
CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1

Debugging OpenFOAM implementations

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 2

Debugging OpenFOAM implementations

(Acknowledgements to Dr. Fabian Peng-Kärrholm)

• It is impossible to do bug-free programming (trust me!), so you should always verify your

implementations.

• When you run into problems, such as code crash, or mysterious behaviour, you also need

some debugging approach.

• There are many debugging approaches, and we will discuss three alternatives here:

• Info statements in the code

• Built-in DebugSwitch option in OpenFOAM (similar to the above - you will see)

• Debugging using the Gnu debugger, GDB (http://www.gnu.org/software/gdb/)

...with emacs or ddd

• We will now go through these alternatives...

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 3

Debugging using Info statements

• The simplest way to do debugging is to write out intermediate results to the screen, and

check that those results are correct.

• In OpenFOAM this is done using Info statements.

• This kind of debugging does not allow any control of the running of the code while debug-

ging. It will just print out additional information.

• Info debugging requires that new lines are inserted in the source code, and that the source

code must be re-compiled whenever a new Info statement has been added.

• When the code has been debugged, all the Info statements must be deleted, or commented,

so that you don’t get all that information when you are no longer debugging.

• OpenFOAM provides an alternative to removing all the Info statements, so that these

Info statements can be activated again later.

• This brings us to the next level of debugging in OpenFOAM...

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 4

Debugging using OpenFOAM DebugSwitches

• In $WM_PROJECT_DIR/etc/controlDict (global controlDict dictionary), you can find

a list of DebugSwitches:

DebugSwitches

{

Analytical 0;

APIdiffCoefFunc 0;

Ar 0;

...

}

• Each class thus has its own DebugSwitch.

• DebugSwitches set to zero will produce no debug information.

• Different levels of debugging can be chosen by setting a DebugSwitch to 1, 2, 3 ...

• It is recommended to make a copy of that file to a specific location and make any modifica-
tions there. This file will override the original file:

mkdir -p $HOME/.OpenFOAM/$WM_PROJECT_VERSION

cp $WM_PROJECT_DIR/etc/controlDict $HOME/.OpenFOAM/$WM_PROJECT_VERSION

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 5

What is a DebugSwitch?

• Let’s have a look at the lduMatrix DebugSwitch, which is set to 1.

• The lduMatrix class is implemented in

$FOAM_SRC/OpenFOAM/matrices/lduMatrix/lduMatrix

• Looking inside lduMatrix.C, we see a line:

defineTypeNameAndDebug(Foam::lduMatrix, 1);

This line defines the DebugSwitch name lduMatrix, and sets its default value to 1.

• In $FOAM_SRC/OpenFOAM/matrices/lduMatrix/solvers/PBiCG/PBiCG.C, you can find:

if (lduMatrix::debug >= 2)

{

Info<< " Normalisation factor = " << normFactor << endl;

}

• Boolean debug corresponds to the lduMatrix DebugSwitch, and it is true if the DebugSwitch

is greater than 0, and the above if-statement is done if it is equal to or greater than 2.

• The default value, both in the class definition, and in the global controlDict is 1. Try

setting it to 2 in your own copy of the global controlDict, and run the cavity case.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 6

The SolverPerformance DebugSwitch

• Setting the SolverPerformance DebugSwitch to 2 activates
(in $FOAM_SRC/OpenFOAM/matrices/LduMatrix/LduMatrix/SolverPerformance.C):

if (debug >= 2)

{

Info<< solverName_

<< ": Iteration " << noIterations_

<< " residual = " << finalResidual_

<< endl;

}

Try it with the cavity case, yielding something like:

DILUPBiCG: Iteration 0 residual = 0.0157314

DILUPBiCG: Iteration 1 residual = 0.00199487

DILUPBiCG: Iteration 2 residual = 0.000810123

DILUPBiCG: Iteration 3 residual = 0.000115163

DILUPBiCG: Iteration 4 residual = 3.877e-05

DILUPBiCG: Iteration 5 residual = 9.59773e-06

DILUPBiCG: Solving for Ux, Initial residual = 0.0157314, Final residual = 9.59773e-06, No Iterations 5

• Now, remove your copy of the global controlDict to go back to normal...

• In summary, the DebugSwithes only control different levels of Info-statements. No re-

compilation is needed when switching the level, but if new Info-statements are included,

re-compilation is needed. You can use this feature in your own development.

• This still offers no control of the running of the code while debugging...

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 7

Debugging OpenFOAM implementations with GDB

• Now it is time for some real debugging with the Gnu debugger (www.gnu.org/software/gdb/)

• GDB can be used for

− Programs written in C, C++, Ada, Pascal etc

− Running and stopping at specific positions in the code

− Examining variables at run-time

− Changing your program at run-time

• Bad news: The complete code needs to be re-compiled with a debug flag. This will produce

∼1Gb extra of OpenFOAM binaries.

• More bad news: The code will run much slower in debug mode, in particular when running

under GDB. The reason is that nothing can be optimized, and that there is much more

information to keep track of.

• Good news: I have compiled it for you here at Chalmers.

• More good news: You can compile only your development in debug-mode.

• Best news: GDB can help you implement a bug-free code, which can then be run fast in an

optimized version (unless the compiler optimization introduces some bug).

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 8

Running (and compiling) OpenFOAM in Debug mode

• In $WM_PROJECT_DIR/etc/bashrc you find an environment variable WM_COMPILE_OPTION
that can be set to Debug. That is what you need to do if you want to compile using the debug
flag, or use the Debug version. Have a look at our OF24xDebug alias, which help us set that
environment variable:

alias OF24xDebug=\

'export FOAM_INST_DIR=/chalmers/sw/unsup64/OpenFOAM;\

. $FOAM_INST_DIR/OpenFOAM-2.4.x/etc/bashrcHani WM_COMPILE_OPTION=Debug'

• In foam-extend-3.1 you instead do export WM_COMPILE_OPTION=Debug before sourc-

ing the OpenFOAM bashrc file.

• Make sure that you use the Debug mode by typing (in a new terminal):

OF24xDebug

which icoFoam

which should point at a path containing linux64GccDPDebug.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 9

Compiling an application (or library) in Debug mode

If you only want to debug your own development, you can compile only that in debug mode:

• Here use a terminal window with OF24x

• Copy the icoFoam solver, re-name the executable name and location, and modify the first

line in Make/options to:

EXE_INC = -ggdb3 -DFULLDEBUG \

With this you can debug only this application.

• Now you know how to compile all, or parts of, OpenFOAM in Debug mode.

• Now it is time to learn the basics of GDB...

• Do this in OF24xDebug

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 10

Debugging the icoFoam solver

• Let’s practice GDB on the icoFoam solver, using OF24xDebug

• The objective is to find out what a part of the code does.

• In $FOAM_SOLVERS/incompressible/icoFoam/icoFoam.C there is a line saying:

adjustPhi(phiHbyA, U, p);

What does this line do?

• Make sure that you have an icoFoam/cavity case, that you have run blockMesh on it,

and you are inside that case directory while running GDB.

• Start icoFoam under GDB in the cavity case directory:

gdb icoFoam

• Set a break point at the line in icoFoam.C where adjustPhi(phiHbyA, U, p); is used:

b icoFoam.C:80

• Start the execution by typing (disabling any functionObject):

run -noFunctionObjects (this will take some time...)

• The exectution will stop at the breakpoint saying something like:

Breakpoint 1, main (argc=1448, argv=0x3d1) at icoFoam.C:80

80 adjustPhi(phiHbyA, U, p);

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 11

Line-by-line checking of adjustPhi

• There are two ways of stepping in the file (don’t do these now!):

n (next) will step to the next line in the current file, but will not go into functions and

included files.

s (step) will go to the next line, also in functions and included files.

Both can be followed by a number specifying how many times to repeat the command.

If you want to repeat a previous command, just type enter.

• Step to the next line by typing ’s’ (allowing GDB to go inside the adjustPhi function).

We are now at line 40 in cfdTools/general/adjustPhi/adjustPhi.C

• Type ’where’ to see which file you are debugging, and which file called it. This is the ’stack’.

• Type ’list cfdTools/general/adjustPhi/adjustPhi.C:30,50’ to see source lines

30-50 of adjustPhi.C. Line 40 is the first line of the adjustPhi function.

• Since you are at that location, you can also simply type:

’l 30,50’

• Type ’l 1’ to list the first 10 lines of the file

• Press enter (or ’l’) to march through the file, 10 lines at a time.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 12

Line-by-line checking of adjustPhi

• Type ’n 2’ to avoid going into the evaluation of the boolean, instead we will see that we are

at line 43 in adjustPhi.C, so the if-statement is evaluated.

• Type ’p massIn’ and then ’p fixedMassOut’. Note that line 43 has not yet been evaluated,

so fixedMassOut can have any value!! (BUG IN GDB 7.x))

• Type ’s 5’ to step 5 lines, allowing to enter functions.

• Again, type ’where’ to see the stack.

• Type ’f 3’, where 3 is the frame number.

• Again, type ’where’ to see the stack (same as above, since you are still at the same location

but looking at another frame)

• Type ’l’ to see 10 lines around the one corresponding to frame 3.

• Type ’up or ’down to go up and down the stack

• Type ’f’ to show which frame you are looking at

• Type ’c’ to continue execution until it gets back to the breakpoint or terminates normally

• Type ’run’ to restart the degugging from the beginning if needed. Type ’quit’ to quit.

• Stepping and listing the code will show every single step that will be taken. You will under-

stand that adjustPhi ensures global continuity.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 13

Learn more on GDB

• See http://www.gnu.org/software/gdb

• There are some interfaces to GDB:

− See http://www.gnu.org/software/gdb/links/

− ddd

− emacs ... next slide

• Macros for GDB/OpenFOAM: http://openfoamwiki.net/index.php/Contrib_gdbOF

• eclipse is another alternative (An Integrated Development Environment)

See: http://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_Eclipse

• Qt is yet another alternative

See: http://openfoamwiki.net/index.php/HowTo_Use_OpenFOAM_with_QtCreator

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 14

GDB in emacs

• In the cavity case, run emacs

• Click Tools/Debugger (GDB)

• Type icoFoam (appears at the bottom of emacs, as part of a GDB command)

• Type b icoFoam.C:80, as before.

• Type run -noFunctionObjects. (clicking GO will not work with functionObjects)

The execution stops at line 80 in icoFoam.C, and emacs shows the output of icoFoam in the

lower window, and the surrounding code in the upper window.

• Mark phiHbyA in the upper window and click Gud/Watch Expression, and you should

get a window (Speedbar) showing which class it belongs to and the possibility to examine it

more.

• Click Next Line until you are at the line with if (nonOrth == nNonOrthCorr). Add

nonOrth and nNonOrthCorr to Gud/Watch Expression, and you see that they are the

same, i.e. the if-statement is true (check by clicking on Next Line again!). Let’s examine

that line closer by clicking Step Line. Emacs may ask if you want to follow a symbolic link

- just type yes. We now see that we are in fvMatrix.C.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 15

GDB in emacs

• Will we enter the if-statement? Mark in the lower window:

!psi_.mesh().fluxRequired(psi_.name())

and click on Gud/Watch Expression

This returns false, so we will not enter (check with Next Line). Note that you can change

from false to true in the Speedbar.

• Click Next Line until you are at the line with forAll, then click on Step Line and type

yes on the question on the symbolic link.

• The size() function returns the size of member data ptrs_ in the templated PtrList

class. Click Step Line and type yes.

• The PtrList seems to be pointing at the List class to evaluate the size() function. Click

on Step Line twice and we are back to the PtrList. Click on Step Line again, and we

are in a forAll loop in the fvMatrix.C file.

• Click on GO (or Gud/Continue) to continue to the next breakpoint or to terminate normally

• Let’s not dig any further, so click on Finish Function to get back to icoFoam.C, and we

can continue the execution on the highest level.

• Exit emacs.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 16

Floating point exception (or segmentation fault)

• Getting the error ’Floating point exception’ (or ’segmentation fault’) is a nightmare, since

you get no information what went wrong, or where it happened.

• We will now experience a ’Floating point exception’ and use gdb in emacs to find out where

it happens.

• Do the following:

run

rm -r pitzDaily

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily .

cd pitzDaily

blockMesh

sed -i s/0.375/0/g 0/k

• Run simpleFoam, and get a ’Floating point exception’.

• Run simpleFoam through gdb in emacs and again get the ’Floating point exception’.

• It stops in scalarField.C

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 17

Floating point exception (or segmentation fault)

• March up and down in the file stack, by clicking on Up Stack and Down Stack, accepting

to follow symbolic links, and realize that there is a division by k_

in tmp<fvScalarMatrix> epsEqn in file kEpsilon.C

• If you go to the top of the file stack, you see that kEpsilon.C was called using

turbulence->correct();, as we already know.

• Now we know that there is a problem with the division by k, and we realize that we initial-

ized k to zero.

CFD with OpenSource Software, 2015

©Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 18

Debugging a simple C++ code

In nonFailSafeCode.C:

#include <iostream>

using namespace std;

int main()

{

const int constantInt=5;

int zeroInt;

cout << "Please type the integer number zero!" << endl;

cin >> zeroInt;

cout << "constantInt = " << constantInt << endl;

cout << "zeroInt = " << zeroInt << endl;

cout << "constantInt/zeroInt = " << constantInt/zeroInt << endl;

return(0);

}

Compile and debug with:

g++ -g nonFailSafeCode.C -o nonFailSafeCode

