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Learning outcomes

The main requirements of a tutorial is that it should teach the four points: How to use it, The
theory of it, How it is implemented, and How to modify it. Therefore the list of learning outcomes
is organized with those headers.

The reader will learn:

How to use it:

• how to use the solvers in OpenFOAM to simulate convective heat transfer in a vertical slot.

• how to use viscosity models in OpenFOAM.

• how to use wall heat flux utility to calculate total boundary heat flux.

The theory of it:

• the theory of buoyantBoussinsqSimpleFoam and buoyantSimpleFoam solvers.

• how viscosity models, transport models and turbulent models are linked together in Open-
FOAM.

How it is implemented:

• how to set up a case using the buoyantBoussinesqSimpleFoam and buoyantSimpleFoam solvers.

• how to implement the viscosity model into the case set up.

How to modify it:

• how to modify existing viscosity model to implement a new temperature based viscosity model.
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Chapter 1

Introduction

1.1 Convective heat transfer in a vertical slot

Natural convection in a vertical enclosure with two walls at different temperatures involves complex
interactions between the fluid and the walls which leads to formation of different flow patterns. Fig.
1.1 shows the 2D representation of the vertical slot. Let’s consider two dimensional natural con-
vection in a vertical slot with fixed temperatures at two vertical boundaries. In the slot, fluid rises
along the hot wall, turns at the top, sinks down along the cold wall and turns again. This forms a
uni-cellular motion of the fluid in the slot (represented by arrows in Fig. 1.1). The main parameters
that define the flow are the Rayleigh number(Ra), the Prandtl number(Pr) and the aspect ratio
(height/width) [1]. This tutorial involves 2D numerical analysis of natural convection in a vertical
slot using OpenFOAM. The approach of this tutorial is not result driven, rather it focuses on the
solvers in OpenFOAM and utilization of the libraries to best suit the case.

In the current tutorial, simulations will be carried out for a vertical slot of dimensions 300mm
high (H) and 15mm wide (W) which leads to an aspect ratio of 20, See Fig. 1.1. The temperature
of the hot wall is considered as 323K (T1) and that of cold wall is considered as 273K (T2) i.e.
A temperature difference of 50K is maintained between the two vertical walls. The fluid in the
enclosure is Silicone oil. The Prandtl number of Silicone oil is considered as 50.

Figure 1.1: 2D representation of the vertical slot
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1.2. SOLVERS IN OPENFOAM FOR HEAT TRANSFER CHAPTER 1. INTRODUCTION

1.2 Solvers in OpenFOAM for heat transfer

The solvers available in OpenFOAM for heat transfer problems are

• buoyantBoussinesqSimpleFoam: Steady state solver for buoyant and turbulent flow of
incompressible fluids.

• buoyantBoussinesqPimpleFoam: Transient solver for buoyant and turbulent flow of in-
compressible fluids.

• buoyantSimpleFoam: Steady state solver for buoyant and turbulent flow of compressible
fluids.

• buoyantPimpleFoam: Transient solver for buoyant and turbulent flow of incompressible
fluids.

• chtMultiRegionSimpleFoam: Steady state solver for buoyant and turbulent flow and con-
jugate heat transfer between solids and fluids.

• chtMultiRegionFoam: Transient solver for buoyant and turbulent flow and conjugate heat
transfer between solids and fluids.

Since the present case includes buoyant and turbulent flow, buoyantBoussinesqSimpleFoam and
buoyantSimpleFoam solvers were considered. The transient solvers buoyantBoussinesqPimpleFoam
and buoyantPimpleFoam were not considered for this tutorial due to the time restrictions.

1.3 Overview of the tutorial

The tutorial is mainly divided to two sections.

• Using the solver buoyantBoussinesqSimpleFoam and implementing a new temperature depen-
dent viscosity model for the case of vertical slot.

• Using the solver buoyantSimpleFoam for the same case set up and calculating wall heat flux
at the boundaries using the utility available in OpenFOAM.
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Chapter 2

buoyantBoussinesqSimpleFoam

This chapter deals with the underlying theory and the governing equations that are solved by the
solver buoyantBoussinesqSimpleFoam.

2.1 Solver description

The source code of the solver and governing equations solved are described in this section. The
source code of the solver is located in

$FOAM_SOLVERS/heatTransfer/buoyantBoussinesqSimpleFoam

buoyantBoussinesqSimpleFoam

buoyantBoussinesqSimpleFoam.C

createFields.H

Make

files

options

readTransportProperties.H

UEqn.H

TEqn.H

pEqn.H

The main source code of the solver is buoyantBoussinesqSimpleFoam.C. It contains several default
.H files included in it.

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"

#include "turbulentTransportModel.H"

#include "radiationModel.H"

#include "fvOptions.H"

#include "simpleControl.H"

int main(int argc, char *argv[])

{

#include "postProcess.H"

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

4



2.1. SOLVER DESCRIPTION CHAPTER 2. BUOYANTBOUSSINESQSIMPLEFOAM

#include "createControl.H"

#include "createFields.H"

#include "createFvOptions.H"

#include "initContinuityErrs.H"

The purpose of the .H files included are explained below briefly:

• #include "fvCFD.H" - This is the standard header file for Finite volume method in Open-
FOAM. It in-turn includes a lot of header files of the classes that are used in the finite volume
solvers.

• #include "singlePhaseTransportModel.H" - This class is for transport model based on the
viscosity for single phase incompressible flows.

• #include "turbulentTransportModel.H" - This is the abstract base class for incompressible
turbulence models.

• #include "radiationModel.H" - This Class is for modelling the radiation heat transfer.

• #include "fvOptions.H" - This is the Class for fvOptions in OpenFOAM such as run time
selectable physics and more.

• #include "simpleControl.H" - SIMPLE control class to supply convergence information/checks
for the SIMPLE loop.

The following .H files are included in the main loop. These are certain codes that are inserted
to perform certain operations.

• #include "postProcess.H" - Executes applications FunctionObjects to postprocess the ex-
isting results.

• #include "setRootCase.H" - Checks the folder structure of the case.

• #include "createTime.H" - Checks the runTime according to controlDict and initiates time
variables.

• #include "createMesh.H" - Creates the mesh for the runTime.

• #include "createControl.H" - Defines the solution control algorithm.

• #include "createFields.H" - Creates the fields for the domain, i.e U, p, T, DT, phi.

• #include "createFvOptions.H" - Defines the FV options.

• #include "initContinuityErrs.H" - Declares and initializes the continuity errors.

The next part of the code includes the solver loop which calculates the fields. The runTime field is
set and the equations for velocity(UEqn), pressure(PEqn) and energy(TEqn) are loaded and solved.

Info<< "\nStarting time loop\n" << endl;

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

// Pressure-velocity SIMPLE corrector

5



2.1. SOLVER DESCRIPTION CHAPTER 2. BUOYANTBOUSSINESQSIMPLEFOAM

{

#include "UEqn.H"

#include "TEqn.H"

#include "pEqn.H"

}

laminarTransport.correct();

turbulence->correct();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

The createFields.H file located in the directory creates the thermo-physical and transport prop-
erties as fields that will be used by solver. Thermo-physical properties include Temperature (T),
velocity (U) and pressure (prgh). Total Pressure is expressed as ρ.g + prhg. Transport properties
include density (ρ) and absolute viscosity (ν). Density is expressed using Boussinesq assumption,
given as

ρ = 1− β(T − Tref ) (2.1)

Here β is thermal expansion co-efficient (1/K), T (K) and Tref (K) are temperature and reference
temperature respectively. The absolute viscosity is defined using the singlePhaseTransportModel

which is a viscosity-based transport model for single phase flows.

The governing equation for velocity is solved in UEqn.H.

tmp<fvVectorMatrix> tUEqn

(

fvm::div(phi, U)

+ MRF.DDt(U)

+ turbulence->divDevReff(U)

==

fvOptions(U)

);

fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();

fvOptions.constrain(UEqn);

if (simple.momentumPredictor())

{

solve

(

UEqn
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2.1. SOLVER DESCRIPTION CHAPTER 2. BUOYANTBOUSSINESQSIMPLEFOAM

==

fvc::reconstruct

(

(

- ghf*fvc::snGrad(rhok)

- fvc::snGrad(p_rgh)

)*mesh.magSf()

)

);

fvOptions.correct(U);

}

The momentum equation is solved in UEqn.H, given as

∂u

∂t
+∇(ρuu) +∇.(νeff∇u) +∇.

(
νeff (∇u)T − νeff

2

3
tr(∇u)T I

)
= −(∇ρ)g.h.f −∇prgh (2.2)

Here u represents the velocity vector, (∇ρ)g.h.f term in the RHS represents the body force acting
on the fluid element and νeff = ν + νt.

Comparing the Eqn. 2.2 to the UEqn.H, it is clear that fvm::div(phi, U) represents the convective
term and MRF.DDt(U) represents the time derivative of the velocity. The turbulence->divDevReff(U)
function in the code refers to the viscous shear stress term in the momentum equation and given as

divDevReff(U) = ∇.(νeff∇u) +∇.
(
νeff (∇u)T − νeff

2

3
tr(∇u)T I

)
(2.3)

The terms ghf*fvc::snGrad(rhok) and fvc::snGrad(p_rgh) represents the body force and the
pressure gradient terms respectively.

The energy equation is solved in TEqn.H

{

alphat = turbulence->nut()/Prt;

alphat.correctBoundaryConditions();

volScalarField alphaEff("alphaEff", turbulence->nu()/Pr + alphat);

fvScalarMatrix TEqn

(

fvm::div(phi, T)

- fvm::laplacian(alphaEff, T)

==

radiation->ST(rhoCpRef, T)

+ fvOptions(T)

);

TEqn.relax();

fvOptions.constrain(TEqn);

TEqn.solve();

radiation->correct();
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fvOptions.correct(T);

rhok = 1.0 - beta*(T - TRef);

}

The governing equation for temperature is solved, given as

∇.(ρuT )−∇.αeff∇T = Sradiation + ST (2.4)

Where, αeff = νt
prt

+ ν
pr , Sradiation and ST are source terms due to radiation and user defined source

term respectively. The density is updated as ρ = 1− β(T − Tref )

To calculate the pressure, SIMPLE algorithm is implemented for pressure velocity coupling. The
equation for pressure is solved in PEqn.H.

{

volScalarField rAU("rAU", 1.0/UEqn.A());

surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU));

volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p_rgh));

tUEqn.clear();

surfaceScalarField phig(-rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf());

surfaceScalarField phiHbyA

(

"phiHbyA",

fvc::flux(HbyA)

);

MRF.makeRelative(phiHbyA);

adjustPhi(phiHbyA, U, p_rgh);

phiHbyA += phig;

// Update the pressure BCs to ensure flux consistency

constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF);

while (simple.correctNonOrthogonal())

{

fvScalarMatrix p_rghEqn

(

fvm::laplacian(rAUf, p_rgh) == fvc::div(phiHbyA)

);

p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));

p_rghEqn.solve();

if (simple.finalNonOrthogonalIter())

{

// Calculate the conservative fluxes
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phi = phiHbyA - p_rghEqn.flux();

// Explicitly relax pressure for momentum corrector

p_rgh.relax();

// Correct the momentum source with the pressure gradient flux

// calculated from the relaxed pressure

U = HbyA + rAU*fvc::reconstruct((phig - p_rghEqn.flux())/rAUf);

U.correctBoundaryConditions();

fvOptions.correct(U);

}

}

#include "continuityErrs.H"

p = p_rgh + rhok*gh;

if (p_rgh.needReference())

{

p += dimensionedScalar

(

"p",

p.dimensions(),

pRefValue - getRefCellValue(p, pRefCell)

);

p_rgh = p - rhok*gh;

}

}

In this code, the velocity at the face is obtained by interpolating the semi-discretized form of mo-
mentum equation. The semi discretized momentum equation does not include the pressure gradient
term. The continuity equation along with semi-discretized momentum equation are used to solve the
pressure (prgh). The equation for pressure is solved for prescribed number of non orthogonal correc-
tor steps. Then the flux is corrected based on the solved pressure. The pressure is under-relaxed for
momentum corrector and the velocity is corrected. Finally pressure is calculated as p = prgh + ρgh.
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Chapter 3

Temperature based viscosity model

This chapter gives a brief explanation about the viscosity models in OpenFOAM and also describes
the procedure to implement a new temperature based viscosity model.

3.1 Viscosity models

The most important factors affecting the viscosity of a fluid are the temperature and the shear rate.
For Newtonian fluids, viscosity does not vary with the shear rate, thus it is only a function of tem-
perature. OpenFOAM has four viscosity models for non-Newtonian fluids and one for Newtonian
fluids. All the five models do not consider temperature dependency of the viscosity.

The viscosityModel class in OpenFOAM is an abstract class. The five viscosity models are imple-
mented as sub classes which inherit from the viscosityModel class. All the viscosity models return
the corrected absolute viscosity(nu) when they are called. The five models available in OpenFOAM
are:

• BirdCarreu

• CrossPowerLaw

• HerschelBulkley

• Newtonian

• powerLaw

The link between the turbulence model, the transport model and the viscosity model can be explained
as follows. The TransportModel class is the base class for all the transport models used by the turbu-
lence models. The TransportModel class has different derived classes which manage different trans-
port properties based on the type of flow. For single phase flow, the singlePhaseTransportModel

class reads the viscosity nu, corrects it and fetches it when it is called in the turbulenceModel class.
The singlePhaseTransportModel class is a derived class which is based on the viscosityModel

class. It has a pointer viscosityModelPtr which is a private member data.

class singlePhaseTransportModel

:

public IOdictionary,

public transportModel

{

// Private Data
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3.2. TEMPERATURE BASED VISCOSITY MODELCHAPTER 3. TEMPERATURE BASED VISCOSITY MODEL

autoPtr<viscosityModel> viscosityModelPtr_;

The member function nu returns the value of viscosity read from viscosityModel and the
member function correct() corrects the viscosity.

Foam::tmp<Foam::volScalarField>

Foam::singlePhaseTransportModel::nu() const

{

return viscosityModelPtr_->nu();

}

void Foam::singlePhaseTransportModel::correct()

{

viscosityModelPtr_->correct();

}

The class turbulenceModel has a private member data transportModel which returns the value of
viscosity (nu) as a volume scalar field.

3.2 Temperature based viscosity model

The viscosity model for Newtonian fluids in OpenFOAM considers viscosity as a constant value.
A new viscosity model with viscosity as a function of temperature will be implemented. The new
model is based on the power law model and Vogel’s equation of viscosity. The power Law viscosity
model available in OpenFOAM expresses viscosity as

ν = k.(γ̇)(n−1) (3.1)

Vogel’s equation for viscosity which is a temperature based model expresses viscosity as

logν =
(
A+

B

T + C

)
(3.2)

Here ν is in (mm2/s). A,B and C are correlation parameters determined from viscosity measure-
ments at three or more points[2].

The new temperature-based viscosity model expresses viscosity as

ν = exp
(
A+

B

T + C

)
.(γ̇)(n−1) (3.3)

This law can be used both for Newtonian and non Newtonian fluids. With n = 1, it behaves as Vo-
gel’s equation of viscosity. The already available powerLaw will be used to implement the new model.

The complete implementation of the new viscosity model can be done by following the steps
below. Also the new viscosity model is available in the accompanied files with the name tempLaw.

• Copy the powerLaw to the run directory
Run the following commands in the terminal to copy existing powerLaw model.

OF4x

run

cp -r $FOAM_SRC/transportModels/incompressible/viscosityModels/powerLaw tempLaw

cd tempLaw/

mkdir Make

cd Make
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3.2. TEMPERATURE BASED VISCOSITY MODELCHAPTER 3. TEMPERATURE BASED VISCOSITY MODEL

cp $FOAM_SRC/transportModels/incompressible/Make/files files

cp $FOAM_SRC/transportModels/incompressible/Make/options options

The power law directory has powerLaw.C, powerLaw.H and Make directory in it.

• In Make/files(replace)

tempLaw.C

LIB = $(FOAM_USER_LIBBIN)/libusertempLaw

• In Make/options(replace)

EXE_INC = \

-I$(LIB_SRC)/transportModels/incompressible/lnInclude/ \

-I$(LIB_SRC)/finiteVolume/lnInclude

LIB_LIBS = \

-lfiniteVolume

• In powerLaw.C (Add/replace)

Replace with the below part of code in the private member functions section.

// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * //

Foam::tmp<Foam::volScalarField>

Foam::viscosityModels::tempLaw::calcNu() const

{

const volScalarField& T= U_.mesh().lookupObject<volScalarField>("T");

return max

(

nuMin_,

min

(

nuMax_,

(scalar(0.000001)*m_*Foam::exp(A_ +

B_/(T*1.0/dimensionedScalar("one", dimTemperature, 1.0) + C_)))*pow

(

max

(

dimensionedScalar("one", dimTime, 1.0)*strainRate(),

dimensionedScalar("VSMALL", dimless, VSMALL)

),

n_.value() - scalar(1.0)

)

)

);

}

Replace with the below code under the constructor section.

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * //

12



3.2. TEMPERATURE BASED VISCOSITY MODELCHAPTER 3. TEMPERATURE BASED VISCOSITY MODEL

Foam::viscosityModels::tempLaw::tempLaw

(

const word& name,

const dictionary& viscosityProperties,

const volVectorField& U,

const surfaceScalarField& phi

)

:

viscosityModel(name, viscosityProperties, U, phi),

tempLawCoeffs_(viscosityProperties.subDict(typeName + "Coeffs")),

m_("m", dimViscosity, tempLawCoeffs_),

A_("A", dimless, tempLawCoeffs_),

B_("B", dimless, tempLawCoeffs_),

C_("C", dimless, tempLawCoeffs_),

n_("n", dimless, tempLawCoeffs_),

nuMin_("nuMin", dimViscosity, tempLawCoeffs_),

nuMax_("nuMax", dimViscosity, tempLawCoeffs_),

nu_

(

IOobject

(

name,

U_.time().timeName(),

U_.db(),

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

calcNu()

)

{}

Replace with the below code in the member functions section.

// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * ** * //

bool Foam::viscosityModels::tempLaw::read

(

const dictionary& viscosityProperties

)

{

viscosityModel::read(viscosityProperties);

tempLawCoeffs_ = viscosityProperties.subDict(typeName + "Coeffs");

tempLawCoeffs_.lookup("m") >> m_;

tempLawCoeffs_.lookup("A") >> A_;

tempLawCoeffs_.lookup("B") >> B_;

tempLawCoeffs_.lookup("C") >> C_;

tempLawCoeffs_.lookup("n") >> n_;

tempLawCoeffs_.lookup("nuMin") >> nuMin_;

tempLawCoeffs_.lookup("nuMax") >> nuMax_;

13
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return true;

}

• In powerLaw.H(Add/replace)
Add/replace the below code in the private data section at the beginning.

// Private data

dictionary tempLawCoeffs_;

dimensionedScalar m_;

dimensionedScalar A_;

dimensionedScalar B_;

dimensionedScalar C_;

dimensionedScalar n_;

dimensionedScalar nuMin_;

dimensionedScalar nuMax_;

volScalarField nu_;

• Compilation

Run the following commands in the terminal to compile the new model.

cd ..

mv powerLaw.H tempLaw.H

mv powerLaw.C tempLaw.C

sed -i s/powerLaw/tempLaw/g tempLaw.C

sed -i s/powerLaw/tempLaw/g tempLaw.H

wmake libso
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Chapter 4

Running the case

This chapter describes the procedure to run the simulation of heat transfer in a vertical slot using
buoyantBoussinesqSimpleFoam and the new viscosity model.

4.1 Copy the tutorial

The tutorial available in OpenFOAM is copied and modified as per the necessary case set-up. The
case-set up is available in the accompanied files with the name verticalSlot. Also the case can be
set up by following the procedure described in the sections below. To copy the tutorial to the run
directory, run the following commands in the terminal.

cp -r $FOAM_TUTORIALS/heatTransfer/buoyantBoussinesqSimpleFoam/hotRoom $FOAM_RUN

run

mv hotRoom verticalSlot

cd verticalSlot

4.2 Mesh generation

Replace the system/blockMeshDict with the following code

convertToMeters 0.001;

vertices

(

( 0 0 0)

(15 0 0)

(15 300 0)

( 0 300 0)

( 0 0 1)

(15 0 1)

(15 300 1)

( 0 300 1)

);

edges

(

);

blocks

(

hex (0 1 2 3 4 5 6 7) (30 150 1) simpleGrading (1 1 1)

);

boundary

15



4.3. BOUNDARY CONDITIONS CHAPTER 4. RUNNING THE CASE

(

frontAndBack

{

type empty;

faces

(

(0 1 2 3)

(4 7 6 5)

);

}

topAndBottom

{

type wall;

faces

(

(0 4 5 1)

(3 2 6 7)

);

}

hot

{

type wall;

faces

(

(0 3 7 4)

);

}

cold

{

type wall;

faces

(

(6 2 1 5)

);

}

);

mergePatchPairs

(

);

Mesh can be created using blockMesh command.

4.3 Boundary conditions

The 0/ directory of the tutorial has eight files named alphat, k, epsilon, nut, p, p_rgh, U and T.orig.
But to use the v2f turbulence model, two additional files v2 and f must be added. Initial guess of k,
epsilon, v2 and f are calculated using empirical relations [4].

k =
3

2
(v.turbulentintensity), ε =

C0.75
µ ∗ k
l

(4.1)

v2 =
2

3
k, f = zeroGradient (4.2)
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4.4. TRANSPORT PROPERTIES CHAPTER 4. RUNNING THE CASE

The name of the file T.orig has to be changed to T. All the files are modified as per the initial
conditions of the case and the modifications are described in the Appendix.

4.4 Transport properties

Replace constant/transportProperties with the following code

transportModel tempLaw;

tempLawCoeffs

{

m m [0 2 -1 0 0 0 0] 1;

A A [0 0 0 0 0 0 0] -2.2;

B B [0 0 0 0 0 0 0] 812.9;

C C [0 0 0 0 0 0 0] -140;

n n [0 0 0 0 0 0 0] 1;

nuMin nuMin [0 2 -1 0 0 0 0] 5e-6;

nuMax nuMax [0 2 -1 0 0 0 0] 5.5e-5;

}

// Thermal expansion coefficient

beta [0 0 0 -1 0 0 0] 1.05e-03;

// Reference temperature

TRef [0 0 0 1 0 0 0] 300;

// Laminar Prandtl number

Pr [0 0 0 0 0 0 0] 10;

// Turbulent Prandtl number

Prt [0 0 0 0 0 0 0] 0.65;

Replace the constant/turbulenceProperties with the following code

simulationType RAS;

RAS

{

RASModel v2f;

turbulence on;

printCoeffs on;

}

4.5 Solution control

The first thing to be done is to remove the system/setFieldsDict in the system directory of the
tutorial since it is not necessary for the current case.

cd ../system

rm setFieldsDict

To use the new viscosity model, it has to be added in the system/controlDict. Add the following
at the end of the system/controlDict

libs

(

"libusertempLaw.so"

);
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4.6. RESULTS CHAPTER 4. RUNNING THE CASE

The numerical schemes for solving v2 and f have to be added in the system/fvSchemes. Add the
following under the divschemes section in system/fvSchemes.

div(phi,v2) bounded Gauss upwind;

div(phi,f) bounded Gauss upwind;

Solvers for v2 and f have to be specified. It can be done by replacing with the below code under the
solvers section in system/fvSolution.

solvers

{

p_rgh

{

solver PCG;

preconditioner DIC;

tolerance 1e-05;

relTol 0.01;

}

"(U|T|k|epsilon|v2)"

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

f

{

solver PCG;

preconditioner DIC;

tolerance 1e-5;

relTol 0.1;

}

}

Also "(k|epsilon|omega)" should be replaced as "(k|epsilon|v2|f)" in the SIMPLE and the
relaxationFactors sections of the system/fvSolutions.

4.6 Results

After all the case set-up, the simulation can be run by

cd ..

buoyantBoussinesqSimpleFoam

The results can be checked using paraFoam.
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4.6. RESULTS CHAPTER 4. RUNNING THE CASE

Figure 4.1: Plots of Temperature (top-left), Viscosity (Top-right) and Velocity (Bottom)

Figure. 4.1 shows the plots of temperature, viscosity and velocity contours in the slot. It can be
observed from the velocity contour that the velocity near the two walls of the slot are of higher
magnitude and the velocity is almost zero at the center of the slot. Also from the temperature
contour it can be observed that at the top of the slot, the temperature is being distributed from the
hot wall to the cold wall and it is the reverse at the bottom. This indicates that there is a unicellular
motion of the fluid inside the slot.
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4.6. RESULTS CHAPTER 4. RUNNING THE CASE

Figure 4.2: Temperature and viscosity along width of the slot

It can be observed from the viscosity profile in Fig. 4.1 that the viscosity is minimum where the
temperature is maximum. This shows the viscosity model implemented accounts the influence of
temperature on the viscosity. It is clearly evident from the X-Y plots of temperature and viscosity
along width of the slot at a height of 150 mm , see Fig. 4.2
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Chapter 5

buoyantSimpleFoam

This chapter deals with the underlying theory and the governing equations that are solved by
the solver buoyantSimpleFoam. Since the folder organization, the solver structure and most of
the include files are similar to that used in buoyantBoussinesqSimpleFoam, only the governing
equations and few important differences between the two solvers are explained in this chapter.

5.1 Solver description

The source code of buoyantSimpleFoam is located in

$FOAM_SOLVERS/heatTransfer/buoyantSimpleFoam

buoyantSimpleFoam

buoyantSimpleFoam.C

createFieldRefs.H

createFields.H

Make

files

options

UEqn.H

EEqn.H

pEqn.H

The structure of the solver code buoyantSimpleFoam is similar to that of buoyantBoussinesqSimpleFoam.
The main solver code is buoyantSimpleFoam.C. It has the .H files included in it similar to the pre-
vious solver. Since this solver deals with compressible fluids, it has an additional .H file called
rhoThermo.H included in its code which is a density based thermodynamic model.

In createFields.H, it can be observed that the density (rho) is defined using thermo.rho(). Also
the temperature is not directly created as a field. Equation for enthalpy (h) or internal energy (e)
is solved and the temperature is calculated based on the thermodynamic model defined. Thus the
fields for enthalpy or internal energy is created using the rhoThermo model. The compressible face
flux is initiated using compressibleCreatePhi.H. The governing equations for velocity (U), energy
(h/e) and pressure (prgh) are solved in UEqn.H, EEqn.H and PEqn.H respectively.

The momentum equation is solved in UEqn.H and is given as

∂ρu

∂t
+∇.(ρuu) +∇.(µeff∇u) +∇.

(
µeff (∇u)T − µeff

2

3
tr(∇u)T I

)
= −(∇ρ)g.h.f −∇prgh (5.1)

Here µeff = µ+ µt. µ represents laminar viscosity and µt represents turbulent viscosity.
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5.1. SOLVER DESCRIPTION CHAPTER 5. BUOYANTSIMPLEFOAM

The Energy equation is solved in EEqn.H and is given as:

∇.(ρuhe) +∇.(ρu(0.5
√
U +

p

ρ
))−∇.αeff∇T = Sradiation + Sh (5.2)

Here, αeff = α+ αt, α [kg/(m.s)] is known as thermal conductivity and is calculated as

α =
k

ρcp
(5.3)

k [W/(m.K)] is the thermal conductivity and cp [J/(kg.K)] is the specific heat capacity. Sradiation
and Sh are the radiation and user defined source terms respectively.

To calculate the pressure, SIMPLE algorithm is implemented and it is similar to that of PEqn.H in
the previous solver. Here along with the velocity, density is interpolated at the faces to calculate the
flux and then the pressure is calculated. The mass flux and velocity are corrected in a way similar
to the previous solver.
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Chapter 6

Running the case

The tutorial available in OpenFOAM is copied and modified as per the necessary case set-up. The
case set-up is available in the accompanied files with the file name verticalSlot_bsf. Also the
case can be set up by following the steps described in the below sections. To copy the tutorial to
the run directory, run the following commands in the terminal.

cp -r $FOAM_TUTORIALS/heatTransfer/buoyantSimpleFoam/buoyantCavity $FOAM_RUN

mv buoyantCavity verticalSlot_bsf

cd verticalSlot_bsf

rm -r validation

The case directory organization is similar to the one that has been used in the previous section. It
has 0/, constant/ and system/ directories.

6.1 Mesh generation

The blockMeshDict in the system directory can be replaced with the one implemented in the
incompressible (previous) case since the geometry and mesh will be the same. The below steps can
be followed to copy the blockMeshDict file from the incompressible case.

cd system

rm blockMeshDict

cp $FOAM_RUN/verticalSlot/system/blockMeshDict blockMeshDict

The mesh can be generated by

cd ..

blockMesh

6.2 Boundary conditions

The boundary conditions are similar to that applied to the incompressible case. Hence the 0/

directory will be replaced with the default one but the boundary conditions for alphat and p_rgh is
changed. The following steps can be followed to copy the 0/ directory to the current case directory.

rm -r 0

cp -r $FOAM_RUN/verticalSlot/0 0

cd 0/

The alphat directory must be modified since the compressible wall function has to be used in this
case.

The alphat file has to be replaced with the code below.
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6.2. BOUNDARY CONDITIONS CHAPTER 6. RUNNING THE CASE

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type compressible::alphatWallFunction;

Prt 0.65;

value uniform 0;

}

hot

{

type compressible::alphatWallFunction;

Prt 0.65;

value uniform 0;

}

cold

{

type compressible::alphatWallFunction;

Prt 0.65;

value uniform 0;

}

}

The boundary condition for p_rgh has to be replaced by the following code

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type fixedFluxPressure;

value uniform 0;

}

hot

{

type fixedFluxPressure;

value uniform 0;

}

cold

{

type fixedFluxPressure;

value uniform 0;

}
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6.3. TRANSPORT PROPERTIES CHAPTER 6. RUNNING THE CASE

}

Also the boundary condition for p has to be replaced by the following code

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 101325;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type calculated;

value $internalField;

}

hot

{

type calculated;

value $internalField;

}

cold

{

type calculated;

value $internalField;

}

}

6.3 Transport properties

The thermo-physical properties should be changed to add the properties of silicone oil.
The constant/thermophysicalProperties has to be replaced by the following code:

thermoType

{

type heRhoThermo;

mixture pureMixture;

transport const;

thermo hConst;

equationOfState perfectGas;

specie specie;

energy sensibleEnthalpy;

}

mixture

{

specie

{

nMoles 1;

molWeight 162.38;

}

thermodynamics

{
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6.4. SOLUTION CONTROL CHAPTER 6. RUNNING THE CASE

Cp 1600;

Hf 0;

}

transport

{

mu 5e-05;

Pr 10;

}

}

buoyantSimpleFoam solver uses rhoThermo to access the thermo-physical properties. It is a density
based model. mixture specifies the mixture composition. pureMixture is used to specify a mixture
without any reaction. transport specifies the transport model to be used. The transport model
evaluates properties like dynamic viscosity, thermal conductivity and thermal diffusivity. thermo

specifies the type of thermodynamic model used. hthermo assumes constant cp. The equations of
state available in the thermo-physical library are rhoConst, perfectGas, incompressiblePerfectGas,
perfectFluid etc. Density is calculated based on these equations. perfectGas is used in this case.
energy specifies the form of energy used in the case. This defines which parameter has to be solved
through the energy equation. sensibleEnthalpy and sensibleInternalEnergy are few examples. Sen-
sibleEnthalpy is used in this case.

The turbulence model used is similar to the one used in the incompressible case. Thus constant/turbulenceProperties
file can be copied from the previous case by the following steps

cd ../constant

rm turbulenceProperties

cp $FOAM_RUN/verticalSlot/constant/turbulenceProperties turbulenceProperties

6.4 Solution control

The first thing to be done in the system directory is to remove the sample file. This can be done by

cd ../system

rm sample

The numerical schemes for solving v2 and f have to be added in system/fvSchemes. Add the
following under the divschemes section in system/fvSchemes.

div(phi,v2) bounded Gauss limitedLinear 0.2;

div(phi,f) bounded Gauss limitedLinear 0.2;

Solvers for v2 and f have to be specified. It can be done by adding the below code under the solvers
section in system/fvSolution.

solvers

{

p_rgh

{

solver GAMG;

tolerance 1e-7;

relTol 0.01;

smoother DICGaussSeidel;
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6.5. RESULTS CHAPTER 6. RUNNING THE CASE

}

"(U|h|k|epsilon|v2)"

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-8;

relTol 0.1;

}

"(f)"

{

solver PCG;

preconditioner DIC;

tolerance 1e-8;

relTol 0.1;

}

}

Also "(k|epsilon|omega)" should be replaced as "(k|epsilon|v2|f)" in the SIMPLE and relaxationFactors

sections of system/fvSolutions.

6.5 Results

The case can be run by

cd ..

buoyantSimpleFoam

The results can be post-processed using paraFoam

Figure 6.1: Plots of temperature (left) and velocity (right) contours

Figure. 6.1 shows the contours of temperature and velocity in the vertical slot simulated using
buoyantSimpleFoam solver. The temperature distribution is approximately similar to the previous
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6.6. WALL HEAT FLUX CHAPTER 6. RUNNING THE CASE

case but the velocity profile does not clearly define the unicellular motion of fluid inside the slot.
The magnitude of velocities are higher near the two walls but not along the entire height of the slot.

6.6 Wall heat flux

To check the global conservation of flux, the wall heat flux at the boundaries have to be calculated.
This can be done using the wallHeatFlux utility in OpenFOAM. This utility will be used to calculate
the sum of heat flux on all the boundaries.

6.6.1 The wallHeatFlux utility

The source code of the utility is located in:

$FOAM_APP/utilities/postProcessing/toBeFunctionObjects/wallHeatFlux

The directory has a Make directory, createFields.H and wallHeatFlux.C. The main source code
can be found in file wallHeatFlux.C. The heat flux is calculated by

surfaceScalarField heatFlux

(

fvc::interpolate

(

(

turbulence.valid()

? turbulence->alphaEff()()

: thermo->alpha()

)

)*fvc::snGrad(h)

);

The total heat flux at all the boundaries is calculated as

forAll(patchHeatFlux, patchi)

{

if (isA<wallFvPatch>(mesh.boundary()[patchi]))

{

scalar convFlux = gSum(magSf[patchi]*patchHeatFlux[patchi]);

scalar radFlux = -gSum(magSf[patchi]*patchRadHeatFlux[patchi]);

Info<< mesh.boundary()[patchi].name() << endl

<< " convective: " << convFlux << endl

<< " radiative: " << radFlux << endl

<< " total: " << convFlux + radFlux << endl;

}

}

Here the total flux is considered as the sum of convective flux and the radiative flux.

6.6.2 Implementation

This section describes the procedure of using the utility for calculating wall heat flux at the bound-
aries as a post-processing step of the simulation performed using the buoyantSimpleFoam solver.

The wall heat flux utility can be copied to the run directory by running the commands below in
the terminal
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OF4x

run

cp -r $FOAM_APP/utilities/postProcessing/toBeFunctionObjects/wallHeatFlux $FOAM_RUN

The Make/files has to be modified so as to use it for the current case.

Replace with the following in the Make/files

wallHeatFlux.C

EXE = $(FOAM_USER_APPBIN)/wallHeatFlux

The utility can be compiled used wmake. The following commands can be run in the terminal to
calculate the wall heat flux for our case.

cd verticalSlot_bsf

wallHeatFlux

The results will look like as shown below.

Time = 1000

Selecting thermodynamics package

{

type heRhoThermo;

mixture pureMixture;

transport const;

thermo hConst;

equationOfState perfectGas;

specie specie;

energy sensibleEnthalpy;

}

Reading/calculating face flux field phi

Selecting turbulence model type RAS

Selecting RAS turbulence model v2f

bounding v2, min: 4.54768e-42 max: 2.65821e-06 average: 8.20716e-07

v2fCoeffs

{

Cmu 0.22;

CmuKEps 0.09;

C1 1.4;

C2 0.3;

CL 0.23;

Ceta 70;

Ceps2 1.9;

Ceps3 -0.33;

sigmaK 1;

sigmaEps 1.3;

}

Wall heat fluxes [W]

topAndBottom

convective: 0

radiative: -0

total: 0

hot
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convective: 0.237631

radiative: -0

total: 0.237631

cold

convective: -0.241561

radiative: -0

total: -0.241561

End
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Chapter 7

Conclusion

By comparing the results of the simulation performed using the buoyantBoussinesqSimpleFoam

and buoyantSimpleFoam solvers, it can be concluded that the results obtained from both the solvers
matched the practical situation to certain degree of accuracy. However the results obtained from
buoyantBoussinesqSimpleFoam solver seems more promising qualitatively. Also since there is no
considerable density variation in the current case, buoyantBoussinesqSimpleFoam solver with the
temperature-based viscosity model suits the case better. However, it could be better to deduce a
conclusion by comparing the results obtained with experimental data if it was available.
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Study questions

1. Where is the singlePhaseTransport model called in the buoyantBoussinesqSimpleFoam

solver?

2. How does the class turbulenceModel access the viscosity nu?

3. What are the changes that have to be made in the case folder to implement a modified transport
model?

4. Mention the important differences between the buoyantBoussinesqSimpleFoam and buoyantSim-
pleFoam solvers?
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Appendix

Boundary conditions for the case set-up using the buoyant-
BoussinesqSimpleFoam solver

Replace with the following in the alphat file.

internalField uniform 0;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type alphatJayatillekeWallFunction;

Prt 0.65;

value uniform 0;

}

hot

{

type alphatJayatillekeWallFunction;

Prt 0.65;

value uniform 0;

}

cold

{

type alphatJayatillekeWallFunction;

Prt 0.65;

value uniform 0;

}

}

Replace with the following in the epsilon file.

internalField uniform 0.001;

boundaryField

{

frontAndBack

{

type empty;

}
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topAndBottom

{

type epsilonLowReWallFunction;

value uniform 0.001;

}

hot

{

type epsilonLowReWallFunction;

value uniform 0.001;

}

cold

{

type epsilonLowReWallFunction;

value uniform 0.001;

}

}

Replace with the following in the k file.

internalField uniform 0.015;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type kLowReWallFunction;

value uniform 0.015;

}

hot

{

type kLowReWallFunction;

value uniform 0.015;

}

cold

{

type kLowReWallFunction;

value uniform 0.015;

}

}

Replace with the following in the nut file.

internalField uniform 0;

boundaryField

{

frontAndBack

{

type empty;

}
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topAndBottom

{

type nutkWallFunction;

value uniform 0;

}

hot

{

type nutkWallFunction;

value uniform 0;

}

cold

{

type nutkWallFunction;

value uniform 0;

}

}

Replace with the following in the p file

internalField uniform 0;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type calculated;

value $internalField;

}

hot

{

type calculated;

value $internalField;

}

cold

{

type calculated;

value $internalField;

}

}

Replace with the following in the p_rgh file.

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
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{

frontAndBack

{

type empty;

}

topAndBottom

{

type fixedFluxPressure;

rho rhok;

value uniform 0;

}

hot

{

type fixedFluxPressure;

rho rhok;

value uniform 0;

}

cold

{

type fixedFluxPressure;

rho rhok;

value uniform 0;

}

}

Replace with the following in the T file.

internalField uniform 298;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type zeroGradient;

}

hot

{

type fixedValue;

value uniform 323; // 50 degC

}

cold

{

type fixedValue;
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value uniform 273; // 0 degC

}

}

Replace with following in the U file.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type noSlip;

}

hot

{

type noSlip;

}

cold

{

type noSlip;

}

}

Add the following to a new file called v2.

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object v2;

}

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0.01;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom
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{

type v2WallFunction;

value uniform 0.01;

}

hot

{

type v2WallFunction;

value uniform 0.01;

}

cold

{

type v2WallFunction;

value uniform 0.01;

}

}

Add the following to a new file called f.

\\Add to f file

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object f;

}

dimensions [0 0 -1 0 0 0 0];

internalField uniform 1e-10;

boundaryField

{

frontAndBack

{

type empty;

}

topAndBottom

{

type fWallFunction;

value uniform 1e-10;

}

hot

{

type fWallFunction;

value uniform 1e-10;

}

cold

{

type fWallFunction;

value uniform 1e-10;

}

}
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Source code for the tempLaw

tempLaw.C

#include "tempLaw.H"

#include "addToRunTimeSelectionTable.H"

#include "surfaceFields.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace viscosityModels

{

defineTypeNameAndDebug(tempLaw, 0);

addToRunTimeSelectionTable

(

viscosityModel,

tempLaw,

dictionary

);

}

}

// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //

Foam::tmp<Foam::volScalarField>

Foam::viscosityModels::tempLaw::calcNu() const

{

const volScalarField& T= U_.mesh().lookupObject<volScalarField>("T");

return max

(

nuMin_,

min

(

nuMax_,

(scalar(0.000001)*m_*Foam::exp(A_ +

B_/(T*1.0/dimensionedScalar("one", dimTemperature, 1.0) + C_)))*pow

(

max

(

dimensionedScalar("one", dimTime, 1.0)*strainRate(),

dimensionedScalar("VSMALL", dimless, VSMALL)

),

n_.value() - scalar(1.0)

)

)

);

}
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// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::viscosityModels::tempLaw::tempLaw

(

const word& name,

const dictionary& viscosityProperties,

const volVectorField& U,

const surfaceScalarField& phi

)

:

viscosityModel(name, viscosityProperties, U, phi),

tempLawCoeffs_(viscosityProperties.subDict(typeName + "Coeffs")),

m_("m", dimViscosity, tempLawCoeffs_),

A_("A", dimless, tempLawCoeffs_),

B_("B", dimless, tempLawCoeffs_),

C_("C", dimless, tempLawCoeffs_),

n_("n", dimless, tempLawCoeffs_),

nuMin_("nuMin", dimViscosity, tempLawCoeffs_),

nuMax_("nuMax", dimViscosity, tempLawCoeffs_),

nu_

(

IOobject

(

name,

U_.time().timeName(),

U_.db(),

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

calcNu()

)

{}

// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

bool Foam::viscosityModels::tempLaw::read

(

const dictionary& viscosityProperties

)

{

viscosityModel::read(viscosityProperties);

tempLawCoeffs_ = viscosityProperties.subDict(typeName + "Coeffs");

tempLawCoeffs_.lookup("m") >> m_;

tempLawCoeffs_.lookup("A") >> A_;

tempLawCoeffs_.lookup("B") >> B_;

tempLawCoeffs_.lookup("C") >> C_;

tempLawCoeffs_.lookup("n") >> n_;

tempLawCoeffs_.lookup("nuMin") >> nuMin_;

tempLawCoeffs_.lookup("nuMax") >> nuMax_;
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return true;

}

tempLaw.H

#ifndef tempLaw_H

#define tempLaw_H

#include "viscosityModel.H"

#include "dimensionedScalar.H"

#include "volFields.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

namespace viscosityModels

{

/*---------------------------------------------------------------------------*\

Class tempLaw Declaration

\*---------------------------------------------------------------------------*/

class tempLaw

:

public viscosityModel

{

// Private data

dictionary tempLawCoeffs_;

dimensionedScalar m_;

dimensionedScalar A_;

dimensionedScalar B_;

dimensionedScalar C_;

dimensionedScalar n_;

dimensionedScalar nuMin_;

dimensionedScalar nuMax_;

volScalarField nu_;

// Private Member Functions

//- Calculate and return the laminar viscosity

tmp<volScalarField> calcNu() const;

public:

//- Runtime type information

TypeName("tempLaw");
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// Constructors

//- Construct from components

tempLaw

(

const word& name,

const dictionary& viscosityProperties,

const volVectorField& U,

const surfaceScalarField& phi

);

//- Destructor

~tempLaw()

{}

// Member Functions

//- Return the laminar viscosity

tmp<volScalarField> nu() const

{

return nu_;

}

//- Return the laminar viscosity for patch

tmp<scalarField> nu(const label patchi) const

{

return nu_.boundaryField()[patchi];

}

//- Correct the laminar viscosity

void correct()

{

nu_ = calcNu();

}

//- Read transportProperties dictionary

bool read(const dictionary& viscosityProperties);

};

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

} // End namespace viscosityModels

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

#endif
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