
CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1

Object orientation in C++ and OpenFOAM

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 2

Object orientation in C++ and OpenFOAM

• To begin with: The aim of this part of the course is not to teach all of C++

and object orientation, but to give a short introduction that is useful when

trying to understand the contents of OpenFOAM.

• After this introduction you should be able to recognize and make minor

modifications to most C++ features in OpenFOAM.

• Some books:

– C++ direkt by Jan Skansholm (ISBN 91-44-01463-5)

– C++ from the Beginning by Jan Skansholm (probably similar)

– C++ how to Program by Paul and Harvey Deitel

– Object Oriented Programming in C++ by Robert Lafore

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 3

C++ types, classes and objects

• The types that we have just had a look at are in fact classes, and the variables we assign to

a type are objects of that class.

• Object orientation focuses on the objects instead of the functions.

• An object belongs to a class of objects with the same attributes. The class defines:

- The construction of the object

- The destruction of the object

- Attributes of the object (member data)

- Functions that can manipulate the object (member functions)

I.e. it is the int class that defines how the operator + should work for objects of that class,

and how to convert between classes if needed (e.g. 1 + 1.0 involves a conversion).

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 4

C++ types, classes and objects

• The objects may be related in different ways, and the classes may inherit attributes from

other classes.

• A benefit of object orientation is that the classes can be re-used, and that each class can be

designed and bug-fixed for a specific task.

• In OpenFOAM, the classes are designed to define, discretize and solve PDE’s.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 5

C++ class definition

• The following structure defines the class with name myClass and its public and private

member functions and member data. This is a general description. We will have a look at

examples in the code later.

class myClass {

public:

declarations of public member functions and member data

private:

declaration of hidden member functions and member data

};

• public attributes are visible from outside the class.

• private attributes are only visible within the class.

• If neither public nor private are specified, all attributes will be private.

• Declarations of member functions and member data are done just as functions and variables

are declared outside a class.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 6

C++ class usage

• An object of a class myClass is defined in the main code as:

myClass myObject; (c.f. int i)

• The object myObject will then have all the attributes defined in the class myClass.

• Any number of objects may belong to a class, and the attributes of each object will be separated.

• There may be pointers and references to any object.

• The member functions operate on the object according to its implementation.

If there is a member function write that writes out the contents of an object of the class

myClass, it is called in the main code as:

myObject.write();

• When using the member functions through a pointer, the syntax is slightly different (here

p1 is a pointer to the object myObject, and p2 is a pointer to a nameless new myClass:

p1 = &myObject;

p2 = new myClass;

p1->write();

p2->write();

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 7

C++ member functions

• The member functions may be defined either in the declaration of the class, or in the defini-

tion of the class. We will see this when we look inside OpenFOAM. The syntax is basically:

inline void myClass::write()

{

Contents of the member function.

}

where

- myClass:: tells us that the member function write belongs to the class

myClass.

- void tells us that the function does not return anything

- inline tells us that the function will be inlined into the code where it is

called instead of jumping to the memory location of the function at each call

(good for small functions). Member functions defined directly in the class

declaration will automatically be inlined if possible.

• The member functions have direct access to all the member data and member functions of

the class.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 8

C++ organization of classes

• A good programming standard is to make the class files in pairs, one with the class

declarations, and one with the class definitions.

• The class declaration file must be included in the files where the class is used, i.e. the class

definition file and files that inherits from, or construct objects of that class.

• The compiled definition file is statically or dynamically linked to the executable by the com-

piler.

• Inline functions must be implemented in the class declaration file, since they must be in-

lined without looking at the class definition file. In OpenFOAM there are usually files

named as VectorI.H containing inline functions, and those files are included in the cor-

responding Vector.H file.

• Let’s have a look at some examples in the OpenFOAM Vector class:

$FOAM_SRC/OpenFOAM/primitives/Vector

(go there while looking at the following slides)

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 9

C++ constructors

• A constructor is a special initialization function that is called each time a new object of that

class is constructed. Without a specific constructor all attributes will be undefined. A null

constructor must always be defined.

• A constructor can be used to initialize the attributes of the object. A constructor is recog-

nized by it having the same name as the class - here Vector. (Cmpt is a template generic

parameter (component type), i.e. the Vector class works for all component types). Vector.H:

// Constructors

//- Construct null

inline Vector();

//- Construct given VectorSpace

inline Vector(const VectorSpace<Vector<Cmpt>, Cmpt, 3>&);

//- Construct given three components

inline Vector(const Cmpt& vx, const Cmpt& vy, const Cmpt& vz);

//- Construct from Istream

inline Vector(Istream&);

• The Vector will be initialized differently depending on which of these constructors is cho-

sen.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 10

C++ constructors

• The actual initialization usually takes place in the corresponding .C file, but since the con-
structors for the Vector are inlined, it takes place in the VectorI.H file:

// Construct given three Cmpts

template <class Cmpt>

inline Vector<Cmpt>::Vector(const Cmpt& vx, const Cmpt& vy, const Cmpt& vz)

{

this->v_[X] = vx;

this->v_[Y] = vy;

this->v_[Z] = vz;

}

Here, this is a pointer to the current object of the current class, i.e. we here set the static

data member v_ (inherited from class VectorSpace.H) to the values supplied as argu-

ments to the constructor.

• It is here obvious that the member function Vector belongs to the class Vector, and that

it is a constructor since it has the same name as the class.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 11

C++ constructors

• A copy constructor has a parameter that is a reference to another object of the same class:

myClass(const myClass&);

The copy constructor copies all attributes. A copy constructor can only be used when initial-

izing an object (since a constructor ’constructs’ a new object). Usually there is no need to

define a copy destructor since the default one does what you need.

• A type conversion constructor is a constructor that takes a single parameter of a different

class than the current class, and it describes explicitly how to convert between the two

classes. (There can actually be more parameters, but then they have to have default values)

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 12

C++ destructors

• When using dynamically allocated memory it is important to be able to destruct an object.

• A destructor is a member function without parameters, with the same name as the class,

but with a ∼ in front of it.

• An object should be destructed when leaving the block it was constructed in, or if it was

allocated with new it should be deleted with delete

• To make sure that all the memory is returned it is preferrable to define the destructor

explicitly.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 13

C++ constant member functions

• An object of a class can be constant (const). Some member functions might in fact not

change the object, but we need to tell the compiler that it doesn’t (constant functions). That

is done by adding const after the parameter list in the function definition. Then the func-

tion can be used for constant objects:

template <class Cmpt>

inline const Cmpt& Vector<Cmpt>::x() const

{

return this->v_[X];

}

This function returns a constant reference to the X-component of the object (first const)

without modifying the original object (second const)

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 14

C++ friends

• A friend is a function (not a member function) or class that has access to the private

members of a particular class.

• A class can invite a function or another class to be its friend, but it cannot require to be a

friend of another class.

• friends are defined in the definition of the class using the special word friend.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 15

C++ operators

• Operators define how to manipulate objects.

• Standard operator symbols are:

new delete new[] delete[]

+ - * / % ^ & | ~

! = < > += -= *= /= %=

^= &= |= << >> >>= <<= == !=

<= >= && || ++ -- , ->* ->

() []

When defining operators, one of these must be used.

• Operators are defined as member functions or friend functions with name operatorX,

where X is an operator symbol.

• OpenFOAM has defined operators for all classes, including iostream operators << and >>

• See example at the end of VectorI.H

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 16

C++ static members

• Static members of a class only exist in a single instance in a class, for all objects, i.e. it will

be equivalent in all objects of the class.

• They are defined as static, which can be applied to member data or member functions.

• Static members do not belong to any particular object, but to a particular class, so they are

used as:

myClass::staticFunction(parameters);

They can actually also be used as myObject.staticFunction(parameters), but that

would be a bit mis-leading since nothing happens explicitly to myObject, and that all ob-

jects of the class will notice the effect of the call of staticFunction.

• In Vector.H we have:

// Static data members

static const char* const typeName;

static const char* componentNames[];

static const Vector zero;

static const Vector one;

static const Vector max;

static const Vector min;

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 17

C++ inheritance

• A class can inherit attributes from already existing classes, and extend with new attributes.

• Syntax, when defining the new class:

class newClass : public oldClass { ...members... }

where newClass will inherit all the attributes from oldClass.

newClass is now a sub-class to oldClass.

• OpenFOAM example:

template <class Cmpt>

class Vector

:

public VectorSpace<Vector<Cmpt>, Cmpt, 3>

where class Vector is a sub-class to VectorSpace.

• An attribute of newClassmay have the same name as one in oldClass. Then the newClass

attribute will be used for newClass objects and the oldClass attribute will be hidden.

Note that for member functions, all of them with the same name will be hidden, irrespec-

tively of the number of parameters.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 18

C++ inheritance and visibility

• A hidden member of a base-class can be reached by oldClass::member

• Members of a class can be public, private or protected.

• private members are never visible in a sub-class, while public and protected are. How-

ever, protected are only visible in a sub-class (not in other classes).

• The visibility of the inherited members can be modified in the new class using the reserved

words public, private or protected when defining the class. (public in the previous

example). It is only possible to make the members of a base-class less visible in the sub-class.

• A class may be a sub-class to several base-classes (multiple inheritance), and this is used to

combine features from several classes. Watch out for ambigous (tvetydiga) members!

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 19

C++ virtual member functions

• Virtual member functions are used for dynamic binding, i.e. the function will work differ-

ently depending on how it is called, and it is determined at run-time.

• The reserved word virtual is used in front of the member function declaration to declare

it as virtual.

• A sub-class to a class with a virtual function should have a member function with the same

name and parameters, and return the same type as the virtual function. That sub-class

member function will automatically be a virtual function.

• By defining a pointer to the base-class a dynamic binding can be realized. The pointer can

be made to point at any of the sub-classes to the base-class.

• The pointer to a specific sub-class is defined as: p = new subClass (...parameters...).

• Member functions are used as p->memberFunction (since p is a pointer)

• OpenFOAM uses this to dynamically choose turbulence model.

• Virtual functions make it easy to add new turbulence models without changing the original

classes (as long as the correct virtual functions are defined).

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 20

C++ abstract classes

• A class with at least one virtual member function that is undefined (a pure virtual function)

is an abstract class.

• The purpose of an abstract class is to define how the sub-classes should be defined.

• An object can not be created for an abstract class.

• The OpenFOAM LESModel is such an abstract class since it has a number of pure member

functions, such as

(see $FOAM_SRC/turbulenceModels/incompressible/LES/LESModel/LESModel.H)

//- Return the SGS viscosity.

virtual tmp<volScalarField> nuSgs() const = 0;

(you see that it is pure virtual by ’= 0’, and that there is no description of member function

nuSgs() in the LESModel class - the description is specific for each turbulence model that

inherits the LESModel class).

• The most important function in the LESModel class is the correct() function, which is

called as a pointer. E.g. $FOAM_SOLVERS/incompressible/pimpleFoam/pimpleFoam.C:

turbulence->correct();

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 21

C++ container classes

• A container class contains and handles data collections. It can be viewed as a list of entries

of objects a specific class. A container class is a sort of template, and can thus be used for

objects of any class.

• The member functions of a container class are called algorithms. There are algorithms that

search and sort the data collection etc.

• Both the container classes and the algorithms use iterators, which are pointer-like objects.

• The container classes in OpenFOAM can be found in $FOAM_SRC/OpenFOAM/containers,

for example Lists/UList

• forAll is defined in UList.H to help us march through all entries of a list of objects of any

class:

#define forAll(list, i) \

for (Foam::label i=0; i<(list).size(); i++)

Search OpenFOAM for examples of how to use forAll, e.g.:

forAll(anyList, i) { statements; }

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 22

C++ templates

• The most obvious way to define a class is to define it for a specific type of object. However,

often similar operations are needed regardless of the object type. Instead of writing a num-

ber of identical classes where only the object type differs, a generic template can be defined.

The compiler then defines all the specific classes that are needed.

• Container classes should be implemented as class templates, so that they can be used for

any object. (i.e. List of integers, List of vectors ...)

• A template class is defined by a line in front of the class definition, similar to:

template<class T>

where T is the generic parameter (there can be several in a ’comma’ separated list), defining

any type. The word class defines T as a type parameter.

• The generic parameter(s) are then used in the class definition instead of the specific type

name(s).

• A template class is used to construct an object as:

templateClass<type> templateClassObject;

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 23

C++ typedef

• OpenFOAM is full of templates.

• To make the code easier to read OpenFOAM re-defines the templated class names, for in-

stance:

typedef List<vector> vectorList;

• A list of vectors can then simply be constructed as

integerVector iV;

This is used to a large extent in OpenFOAM, and the reason for this is to make the code

easier to read.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 24

C++ namespace implementation

• A namespace with the name myNamespace is defined as

namespace myNamespace {

declarations

}

You can see

namespace Foam { }

all over OpenFOAM.

• New declarations can be added to the namespace using the same syntax in another part of

the code.

