-sided boundary face (External). An example
of a coupled boundary condition is the cyclic boundary condition, which can be used to create a
cyclic domain where the outlet of the domain is linked to the inlet of the domain. The 1-sided
external boundary condition is the traditional domain boundary condition, where we do not have a
cell on the other side. Therefore we have a Dirichlet, Neumann or Robin condition to determine the
value of the dependent field at the boundary face. The next listing shows how the 2-sided coupled
boundary condition is implemented as

gaussLaplacianScheme.C
75 if (pvf.coupled())

76 {

77 fvm.internalCoeffs()[patchi] =

78 pGamma*pvf.gradientInternalCoeffs(pDeltaCoeffs);

79 fvm.boundaryCoeffs()[patchi] =

80 -pGamma*pvf.gradientBoundaryCoeffs(pDeltaCoeffs);

81 }

and the one-sided boundary condition is implemented by
gaussLaplacianScheme.C

82 else

83 {

84 fvm.internalCoeffs()[patchi] = pGamma*pvf.gradientInternalCoeffs();

85 fvm.boundaryCoeffs()[patchi] = -pGamma*pvf.gradientBoundaryCoeffs();

86 }

87 }

For a fixed value boundary condition, we need to know the value at the boundary face centre point
and this value is denoted φb. The discretization for a cell with one of more boundary faces can then
be written as ∫

VP

∇ • (γ∇φ) dV =

nf∑
f=1

γf |Sf |nf • (∇φ)f

=

nf,i∑
f,i=1

γf |Sf |
φN − φP
|d|︸ ︷︷ ︸

Internal faces

+

nf,b∑
f,b=1

γf |Sf |
φb − φP
|dn|︸ ︷︷ ︸

Boundary faces

(2.54)

where dn is the projection of d on the direction of the surface normal vector nf . The implicit
contributions related to φP and φN is added to the system matrix as previously described and the
explicit contribution related to φb is added to the source vector. For a single boundary face we have

γf |Sf |
φb − φP
|dn|

= γf |Sf |︸ ︷︷ ︸
pGamma

1

|dn|
φb︸ ︷︷ ︸

pvf.gradientBoundaryCoeffs()

+ γf |Sf |︸ ︷︷ ︸
pGamma

− 1

|dn|︸ ︷︷ ︸
pvf.gradientInternalCoeffs()

φP (2.55)

The negative sign in

fvm.boundaryCoeffs()[patchi] = -pGamma*pvf.gradientBoundaryCoeffs();

is needed because the term is a source term and therefore moved to the right-hand side of the equal
sign in matrix system Ax = b.

The fixed value boundary condition is called fixedValue in OpenFOAM, and we can identify the
coefficients returned by gradientBoundaryCoeffs() and gradientInternalCoeffs() in the file
fixedValueFvPatchField.C which reads
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fixedValueFvPatchField.C
139 template<class Type>

140 Foam::tmp<Foam::Field<Type>>

141 Foam::fixedValueFvPatchField<Type>::gradientInternalCoeffs() const

142 {

143 return -pTraits<Type>::one*this->patch().deltaCoeffs();

144 }

145

146

147 template<class Type>

148 Foam::tmp<Foam::Field<Type>>

149 Foam::fixedValueFvPatchField<Type>::gradientBoundaryCoeffs() const

150 {

151 return this->patch().deltaCoeffs()*(*this);

152 }

From the code it is seen that gradientInternalCoeffs() returns

-pTraits<Type>::one*this->patch().deltaCoeffs();

which is exactly equal to

−1︸︷︷︸
-pTraits<Type>::one

1

|dn|︸︷︷︸
this->patch().deltaCoeffs()

gradientBoundaryCoeffs() returns

this->patch().deltaCoeffs()*(*this);

which corresponds to

1

|dn|︸︷︷︸
this->patch().deltaCoeffs()

φb︸︷︷︸
(*this)

2.4.4 Find implementation of Gauss Laplacian scheme options

When we specify the keyword Gauss for a laplacianScheme in fvSchemes, it works, because the
keyword is defined in the declaration for the Gauss Laplacian scheme. The code is seen below:

gaussLaplacianScheme.H
81 //- Runtime type information

82 TypeName("Gauss");

TypeName is a macro that requires the keyword as a string. The definition of the macro is found in
typeInfo.H, see below:

typeInfo.H
71 //- Declare a ClassName() with extra virtual type info

72 #define TypeName(TypeNameString) \

73 ClassName(TypeNameString); \

74 virtual const word& type() const { return typeName; }

At line 74 it is seen that the function type() is redefined, as required in the abstract base class
laplacianScheme, see the code below:
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laplacianScheme.H
96 public:

97

98 //- Runtime type information

99 virtual const word& type() const = 0;

The redefined type() function returns the variable typeName, which is declared by a macro call in
the macro className, seen below:

className.H
65 //- Add typeName information from argument \a TypeNameString to a class.

66 // Also declares debug information.

67 #define ClassName(TypeNameString) \

68 ClassNameNoDebug(TypeNameString); \

69 static int debug

The macro ClassNameNoDebug declares typeName and the macro definition is shown below:
className.H

39 //- Add typeName information from argument \a TypeNameString to a class.

40 // Without debug information

41 #define ClassNameNoDebug(TypeNameString) \

42 static const char* typeName_() { return TypeNameString; } \

43 static const ::Foam::word typeName

To summarize the function type() has been changed from a pure virtual function to a virtual func-
tion that returns typeName which is declared as a static const ::Foam::word.

The function typeName_() is called, when the code calls the macro makeFvLaplacianScheme in
gaussLaplacianSchemes.C

gaussLaplacianSchemes.C
33 makeFvLaplacianScheme(gaussLaplacianScheme)

The definition of the macro makeFvLaplacianScheme is
laplacianScheme.H

238 #define makeFvLaplacianScheme(SS) \

239 \

240 makeFvLaplacianTypeScheme(SS, scalar, scalar) \

241 makeFvLaplacianTypeScheme(SS, symmTensor, scalar) \

242 makeFvLaplacianTypeScheme(SS, tensor, scalar) \

243 makeFvLaplacianTypeScheme(SS, scalar, vector) \

244 makeFvLaplacianTypeScheme(SS, symmTensor, vector) \

245 makeFvLaplacianTypeScheme(SS, tensor, vector) \

246 makeFvLaplacianTypeScheme(SS, scalar, sphericalTensor) \

247 makeFvLaplacianTypeScheme(SS, symmTensor, sphericalTensor) \

248 makeFvLaplacianTypeScheme(SS, tensor, sphericalTensor) \

249 makeFvLaplacianTypeScheme(SS, scalar, symmTensor) \

250 makeFvLaplacianTypeScheme(SS, symmTensor, symmTensor) \

251 makeFvLaplacianTypeScheme(SS, tensor, symmTensor) \

252 makeFvLaplacianTypeScheme(SS, scalar, tensor) \

253 makeFvLaplacianTypeScheme(SS, symmTensor, tensor) \

254 makeFvLaplacianTypeScheme(SS, tensor, tensor)

makeFvLaplacianTypeScheme is another which is called several times and the definition is
laplacianScheme.H

210 #define makeFvLaplacianTypeScheme(SS, GType, Type) \

211 typedef Foam::fv::SS<Foam::Type, Foam::GType> SS##Type##GType; \
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212 defineNamedTemplateTypeNameAndDebug(SS##Type##GType, 0); \

213 \

214 namespace Foam \

215 { \

216 namespace fv \

217 { \

218 typedef SS<Type, GType> SS##Type##GType; \

219 \

220 laplacianScheme<Type, GType>:: \

221 addIstreamConstructorToTable<SS<Type, GType>> \

222 add##SS##Type##GType##IstreamConstructorToTable_; \

223 } \

224 }

At line 211 the code creates the typedef SS##Type##GType for the class defined based on the macro
input parameters. SS##Type##GType is passed as input to the macro
defineNamedTemplateTypeNameAndDebug which is defined as

className.H
136 #define defineNamedTemplateTypeNameAndDebug(Type, DebugSwitch) \

137 defineNamedTemplateTypeName(Type); \

138 defineNamedTemplateDebugSwitch(Type, DebugSwitch)

So now Type = SS##Type##GType, i.e. our class typedef. Type is passed into the macro
defineNamedTemplateTypeName, which is defined as

className.H
113 #define defineNamedTemplateTypeName(Type) \

114 defineTemplateTypeNameWithName(Type, Type::typeName_())

And we have finally reached the point, where the code calls the function typeName_() from the input
class Type, which we remember corresponds to the class given by the typedef SS##Type##GType

defined as

typedef Foam::fv::SS<Foam::Type, Foam::GType> SS##Type##GType;

Type::typeName_() will return the string which was passed into the macro TypeName at the begin-
ning of this section.

gaussLaplacianScheme.H
82 TypeName("Gauss");

The macro defineTemplateTypeNameWithName is defined as
className.H

100 #define defineTemplateTypeNameWithName(Type, Name) \

101 template<> \

102 defineTypeNameWithName(Type, Name)

where the macro defineTypeNameWithName is defined as
className.H

92 #define defineTypeNameWithName(Type, Name) \

93 const ::Foam::word Type::typeName(Name)

This is a call to the copy constructor in the class word, where the declared variable typeName from
the laplacianScheme base class is set to the given string "Gauss", so that the function type()

returns this string. The link is baseType##Type::typeName, which I emphasized when the macro
declareRunTimeSelectionTable was presented under Section 2.3.2 describing the laplacianScheme
base class.

55



2.4. DESCRIPTION OF MATRIX ASSEMBLY IN OPENFOAMCHAPTER 2. GAUSS SCHEME

Now I will use an example to explain the order of the keywords that must be defined when specifying
a laplacian scheme in system/fvSchemes. The example is

laplacian(gamma,phi) Gauss linear corrected;

The first keyword Gauss is used when the code calls the function

fv::laplacianScheme<Type, GType>::New( ... )

with some input in the function laplacian defined in fvmLaplacian.C. The selector function New

in the class laplacianScheme will look for a laplacian scheme to construct, which is associated
with the given keyword Gauss. In this case it would be the scheme implemented in the class
gaussLaplacianScheme.

The next two keywords linear and corrected are needed during the construction of the laplacian
scheme gaussLaplacianScheme, which is derived from the base class laplacianScheme. Therefore
the base class laplacianScheme constructor is called when the gaussLaplacianScheme constructor
is called. The laplacianScheme constructor must define two protected data members

tmp<surfaceInterpolationScheme<GType>> tinterpGammaScheme_;

tmp<snGradScheme<Type>> tsnGradScheme_;

where tinterpGammaScheme_ is the cell centre to face centre interpolation scheme used for the diffu-
sion coefficient gamma, and tsnGradScheme_ is the surface normal gradient scheme that determines
how we treat the non-orthogonal correction. The laplacianScheme constructor which needs the
keywords is defined as

laplacianScheme.H
124 //- Construct from mesh and Istream

125 laplacianScheme(const fvMesh& mesh, Istream& is)

126 :

127 mesh_(mesh),

128 tinterpGammaScheme_(nullptr),

129 tsnGradScheme_(nullptr)

130 {

131 tinterpGammaScheme_ = tmp<surfaceInterpolationScheme<GType>>

132 (

133 surfaceInterpolationScheme<GType>::New(mesh, is)

134 );

135

136 tsnGradScheme_ = tmp<snGradScheme<Type>>

137 (

138 snGradScheme<Type>::New(mesh, is)

139 );

140 }

The keyword linear is used in the selector function

surfaceInterpolationScheme<GType>::New(mesh, is)

which looks for a surface interpolation scheme associated with the keyword linear. If the keyword
is not found the execution is terminated and the user receives an error message, that includes a list
of the available options.

The keyword corrected is used in the selector function

snGradScheme<Type>::New(mesh, is)

which looks for a surface normal gradient scheme associated with the keyword corrected. If the
keyword is not found the execution is terminated and the user receives an error message, that
includes a list of the available options.
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2.5 Create your own copy

The class gaussLaplacianScheme is part of the shared object library file libfiniteVolume.so,
which solvers can link to dynamically. This essentially means that we can modify the library and
the changed functionalities will be included in all applications, that link to the library.
It is good practice to separate the original OpenFOAM code from your own modified code, which
should be placed in the directory $WM_PROJECT_USER_DIR/src. Therefore we first need to create
our own finiteVolume library, which we will call libmyFiniteVolume. In this library we will place
our own copy of gaussLaplacianScheme, which we will name myGaussLaplacianScheme.

2.5.1 Getting started

First ensure that you have sourced your installation of OpenFOAM. Then execute commands below,
which will create a copy of the folder gaussLaplacianScheme in your user directory with the same
structure as in the original source code.

src

mkdir $WM_PROJECT_USER_DIR/src

cp -r --parents finiteVolume/finiteVolume/laplacianSchemes/gaussLaplacianScheme \

$WM_PROJECT_USER_DIR/src

2.5.2 Rename files and folders

When we copy existing source code, we should always rename to avoid ambiguity, that will lead to
errors and may require reinstallation of OpenFOAM.

cd $WM_PROJECT_USER_DIR/src/finiteVolume/finiteVolume/laplacianSchemes

mv gaussLaplacianScheme myGaussLaplacianScheme

cd myGaussLaplacianScheme

mv gaussLaplacianScheme.C myGaussLaplacianScheme.C

mv gaussLaplacianScheme.H myGaussLaplacianScheme.H

mv gaussLaplacianSchemes.C myGaussLaplacianSchemes.C

2.5.3 Change class name in source files

sed -i s/gaussLaplacianScheme/myGaussLaplacianScheme/g \

myGaussLaplacianScheme.H

sed -i s/gaussLaplacianScheme/myGaussLaplacianScheme/g \

myGaussLaplacianScheme.C

sed -i s/gaussLaplacianScheme/myGaussLaplacianScheme/g \

myGaussLaplacianSchemes.C

2.5.4 Change type name

Open myGaussLaplacianScheme.H and modify line 82, which currently reads

TypeName("Gauss");

to the new type name which I have chosen should be myGauss

TypeName("myGauss");

It can also be performed with a sed command as follows

sed -i s/'TypeName("Gauss");'/'TypeName("myGauss");'/g myGaussLaplacianScheme.H

It is good practice to test a sed command by removing -i, then you can see the modifications in the
terminal without modifying the file.
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2.5.5 Create Make folder

Our new library needs a Make folder with two files, that are read by the compiler.

Now create a Make folder:

mkdir $WM_PROJECT_USER_DIR/src/finiteVolume/Make

2.5.6 Create Make/files

The first file is files. The source files that should be compiled in the library are listed first, and
then at the last line the location and name of the compiled shared object library file is defined.

Create files:

vi $WM_PROJECT_USER_DIR/src/finiteVolume/Make/files

The content of files should be:

laplacianSchemes = finiteVolume/laplacianSchemes

$(laplacianSchemes)/myGaussLaplacianScheme/myGaussLaplacianSchemes.C

LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume

Save and close files by typing command: SHIFT+zz.

2.5.7 Create Make/options

The second file is options. Here we give the path to the lnInclude folder of the needed libraries,
and we link to the shared object library files in the second section. Note here that the OpenFOAM
library headers are included by default.

Create options:

vi $WM_PROJECT_USER_DIR/src/finiteVolume/Make/options

The content of options should be:

EXE_INC = \

-I$(LIB_SRC)/fileFormats/lnInclude \

-I$(LIB_SRC)/surfMesh/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude

LIB_LIBS = \

-lOpenFOAM \

-lfileFormats \

-lsurfMesh \

-lmeshTools \

-lfiniteVolume

Save and close options by typing command: SHIFT+zz.

2.5.8 Compile myFiniteVolume library

Compile the library by executing:

wmake $WM_PROJECT_USER_DIR/src/finiteVolume
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Before you modify the code further, you should test the scheme by applying it in an existing tutorial.

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity $FOAM_RUN/myGaussCavity

Open scheme settings in editor, for example with vi

vi $FOAM_RUN/myGaussCavity/system/fvSchemes

and modify the subdictionary laplacianSchemes from using Gauss defined as

laplacianSchemes

{

default Gauss linear orthogonal;

}

to use the new scheme myGauss defined as

laplacianSchemes

{

default myGauss linear orthogonal;

}

We need to tell the case about our shared object library libmyFiniteVolume.so, which is located in
the folder $WM_PROJECT_USER_DIR/platforms. This is done at the end of controlDict. To include
the library append

libs ("libmyFiniteVolume.so");

to the end of controlDict.
The commands to build the mesh and run the case are

blockMesh -case $FOAM_RUN/myGaussCavity >& $FOAM_RUN/myGaussCavity/log.blockMesh

icoFoam -case $FOAM_RUN/myGaussCavity >& $FOAM_RUN/myGaussCavity/log.icoFoam

Now open the log file and verify that it worked.

59



Chapter 3

GFM-Gauss scheme

3.1 How to use it

The new scheme is specified in case file system/fvSchemes in the subdictionary laplacianSchemes.
The keyword for the new scheme is GFMGauss, so the specification for the laplacian scheme
laplacian(gamma,phi) would be

laplacian(gamma,phi) GFMGauss linear corrected;

where the diffusion coefficient is interpolated linearly (linear) and we include an explicit non-
orthogonal correction (corrected).

The scheme should only be used for the dynamic pressure in the solvers interIsoFoam and interFoam.
The scheme requires a step interpolated density field rho and a void fraction field alpha1. Further-
more the scheme needs a new class called interfaceJump. For further details read the implementa-
tion Section 3.3.

3.2 Theory

The theory presented in this section is an elaboration of the theory presented by Vukcevic et al. [1].

3.2.1 Governing equations

Before we get to the GFM-Gauss discretization, I will present the theoretical background.

Continuity equation

The continuity equation for an incompressible fluid is given by

∇ • (U) = 0 (3.1)

where ρ is the fluid density and U is the velocity field. Here we have divided the original continuity
equation with the density, such that it is eliminated from the equation.

Momentum equations

The momentum equation for a Newtonian incompressible fluid subjected to gravity is given by

∂U

∂t
+∇ • (UU)−∇ • (ν∇U) = −1

ρ
∇ptotal + g (3.2)
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where t is time, ν is the kinematic viscosity of the fluid, g is the gravitational acceleration vector
and ptotal is the total pressure. The right hand side of the momentum equation is rewritten to

∂U

∂t
+∇ • (UU)−∇ • (ν∇U) = −1

ρ
∇ptotal +∇(g • x)⇔ (3.3)

∂U

∂t
+∇ • (UU)−∇ • (ν∇U) = −1

ρ
∇ (ptotal + ρg • x)⇔ (3.4)

∂U

∂t
+∇ • (UU)−∇ • (ν∇U) = −1

ρ
∇ (p) (3.5)

x is the location in space and the dynamic pressure p has been introduced. The dynamic pressure
is the residual of the total pressure minus the hydrostatic component given by

p = ptotal − ρg • x (3.6)

Pressure equation

For incompressible flows, we loose the connection between the momentum equation and the conti-
nuity equation. Therefore we need to create an additional equation that contain both velocity and
pressure like the three momentum equations. The fourth equation is created by combining the mo-
mentum equation and the continuity equation, which leads to the pressure equation. The pressure
equation is a Poisson equation.

First we need to discretize part of the momentum equation. The Finite Volume method is con-
structed by integrating in space and time over a control volume. When the pressure gradient is left
non-discretized in the momentum equation, we get∫ t+∆t

t

[∫
Vp

∂U

∂t
dV +

∫
VP

∇ • (UU) dV −
∫
VP

∇ • (ν∇U) dV

]
dt = −1

ρ
∇p (3.7)

It is assumed that the control volume does not change in time, and we use the midpoint rule to
approximate the volume integral. ∫

VP

∂U

∂t
dV =

(
∂U

∂t

)
P

VP (3.8)

The time derivative is calculated according to a chosen scheme, for example Euler or Crank-
Nicholson.

The convective term is discretized using Gauss theorem to convert the volume integral into a surface
integral. The surface integral is approximated as a summation over the control volume faces. The
non-linearity is usually resolved with Picard iteration, where one of the velocity fields is treated
implicitly and the other explicitly from previous iteration result. To distinguish between the two
velocity fields, a new scalar face flux variable Ff is introduced as Ff = Sf •Uf . The discretization
is given by ∫

Vp

∇ • (UU) dV =

∫
Sp

dS • (UU) (3.9)

=

nf∑
f=1

Sf • (UU)f (3.10)

=

nf∑
f=1

FfUf (3.11)

where the velocity at the control volume faces is given by

Uf = fxUP + (1− fx)UN (3.12)
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The diffusive term is also discretized using Gauss theorem, which gives∫
VP

∇ • (ν∇U) dV =

∫
SP

dS • (ν∇U) (3.13)

=

nf∑
f=1

Sf • (ν∇U)f (3.14)

=

nf∑
f=1

νfSf • (∇U)f (3.15)

The discretization of the term Sf • (∇U)f is further separated in a orthogonal part, which is treated
implicitly, and a non-orthogonal part, which is treated explicitly. The separation is given by

Sf • (∇U)f = |Sf |
UN −UP

|d|
(3.16)

= |∆f |
UN −UP

|d|︸ ︷︷ ︸
Orthogonal

+ k • (∇U)f︸ ︷︷ ︸
Non orthogonal

(3.17)

If we do not treat the non orthogonal term explicitly, the system matrix will loose diagonally domi-
nance, which is an important property to preserve in the equation system. The explicit evaluation
of the gradient term (∇U)f is given by a linear interpolation of the gradient

(∇U)f = fx(∇U)P + (1− fx)(∇U)N (3.18)

where (∇U)P and (∇U)N is given by

(∇U)P =
1

VP

nf∑
f=1

SfUf (3.19)

(∇U)N =
1

VN

nf∑
f=1

SfUf (3.20)

To summarize the discretized momentum equation is now given by

∫ t+∆t

t


(
∂U

∂t

)
P

VP +

nf∑
f=1

FfUf −
nf∑
f=1

νf

|∆f |
UN −UP

|d|︸ ︷︷ ︸
Orthogonal

+ k • (∇U)f︸ ︷︷ ︸
Non−orthogonal


 dt = −1

ρ
∇p

(3.21)
where the dynamic pressure gradient is left undiscretized. Now it is possible to collect terms that
relates to the unknown UP and UN . Terms that are evaluated explicitly are collected in a single
source term, SP . We can therefore introduce a compact notation for the final dicretisation given by

aPUp +
∑
N

aNUN − SP = −1

ρ
∇p (3.22)

where we assume that a temporal discretization has been applied to replace the time integrals on
the left hand side.

The continuity equation is discretized using Gauss theorem to convert volume integrals to sur-
face integrals. The surface integral is approximated by a summation of the control volume faces,
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where the midpoint rule is used to approximate the integral over each face. This gives∫
VP

∇ • (U) dV =

∫
SP

dS • (U) (3.23)

=

nf∑
f=1

Sf •Uf (3.24)

The discretized continuity equation is

nf∑
f=1

Sf •Uf = 0 (3.25)

Now we apply Rhie-Chow Momentum Interpolation Method to achieve an expression for the face
velocity. The first step is to isolate Up, which gives

Up =
− 1
ρ∇p−

∑
N aNUN + SP

aP
(3.26)

We now rewrite the equation to

Up =
−
∑
N aNUN + SP

aP
− 1

aP

1

ρ
∇p (3.27)

and introduce the operator H(U) which is defined as

H(U) = −
∑
N

aNUN + SP (3.28)

The velocity is now given by

Up =
H(U)

aP
− 1

aP

1

ρ
∇p (3.29)

The Rhie-Chow interpolation is applied and gives

Uf =

(
H(U)

aP

)
f

−
(

1

aP

)
f

(
1

ρ
∇p
)
f

(3.30)

The final step is to insert the expression for the face velocity into the discretized continuity equation,
which gives

nf∑
f=1

Sf •
(

1

aP

)
f

(
1

ρ
∇p
)
f

=

nf∑
f=1

Sf •
(
H(U)

aP

)
f

(3.31)

The right hand side is a source term, which is the flux of the estimated velocity field from the
momentum equation with the effect of the pressure gradient term. The left hand side is pressure
laplacian term, which is discretized with the modified Gauss discretization scheme.

3.2.2 Jump conditions at the surface

At the free surface between air and water the density changes from the density of water to the
density of air. This jump in density at the surface is denoted square brackets, and the definition is

[ρ] = ρ− − ρ+ (3.32)

where ρ− is the lighter fluid, and ρ+ is the heavier fluid. The kinematic boundary condition at the
free surface is

[u] = u− − u+ = 0 (3.33)
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where superscript − means very close to the surface on the light phase side, and + means very close
to the surface on the heavy phase side. Hence, it is assumed that there is no jump in the velocity
field. The tangential stress balance is simplified to

[∇nut] = 0 (3.34)

This physically means that the water and air have the same velocity at the interface, instead of a
stress balance. This form is obtained by neglecting surface divergence of surface tension and surface
gradient of the normal velocity component. The dynamic boundary condition for the dynamic
pressure is

[p] = −[ρ]g • x = H (3.35)

where the dynamic pressure p is defined as

p = ptot − ρg • x (3.36)

The discretized jump condition is

[p] = −[ρ]g • x⇔
p− − p+ = −(ρ− − ρ+)g • x⇔
p− − p+ = (ρ+ − ρ−)g • x⇔ (3.37)

The right hand side is simplified by introducing H, which is defined as

H = (ρ+ − ρ−)g • xΓ (3.38)

The dynamic boundary condition is obtained by neglecting surface tension effects and using the
above pressure decomposition. From inspection of the incompressible Navier-Stokes equation when
the simplified tangential stress balance is assumed an additional dynamic boundary condition can
be defined as [

∇p
ρ

]
=

(∇p)−

ρ−
− (∇p)+

ρ+
= 0 (3.39)

This condition is used to derive the extrapolated pressure values, which are the ghost values in this
method.

Matrix symmetry conservation after jump discretization

According to the additional dynamic boundary condition the product of ρ and ∇p is continuous
even though they individually are discontinuous at the interface. This fact is important, since this
ensures that the discretized laplacian matrix including the discretized jump conserves the existing
matrix symmetry in the laplacian operator.

3.2.3 Additional definitions

The position of the surface is determined from the normalised distance factor called λ, which is
defined as

λ =
αP − 0.5

αP − αN
(3.40)

The position of the surface is found from

xΓ = xP + λdf (3.41)

where xΓ is the position of the free surface, xP is the position of the owner cell centre and df is the
vector from owner cell centre to neighbour cell centre. The inverse density is defined as

β+ =
1

ρ+
(3.42)

and

β− =
1

ρ−
(3.43)
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3.2.4 Derivation of extrapolated pressure values

In this section I have written out the derivation of the extrapolated ghost values used in this method.
There are 4 cases to consider

1. Owner cell is wet, and we are discretizing the equation in the owner cell, so we are looking
through the cell face from the owner cell towards the neighbour cell.

2. Owner cell is wet, and we are discretizing the equation in the neighbour cell, so we are looking
through cell face from the neighbour cell towards the owner cell.

3. Owner cell is dry, and we are discretizing the equation in the owner cell, so we are looking
through the cell face from the owner cell towards the neighbour cell.

4. Owner cell is dry, and we are discretizing the equation in the neighbour cell, so we are looking
through cell face from the neighbour cell towards the owner cell.

Figure 3.1 illustrates the interpolation in case 1 and 2.

Figure 3.1: One-sided interpolation for a wet owner cell.

Figure 3.2 illustrates the interpolation in case 3 and 4.
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Figure 3.2: One-sided interpolation for a dry owner cell.

In the next four sections, that correspond to the 4 cases, the extrapolated pressure values are
expressed in terms of the jump H, and the cell centre values pP and pN . This is achieved by using
the presented jump conditions at the free surface.

Wet owner, owner towards neighbour

The additional dynamic jump condition Equation (3.39) is discretized

β−
pN − p−

1− λ
− β+ p

+ − pP
λ

= 0 (3.44)

The dynamic jump condition Equation (3.35) is given by

p− − p+ = H (3.45)

which yields an expression for p− given by

p− = p+ +H (3.46)

Now insert Equation (3.46) in Equation (3.44) and isolate p+

β−
pN − (p+ +H)

1− λ
− β+ p

+ − pP
λ

= 0⇔

β−

1− λ
(pN − p+ −H)− β+

λ
(p+ − pP ) = 0⇔

β−λ

(1− λ)λ
(pN − p+ −H)− β+(1− λ)

(1− λ)λ
(p+ − pP ) = 0⇔

β−λ(pN − p+ −H)− β+(1− λ)(p+ − pP ) = 0⇔
p+(β−λ+ β+(1− λ)) = β−λpN − β−λH+ β+(1− λ)pP ⇔

p+ =
β−λ

β−λ+ β+(1− λ)
pN −

β−λ

β−λ+ β+(1− λ)
H+

β+(1− λ)

β−λ+ β+(1− λ)
pP (3.47)

The expression is simplified by introducing

βw = β−λ+ β+(1− λ) (3.48)
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which yields

p+ =
β−λ

βw
pN −

β−λ

βw
H+

β+(1− λ)

βw
pP (3.49)

The value pP and p+ is then used to define the gradient in a linear extrapolation from our current
position in the owner cell, and the expression for the value in the neighbouring cell centre becomes

p+
N,Γ = pP +

p+ − pP
λ

= pP +

β−λ

βw
pN − β−λ

βw
H+ β+(1−λ)

βw
pP

λ
− pP

λ

= pP +
β−

βw
pN −

β−

βw
H+

β+(1− λ)

βwλ
pP −

pP
λ

(3.50)

Equation (3.48) is rewritten to

βw = β−λ+ β+(1− λ)

1 =
β−λ

βw
+
β+(1− λ)

βw

1− β−λ

βw
=
β+(1− λ)

βw

and this is used to change the fourth term in Equation (3.50), which yields the final expression of
the extrapolation formula

p+
N,Γ = pP +

β−

βw
pN −

β−

βw
H+

(
1− β−λ

βw

)
1

λ
pP −

pP
λ

p+
N,Γ =

β−

βw
pN −

β−

βw
H+

(
1 +

1

λ
− β−

βw
− 1

λ

)
pP (3.51)

p+
N,Γ =

β−

βw
pN −

β−

βw
H+

(
1− β−

βw

)
pP (3.52)

Wet owner, neighbour towards owner

Equation (3.45) is used to get an expression for p+ given by

p+ = p− −H (3.53)

Now insert Equation (3.53) in Equation (3.44) and isolate p−

β−
pN − p−

1− λ
− β+ (p− −H)− pP

λ
= 0⇔

β−

1− λ
(pN − p−)− β+

λ
(p− −H− pP ) = 0⇔

β−λ

(1− λ)λ
(pN − p−)− β+(1− λ)

(1− λ)λ
(p− −H− pP ) = 0⇔

β−λ(pN − p−)− β+(1− λ)(p− −H− pP ) = 0⇔
p−(β−λ+ β+(1− λ)) = β−λpN + β+(1− λ)H+ β+(1− λ)pP ⇔

p− =
β−λ

β−λ+ β+(1− λ)
pN +

β+(1− λ)

β−λ+ β+(1− λ)
H+

β+(1− λ)

β−λ+ β+(1− λ)
pP (3.54)

Definition from Equation (3.48) is used again to simplify the expression to

p− =
β−λ

βw
pN +

β+(1− λ)

βw
H+

β+(1− λ)

βw
pP (3.55)
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The value pN and p− is then used to define the gradient in a linear extrapolation from our current
position in the neighbour cell, and the expression for the value in the owner cell centre becomes

p−P,Γ = pN +
p− − pN

1− λ

= pN +

β−λ

βw
pN + β+(1−λ)

βw
H+ β+(1−λ)

βw
pP

1− λ
− pN

1− λ

= pN +
β−λ

βw(1− λ)
pN +

β+

βw
H+

β+

βw
pP −

pN
1− λ

= pN

(
1 +

β−λ

βw(1− λ)
− 1

1− λ

)
+
β+

βw
H+

β+

βw
pP

= pN

(
1 +

β−λ

βw

1

(1− λ)
− 1

1− λ

)
+
β+

βw
H+

β+

βw
pP (3.56)

Equation (3.48) is rewritten to

βw = β−λ+ β+(1− λ)

1 =
β−λ

βw
+
β+(1− λ)

βw
β−λ

βw
= 1− β+(1− λ)

βw

and this is used to change the fourth term in Equation (3.56), which yields the final expression of
the extrapolation formula

p−P,Γ = pN

(
1 +

(
1− β+(1− λ)

βw

)
1

(1− λ)
− 1

1− λ

)
+
β+

βw
H+

β+

βw
pP

= pN

(
1 +

1

(1− λ)
− β+

βw
− 1

1− λ

)
+
β+

βw
H+

β+

βw
pP

= pN

(
1− β+

βw

)
+
β+

βw
H+

β+

βw
pP (3.57)

Dry owner, owner towards neighbour

The additional dynamic jump condition (3.39) is discretized

β+ pN − p+

1− λ
− β− p

− − pP
λ

= 0 (3.58)

Now insert Equation (3.53) in Equation (3.58) and isolate p+

β+ pN − (p− −H)

1− λ
− β− p

− − pP
λ

= 0⇔

β+

1− λ
(pN − p− +H)− β−

λ
(p− − pP ) = 0⇔

β+λ

(1− λ)λ
(pN − p− +H)− β−(1− λ)

(1− λ)λ
(p− − pP ) = 0⇔

β+λ(pN − p− +H)− β−(1− λ)(p− − pP ) = 0⇔
p−(β+λ+ β−(1− λ)) = β+λpN + β+λH+ β−(1− λ)pP ⇔

p+ =
β+λ

β+λ+ β−(1− λ)
pN +

β+λ

β+λ+ β−(1− λ)
H+

β−(1− λ)

β+λ+ β−(1− λ)
pP (3.59)
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The expression is simplified by introducing

βd = β+λ+ β−(1− λ) (3.60)

which yields

p+ =
β+λ

βd
pN +

β+λ

βd
H+

β−(1− λ)

βd
pP (3.61)

The value pP and p− is then used to define the gradient in a linear extrapolation from our current
position in the owner cell, and the expression for the value in the neighbouring cell centre becomes

p−N,Γ = pP +
p+ − pP

λ

= pP +

β+λ

βd
pN + β+λ

βd
H+ β−(1−λ)

βd
pP

λ
− pP

λ

= pP +
β+

βd
pN +

β+

βd
H+

β−(1− λ)

βd

1

λ
pP −

pP
λ

(3.62)

Equation (3.60) is rewritten to

βd = β+λ+ β−(1− λ)

1 =
β+λ

βd
+
β−(1− λ)

βd
β−(1− λ)

βd
= 1− β+λ

βd

and this is used to change the fourth term in Equation (3.62), which yields the final expression of
the extrapolation formula

p−N,Γ = pP +
β+

βd
pN +

β+

βd
H+

(
1− β+λ

βd

)
1

λ
pP −

pP
λ

p−N,Γ =
β+

βd
pN +

β+

βd
H+

(
1 +

1

λ
− β+

βd
− 1

λ

)
pP (3.63)

p−N,Γ =
β+

βd
pN +

β+

βd
H+

(
1− β+

βd

)
pP (3.64)

Dry owner, neighbour towards owner

Insert Equation (3.46) in Equation (3.58) and isolate p+

β+ pN − p+

1− λ
− β− (p+ +H)− pP

λ
= 0⇔

β+

1− λ
(pN − p+)− β−

λ
(p+ +H− pP ) = 0⇔

β+λ

(1− λ)λ
(pN − p+)− β−(1− λ)

(1− λ)λ
(p+ +H− pP ) = 0⇔

β+λ(pN − p+)− β−(1− λ)(p+ +H− pP ) = 0⇔
p+(β+λ+ β−(1− λ)) = β+λpN − β−(1− λ)H+ β−(1− λ)pP ⇔

p+ =
β+λ

β+λ+ β−(1− λ)
pN −

β−(1− λ)

β+λ+ β−(1− λ)
H+

β−(1− λ)

β+λ+ β−(1− λ)
pP (3.65)

Definition from Equation (3.60) is used again to simplify the expression to

p+ =
β+λ

βd
pN −

β−(1− λ)

βd
H+

β−(1− λ)

βd
pP (3.66)
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The value pN and p+ is then used to define the gradient in a linear extrapolation from our current
position in the neighbour cell, and the expression for the value in the owner cell centre becomes

p+
P,Γ = pN +

p+ − pN
1− λ

= pN +

β+λ

βd
pN − β−(1−λ)

βd
H+ β−(1−λ)

βd
pP

1− λ
− pN

1− λ

= pN +
β+λ

βd(1− λ)
pN −

β−

βd
H+

β−

βd
pP −

pN
1− λ

= pN

(
1 +

β+λ

βd(1− λ)
− 1

1− λ

)
− β−

βd
H+

β−

βd
pP

= pN

(
1 +

β+λ

βd

1

(1− λ)
− 1

1− λ

)
− β−

βd
H+

β−

βd
pP (3.67)

Equation (3.60) is rewritten to

βd = β+λ+ β−(1− λ)

1 =
β+λ

βd
+
β−(1− λ)

βd
β+λ

βd
= 1− β−(1− λ)

βd

and this is used to change the fourth term in Equation (3.67), which yields the final expression of
the extrapolation formula

p+
P,Γ = pN

(
1 +

(
1− β−(1− λ)

βd

)
1

(1− λ)
− 1

1− λ

)
− β−

βd
H+

β−

βd
pP

= pN

(
1 +

1

(1− λ)
− β−

βd
− 1

1− λ

)
− β−

βd
H+

β−

βd
pP

= pN

(
1− β−

βd

)
− β−

βd
H+

β−

βd
pP (3.68)

3.2.5 discretization of laplacian looking from owner to neighbour

Owner is wet

Extrapolation to get value at N seen from perspective of P , where P is a wet cell:

p
P=wet(+)
N,Γ =

β−

βw
pN +

(
1− β−

βw

)
pP −

β−

βw
H (3.69)

The pressure laplacian discretization:∑
f

(
1

aP

)
f

(βfΓ)|sf |
(pN − pP )Γ

|df |
=
∑
f 6Γ

(
1

aP

)
f

(β)f |sf |
pN − pP
|df |

+
∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |
p
P=wet(+)
N,Γ − pP
|df |

(3.70)
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where (β)fΓ = β+, because P is wet. (β)f is used for faces shares either 2 wet or 2 dry cells, hence
if there are 2 wet cells use β+, and if there are 2 dry cells use β−.

∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |
p
P=wet(+)
N,Γ − pP
|df |

(3.71)

=
∑
fΓ

(
1

aP

)
f

β+|sf |

[
β−

βw
pN +

(
1− β−

βw

)
pP − β−

βw
H
]
− pP

|df |
(3.72)

=
∑
fΓ

(
1

aP

)
f

β+ |sf |
|df |

[
β−

βw
pN +

(
1− β−

βw

)
pP −

β−

βw
H− pP

]
(3.73)

=
∑
fΓ

(
1

aP

)
f

β+ |sf |
|df |

[
β−

βw
pN + pP −

β−

βw
pP −

β−

βw
H− pP

]
(3.74)

=
∑
fΓ

(
1

aP

)
f

β+ |sf |
|df |

[
β−

βw
pN −

β−

βw
pP −

β−

βw
H
]

(3.75)

=
∑
fΓ

(
1

aP

)
f

|sf |
|df |

β+β−

βw︸ ︷︷ ︸
aPN

pN −
(

1

aP

)
f

|sf |
|df |

β+β−

βw︸ ︷︷ ︸
dP

pP −
(

1

aP

)
f

|sf |
|df |

β+β−

βw
H︸ ︷︷ ︸

SP

(3.76)

Owner is dry

Extrapolation to get value at N seen from perspective of P , where P is a dry cell:

p
P=dry(−)
N,Γ =

β+

βd
pN +

(
1− β+

βd

)
pP +

β+

βd
H (3.77)

The pressure laplacian discretization:∑
f

(
1

aP

)
f

(βfΓ)|sf |
(pN − pP )Γ

|df |
=
∑
f 6Γ

(
1

aP

)
f

(β)f |sf |
pN − pP
|df |

+
∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |
p
P=dry(−)
N,Γ − pP
|df |

(3.78)

where (β)fΓ = β−, because P is dry. (β)f is used for faces shares either 2 wet or 2 dry cells, hence
if there are 2 wet cells use β+, and if there are 2 dry cells use β−.

∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |
p
P=dry(−)
N,Γ − pP
|df |

(3.79)

=
∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |

[
β+

βd
pN +

(
1− β+

βd

)
pP + β+

βd
H
]
− pP

|df |
(3.80)

=
∑
fΓ

(
1

aP

)
f

β−
|sf |
|df |

[
β+

βd
pN +

(
1− β+

βd

)
pP +

β+

βd
H− pP

]
(3.81)

=
∑
fΓ

(
1

aP

)
f

|sf |
|df |

[
β−β+

βd
pN −

β−β+

βd
pP +

β−β+

βd
H
]

(3.82)

=
∑
fΓ

(
1

aP

)
f

|sf |
|df |

β−β+

βd︸ ︷︷ ︸
aPN

pN −
(

1

aP

)
f

|sf |
|df |

β−β+

βd︸ ︷︷ ︸
dP

pP +

(
1

aP

)
f

|sf |
|df |

β−β+

βd
H︸ ︷︷ ︸

SP

(3.83)
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3.2.6 discretization of laplacian looking from neighbour to owner

Owner is wet

Extrapolation to get value at P seen from perspective of N , where P is a wet cell:

p
P=wet(−)
P,Γ =

β+

βw
pP +

(
1− β+

βw

)
pN +

β+

βw
H (3.84)

The pressure laplacian discretization:∑
f

(
1

aP

)
f

(βfΓ)|sf |
(pP − pN )Γ

|df |
=
∑
f 6Γ

(
1

aP

)
f

(β)f |sf |
pP − pN
|df |

+
∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |
p
P=wet(−)
P,Γ − pN

|df |
(3.85)

where (β)fΓ = β−, because N is dry. (β)f is used for faces shares either 2 wet or 2 dry cells, hence
if there are 2 wet cells use β+, and if there are 2 dry cells use β−.

∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |
p
P=wet(−)
P,Γ − pN

|df |
(3.86)

=
∑
fΓ

(
1

aP

)
f

β−|sf |

[
β+

βw
pP +

(
1− β+

βw

)
pN + β+

βw
H
]
− pN

|df |
(3.87)

=
∑
fΓ

(
1

aP

)
f

|sf |
|df |

[
β−β+

βw
pP +

(
β− − β−β+

βw

)
pN +

β−β+

βw
H− β−pN

]
(3.88)

=
∑
fΓ

(
1

aP

)
f

|sf |
|df |

[
β−β+

βw
pP + β−pN −

β−β+

βw
pN −

β−β+

βw
H− β−pN

]
(3.89)

=
∑
fΓ

−
(

1

aP

)
f

|sf |
|df |

β−β+

βw︸ ︷︷ ︸
dN

pN +

(
1

aP

)
f

|sf |
|df |

β−β+

βw︸ ︷︷ ︸
aNP

pP +

(
1

aP

)
f

|sf |
|df |

β−β+

βw
H︸ ︷︷ ︸

SN

(3.90)

Owner is dry

Extrapolation to get value at P seen from perspective of N , where P is a dry cell:

p
P=dry(+)
P,Γ =

β−

βd
pP +

(
1− β−

βd

)
pN −

β−

βd
H (3.91)

The pressure laplacian discretization:∑
f

(
1

aP

)
f

(βfΓ)|sf |
(pP − pN )Γ

|df |
=
∑
f 6Γ

(
1

aP

)
f

(β)f |sf |
pP − pN
|df |

+
∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |
p
P=dry(+)
P,Γ − pN

|df |
(3.92)
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where (β)fΓ = β+, because N is wet. (β)f is used for faces shares either 2 wet or 2 dry cells, hence
if there are 2 wet cells use β+, and if there are 2 dry cells use β−.

∑
fΓ

(
1

aP

)
f

(β)fΓ|sf |
p
P=dry(+)
P,Γ − pN

|df |
(3.93)

=
∑
fΓ

(
1

aP

)
f

β+|sf |

[
β−

βd
pP +

(
1− β−

βd

)
pN − β−

βd
H
]
− pN

|df |
(3.94)

=
∑
fΓ

(
1

aP

)
f

|sf |
|df |

[
β+β−

βd
pP +

(
β+ − β+β−

βd

)
pN −

β+β−

βd
H− β+pN

]
(3.95)

=
∑
fΓ

(
1

aP

)
f

|sf |
|df |

[
β+β−

βd
pP + β+pN −

β+β−

βd
pN −

β+β−

βd
H− β+pN

]
(3.96)

=
∑
fΓ

(
1

aP

)
f

|sf |
|df |

[
β+β−

βd
pP −

β+β−

βd
pN −

β+β−

βd
H
]

(3.97)

=
∑
fΓ

−
(

1

aP

)
f

|sf |
|df |

β+β−

βd︸ ︷︷ ︸
dN

pN +

(
1

aP

)
f

|sf |
|df |

β+β−

βd︸ ︷︷ ︸
aNP

pP −
(

1

aP

)
f

|sf |
|df |

β+β−

βd
H︸ ︷︷ ︸

SN

(3.98)

73



3.2. THEORY CHAPTER 3. GFM-GAUSS SCHEME

3.2.7 Summarized matrix coefficient contributions

The matrix coefficient contributions from the derivation in the previous section are collected in Table
3.1, where I have also specified the matrix coefficients for non-surface cells.

Table 3.1: Pressure laplacian matrix coefficient contributions

Looking from P to N

P wet P dry P & N wet P & N dry

dP (aPP ) −
(

1
aP

)
f

|sf |
|df |

β+β−

βw
−
(

1
aP

)
f

|sf |
|df |

β−β+

βd
−
(

1
aP

)
f
β+ |sf |
|df | −

(
1
aP

)
f
β−
|sf |
|df |

aPN

(
1
aP

)
f

|sf |
|df |

β+β−

βw

(
1
aP

)
f

|sf |
|df |

β−β+

βd

(
1
aP

)
f
β+ |sf |
|df |

(
1
aP

)
f
β−
|sf |
|df |

SP

(
1
aP

)
f

|sf |
|df |

β+β−

βw
H −

(
1
aP

)
f

|sf |
|df |

β−β+

βd
H - -

SnonOrth k •
(

1
aP

)
f

(β+∇p)0
f k •

(
1
aP

)
f

(β−∇p)0
f k •

(
1
aP

)
f

(β+∇p)0
f k •

(
1
aP

)
f

(β−∇p)0
f

Looking from N to P

P wet P dry P & N wet P & N dry

dN (aNN ) −
(

1
aP

)
f

|sf |
|df |

β−β+

βw
−
(

1
aP

)
f

|sf |
|df |

β+β−

βd
−
(

1
aP

)
f
β+ |sf |
|df | −

(
1
aP

)
f
β−
|sf |
|df |

aNP

(
1
aP

)
f

|sf |
|df |

β−β+

βw

(
1
aP

)
f

|sf |
|df |

β+β−

βd

(
1
aP

)
f
β+ |sf |
|df |

(
1
aP

)
f
β−
|sf |
|df |

SN −
(

1
aP

)
f

|sf |
|df |

β−β+

βw
H

(
1
aP

)
f

|sf |
|df |

β+β−

βd
H - -

SnonOrth k •
(

1
aP

)
f

(β+∇p)i−1
f k •

(
1
aP

)
f

(β−∇p)i−1
f k •

(
1
aP

)
f

(β+∇p)i−1
f k •

(
1
aP

)
f

(β−∇p)i−1
f

Definitions

βd = λβ+ + (1− λ)β− βw = λβ− + (1− λ)β+

β+ = 1
ρ+ β− = 1

ρ−

λ = αP−0.5
αP−αN

xΓ = xP + λdf

H = (ρ− − ρ+)g • xΓ fx = ~fN/ ~PN(
1

aP

)
f

|sf |︸ ︷︷ ︸
gammaMagSf

1

|df |︸︷︷︸
deltaCoeffs

β+β−

βw︸ ︷︷ ︸
surfaceCoeffs

(β∇p)i−1
f = fx(β∇p)i−1

P + (1− fx)(β∇p)i−1
N
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3.3 Implementation

This section presents how the theory described in Section 3.2 has been implemented by modifying
the class gaussLaplacianScheme in two steps.

1. First step is to modify the class, such that it only works for a single combination of tem-
plate parameters, which is Type = scalar and GType = scalar. This is implemented in
myScalarGaussLaplacianScheme.

2. The second step is to implement the new theory valid for scalar diffusion and scalar dependent
variable. This is implemented in GFMGaussLaplacianScheme.

The starting point is our own copy of gaussLaplacianScheme that we created in Section 2.5 under
the new name myGaussLaplacianScheme.

3.3.1 Remove template functionality

The first aspect to consider is how to remove the template functionality of the class, since the pre-
sented theory is intended for the dynamic pressure field p_rgh, which is a cell-centred scalar field
(In OpenFOAM syntax: volScalarField). The first template parameter Type is substituted with
scalar and the second template parameter GType is substituted with scalar. The specialisation of
the member function fvmLaplacian and fvcLaplacian is moved from
discontinuousGaussLaplacianSchemes.C to discontinuousGaussLaplacianScheme.C, because
the new class will only contain this specialisation with the template parameter Type = scalar.

First we need to create a new copy of the myGaussLaplacianScheme called myScalarGaussLaplacianScheme.
This performed by the following terminal commands:

cp -r $WM_PROJECT_USER_DIR/src/finiteVolume/finiteVolume/laplacianSchemes/myGaussLaplacianScheme \

$WM_PROJECT_USER_DIR/src/finiteVolume/finiteVolume/laplacianSchemes/myScalarGaussLaplacianScheme

cd $WM_PROJECT_USER_DIR/src/finiteVolume/finiteVolume/laplacianSchemes/myScalarGaussLaplacianScheme

mv myGaussLaplacianScheme.C myScalarGaussLaplacianScheme.C

mv myGaussLaplacianScheme.H myScalarGaussLaplacianScheme.H

mv myGaussLaplacianSchemes.C myScalarGaussLaplacianSchemes.C

sed -i s/myGaussLaplacianScheme/myScalarGaussLaplacianScheme/g myScalarGaussLaplacianScheme.H

sed -i s/myGaussLaplacianScheme/myScalarGaussLaplacianScheme/g myScalarGaussLaplacianScheme.C

sed -i s/myGaussLaplacianScheme/myScalarGaussLaplacianScheme/g myScalarGaussLaplacianSchemes.C

sed -i s/'TypeName("myGauss");'/'TypeName("myScalarGauss");'/g myScalarGaussLaplacianScheme.H

We are now ready to modify the files. The modification steps are

1. Remove the declaration and definition of the function gammaSnGradCorr.

sed -i -e '66,71d' myScalarGaussLaplacianScheme.H

sed -i -e '91,132d' myScalarGaussLaplacianScheme.C

2. Remove template<class Type, class GType> in source and header.

sed -i '/template<class Type, class GType>/d' myScalarGaussLaplacianScheme.H

sed -i '/template<class Type, class GType>/d' myScalarGaussLaplacianScheme.C

3. Swap myScalarGaussLaplacianScheme<Type, GType> with myScalarGaussLaplacianScheme

in source.

sed -i s/'myScalarGaussLaplacianScheme<Type, GType>'/'myScalarGaussLaplacianScheme'/g \

myScalarGaussLaplacianScheme.C
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4. Remove inclusion of myScalarGaussLaplacianScheme.C in header file.

sed -i -e '175,180d' myScalarGaussLaplacianScheme.H

5. Remove macro defineFvmLaplacianScalarGamma and the calls to this macro.

sed -i -e '137,164d' myScalarGaussLaplacianScheme.H

6. Copy implementation of

myScalarGaussLaplacianScheme::fvcLaplacian

(

const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma,

const GeometricField<scalar, fvPatchField, volMesh>& vf

)

and

myScalarGaussLaplacianScheme::fvmLaplacian

(

const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma,

const GeometricField<scalar, fvPatchField, volMesh>& vf

)

from myScalarGaussLaplacianSchemes.C to myScalarGaussLaplacianScheme.C and remove
line shifts \.

7. Remove myScalarGaussLaplacianSchemes.C

8. Replace template parameter Type and GType with scalar in header file.

sed -i s/'<Type, GType>'/'<scalar, scalar>'/g myScalarGaussLaplacianScheme.H

sed -i s/'<GType'/'<scalar'/g myScalarGaussLaplacianScheme.H

sed -i s/'<Type'/'<scalar'/g myScalarGaussLaplacianScheme.H

9. Replace template parameter Type and GType with scalar in source file.

sed -i s/'<GType'/'<scalar'/g myScalarGaussLaplacianScheme.C

sed -i s/'<Type'/'<scalar'/g myScalarGaussLaplacianScheme.C

10. Add makeMyGaussLaplacianScheme(SS)

// Add the patch constructor functions to the hash tables

#define makeMyGaussLaplacianScheme(SS)\

typedef Foam::scalar Type;\

typedef Foam::scalar GType;\

typedef Foam::fv::SS SS##Type##GType;\

defineTypeName(SS##Type##GType);\

namespace Foam\

{\

namespace fv\

{\

typedef SS SS##Type##GType;\

\

laplacianScheme<Type, GType>::\

addIstreamConstructorToTable<SS>\
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add##SS##Type##GType##IstreamConstructorToTable_;\

}\

}

// Define symbol lookup:

// SS: Name of current class

makeMyGaussLaplacianScheme(myScalarGaussLaplacianScheme)

after #include "fvMatrices.H" and before namespace Foam in myScalarGaussLaplacianScheme.C.

11. Open Make/files

vi $WM_PROJECT_USER_DIR/src/finiteVolume/Make/files

and modify the content to

laplacianSchemes = finiteVolume/laplacianSchemes

$(laplacianSchemes)/myGaussLaplacianScheme/myGaussLaplacianSchemes.C

$(laplacianSchemes)/myScalarGaussLaplacianScheme/myScalarGaussLaplacianScheme.C

LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume

12. Compile:

wmake $WM_PROJECT_USER_DIR/src/finiteVolume

The library is located at:

$FOAM_USER_LIBBIN/libmyFiniteVolume.so

Test implementation:

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity $FOAM_RUN/myScalarGaussCavity

sed -i '/Gauss linear orthogonal;/c \

default none; \

laplacian(nu,U) Gauss linear orthogonal; \

laplacian((1|A(U)),p) myScalarGauss linear orthogonal;' \

$FOAM_RUN/myScalarGaussCavity/system/fvSchemes

sed -i '$a libs ("libmyFiniteVolume.so");' $FOAM_RUN/myScalarGaussCavity/system/controlDict

blockMesh -case $FOAM_RUN/myScalarGaussCavity

icoFoam -case $FOAM_RUN/myScalarGaussCavity

We have now a working copy of the laplacian scheme that only works for a scalar dependent variable
and a scalar diffusion parameter. Now we can proceed with the implementation of the theory.

3.3.2 Implementation of GFM-method

Until now we have just modified the code and retained a part of the existing functionalities. It is
time to implement the GFM-method in the laplacian operator.

New class: interfaceJump

I needed to implement several new functions to implement the method. The new member func-
tions are implemented in a separate class, that is constructed at the beginning of the function
fvmLaplacianUncorrected. I have chosen to implement the functions in a separate class to make
it possible to use the same functions in other classes, without having multiple implementations to
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debug.

The source files for the class is interfaceJump.H and interfaceJump.C. Please open the source
files to follow the explanation.

Equation (3.40) is implemented in the private member function interfaceJump::calcLambda(),
and it uses another private member function interfaceJump::identifySurfaceFaces() to iden-
tify the interface faces, which needs to be treated with the GFM one-sided interpolation method.
interfaceJump::calcLambda() is called in the class constructor, when a new object is created.

The class provides a public function interfaceJump::H(label facei), which evaluates Equation
(3.35) for a single face with index facei. H is calculated at the position of the interface defined by
Equation (3.41).

βw defined in Equation (3.48) is calculated by interfaceJump::dimBetaBarWet(label facei)

which returns the value with dimensions or interfaceJump::betaBarWet(label facei) which
just returns a scalar. The input is an index of an interface face facei, and the function then reads
the calculated value of λ for facei.

βd defined in Equation (3.60) is calculated by interfaceJump::dimBetaBarDry(label facei)

which returns the value with dimensions or interfaceJump::betaBarDry(label facei) which
just returns a scalar.

The class constructor needs a reference to the dependent variable vf and the void fraction field
for the heavy phasealpha1 which corresponds to α1 in the theory. From these two input the needed
variables are initialised in the initializer list.

The class provides a series of access function, which give the user access to read the private data
members. I have commented the code in the class, so that it should be self explaining together with
this text.

Place the class folder interfaceJump in the folder

$WM_PROJECT_USER_DIR/src/finiteVolume/finiteVolume

The compilation of this class into the library is presented in the next section.

Create new copy myScalarGaussLaplacianScheme class

The starting point is the class myScalarGaussLaplacianScheme, which was created in Section 3.3.1.
We are now at the final step, where the theory needs to be implemented. First we create new copy
of myScalarGaussLaplacianScheme called GFMGaussLaplacianScheme with terminal commands:

cp -r $WM_PROJECT_USER_DIR/src/finiteVolume/finiteVolume/laplacianSchemes\

/myScalarGaussLaplacianScheme $WM_PROJECT_USER_DIR/src/finiteVolume/finiteVolume\

/laplacianSchemes/GFMGaussLaplacianScheme

cd $WM_PROJECT_USER_DIR/src/finiteVolume/finiteVolume/laplacianSchemes/GFMGaussLaplacianScheme

mv myScalarGaussLaplacianScheme.C GFMGaussLaplacianScheme.C

mv myScalarGaussLaplacianScheme.H GFMGaussLaplacianScheme.H

sed -i s/myScalarGaussLaplacianScheme/GFMGaussLaplacianScheme/g GFMGaussLaplacianScheme.H

sed -i s/myScalarGaussLaplacianScheme/GFMGaussLaplacianScheme/g GFMGaussLaplacianScheme.C

sed -i s/'TypeName("myScalarGauss");'/'TypeName("GFMGauss");'/g GFMGaussLaplacianScheme.H

sed -i '/myScalarGaussLaplacianScheme.C/a \

$(laplacianSchemes)/GFMGaussLaplacianScheme/GFMGaussLaplacianScheme.C\

interfaceJump = finiteVolume/interfaceJump\

$(interfaceJump)/interfaceJump.C' $WM_PROJECT_USER_DIR/src/finiteVolume/Make/files

78



3.3. IMPLEMENTATION CHAPTER 3. GFM-GAUSS SCHEME

wmake $WM_PROJECT_USER_DIR/src/finiteVolume

Before we proceed we test that new copy GFMGaussLaplacianScheme works:

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity $FOAM_RUN/GFMGaussCavity

sed -i '/Gauss linear orthogonal;/c \

default none; \

laplacian(nu,U) Gauss linear orthogonal; \

laplacian((1|A(U)),p) GFMGauss linear orthogonal;' \

$FOAM_RUN/GFMGaussCavity/system/fvSchemes

sed -i '$a libs ("libmyFiniteVolume.so");' $FOAM_RUN/GFMGaussCavity/system/controlDict

blockMesh -case $FOAM_RUN/GFMGaussCavity

icoFoam -case $FOAM_RUN/GFMGaussCavity

Modifications in GFMGaussLaplacianScheme class

The header myGaussLaplacianScheme.H is modified as follows. After

#include "laplacianScheme.H"

insert

#include "interfaceJump.H"

to include the new class with functions needed by GFM.
After

class GFMGaussLaplacianScheme

:

public fv::laplacianScheme<scalar, scalar>

{

insert

// Private Member Data

//- VOF field reference

const volScalarField& alpha1_;

//- Density field reference

const volScalarField& rho_;

to declare alpha1 needed to construct instance of interfaceJump class. rho is needed in this
class.
Replace

//- Construct null

GFMGaussLaplacianScheme(const fvMesh& mesh)

:

laplacianScheme<scalar, scalar>(mesh)

{}

//- Construct from Istream

GFMGaussLaplacianScheme(const fvMesh& mesh, Istream& is)

:
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laplacianScheme<scalar, scalar>(mesh, is)

{}

//- Construct from mesh, interpolation and snGradScheme schemes

GFMGaussLaplacianScheme

(

const fvMesh& mesh,

const tmp<surfaceInterpolationScheme<scalar>>& igs,

const tmp<snGradScheme<scalar>>& sngs

)

:

laplacianScheme<scalar, scalar>(mesh, igs, sngs)

{}

with

//- Construct null

GFMGaussLaplacianScheme(const fvMesh& mesh)

:

laplacianScheme<scalar, scalar>(mesh),

alpha1_(mesh.lookupObject<volScalarField>("alpha.water")),

rho_(mesh.lookupObject<volScalarField>("rho"))

{}

//- Construct from Istream

GFMGaussLaplacianScheme(const fvMesh& mesh, Istream& is)

:

laplacianScheme<scalar, scalar>(mesh, is),

alpha1_(mesh.lookupObject<volScalarField>("alpha.water")),

rho_(mesh.lookupObject<volScalarField>("rho"))

{}

//- Construct from mesh, interpolation and snGradScheme schemes

GFMGaussLaplacianScheme

(

const fvMesh& mesh,

const tmp<surfaceInterpolationScheme<scalar>>& igs,

const tmp<snGradScheme<scalar>>& sngs

)

:

laplacianScheme<scalar, scalar>(mesh, igs, sngs),

alpha1_(mesh.lookupObject<volScalarField>("alpha.water")),

rho_(mesh.lookupObject<volScalarField>("rho"))

{}

to initialise the new private data members alpha1 and rho .
Add void fraction field and density as inputs to fvmLaplacianUncorrected by replacing

static tmp<fvMatrix<scalar>> fvmLaplacianUncorrected

(

const surfaceScalarField& gammaMagSf,

const surfaceScalarField& deltaCoeffs,

const GeometricField<scalar, fvPatchField, volMesh>&

);
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with

static tmp<fvMatrix<scalar>> fvmLaplacianUncorrected

(

const surfaceScalarField& gammaMagSf,

const surfaceScalarField& deltaCoeffs,

const GeometricField<scalar, fvPatchField, volMesh>&,

const volScalarField& alpha1,

const volScalarField& rho

);

We cannot use private data members in a static function, so we need pass them to the function as
references.

The source GFMGaussLaplacianScheme.C is modified as follows.
The function definition of fvmLaplacianUncorrected is modified according to the declaration, which
means that we need to replace

GFMGaussLaplacianScheme::fvmLaplacianUncorrected

(

const surfaceScalarField& gammaMagSf,

const surfaceScalarField& deltaCoeffs,

const GeometricField<scalar, fvPatchField, volMesh>& vf

)

with

GFMGaussLaplacianScheme::fvmLaplacianUncorrected

(

const surfaceScalarField& gammaMagSf,

const surfaceScalarField& deltaCoeffs,

const GeometricField<scalar, fvPatchField, volMesh>& vf,

const volScalarField& alpha1,

const volScalarField& rho

)

Before

tmp<fvMatrix<scalar>> tfvm

we add

interfaceJump intface(vf,alpha1);

const boolList& sFaces = intface.sFaces();

to create an instance intface of class interfaceJump. A boolean list with length equal to number
of faces is returned from interfaceJump. For each face index sFaces will say if the face is a surface
face (true) or a regular face (false).
The unit of the matrix is corrected by replacing

deltaCoeffs.dimensions()*gammaMagSf.dimensions()*vf.dimensions()

with

81



3.3. IMPLEMENTATION CHAPTER 3. GFM-GAUSS SCHEME

deltaCoeffs.dimensions()*gammaMagSf.dimensions()*vf.dimensions()/dimDensity

because the density is now part of the pressure laplacian operator according to the theory presented.
Replace old matrix assembly

fvm.upper() = deltaCoeffs.primitiveField()*gammaMagSf.primitiveField();

fvm.negSumDiag();

with a new matrix assembly according to Section 2.4

//- Generate upper diagonal matrix coefficients

for(label facei=0; facei<fvm.lduAddr().upperAddr().size(); facei++)

{

label owner = fvm.lduAddr().upperAddr()[facei];

label neighbour = fvm.lduAddr().lowerAddr()[facei];

if (sFaces[facei])

{

// This is a surface cell using GFM interpolation.

if (alpha1[owner] > 0.5)

{

// P is wet:

// ---------

// - Looking from P -> N

fvm.diag()[owner] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarWet(facei);

fvm.upper()[facei] += deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarWet(facei);

fvm.source()[owner] += deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarWet(facei)

* intface.H(facei).value();

// - Looking from N -> P

fvm.diag()[neighbour] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarWet(facei);

fvm.source()[neighbour] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()
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/ intface.betaBarWet(facei)

* intface.H(facei).value();

}

else

{

// P is dry

// ---------

// - Looking from P -> N

fvm.diag()[owner] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarDry(facei);

fvm.upper()[facei] += deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarDry(facei);

fvm.source()[owner] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarDry(facei)

* intface.H(facei).value();

// - Looking from N -> P

fvm.diag()[neighbour] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarDry(facei);

fvm.source()[neighbour] += deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value()

* intface.betaMinus().value()

/ intface.betaBarDry(facei)

* intface.H(facei).value();

}

}

else

{

// This is not a surface cell.

// Both cells around the face are either wet or dry

if (alpha1[owner] > 0.5)

{

// P & N are both wet

// Assign contributions to the diagonal matrix coefficient:

// - Looking from P -> N

fvm.diag()[owner] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]
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* intface.betaPlus().value();

// - Looking from N -> P

fvm.diag()[neighbour] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value();

// Assign the matrix coefficient in the upper triangle:

fvm.upper()[facei] += deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaPlus().value();

}

else

{

// P & N are both dry

// Assign contributions to the diagonal matrix coefficient:

// - Looking from P -> N

fvm.diag()[owner] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaMinus().value();

// - Looking from N -> P

fvm.diag()[neighbour] -= deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaMinus().value();

// Assign the matrix coefficient in the upper triangle:

fvm.upper()[facei] += deltaCoeffs.primitiveField()[facei]

* gammaMagSf.primitiveField()[facei]

* intface.betaMinus().value();

}

}

}

The loop runs through all internal faces in the mesh. For each face the owner and neighbour cell is
assigned.

The first if statement if (sFaces[facei]) checks if the current face is a surface face or a reg-
ular face. If the condition is true it is a surface face and we need to perform the special one-sided
GFM interpolation. However before we do this we have to check if the owner cell is wet or dry, and
this is the purpose of the condition if (alpha1[owner] > 0.5). If the owner cell is wet (α > 0.5)
then we will use column 1 of Table 3.1 first looking from P to N, and then looking from N to P as
seen from the comments in the code. When we look from N to P it is important to note that I do
not assign any contribution to fvm.lower(), because I want to tell OpenFOAM that this matrix is
symmetric.

If the face is a regular face we will enter the else statement of the first if condition, and once
again we need to find out if both cell P and N are wet α > 0.5 or otherwise dry. For a wet case the
heavy inverse density betaPlus() is used and for a dry case the light inverse density betaMinus()

is used. Otherwise it is just the standard discretization procedure for the regular face.

The next step is to modify the implementation of boundary conditions. After
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const fvsPatchScalarField& pDeltaCoeffs =

deltaCoeffs.boundaryField()[patchi];

insert

const fvPatchScalarField& pRho = rho.boundaryField()[patchi];

which is the boundary field of the density for the current patch index. We need to multiply with
the inverse density, which just dividing the existing expressions with the density. Therefore replace

fvm.internalCoeffs()[patchi] =

pGamma*pvf.gradientInternalCoeffs(pDeltaCoeffs);

fvm.boundaryCoeffs()[patchi] =

-pGamma*pvf.gradientBoundaryCoeffs(pDeltaCoeffs);

with

fvm.internalCoeffs()[patchi] =

pGamma/pRho*pvf.gradientInternalCoeffs(pDeltaCoeffs);

fvm.boundaryCoeffs()[patchi] =

-pGamma/pRho*pvf.gradientBoundaryCoeffs(pDeltaCoeffs);

and replace

fvm.internalCoeffs()[patchi] = pGamma*pvf.gradientInternalCoeffs();

fvm.boundaryCoeffs()[patchi] = -pGamma*pvf.gradientBoundaryCoeffs();

with

fvm.internalCoeffs()[patchi] = pGamma/pRho*pvf.gradientInternalCoeffs();

fvm.boundaryCoeffs()[patchi] = -pGamma/pRho*pvf.gradientBoundaryCoeffs();

Now we are done with fvmLaplacianUncorrected. Please note that I have not ensured that density
field is step wise interpolated in the boundary conditions. When using this scheme in a solver it is
important to step interpolate the density so that it only can take the value of the heavy phase or
the light phase.

The function fvcLaplacian(vf) is modified by replacing

tmp<GeometricField<scalar, fvPatchField, volMesh>> tLaplacian

(

fvc::div(this->tsnGradScheme_().snGrad(vf)*mesh.magSf())

);

with

const volScalarField betavf(vf/rho_);

tmp<GeometricField<scalar, fvPatchField, volMesh>> tLaplacian

(

fvc::div(this->tsnGradScheme_().snGrad(betavf)*mesh.magSf())

);

to account for the introduced density field.
The function fvmLaplacian is modified by replacing
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tmp<fvMatrix<scalar>> tfvm = fvmLaplacianUncorrected

(

gammaMagSf,

this->tsnGradScheme_().deltaCoeffs(vf),

vf

);

with

tmp<fvMatrix<scalar>> tfvm = fvmLaplacianUncorrected

(

gammaMagSf,

this->tsnGradScheme_().deltaCoeffs(vf),

vf,

alpha1_,

rho_

);

to pass in the new inputs to fvmLaplacianUncorrected. Furthermore add

const volScalarField betavf(vf/rho_);

after

if (this->tsnGradScheme_().corrected())

{

and replace

gammaMagSf*this->tsnGradScheme_().correction(vf)

with

gammaMagSf*this->tsnGradScheme_().correction(betavf)

at two locations which are

fvm.faceFluxCorrectionPtr() = new

GeometricField<scalar, fvsPatchField, surfaceMesh>

(

gammaMagSf*this->tsnGradScheme_().correction(vf)

);

and

fvm.source() -=

mesh.V()*

fvc::div

(

gammaMagSf*this->tsnGradScheme_().correction(vf)

)().primitiveField();

In the function fvcLaplacian(gamma,vf) replace
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tmp<GeometricField<scalar, fvPatchField, volMesh>> tLaplacian

(

fvc::div(gamma*this->tsnGradScheme_().snGrad(vf)*mesh.magSf())

);

with

const volScalarField betavf(vf/rho_);

tmp<GeometricField<scalar, fvPatchField, volMesh>> tLaplacian

(

fvc::div(gamma*this->tsnGradScheme_().snGrad(betavf)*mesh.magSf())

);

to account for the density field.

Now we are ready to compile by wmake $WM_PROJECT_USER_DIR/src/finiteVolume and test the
code, which is described in the next chapter.
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Chapter 4

Inclined square test

Section 4.1 presents all the settings which the two test cases have in common. Section presents how
the two cases differ from each other.

4.1 Common case description

The newly implemented scheme is tested using a very simple test case with a square domain with
side lengths equal to 1. The square is inclined 26.6 ◦. A water surface is defined at a height of
0.7 m on the z-axis and the surface is parallel to the xy-plane. The void fraction field in Figure 4.1
is specified with the pre-processing utility setAlphaField.

Figure 4.1: Void fraction distribution for the heavy phase.

I have used the case standingWave found at

$FOAM_TUTORIALS/multiphase/interIsoFoam/standingWave

as my starting point, and modified the case according to the following description.
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4.1.1 Boundary conditions

There are three fields, p_rgh, alpha.water and U. The case is defined as a 2D case, so the front
and back patches are defined as empty for all three fields. For p_rgh and alpha.water the domain
boundary condition is set to a zero normal gradient known as zeroGradient. The mathematical
expression for this Neumann condition is for a generic parameter φ given by

∂φ

∂n
= 0 (4.1)

where n is the normal vector going out the domain.
The velocity field U is initialised to zero, and the boundary condition is a dirichlet condition, where
the value is fixed to zero.

4.1.2 Constant

The diffusion coefficient for the modified scheme has been added

gamma 1;

to the end of constant/transportDict.

4.1.3 System

The dictionaries refineMeshDict1, refineMeshDict2, topoSetDict1, topoSetDict2 and decomposeParDict

are removed.

Settings in setAlphaFieldDict

The original settings given by

field alpha.water;

type sin;

direction (1 0 0);

up (0 0 1);

origin (-0.5 0 0.5);

period 2;

amplitude 0.05;

is substituted with new settings given by

field alpha.water;

type plane;

origin (0 0 0.7);

direction (0 0 1);

that describes a plane water surface parallel to the xy-plane elevated 0.7 m in the z-direction.

Settings in blockMeshDict

The mesh size changed from 50 x 50 to 20 x 20.

4.2 Case specific settings

4.2.1 interIsoFoam

The dynamic pressure distribution using the standard Gauss discretization is computed with the
existing solver interIsoFoam.
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Settings in controlDict

We only need to compute a single time step. The dictionary is modified to reflect the settings given
by

application interIsoFoam;

endTime 0.001;

adjustTimeStep no;

Settings in fvSchemes

The original Gauss discretization scheme is defined as

default Gauss linear corrected;

4.2.2 laplacianVOFFoam

A new solver is needed, since it would require more modifications than only the laplacian operator
to implement the GFM method in interIsoFoam. However I need many of the two-phase function-
alities from interIsoFoam solver to make a valid solver for a still water surface.
The dynamic pressure distribution using the modified Gauss discretization with the Ghost Fluid
Method is computed with a new solver laplacianVOFFoam, which is created based on createFields.H

from interIsoFoam and the solver laplacianFoam. The solver is only valid for a still water surface.

Solver definition

The solver definition is given by
laplacianVOFFoam.C

57 #include "fvCFD.H"

58 #include "immiscibleIncompressibleTwoPhaseMixture.H"

59

60 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

61

62 int main(int argc, char *argv[])

63 {

64 argList::addNote

65 (

66 "Pressure equation solver for dynamic pressure in two non-moving phases."

67 );

68

69 #include "setRootCase.H"

70 #include "createTime.H"

71 #include "createMesh.H"

72 #include "createFields.H"

73

74 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

75

76 Info<< "\nCalculating dynamic pressure distribution\n" << endl;

77

78 fvScalarMatrix pEqn

79 (

80 fvm::laplacian(gamma, p_rgh)

81 );

82 pEqn.setReference(pRefCell, pRefValue);

83 solve(pEqn);

84
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85 p == p_rgh + rho*gh;

86

87 p += dimensionedScalar

88 (

89 "p",

90 p.dimensions(),

91 pRefValue - getRefCellValue(p, pRefCell)

92 );

93 p_rgh = p - rho*gh;

94

95 runTime++;

96 runTime.write();

97 runTime.printExecutionTime(Info);

98

99 Info<< "End\n" << endl;

100

101 return 0;

102 }

The diffusion coefficient gamma is rAUf in the interIsoFoam solver. This term comes from the mo-
mentum equation, but this is not implemented in this simple solver, because The createFields.H

file is given by
createFields.H

1 Info<< "Reading field p_rgh\n" << endl;

2 volScalarField p_rgh

3 (

4 IOobject

5 (

6 "p_rgh",

7 runTime.timeName(),

8 mesh,

9 IOobject::MUST_READ,

10 IOobject::AUTO_WRITE

11 ),

12 mesh

13 );

14

15 Info<< "Reading field U\n" << endl;

16 volVectorField U

17 (

18 IOobject

19 (

20 "U",

21 runTime.timeName(),

22 mesh,

23 IOobject::MUST_READ,

24 IOobject::AUTO_WRITE

25 ),

26 mesh

27 );

28

29 #include "createPhi.H"

30

31 Info<< "Reading transportProperties\n" << endl;
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32 IOdictionary transportProperties

33 (

34 IOobject

35 (

36 "transportProperties",

37 runTime.constant(),

38 mesh,

39 IOobject::MUST_READ,

40 IOobject::NO_WRITE

41 )

42 );

43

44 immiscibleIncompressibleTwoPhaseMixture mixture(U, phi);

45

46 volScalarField& alpha1(mixture.alpha1());

47 volScalarField& alpha2(mixture.alpha2());

48

49 const dimensionedScalar& rho1 = mixture.rho1();

50 const dimensionedScalar& rho2 = mixture.rho2();

51

52 // Need to store rho

53 volScalarField rho

54 (

55 IOobject

56 (

57 "rho",

58 runTime.timeName(),

59 mesh,

60 IOobject::READ_IF_PRESENT

61 ),

62 alpha1*rho1 + alpha2*rho2

63 );

64 // Step interpolate density field:

65 //- Loop over all cells

66 forAll(rho.internalField(),celli)

67 {

68 // Wet cell

69 if (alpha1[celli] > 0.5)

70 {

71 rho[celli] = rho1.value();

72 }

73 // Dry cell

74 else

75 {

76 rho[celli] = rho2.value();

77 }

78 }

79

80 // Loop over boundary field

81 forAll(mesh.boundary(), patchi)

82 {

83 scalarField& bScalarField = rho.boundaryFieldRef(false)[patchi];

84

85 forAll(mesh.boundary()[patchi],facei)
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86 {

87 // Boundary cellID

88 const label& bCell = mesh.boundaryMesh()[patchi].faceCells()[facei];

89 // Wet cell

90 if (alpha1[bCell] > 0.5)

91 {

92 bScalarField[facei] = rho1.value();

93 }

94 // Dry cell

95 else

96 {

97 bScalarField[facei] = rho2.value();

98 }

99 }

100 }

101

102 // Store for old times.

103 rho.oldTime();

104

105 #include "readGravitationalAcceleration.H"

106 #include "readhRef.H"

107 #include "gh.H"

108

109 volScalarField p

110 (

111 IOobject

112 (

113 "p",

114 runTime.timeName(),

115 mesh,

116 IOobject::NO_READ,

117 IOobject::AUTO_WRITE

118 ),

119 p_rgh + rho*gh

120 );

121

122 label pRefCell = 0;

123 scalar pRefValue = 0.0;

124

125 p += dimensionedScalar

126 (

127 "p",

128 p.dimensions(),

129 pRefValue - getRefCellValue(p, pRefCell)

130 );

131 p_rgh = p - rho*gh;

132

133 Info<< "Reading pressure equation diffusivity gamma\n" << endl;

134

135 dimensionedScalar gamma("gamma", dimTime, transportProperties);

I have created a setup that is very similar to that found for interIsoFoam, because the discretization
scheme presented here is intented for incompressible multiphase flows.
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Settings in controlDict

There is no time dependency the equation solved, so we can just specify a single time step. The
dictionary from the standingWave case is modified to reflect the settings given by

application laplacianVOFFoam;

endTime 0.001;

adjustTimeStep no;

Settings in fvSchemes

The modified Ghost Fluid Method Gauss discretization scheme is defined by

default GFMGauss linear corrected;

4.3 Run the cases

The case executed with the Allrun script, and cleaned with the Allclean script.

4.3.1 Allclean

The Allclean script contains

#!/bin/sh

cd ${0%/*} || exit 1 # Run from this directory

. $WM_PROJECT_DIR/bin/tools/CleanFunctions # Tutorial clean functions

cleanCase0

The script uses the build in clean function to clean the case.

4.3.2 Allrun

The Allrun script contains

#!/bin/sh

cd ${0%/*} || exit 1 # Run from this directory

. $WM_PROJECT_DIR/bin/tools/RunFunctions # Tutorial run functions

restore0Dir

runApplication blockMesh

runApplication transformPoints -rotate "((1 0 0) (1 0 0.5))"

runApplication setAlphaField

runApplication $(getApplication)

touch output.foam

The script restores the 0/ directory from 0.orig/, constructs the mesh with blockMesh, rotates
the geometry with the angle between the two specified vectors, sets the void fraction field based
on setAlphaFieldDict and finally the solver specified in controlDict is executed. At the end an
empty (.foam) file is created for post-processing in Paraview.
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4.4 Post-processing

Figure 4.2 shows a visual comparison of the dynamic pressure distribution calculated with the two
different schemes.

Figure 4.2: Left: Dynamic pressure distribution and Right: Total pressure distribution of same case with
two different laplacian discretization schemes. Gauss discretization with the Ghost Fluid Method was used
for the top row, and standard Gauss discretization was used for the bottom row. The fvSchemes settings
were, Top: GFMGauss linear corrected, Bottom: Gauss linear corrected.

The range of the dynamic pressure distribution is the same, however it seen that the Gauss dis-
cretization with the Ghost Fluid Method retains the jump at the interface between air and water.
The jump at the surface is verified by evaluating the jump condition

p− − p+ = −(ρ− − ρ+)g • x = −(1000− 1)
kg

m3
· 9.81

m

s2
· 0.7 m = −6860.13

kg

m s2

This matches well with scale on the figure, which gives

p− − p+ = −6500− 350 = −6850
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Study questions

1. How do you specify a standard Gauss Laplacian discretization in system/fvSchemes with
linear interpolation of diffusion and non orthogonal correction defined by the class corrected?

2. How do you account for skewness in the explicit gradient evaluation with settings in system/fvSchemes?

3. Why do we need to separate the case with a diffusion tensor from the case with a diffusion
scalar?

4. What is the key difference between normal Gauss discretization and Gauss discretization with
GFM?

5. What is the purpose of the abstract base class laplacianScheme?

6. What macro is used to define the class type name used in system/fvSchemes?

7. What do you loop over when you assemble the system matrix?

8. What is the role of gaussLaplacianSchemes.C?

9. How do you step interpolate the density field in an application?

10. For which solvers can the GFM method be used for?
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