CHALMERS C’SE

Debugging OpenFOAM implementations with GDB
(Acknowledgements to Dr. Fabian Peng-Kéarrholm)

e It is impossible to do bug-free programming (trust me!), so you should always verify your
implementations.

e When you run into problems, such as code crash, or mysterious behaviour, you also need
some debugging approach.

e There are many debugging approaches, and we will discuss three alternatives here:

e | nf 0 statements in the code
e Built-in DebugSwi t ch option in OpenFOAM (similar to the above - you will see)

e Debugging using the Gnu debugger, GDB (ht t p: / / ww. gnu. or g/ sof t war e/ gdb/)
...with emacs or ddd

e We will now go through these alternatives...

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C*SE

Debugging using Info statements

e The simplest way to do debugging is to write out intermediate results to the screen, and
check that those results are correct.

e In OpenFOAM this is done using | nf 0 statements.

e This kind of debugging does not allow any control of the running of the code while debug-
ging. It will just print out additional information.

e | nf 0 debugging requires that new lines are inserted in the source code, and that the source
code must be re-compiled whenever a new | nf o statement has been added.

e When the code has been debugged, all the | nf o statements must be deleted, or commented,
so that you don’t get all that information when you are no longer debugging.

e OpenFOAM provides an alternative to removing all the | nf o statements, so that these
| nf 0 statements can be activated again later.

e This brings us to the next level of debugging in OpenFOAM...

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE
Debugging using OpenFOAM DebugSwitches

e In $VW PRQIECT DI R/ etc/ control Di ct (global control D ct dictionary), you can find
a list of DebugSwi t ches:

DebugSwi t ches

{
Anal yti cal 0;
API di f f Coef Func 0;
Ar 0;
}

e Each class thus has its own DebugSwi t ch.
e DebugSwi t ches set to zero will produce no debug information.

e Different levels of debugging can be chosen by setting a DebugSwi tchto 1, 2, 3 ...

e It is recommended to make a copy of that file to a specific location and make any modifica-
tions there. This file will override the original file:

OF21xDebug #If you have conpiled this according to the instructions
nkdir -p $HOVE/ . QpenFOAM $WM PRQIECT VERSI ON
cp $VWM PROIECT DI R/ etc/ control Di ct $HOVE/ . OpenFOAM $VW PROIECT _VERSI ON

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE
What is a DebugSwitch?

e Let’s have a look at the | duMat ri x DebugSwi t ch, which is set to 1.

e The | duMat ri x class is implemented in
$FOAM SRC/ OpenFOAM natrices/ | duMatri x/ | duMatri x

e Looking inside | dulMat ri x. C, we see a line:
def i neTypeNaneAndDebug(Foam : | duMatri x, 1);
This line defines the DebugSwi t ch name | duMat ri X, and sets its default value to 1.

e In | duMatri xTest s. C, in the same directory, you can find a member function pri nt (),
where all its contents are within an if-statement:
i f (debug)
{

e Boolean debug corresponds tothe | duMat ri x DebugSwi t ch, and itist r ue if the DebugSwi t ch
is greater than 0. The default value, both in the class definition, and in the global cont r ol Di ct
is 1, so the contents of the if-statement will be executed.

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE
Result of DebugSwitch lduMatrix 1; (or 2;)

e We see that the class will print out the member data sol ver Nane_, fi el dNane_,
i nitial Residual ,final Residual , and nolterations (unless the solution is sin-
gular). In other Words this is most of the information we usually get in the log-file:

DILUPBIi CG Solving for Ux, Initial residual = 1, Final residual = 2.96338e-06, No Iterations 8
DILUPBi CG Solving for Uy, Initial residual = 0, Final residual = 0, No Iterations O
DICPCG Solving for p, Initial residual = 1, Final residual = 7.55402e-07, No Iterations 35

e In the same file we can see that a | duMat ri x DebugSwi t ch value >=2 will give some extra

information (search for debug). In this case (test with i coFoam cavi ty):

Nor nal i sati on factor = 0.004

DILUPBICG Iteration O residual =1
DILUPBICG Iteration 1 residual = 0.153298
DILUPBICG Iteration 2 residual = 0.0375508
DILUPBIiCG Iteration 3 residual = 0.00820823
DILUPBICG Iteration 4 residual = 0.00174405
DILUPBICG Iteration 5 residual = 0.000357418
DILUPBICG Iteration 6 residual = 7.4212e-05
DILUPBICG Iteration 7 residual = 1.51806e-05
DILUPBIiCG Iteration 8 residual = 2.96338e-06

e In summary, the DebugSw t hes only control different levels of | nf o-statements. No re-
compilation is needed when switching the level, but if new | nf o-statements are included,
re-compilation is needed. You can use this feature in your own development.

e This still offers no control of the running of the code while debugging...

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE
Debugging OpenFOAM implementations with GDB

e Now it is time for some real debugging with the Gnu debugger (Wwwv. gnu. or g/ sof t war e/ gdb/)
e GDB can be used for

— Programs written in C, C++, Ada, Pascal etc
— Running and stopping at specific positions in the code
— Examining variables at run-time

— Changing your program at run-time

e Bad news: The complete code needs to be re-compiled with a debug flag. This will produce
~1Gb extra of OpenFOAM binaries.

e More bad news: The code will run much slower in debug mode, in particular when running
under GDB. The reason is that nothing can be optimized, and that there is much more
information to keep track of.

e Good news: I have compiled it for you here at Chalmers.

e Best news: GDB can help you implement a bug-free code, which can then be run fast in an
optimized version (unless the compiler optimization introduces some bug).

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C*SE
Compiling OpenFOAM in Debug mode

e In $VWM PRQIECT DI R/ et ¢/ bashr ¢ you find an environment variable WM COVPI LE_OPTI ON

that can be set to Debug. That is what you need to do if you want to compile using the debug
flag, or use the Debug version. Have a look at our OF21xDebug alias, which help us set that
environment variable:

al i as OF21xDebug=\
"export FOAM I NST_DI R=/ chal nmer s/ sw unsup64/ QoenFOAM \
. $FOAM | NST_DI R/ OpenFOAM 2. 1. x/ et ¢/ bashr cHani WM COVPI LE_OPTI ON=Debug’

e In1l. 6- ext youinstead doexport WM COVPI LE OPTI ON=Debug before sourcing the Open-
FOAM bashre file.

e Make sure that you use the Debug mode by typing:
whi ch i coFoam
which should point at a path containing | i nux64GccDPDebug.
Now you can compile or run all or parts of OpenFOAM in Debug mode.

e Now it 1s time to learn the basics of GDB...

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Debugging the icoFoam solver

e Let’s practice GDB on the i coFoamsolver.
e The objective is to find out what a part of the code does.

e In $FOAM SOLVERS/ i nconpr essi bl e/ i coFoam i coFoam Cthere is a line saying:
adj ust Phi (phi, U, p);
What does this line do?

e Make sure that you have an i coFoani cavi ty case, that you have run bl ockMesh on it,
and you are inside that case directory while running GDB.

e Start i coFoamunder GDB in the cavi t y case directory:
gdb i coFoam

e Set a break point at the line in i coFoam Cwhere adj ust Phi (phi, U, p); isused:
b i coFoam C: 75 (line 76 in 1. 6- ext)

e Start the execution by typing:
run (this will take some time...)

e The exectution will stop at the breakpoint saying something like:
Breakpoint 1, main (argc=1448, argv=0x3dl) at icoFoam C. 75
75 adj ust Phi (phi, U, p);

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE
Line-by-line checking of adjustPhi

e There are two ways of stepping in the file (don’t do these now!):
n (next) will step to the next line in the current file, but will not go into functions and
included files.
s (step) will go to the next line, also in functions and included files.
Both can be followed by a number specifying how many times to repeat the command.

e Step to the next line by typing ’s’ (allowing GDB to go inside the adj ust Phi function).
We are now at line 41 in cf dTool s/ gener al / adj ust Phi / adj ust Phi . C

e Type 'wher e’ to see which file you are debugging, and which file called it.

e Type 'l i st cfdTool s/ general / adj ust Phi / adj ust Phi . C: 30, 50’ to see source lines
30- 50 of adj ust Phi . C. Line 41 is the first line of the adj ust Phi function.

e Type ’'n 2’to avoid going into the evaluation of the boolean, instead we will see that we are
at line 47 in adj ust Phi . C, so the if-statement is evaluated.

e Type’p massln’andthen’p fi xedMassQut’. Note that line 47 has not yet been evaluated,
so f i xedMassQut can have any value!!

e Type r un’ to restart the degugging from the beginning if needed. Type ’qui t’ to quit.

e Stepping and listing the code will show every single step that will be taken. You will under-
stand that adj ust Phi ensures global continuity.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 243

CHALMERS C’SE

Learn more on GDB

e See gdbf oam pdf , by Dr. Fabian Peng-Kéarrholm, on the 2007 course homepage.
e See htt p://ww. gnu. or g/ sof t war e/ gdb
e There are some interfaces to GDB:

— See htt p: //wwv. gnu. or g/ sof t war e/ gdb/ | i nks/
— ddd

— enmacs ... next slide

e Macros for GDB/OpenFOAM: ht t p: / / openf oamm ki . net /i ndex. php/ Contri b_gdbOF

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

GDB in emacs

e In the cavity case, run enacs
e Click Tool s/ Debugger (GDB)

e Type i coFoam(appears at the bottom of emacs, as part of a GDB command)
e Type b i coFoam C. 75, as before.

e Click on GO
The execution stops at line 75 in icoFoam.C, and emacs shows the output of icoFoam in the
upper window, and the surrounding code in the lower window.

e Click Next Li ne until you are at the line withif (nonOrth == nNonOrt hCorr).
Type in the upper window:

p nonOth
p NnNonOrt hCorr

They are the same, to the boolean is true, which means that the line inside the if-statement
will be executed (check by clicking on Next Li ne). Let’s examine that line closer by clicking
St ep Li ne. Emacs will ask if you want to follow a symbolic link - just type yes. We now
see that we areinfvMatri x. C.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 245

CHALMERS C*SE

GDB in emacs

e Will we enter the if-statement? Type in the upper window:
p !'psi_.nmesh().fluxRequired(psi_.nane())
which returns false, so we will not enter (check with Next Li ne)

e Click Next Li ne until you are at the line with f or Al | , then click on St ep Li ne and type
yes on the question on the symbolic link.

e The si ze() function returns the size of member data ptrs_ in the templated PtrLi st
class. Click St ep Li ne and type yes.

e The Pt r Li st seems to be pointing at the Li st class to evaluate the si ze() function. Click
on St ep Li ne twice and we are back to the Pt rLi st. Click on St ep Li ne again, and we
arein afor Al |l loopin thefvMatri x. Cfile.

e Let’s not dig any further, so click on Fi ni sh Functi on to get back toi coFoam C, and we
can continue the execution on the highest level.

e EExit enacs.

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C*SE
Floating point exception (or segmentation fault)

e Getting the error 'Floating point exception’ (or 'segmentation fault’) is a nightmare, since
you get no information what went wrong, or where it happened.

e We will now experience a 'Floating point exception’ and use gdb in enacs to find out where
it happens.

e Do the following:

run
rm-r pitzDaily

cp -r $FOAM TUTORI ALS/ i nconpr essi bl e/ si npl eFoani pitzDaily .
cd pitzbDaily

bl ockMesh

sed -1 s/0.375/0/g 0/k

e Run si npl eFoam and get a ’Floating point exception’.
e Run si npl eFoamthrough gdb in enacs and again get the 'Floating point exception’.
e You get something like:

Program recei ved signal SIG-PE, Arithnetic exception.
0x00007ffffo604a06a in Foam :divide (res=..., fl=..., f2=..) at
fields/Fields/scal arFi el d/ scal arFi el d. C. 95

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Floating point exception (or segmentation fault)

e Type wher e to get the full list of calls to reach the current position (si npl eFoam C calls
kEpsi | on. C, calls Geonetri cScal ar Fi el d. C, calls Geonetri cScal ar Fi el d. C,
calls scal ar Fi el d. C, where the problem occurs at line 96.

e It seems to have something to do with division, but it is still quite difficult to understand
why.

e March up and down in the file stack (the list above), by clicking on Up St ack and Down St ack,
accepting to follow symbolic links, and realize that there is a division by k__
int np<fvScal ar Mat ri x> epsEqn in file KEpsi | on. C

e If you go to the top of the file stack, you see that kEpsi | on. C was called using
t ur bul ence->correct();, as we already know.

e Now we know that there is a problem with the division by k, and we realize that we initial-
ized k to zero.

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Debugging a simple C++ code
In nonFai | Saf eCode. C.

#i ncl ude <i ostreanp
usi ng nanespace std;

i nt mai n()

{

const i nt constantl nt=5;

I nt zerol nt;

cout << "Pl ease type the integer nunber zero!" << endl;
cin >> zerolnt;

cout << "constantlnt = " << constantlnt << endl;

cout << "zerolnt =" << zerolnt << endl;

cout << "constantlnt/zerolnt =" << constantlInt/zerolnt << endl;
return(0);

}

Compile and debug with:
g++ -g nonFai |l Saf eCode. C -0 nonFai | Saf eCode

Hdkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

