
POLITECNICO DI MILANO CHALMERS

OpenFOAM programming tutorial

Tommaso Lucchini

Department of Energy
Politecnico di Milano

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Outline

• Overview of the OpenFOAM structure

• A look at icoFoam

• Customizing an application

• Implementing a transport equation in a new application

• Customizing a boundary condition

• General information

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Structure of OpenFOAM
The OpenFOAM code is structures as follows (type foam and then ls).

• applications: source files of all the executables:
◮ solvers
◮ utilities
◮ bin
◮ test

• bin: basic executable scripts.

• doc: pdf and Doxygen documentation.
◮ Doxygen
◮ Guides-a4

• lib: compiled libraries.

• src: source library files.

• test: library test source files.

• tutorials: tutorial cases.

• wmake: compiler settings.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Structure of OpenFOAM
Navigating the source code

• Some useful commands to navigate inside the OpenFOAM sources:
◮ app = $WM_PROJECT_DIR/applications
◮ sol = $WM_PROJECT_DIR/applications/solvers
◮ util = $WM_PROJECT_DIR/applications/utilities
◮ src = $WM_PROJECT_DIR/src

• Environment variables:
◮ $FOAM_APP = $WM_PROJECT_DIR/applications
◮ $FOAM_SOLVERS = $WM_PROJECT_DIR/applications/solvers
◮ $FOAM_UTILITIES = $WM_PROJECT_DIR/applications/utilit ies
◮ $FOAM_SRC = $WM_PROJECT_DIR/src

• OpenFOAM source code serves two functions:
◮ Efficient and customised top-level solver for class of physics. Ready to run in

a manner of commercial CFD/CCM software
◮ Example of OpenFOAM classes and library functionality in use

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Walk through a simple solver

Solver walk-through: icoFoam

• Types of files

◮ Header files

Located before the entry line of the executable
int main(int argc, char * argv[])
Contain various class definitions
Grouped together for easier use

◮ Include files

Often repeated code snippets, e.g. mesh creation, Courant number
calculation and similar
Held centrally for easier maintenance
Enforce consistent naming between executables, e.g. mesh, runTime

◮ Local implementation files

Main code, named consistently with the executable
createFields.H

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Walk through icoFoam
File organization
sol → cd incompressible → cd icoFoam

• The icoFoam directory consists of what follows (type ls):

createFields.H FoamX/ icoFoam.C icoFoam.dep Make/

• The FoamXdirectory is for pre-processing.

• The Make directory contains instructions for the wmakecompilation command.

• icoFoam.C is the main file, while createFields.H is included by icoFoam.C .

• The file fvCFD.H ,included by icoFoam.C , contains all the class definitions
which are needed by icoFoam . See the file Make/options to understand
where fvCFD.H is included from:

◮ $FOAM_SRC/finiteVolume/lnInclude/fvCFD.H , symbolic link to:
$FOAM_SRC/finiteVolume/cfdTools/general/include/fvC FD.H

• Use the command find PATH -iname " * LETTERSINFILENAME* " to find
where in PATHa file name containing LETTERSFILENAMEin its file name is
located.

Example: find $WM_PROJECT_DIR -iname " * fvCFD.H * "

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Walk through icoFoam
A look into fvCFD.H

#ifndef fvCFD_H
#define fvCFD_H

#include "parRun.H"

#include "Time.H"
#include "fvMesh.H"
#include "fvc.H"
#include "fvMatrices.H"
#include "fvm.H"
#include "linear.H"
#include "calculatedFvPatchFields.H"
#include "fixedValueFvPatchFields.H"
#include "adjustPhi.H"
#include "findRefCell.H"
#include "mathematicalConstants.H"

#include "OSspecific.H"
#include "argList.H"

#ifndef namespaceFoam
#define namespaceFoam

using namespace Foam;
#endif

#endif

The inclusion files before main
are all the class definitions
required by icoFoam . Have a
look into the source files to
understand what these classes
do.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Walk through icoFoam
A look into icoFoam.C, case setup and variable initialization

• icoFoam starts with
int main(int argc, char * argv[])

where int argc and char * argv[] are the number of parameters and the
actual parameters used when running icoFoam .

• The case is initialized by:
include "setRootCase.H"

include "createTime.H"
include "createMesh.H"
include "createFields.H"
include "initContinuityErrs.H"

where all the included files except createFields.H are in
$FOAM_SRC/finiteVolume/lnInclude .

• createFields.H is located in the icoFoam directory. It initializes all the
variables used in icoFoam . Have a look inside it and see how variables are
created.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Walk through icoFoam
A look into icoFoam.C, time-loop code

• The time-loop starts by:
for (runTime++; !runTime.end(); runTime++)
and the rest is done at each time-step

• The fvSolution subdictionary PISO is read, and the Courant Number is
calculated and written to the screen by (use the find command):
include "readPISOControls.H"
include "CourantNo.H"

• The momentum equations are defined and a velocity predictor is solved by:
fvVectorMatrix UEqn
(

fvm::ddt(U)
+ fvm::div(phi, U)
- fvm::laplacian(nu, U)

);

solve(UEqn == -fvc::grad(p));
Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Walk through icoFoam
A look into icoFoam.C, the PISO loop

• A PISO corrector loop is initialized by:

for (int corr=0; corr<nCorr; corr++)

• The PISO algorithm uses these member functions:

◮ A() returns the central coefficients of an fvVectorMatrix
◮ H() returns the H operation source of an fvVectorMatrix
◮ Sf() returns cell face area vector of an fvMesh
◮ flux() returns the face flux field from an fvScalarMatrix
◮ correctBoundaryConditions() corrects the boundary fields of a

volVectorField

• Identify the object types (classes) and use the OpenFOAM Doxygen
(http://foam.sourceforge.net/doc/Doxygen/html) to better
understand them what they do

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Walk through icoFoam
A look into icoFoam.C, write statements

• At the end of icoFoam there are some write statements

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

• write() makes sure that all the variables that were defined as an IOobject
with IOobject::AUTO_WRITE are written to the time directory according to the
settings in the $FOAM_CASE/system/controlDict file.

• elapsedCPUTime() is the elapsed CPU time.

• elapsedClockTime() is the elapsed wall clock time.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
OpenFOAM work space
General information

• OpenFOAM is a library of tools, not a monolithic single-executable

• Most changes do not require surgery on the library level: code is developed in
local work space for results and custom executables

• Environment variables and library structure control the location of the library,
external packages (e.g. gcc, Paraview) and work space

• For model development, start by copying a model and changing its name: library
functionality is unaffected

• Local workspace:

◮ Run directory : $FOAM_RUN. Ready-to-run cases and results, test loop etc.
May contain case-specific setup tools, solvers and utilities.

◮ Local work space : ˜/OpenFOAM/tommaso-1.5-dev/ . Contains
applications, libraries and personal library and executable space.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Creating your OpenFOAM applications

1. Find appropriate code in OpenFOAM which is closest to the new use or provides
a starting point

2. Copy into local work space and rename

3. Change file name and location of library/executable: Make/files

4. Environment variables point to local work space applications and libraries:
$FOAM_PROJECT_USER_DIR, $FOAM_USER_APPBINand
$FOAM_USER_LIBBIN

5. Change the code to fit your needs

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
myIcoFoam
Creating the new application directory, setting up Make/files, compiling

• The applications are located in $WM_PROJECT_DIR/applications
◮ cd $WM_PROJECT_DIR/applications/solvers/incompressib le

• Copy the icoFoam solver and put it in the
$WM_PROJECT_USER_DIR/applications directory

◮ cp -r icoFoam $WM_PROJECT_DIR/applications

• Rename the directory and the source file name, clean all the dependancies and
◮ mv icoFoam myIcoFoam
◮ cd icoFoam
◮ mv icoFoam.C myIcoFoam.C
◮ wclean

• Go the the Make directory and change files as follows:

myIcoFoam.C
EXE = $(FOAM_USER_APPBIN)/myIcoFoam

• Now compile the application with wmake in the myIcoFoam directory. rehash if
necessary.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Creating your OpenFOAM applications

Example:

• Creating the application icoScalarTransportFoam . It is an incompressible
solver with a scalar transport equation (species mass fraction, temperature, . . .).

• To do this, we need to create a new application based on the icoFoam code.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Creating the new application directory, setting up Make/files

• The applications are located in $WM_PROJECT_DIR/applications
◮ cd $WM_PROJECT_DIR/applications/solvers/incompressib le

• Copy the icoFoam solver and put it in the
$WM_PROJECT_USER_DIR/applications directory

◮ cp -r icoFoam $WM_PROJECT_DIR/applications

• Rename the directory and the source file name, clean all the dependancies and

◮ mv icoFoam icoScalarTransportFoam
◮ cd icoFoam
◮ mv icoFoam.C icoScalarTransporFoam.C
◮ wclean

• Go the the Make directory and change files as follows:

icoScalarTransportFoam.C
EXE = $(FOAM_USER_APPBIN)/icoScalarTransportFoam

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Physical/numerical model modeling

• We want to solve the following transport equation for the scalar field T

• It is an unsteady, convection-diffusion transport equation. ν is the kinematic
viscosity.

∂T
∂t

+ ∇ · (UT) −∇ · (ν∇T) = 0 (1)

• What to do:

◮ Create the geometric field T in the createFields.H file
◮ Solve the transport equation for T in the icoScalarTransportFoam.C file.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Creating the field T

• Modify createFields.H adding this volScalarField constructor before
#include "createPhi.H" :

Info<< "Reading field T\n" << endl;
volScalarField T
(

IOobject
(

"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Creating the field T

• We have created a volScalarField object called T.

• T is created by reading a file (IOobject::MUST_READ) called T in the
runTime.timeName() directory. At the beginning of the simulation,
runTime.timename() is the startTime value specified in the controlDict
file.

• T will be automatically written (IOobject::AUTO_WRITE) in the
runTime.timeName() directory according to what is specified in the
controlDict file of the case.

• T is defined on the computational mesh (mesh object):

◮ It has as many internal values (internalField) as the number of mesh
cells

◮ It needs as many boundary conditions (boundaryField) as the mesh
boundaries specified in the constant/polyMesh/boundary file of the
case.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Solving the transport equation for T

• Create a new empty file, TEqn.H :

◮ echo > TEqn.H

• Include it in icoScalarTransportFoam.C at the beginning of the PISO loop:

for (int corr=0; corr<nCorr; corr++)
{

include "TEqn.H"

volScalarField rUA = 1.0/UEqn.A();

• Now we will implement the scalar transport equation for T in
icoScalarTransportFoam ...

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Solving the transport equation for T

• This the transport equation:

∂T
∂t

+ ∇ · (UT) −∇ · (ν∇T) = 0

• This is how we implement and solve it in TEqn.H

solve
(

fvm::ddt(T)
+ fvm::div(phi, T)
- fvm::laplacian(nu, T)

);

• Now compile the application with wmake in the icoScalarTransportFoam
directory. rehash if necessary.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
icoScalarTransportFoam: setting up the case

• Copy the cavity tutorial case in your $FOAM_RUNdirectory and rename it
◮ cp -r $FOAM_TUTORIALS/icoFoam/cavity $FOAM_RUN
◮ mv cavity cavityScalarTransport

• Introduce the field T in cavityScalarTransport/0 directory:
◮ cp p T

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Running the application - case setup - startTime

• Modify T as follows:

dimensions [0 0 0 0 0 0 0];
internalField uniform 0;
boundaryField
{

movingWall
{

type fixedValue;
value uniform 1;

}
fixedWalls
{

type fixedValue;
value uniform 0;

}
frontAndBack
{

type empty;
}

}

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Running the application - case setup - system/fvSchemes

• Modify the subdictionary divSchemes , introducing the discretization scheme for
div(phi,T)

divSchemes
{

default none;
div(phi,U) Gauss linear;
div(phi,T) Gauss linear;

}

• Modify the subdictionary laplacianSchemes , introducing the discretization
scheme for laplacian(nu,T)

laplacianSchemes
{

default none;
laplacian(nu,U) Gauss linear corrected;
laplacian((1|A(U)),p) Gauss linear corrected;
laplacian(nu,T) Gauss linear corrected;

}

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
Running the application - case setup - system/fvSolution

• Introduce the settings for T in the solvers subdictionary

T PBiCG
{

preconditioner
{

type DILU;
}

minIter 0;
maxIter 500;
tolerance 1e-05;
relTol 0;

};

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
icoScalarTransportFoam
icoScalarTransportFoam: post-processing

• Run the case
◮ icoScalarTransportFoam -case cavityScalarTranport

• Nice picture:

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
General information

Run-Time Selection Table Functionality
• In many cases, OpenFOAM provides functionality selectable at run-time which

needs to be changed for the purpose. Example: viscosity model; ramped fixed
value boundary conditions

• New functionality should be run-time selectable (like implemented models)
• . . . but should not interfere with existing code! There is no need to change

existing library functionality unless we have found bugs
• For the new choice to become available, it needs to be instantiated and linked

with the executable.
Boundary Condition: Ramped Fixed Value

• Find closest similar boundary condition: oscillatingFixedValue

• Copy, rename, change input/output and functionality. Follow existing code
patterns

• Compile and link executable; consider relocating into a library
• Beware of the defaultFvPatchField problem: verify code with print

statements

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
What rampedFixedValue should do

0 3 6 9 12
Time

0

2

4

6

8

10
da

ta

low ref. value

high ref. value

End ramp

Start ramp

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
In a new application icoFoamRamped

• cp $FOAM_SOLVERS/compressible/icoFoam \

$FOAM_USER_DIR/applications/icoFoamRamped

• Copy the content of
$FOAM_SRC/fields/fvPatchFields/derived/oscillatingF ixedValue/
to $WM_PROJECT_USER_DIR/applications/icoFoamRamped/

• Change the file names
mv oscillatingFixedValueFvPatchField.C rampedFixedVal ueFvPatchField.C
mv oscillatingFixedValueFvPatchField.H rampedFixedVal ueFvPatchField.H
mv oscillatingFixedValueFvPatchFields.C rampedFixedVa lueFvPatchFields.C
mv oscillatingFixedValueFvPatchFields.H rampedFixedVa lueFvPatchFields.H

• wclean

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchField.H

• Template class, contains the class definition for the generic objects.

• Replace the string oscillating with the string ramped (use the replace
function of any text editor with the case sensitive option. This has the following
effects:

◮ The new class begins with
#ifndef rampedFixedValueFvPatchField_H
#define rampedFixedValueFvPatchField_H

◮ Class declaration
template<class Type>
class rampedFixedValueFvPatchField

◮ Objects we need:
Reference value low bound → Field<Type> refValueLow_;
Reference value high bound → Field<Type> refValueHigh_;
Ramp start time → scalar startRamp_;
Ramp end time → scalar endRamp_;
Current time index → label curTimeIndex_;

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchField.H

• All the constructors
//- Construct from patch and internal field
rampedFixedValueFvPatchField
(

const fvPatch&,
const DimensionedField<Type, volMesh>&

);
// other constructors

//- Construct from patch, internal field and dictionary
//- Construct by mapping given rampedFixedValueFvPatchFi eld
// onto a new patch
//- Construct as copy
//- Construct and return a clone
//- Construct as copy setting internal field reference
//- Construct and return a clone setting internal field refe rence

• Private member function to evaluate the boundary condition: currentScale()
• Provide member functions to access them (const/non const)

//- Return the ref value
Field<Type>& refValueHigh()
{

return refValueHigh_;
}

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchField.H

• Other member functions:
◮ Mapping

//- Map (and resize as needed) from self given a mapping objec t
virtual void autoMap
(

const fvPatchFieldMapper&
);

//- Reverse map the given fvPatchField onto this fvPatchFie ld
virtual void rmap
(

const fvPatchField<Type>&,
const labelList&

);

◮ Evaluation of the boundary condition
virtual void updateCoeffs();

◮ Write to file:
virtual void write(Ostream&) const;

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchField.C

• Contains the class implementation:
◮ Constructors
◮ Private member functions:

Access (if not defined in the .H file)
Map
Evaluation
Write

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchField.C - Constructors

template<class Type>
rampedFixedValueFvPatchField<Type>::rampedFixedValu eFvPatchField
(

const fvPatch& p,
const Field<Type>& iF,
const dictionary& dict

)
:

fixedValueFvPatchField<Type>(p, iF),
refValueLow_("refValueLow", dict, p.size()),
refValueHigh_("refValueHigh", dict, p.size()),
startRamp_(readScalar(dict.lookup("startRamp"))),
endRamp_(readScalar(dict.lookup("endRamp"))),
curTimeIndex_(-1)

{
Info << "Hello from ramp! startRamp: " << startRamp_

<< " endRamp: " << endRamp_ << endl;

if (dict.found("value"))
{

fixedValueFvPatchField<Type>::operator==
(

Field<Type>("value", dict, p.size())
);

}
else
{

fixedValueFvPatchField<Type>::operator==
(

refValueLow_ + (refValueHigh_ - refValueLow_) * currentScale()
);

}
}

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchField.C - Private member function

• currentScale() is used to evaluate the boundary condition. It is the ramp fraction
at time t :
template<class Type>
scalar rampedFixedValueFvPatchField<Type>::currentSc ale() const
{

return
min
(

1.0,
max
(

(this->db().time().value() - startRamp_)/
(endRamp_ - startRamp_),
0.0

)
);

}

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchField.C - updateCoeffs()

• updateCoeffs(): evaluates the boundary conditions

// Update the coefficients associated with the patch field
template<class Type>
void rampedFixedValueFvPatchField<Type>::updateCoeff s()
{

if (this->updated())
{

return;
}

if (curTimeIndex_ != this->db().time().timeIndex())
{

Field<Type>& patchField = * this;

patchField =
refValueLow_

+ (refValueHigh_ - refValueLow_) * currentScale();

curTimeIndex_ = this->db().time().timeIndex();
}

fixedValueFvPatchField<Type>::updateCoeffs();
}

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchField.C - write(Ostream& os)

• This function writes to a file os the boundary condition values. Useful when the
simulation is restarted from the latest time.
template<class Type>
void rampedFixedValueFvPatchField<Type>::write(Ostre am& os) const
{

fvPatchField<Type>::write(os);
refValueLow_.writeEntry("refValueLow", os);
refValueHigh_.writeEntry("refValueHigh", os);
os.writeKeyword("startRamp")

<< startRamp_ << token::END_STATEMENT << nl;
os.writeKeyword("endRamp")

<< endRamp_ << token::END_STATEMENT << nl;
this->writeEntry("value", os);

}

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchFields.H

• The generic rampedFixedValueFvPatchField<Type> class becomes
specific for scalar , vector , tensor , . . . by using the command:

makePatchTypeFieldTypedefs(rampedFixedValue)

• This function is defined in $FOAM_SRC/finiteVolume/fvPatchField.H and
it uses typedef for this purpose:

typedef rampedFixedValueFvPatchField<scalar> rampedFi xedValueFvPatchScalarField;
typedef rampedFixedValueFvPatchField<vector> rampedFi xedValueFvPatchVectorField;
typedef rampedFixedValueFvPatchField<tensor> rampedFi xedValueFvPatchTensorField;

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
rampedFixedValueFvPatchFields.C

• It adds to the runTimeSelectionTable the new boundary conditions created
in rampedFixedValueFvPatchFields.H , by calling the function:
makePatchFields(rampedFixedValue);

• In this way, the new boundary condition can be used for volScalarField ,
volVectorField , volTensorField , . . . just typing in the field file:

boundaryField // example for a volScalarField
{

// some patches
//
inlet
{

type rampedFixedValue;
refValueLow uniform 10;
refValueHigh uniform 20;
startRamp 20;
endRamp 50;

}
}

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
In the solver, modification of Make/files

• The Make/files should be modified as follows:

icoFoamRamped.C
rampedFixedValueFvPatchFields.C

EXE = $(FOAM_USER_APPBIN)/icoFoamRamped

• wmake

• In this way, the new boundary condition can be only used by the
icoFoamRamped application.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
In a dynamic library

• If all the user-defined boundary conditions were put in a library, they will be
available to all the solvers

• Create in the $WM_PROJECT_USER_DIRthe directory myBCs
• Copy in that directory all the rampedFixedValue * files
• Create the Make directory, with two empty files inside: files and options

◮ Make/files
rampedFixedValueFvPatchFields.C

LIB = $(FOAM_USER_LIBBIN)/libMyBCs

◮ Make/options
EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude

EXE_LIBS = \
-lfiniteVolume

◮ Compile the library in the $WM_PROJECT_USER_DIR/myBCswith the
command
wmake libso

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a new boundary condition
In a dynamic library, to be used by the solvers

• The boundary condition will not be recognized by any of the original OpenFOAM
solvers unless we tell OpenFOAM that the library exists. In OpenFOAM-1.5 this
is done by adding a line in the system/controlDict file:

libs ("libMyBCs.so");

i.e. the library must be added for each case that will use it, but no re-compilation
is needed for any solver. libMyBCs.so is found using the LD_LIBRARY_PATH
environment variable, and if you followed the instructions on how to set up
OpenFOAM and compile the boundary condition this should work automatically.

• You can now set up the case as we did earlier and run it using the original
icoFoam solver. icoFoam does not need to be recompiled, since libMyBCs.so
is linked at run-time using dlopen.

• Example. Solve the cavity tutorial with the user defined library of boundary
conditions.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a turbulence model
General information

• Creating a new turbulence model (based on the k − ε model) that can be used by
all the existing OpenFOAM applications.

• A user library, called myTurbulenceModels will be created. It will be included
run-time as for the ramped fixed value boundary condition.

• The turbulence model will be tested on the pitzDaily tutorial case of the
simpleFoam application.

• A RASModel object is created in the createFields.H file of the simpleFoam
application:

autoPtr<incompressible::RASModel> turbulence
(

incompressible::RASModel::New(U, phi, laminarTranspor t)
);

• At the end of the PISO Loop, the function turbulence->correct() will be
called. This function solves the transport equation of the turbulence fields
(k , ε, ω, . . .) and updates the turbulence viscosity field
(turbulence->muEff()).

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a turbulence model
A short look to the incompressible/RASModel library

• Type cd $FOAM_SRC/turbulenceModels/ and then type ls :
LES RAS

• The RAS/incompressible directory contains:
◮ Boundary conditions for k and ε fields at the inlet located in the

derivedFvPatchFields directory
◮ Different turbulence models that can be used by incompressible RANS

solvers (kEpsilon, kOmega, laminar, LaunderSharmaKE . . .)
◮ Implementation of the wall functions (wallFunctions)

• Create a new directory called myTurbulenceModels located in
˜/OpenFOAM/root-1.5-dev/applications

• Copy the kEpsilon model directory into
˜/OpenFOAM/root-1.5-dev/applications/myTurbulenceMo dels

• Rename it mykEpsilon . Rename the files in the directory:
mv kEpsilon.H mykEpsilon.H
mv kEpsilon.C mykEpsilon.C

• Replace the word kEpsilon with mykEpsilon in the .C and .H files.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a turbulence model
A look to mykEpsilon.H

• The class mykEpsilon is derived from the incompressible/RASModel class.

• Class members:
◮ Model constants (Cµ,C1, C2, αǫ).
◮ Fields: k , ε, νt (turbulence viscosity).
◮ Typename to be run-time selectable.

• Constructors, destructors

• Class functions

◮ Access: reference to the class members.
◮ Fields: effective diffusivity for k , effective diffusivity for ε, Reynolds stress

tensor, source term for the momentum equation
◮ Edit: the correct() function solves the transport equations for k and ε|

and updates the νt field accordingly.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a turbulence model
A look to mykEpsilon::correct()

void mykEpsilon::correct()
{

transportModel_.correct();

if (!turbulence_)
{

return;
}

RASModel::correct();

volScalarField G = nut_ * 2* magSqr(symm(fvc::grad(U_)));

include "wallFunctionsI.H"

• The kinematic viscosity field is updated when the
transportModel_.correct() function is called. Have a look to
$FOAM_SRC/transportModels/incompressible/viscosityM odels to
see the transport models available for incompressible flows.

• The correct() function of the base class is called to update the
nearWallDist field if the mesh changes (motion/topological change).

• The Gfield is updated and then the wallFunctionsI.H file updates the Gand ε

fields at the wall boundary cells.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a turbulence model
A look to mykEpsilon::correct()

// Dissipation equation
tmp<fvScalarMatrix> epsEqn
(

fvm::ddt(epsilon_)
+ fvm::div(phi_, epsilon_)
+ fvm::SuSp(-fvc::div(phi_), epsilon_)
- fvm::laplacian(DepsilonEff(), epsilon_)

==
C1_* G* epsilon_/k_

- fvm::Sp(C2_ * epsilon_/k_, epsilon_)
);

epsEqn().relax();

include "wallDissipationI.H"

solve(epsEqn);
bound(epsilon_, epsilon0_);

• The transport equation for ǫ is firstly constructed and then relaxed.

• In the wallDissipationI.H file the boundary values of the ε field are forced to
the ones calculated in the wallFunctions.H file previously.

• The equation is then solved and, eventually, bounded.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a turbulence model
A look to mykEpsilon::correct()

// Turbulent kinetic energy equation
tmp<fvScalarMatrix> kEqn
(

fvm::ddt(k_)
+ fvm::div(phi_, k_)
- fvm::Sp(fvc::div(phi_), k_)
- fvm::laplacian(DkEff(), k_)

==
G

- fvm::Sp(epsilon_/k_, k_)
);

kEqn().relax();
solve(kEqn);
bound(k_, k0_);

// Re-calculate viscosity
nut_ = Cmu_ * sqr(k_)/epsilon_;

include "wallViscosityI.H"

• The same procedure (equation definition, relax, solving and bounding) is also
used fo the k field.

• The turbulent viscosity is updated.
• And finally wallViscosityI.H calculates the turbulence viscosity at the wall

boundary cells.

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a turbulence model
Library implementation

• The Make directory contains:

◮ files :
mykEpsilon/mykEpsilon.C

LIB = $(FOAM_USER_LIBBIN)/libmyTurbulenceModels

◮ options :
EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/turbulenceModels/RAS/incompressible/ln Include \
-I$(LIB_SRC)/transportModels/incompressible/lnInclu de

LIB_LIBS = \
-lfiniteVolume \
-lmeshTools \
-lincompressibleRASModels \
-lincompressibleTransportModels

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Implementing a turbulence model
Running the case with the mykEpsilon model

• Add the following lines after the constructor of the mykEpsilon turbulence
model:

Info << "hello mykEpsilon!!!!!!!" << endl;

• Copy the pitzDaily tutorial case to your run directory and rename it as
pitzDailyMykEpsilon .
cp -r $FOAM_TUTORIALS/simpleFoam/pitzDaily pitzDailyMy kEpsilon

• Modify the pitzDailyMykEpsilon/constant/RASProperties
• Specify in the constant/RASProperties file of the case that the

mykEpsilon turbulence model must be used:
RASModel mykEpsilon;

• Rename the sub-dictionary called kEpsilonCoeffs to mykEpsilonCoeffs

• Add the following line to the system/controlDict file of the case:

libs ("libmyTurbulenceModels.so");

• Run the case...

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Some programming guidelines

• OpenFOAM And Object-Orientation
◮ OpenFOAM library tools are strictly object-oriented: trying hard to weed out the hacks,

tricks and work-arounds

◮ Adhering to standard is critical for quality software development in C++: ISO/IEC
14882-2003 incorporating the latest Addendum notes

• Writing C in C++
◮ C++ compiler supports the complete C syntax: writing procedural programming in C is

very tempting for beginners

◮ Object Orientation represents a paradigm shift: the way the problem is approached
needs to be changed, not just the programming language. This is not easy

◮ Some benefits of C++ (like data protection and avoiding code duplication) may seem a
bit esoteric, but they represent a real qualitative advantage

1. Work to understand why C++ forces you to do things

2. Adhere to the style even if not completely obvious: ask questions, discuss

3. Play games: minimum amount of code to check for debugging :-)

4. Analyse and rewrite your own work: more understanding leads to better code

5. Try porting or regularly use multiple compilers

6. Do not tolerate warning messages: they are really errors!

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Enforcing consistent style

• Writing Software In OpenFOAM Style
◮ OpenFOAM library tools are strictly object-oriented; top-level codes are more in

functional style, unless implementation is wrapped into model libraries
◮ OpenFOAM uses ALL features of C++ to the maximum benefit: you will need to learn

it. Also, the code is an example of good C++: study and understand it

• Enforcing Consistent Style

◮ Source code style in OpenFOAM is remarkably consistent:
Code separation into files
Comment and indentation style
Approach to common problems, e.g. I/O, construction of objects, stream support,
handling function parameters, const and non-const access
Blank lines, no trailing whitespace, no spaces around brackets

◮ Using file stubs : foamNew script
foamNew H exampleClass : new header file
foamNew C exampleClass : new implementation file
foamNew I exampleClass : new inline function file
foamNew IO exampleClass : new IO section file
foamNew App exampleClass : new application file

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
Debugging OpenFOAM

• Build and Debug Libraries

• Release build optimised for speed of execution; Debug build provides additional
run-time checking and detailed trace-back capability

◮ Using trace-back on failure
◮ gdb icoFoam : start debugger on icoFoam executable
◮ r <root> <case> : perform the run from the debugger
◮ where provides full trace-back with function names, file and line numbers
◮ Similar tricks for debugging parallel runs: attach gdb to a running process

• Debug switches
◮ Each set of classes or class hierarchy provides own debug stream
◮ . . . but complete flow of messages would be overwhelming!
◮ Choosing debug message source:

$HOME/OpenFOAM/OpenFOAM-1.5/etc/controlDict

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
OpenFOAM environment

• Environment Variables and Porting
◮ Software was developed on multiple platforms and ported regularly: better

quality and adherence to standard
◮ Switching environment must be made easy: source single dot-file
◮ All tools, compiler versions and paths can be controlled with environment

variables
◮ Environment variables

Environment setting support one installation on multiple machines
User environment: $HOME/OpenFOAM/OpenFOAM-1.5/etc/cshrc .
Copied from OpenFOAM installation for user adjustment
OpenFOAM tools: OpenFOAM-1.5-dev/settings.sh ;
OpenFOAM-1.5-dev/aliases.sh
Standard layout, e.g. FOAM_SRC, FOAM_RUN
Compiler and library settings, communications library etc.

◮ Additional setting
FOAM_ABORT: behaviour on abort
FOAM_SIGFPE: handling floating point exceptions
FOAM_SETNAN: set all memory to invalid on initialisation

Tommaso Lucchini/ OpenFOAM programming tutorial

POLITECNICO DI MILANO CHALMERS
OpenFOAM environment

• OpenFOAM Programming

◮ OpenFOAM is a good and complete example of use of object orientation and
C++

◮ Code layout designed for multiple users sharing a central installation and
developing tools in local workspace

◮ Consistent style and some programming guidelines available through file
stubs: foamNew script for new code layout

◮ Most (good) development starts from existing code and extends its
capabilities

◮ Porting and multiple platform support handled through environment variables

Tommaso Lucchini/ OpenFOAM programming tutorial

	Introduction
	OpenFOAM structure
	A walk through icoFoam
	The OpenFOAM workspace
	Implementing a new application
	myIcoFoam: set-up
	Creating a new application: icoScalarTransportFoam
	icoScalarTransportFoam: set-up of Make/files
	icoScalarTransportFoam: physical/numerical modeling
	Creating the field T
	icoScalarTransportFoam: solving the transport equation for T

	Implementing a new boundary condition
	General information
	rampedFixedValue
	In a new application
	rampedFixedValueFvPatchField.H
	rampedFixedValueFvPatchField.C
	rampedFixedValueFvPatchFields.H
	rampedFixedValueFvPatchFields.C
	Modification of Make/files
	Implementing a new b.c. in a dynamic library

	Implementing a new turbulence model
	General information
	General information
	A look to mykEpsilon.H
	A look to mykEpsilon::correct()
	Library implementation
	Running the case with the mykEpsilon model

	More programming guidelines
	Programming guidelines
	Debugging OpenFOAM
	OpenFOAM environment

