
CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1

How to implement a new boundary condition

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 2

How to implement a new boundary condition

• The implementations of the boundary conditions are located in

$FOAM_SRC/finiteVolume/fields/fvPatchFields/

• To add a new boundary condition, start by finding one that does almost what you want. Copy

that to your user directories under the same directory structure as the original installation.

• We will now check out the parabolicVelocityFvPatchVectorField boundary condition

from the OpenFOAM-extend project at SourceForge, and compile and use it as a dynamic

library.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 3

Compile your boundary condition as a new dynamic library

• Copy the boundary condition to $WM_PROJECT_USER_DIR (from the OpenFOAM-extend
project at SourceForge):

mkdir -p $WM_PROJECT_USER_DIR/src/finiteVolume/fields/fvPatchFields/derived

cd $WM_PROJECT_USER_DIR/src/finiteVolume/fields/fvPatchFields/derived

svn checkout svn://svn.code.sf.net/p/openfoam-extend/svn/trunk/\

Core/OpenFOAM-1.5-dev/src/finiteVolume/fields/fvPatchFields/\

derived/parabolicVelocity

cd $WM_PROJECT_USER_DIR/src/finiteVolume

• We need a Make/files file (c.f. $FOAM_SRC/finiteVolume/Make):

fvPatchFields = fields/fvPatchFields

derivedFvPatchFields = $(fvPatchFields)/derived

$(derivedFvPatchFields)/parabolicVelocity/parabolicVelocityFvPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume

• We need a Make/options file:

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude

EXE_LIBS =

• Compile the dynamic library:

wmake libso

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 4

Use your boundary condition from the dynamic library

• Set up a new case:

run

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily \

pitzDailyParabolicInlet

cd pitzDailyParabolicInlet

blockMesh

• Modify the entry for the inlet boundary condition in 0/U to:

type parabolicVelocity;

n (1 0 0);

y (0 1 0);

maxValue 1;

value uniform (0 0 0); // Dummy for paraFoam

The contents of this entry must be in accordance with the constructor in the

parabolicVelocityFvPatchVectorField class. n is the direction of the flow, y is the

coordinate direction of the profile, and maxvalue is the centerline velocity.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 5

Use your boundary condition from the dynamic library

• The boundary condition will not be recognized by any of the original OpenFOAM solvers
unless we tell OpenFOAM that the library exists.
Add a line in the system/controlDict file:

libs ("libmyFiniteVolume.so");

i.e. the library must be added for each case that will use it, but no re-compilation is needed

for any solver. libmyFiniteVolume.so is found using the LD_LIBRARY_PATH environ-

ment variable, and if you followed the instructions on how to set up OpenFOAM and compile

the boundary condition this should work automatically.

• You can now run the case using the original simpleFoam solver. Note that we never re-

compiled the original simpleFoam solver, and if you do ldd `which simpleFoam` your

new library will NOT show up since it is linked at run-time (using dlopen).

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 6

A look at the boundary condition

• The parabolicVelocityFvPatchVectorField boundary condition consists of two files:

parabolicVelocityFvPatchVectorField.C

parabolicVelocityFvPatchVectorField.H

• The .H-file is the header file, and it is included in the header of the .C-file.

• We can see (.H) that we create a sub class to the fixedValueFvPatchVectorField:

class parabolicVelocityFvPatchVectorField:

public fixedValueFvPatchVectorField

i.e. this is for Dirichlet (fixed) boundary conditions for vector fields.

• The class has the private data

//- Peak velocity magnitude

scalar maxValue_;

//- Flow direction

vector n_;

//- Direction of the y-coordinate

vector y_;

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 7

A look at the boundary condition

• The TypeName("parabolicVelocity"), used when specifying the boundary condition, is

defined.

• There are some public constructors and member functions that are defined in detail in the

.C-file.

• We used the third constructor when we tested the boundary condition, i.e. we read the

member data from a dictionary.

• The actual implementation of the boundary condition can be found in the updateCoeffs()

member function:

boundBox bb(patch().patch().localPoints(), true);

vector ctr = 0.5*(bb.max() + bb.min());

const vectorField& c = patch().Cf();

scalarField coord = 2*((c - ctr) & y_)/((bb.max() - bb.min()) & y_);

vectorField::operator=(n_*maxValue_*(1.0 - sqr(coord)));

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 8

A look at the boundary condition

• The member function write defines how to write out the boundary values in the time direc-

tory. The final line, writeEntry("value", os); writes out all the values, which is only

needed for post-processing.

• Find out more about all the variables by including the following in the end of the updateCoeffs

member function:

Info << "c" << c << endl;

Info << "ctr" << ctr << endl;

Info << "y_" << y_ << endl;

Info << "bb.max()" << bb.max() << endl;

Info << "bb.min()" << bb.min() << endl;

Info << "(c - ctr)" << c - ctr << endl;

Info << "((c - ctr) & y_)" << ((c - ctr) & y_) << endl;

Info << "((bb.max() - bb.min()) & y_)" <<

((bb.max() - bb.min()) & y_) << endl;

Info << "coord" << coord << endl;

