
CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1

Exercise: Implement a rampedFixedValue boundary condition

(for OpenFOAM-2.1.x, and most likely 2.2.x)

CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 2

Sparse guidelines on how to implement a rampedFixedValue bc

• Pretend that you are in desperate need of a boundary condition that ramps the value of

a variable from one value to another value within some specified time, i.e.:

• You have figured out that there is already a boundary condition that oscillates the value

of a variable at a boundary, so you only need to change the time function of that boundary

condition to get what you want:

$FOAM_SRC/finiteVolume/fields/fvPatchFields/derived/oscillatingFixedValue

• You copy that to create a dynamic library according to what you have learnt in an excel-

lent course...

CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 3

Sparse guidelines on how to implement a rampedFixedValue bc

You need to do the following:

• Copy the oscillatingFixedValue directory to an appropriate location outside the

original installation, and rename oscillating* to ramped*

• Rename all the files from oscillating* to ramped*

• You use the sed command to efficiently substitute all oscillating to ramped in all

the files (*.H and *.C). This changes the name of the class.

• Create a Make directory by looking at the original Make directory in $FOAM_SRC/finiteVolume.

In files, you remove everything that has nothing to do with oscillating* and re-

name oscillating to ramped. (Make sure that you name the ’plural’ file with ’s’). You

also remember that since you have moved the directory, you must add an include line to

the options file, so that it can find the files in the finiteVolume/lnInclude direc-

tory. You add my at the start of the library name (after lib) to distinguish it from the

original one, and make sure that it will be written to your user directory structure.

• At this point, you clean up the compilation (wclean lib;rm -r Make/li*) and com-

pile the dynamic library (wmake libso) just to make sure that it compiles before doing

any changes.

CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 4

Sparse guidelines on how to implement a rampedFixedValue bc

• You see that in rampedFixedValueFvPatchField.H, there are some private data de-

fined

Field<Type> refValue_

autoPtr<DataEntry<scalar> > amplitude_

autoPtr<DataEntry<scalar> > frequency_

label curTimeIndex_

In your case, you instead need

Field<Type> refValueLow_

Field<Type> refValueHigh_

autoPtr<DataEntry<scalar> > startRamp_

autoPtr<DataEntry<scalar> > endRamp_

label curTimeIndex_

You make a note of which of your new private data are objects of the same class as the

original private data. You realize that the original files have only one private data of

type Field<Type>, while you need two.

CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 5

Sparse guidelines on how to implement a rampedFixedValue bc

• For each of the origial private data, you search the files and make sure that you have

the same lines for your new private data that are of the same class as the original

private data. In your case, you have to add some lines since you have two objects of

Field<Type> instead of only one. You simply copy all lines that correspond to the

original refValue and add the same lines just after the original ones, and then up-

date to your new private data names. For the operator==, you for now just change to

refValueLow_, and the same at patchField = refValue_... You change amplitude

to startRamp, and frequency to endRamp everywhere.

• You clean and compile again, and realize that you don’t get any error messages, which

means that you didn’t do any mistakes.

• Now you have all the structure ready, so you just need to implement the function.

CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 6

Sparse guidelines on how to implement a rampedFixedValue bc
• You change in rampedFixedValueFvPatchField.C the operator== where you tem-

porarily just changed refValue to refValuelow, to:

fixedValueFvPatchField<Type>::operator==

(

refValueLow_ + (refValueHigh_ - refValueLow_)*currentScale()

);

The function currentScale() is the ramp fraction at time t, which also needs to be

modified...

• You change the currentScale() function to:

return

min

(1.0, max (

(this->db().time().value() - a)/

(f - a), 0.0));

• In function updateCoeffs(), you change the evaluation of the patchField to:

patchField = refValueLow_

+ (refValueHigh_ - refValueLow_)*currentScale();

• You clean an compile, and you are done!

CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 7

A few comments

• The write function should now look like this:

template<class Type>

void rampedFixedValueFvPatchField<Type>::write(Ostream& os) const

{

fixedValueFvPatchField<Type>::write(os);

refValueLow_.writeEntry("refValueLow", os);

refValueHigh_.writeEntry("refValueHigh", os);

os.writeKeyword("offset") << offset_ << token::END_STATEMENT << nl;

startRamp_->writeData(os);

endRamp_->writeData(os);

}

This function makes sure that all the information of the boundary condition is written

in the output time directories. This useful when the simulation is restarted from the

latest time.

CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 8

A few comments

• The generic rampedFixedValueFvPatchField<Type> class becomes specific for scalar,

vector, tensor, ... by using the command (see the *Fwd* file):

makePatchTypeFieldTypedefs(rampedFixedValue)

• This function is defined in $FOAM_SRC/finiteVolume/fvPatchField.H and it uses
typedef for this purpose:

typedef rampedFixedValueFvPatchField<scalar> rampedFixedValueFvPatchScalarField;

typedef rampedFixedValueFvPatchField<vector> rampedFixedValueFvPatchVectorField;

typedef rampedFixedValueFvPatchField<tensor> rampedFixedValueFvPatchTensorField;

CFD with OpenSource Software, 2014

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 9

A few comments

• It adds to the runTimeSelectionTable the new boundary conditions created in

rampedFixedValueFvPatchFields.H, by calling the function:

makePatchTypeFieldTypedefs(rampedFixedValue);

• In this way, the new boundary condition can be used for volScalarField, volVectorField,
volTensorField, ... just typing in the field file:

boundaryField

{

inlet

{

type rampedFixedValue;

refValueLow uniform 10; // example for a volScalarField

refValueHigh uniform 20; // example for a volScalarField

startRamp 20;

endRamp 50;

value uniform (0 0 0); //Dummy for paraFoam

}

}

• So, you can now easily use the rampedFixedvalue boundary condition for the cavity

case, with the original icoFoam solver.

