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1 Introduction

This tutorial describes how to include a heat source in interPhaseChangeFoam to evapourate water.
In order to do this the interPhaseChangeFoam solver is expanded to include a temperature field and
the phase change algorithm is modified to take the temperature into account.

Before starting to change the interPhaseChangeFoam solver the reader will in Section 3 be guided
through the process of copying the existing solver and the test case cavitatingBullet which comes
with the OpenFOAM installation.

2 Description of interPhaseChangeFoam

In interPhaseChangeFoam.C the solver is described as follows:

Solver for 2 incompressible, isothermal immiscible fluids with phase-change (e.g. cavita-
tion). Uses a VOF (volume of fluid) phase-fraction based interface capturing approach.
The momentum and other fluid properties are of the ”mixture” and a single momentum
equation is solved.
The set of phase-change models provided are designed to simulate cavitation but other
mechanisms of phase-change are supported within this solver framework.
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.

Three different cavitation models are provided with the interPhaseChangeFoam solver. They are
Merkle, Knuz and SchnerrSauer. Here the Merkle mass transfer model will be described short. For
a description of the implementation of Knuz and SchnerrSauer see e.g. http://www.tfd.chalmers.
se/~hani/kurser/OS_CFD_2008/NaixianLu/REPORT_interPhaseChangeFoam.pdf. The vaporisa-
tion (transformation of liquid to vapor), ṁ− is modeled as being proportional to the liquid volume
fraction, α, and the amount by which the pressure is under the saturation pressure. And the con-
densation (transformation of vapor to liquid), ṁ− is modeled similar.

ṁ− =
Cvρv

1
2ρlU

2
∞t∞

αmin(0, p− pSat) (1)

ṁ+ =
Cc

1
2U

2
∞t∞

(1 − α) max(0, p− pSat) (2)

where:
Cc, Cv, U∞ and t∞ are empirical constants based on the mean flow,
ρl and ρv are the density of the liquid and vapor,
p is the pressure,
pSat is the vaporisation pressure.

This is a quit intuitive approach for the mass transfer. In the implementation in interPhaseChange-
Foam these equations are split into a part used in the pressure-loop and a part for the α-loop. In
the α-loop everything but α is held constant, in the pressure loop everything but p is constant. The
two loops can be seen in the source code:
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2 DESCRIPTION OF INTERPHASECHANGEFOAM

interPhaseChangeFoam.C

#include ”fvCFD .H”
#include ”MULES.H”
#include ” subCycle .H”
#include ” i n t e r f a c eP r o p e r t i e s .H”
#include ”phaseChangeTwoPhaseMixture .H”
#include ” turbulenceModel .H”
#include ” pimpleControl .H”

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

int main ( int argc , char ∗argv [ ] )
{

#inc lude ” setRootCase .H”
#inc lude ” createTime .H”
#inc lude ” createMesh .H”
#inc lude ” r eadGrav i t a t i ona lAcc e l e r a t i on .H”
#inc lude ” i n i tCon t i nu i t yEr r s .H”
#inc lude ” c r e a t eF i e l d s .H”
#inc lude ” readTimeControls .H”

pimpleControl pimple (mesh ) ;

#inc lude ” . . / interFoam/ co r r e c tPh i .H”
#inc lude ”CourantNo .H”
#inc lude ” s e t I n i t i a lD e l t aT .H”

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

Info<< ”\ nStar t ing time loop \n” << endl ;

while ( runTime . run ( ) )
{

#inc lude ” readTimeControls .H”
#inc lude ”CourantNo .H”
#inc lude ” setDeltaT .H”

runTime++;

Info<< ”Time = ” << runTime . timeName ( ) << nl << endl ;

#inc lude ”alphaEqnSubCycle .H”

turbulence−>c o r r e c t ( ) ;

// −−− Pressure−v e l o c i t y PIMPLE correc to r loop
for ( pimple . s t a r t ( ) ; pimple . loop ( ) ; pimple++)
{

#inc lude ”UEqn .H”

// −−− PISO loop
for ( int co r r =0; corr<pimple . nCorr ( ) ; c o r r++)
{

#inc lude ”pEqn .H”
}

}

twoPhasePropert ies−>c o r r e c t ( ) ;

runTime . wr i t e ( ) ;

Info<< ”ExecutionTime = ” << runTime . elapsedCpuTime ( ) << ” s ”
<< ” ClockTime = ” << runTime . elapsedClockTime ( ) << ” s ”
<< nl << endl ;

}

Info<< ”End\n” << endl ;

return 0 ;
} 2



3 RUNNING A INTERPHASECHANGEFOAM CASE

This splitting of the mass transfer model makes it possible to iterate one parameter at a time
making each iteration simpler and thereby quicker. And doing this is small intervals will not harm
the converging rate of the algorithm.

3 Running a interPhaseChangeFoam case

This section covers the steps needed to run interPhaseChangeFoam on the test case cavitatingBullet
in a user owned directory.

3.1 cavitatingBullet test case

First setup the OpenFOAM envirelment in the terminal.1

source $HOME/OpenFOAM/OpenFOAM-2.0.x/etc/myBashrc

Copy the cavitatingBullet to a user owned directory.

cp -r $FOAM_TUTORIALS/multiphase/interPhaseChangeFoam/cavitatingBullet $FOAM_RUN

cd $FOAM_RUN/cavitatingBullet

The file structure of the cavitatingBullet case is similar to other OpenFOAM tutorials where the
case directory has a 0/, constant/ and system/ directory.

In the 0/ directory you find the initial field distributions. They are in this case

alpha1 is the phase field. The value 1 coresponds to liquid (in this case water) and the value 0
corespond to gas (in this case water vapour). In this case the initial value over the entire field
is 1.

p rgh in the pressure, p, minus ρ · g · h, where ρ is the denisty of the mater, g is gravity (usualy
-9.8) and h is the height. In this case the initial value is 100000 Pa over the entire field.

U is the velosity field. In this case the initial velosity in the entire field is (0 0 20), i.e. a flow of
20 m/s in the z-direction.

In the constant/ you find different constants and stationary fields used in the simulation. In the
system/ directory you find different things to setup the simulation, e.g. the controlDict with all
kinds of control variabels.

Before running the cavitatingBullet case open the file system/controlDict and change the endTime
to 0.001.

./Allrun

This will take time depending on your computer. In the directory there are now a few log.* files
and a lot of time directories. You can have a loot at the simulation results with paraView.

1You might have an alias OF20x to do this
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3 RUNNING A INTERPHASECHANGEFOAM CASE

paraFoam

To see the vapor bobbles formed due to the flow around the bullet, follow the instructions in Figure 1.

When you are there also take a look at the velosity field and the pressure by selecting the corre-
sponding entries in the drop-down menu in Figure 1c

3.2 Copy the solver

Before we start modifying the interPhaseChangeFoam we copy it to a new location and rename it
to myInterPhaseChangeFoam.

mkdir -p $WM_PROJECT_USER_DIR/applications/solvers/multiphase

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase

cp -r $FOAM_SOLVERS/multiphase/interPhaseChangeFoam .

mv interPhaseChangeFoam myInterPhaseChangeFoam

cd myInterPhaseChangeFoam

mv interPhaseChangeFoam.C myInterPhaseChangeFoam.C

The solver interPhaseChangeFoam includes a file from interFoam by a relativ path. To keep things
simple, here this file will be copied into the myInterPhaseChangeFoam folder:

cp $FOAM_SOLVERS/multiphase/interFoam/correctPhi.H .

Find the line:

#include "../interFoam/correctPhi.H"

in myInterPhaseChangeFoam.C and change it to

#include "correctPhi.H"

That was all the copying. Now we need to clean up and ajust the files to the new name.

Remove files coming from the compilation of interPhaseChangeFoam.

rm -r *.dep Make/linux*

wclean

Edit the build files to fit the myInterPhaseChangeFoam solver. The file Make/files shall look like this:

myInterPhaseChangeFoam.C
phaseChangeTwoPhaseMixtures/phaseChangeTwoPhaseMixture/phaseChangeTwoPhaseMixture.C
phaseChangeTwoPhaseMixtures/phaseChangeTwoPhaseMixture/newPhaseChangeTwoPhaseMixture.C
phaseChangeTwoPhaseMixtures/Kunz/Kunz.C
phaseChangeTwoPhaseMixtures/Merkle/Merkle.C
phaseChangeTwoPhaseMixtures/SchnerrSauer/SchnerrSauer.C
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3 RUNNING A INTERPHASECHANGEFOAM CASE

(a) Select the Volume Fields alpha1 and p rgh. Click Apply.

(b) Click Slice. Click Apply. Click Set view direction to +X

(c) Select the Volume Field alpha1 from the drop down menu. Step one time step up

Figure 1: Screenshot
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4 ADD A TEMPERATURE FIELD TO THE SOLVER

EXE = $(FOAM_USER_APPBIN)/myInterPhaseChangeFoam

Where the red text is the changes that be made from the original file. We are now ready to compile
the solver

wmake

If everything worked correctly, the new solver binary should appear in the FOAM USER APPBIN
directory. Check this with:

ls $FOAM_USER_APPBIN

We can now use the solver myInterPhaseChangeFoam on the cavitatingBullet case to verify that
nothing have changed. This will be done in the next section.

3.3 Use the copied solver

cp -r $FOAM_TUTORIALS/multiphase/interPhaseChangeFoam/cavitatingBullet $FOAM_RUN/cavitatingBulletNew

cd $FOAM_RUN/cavitatingBulletNew

Edit the file system/controlDict so that application is changed from interPhaseChangeFoam to
myInterphaseChangeFoam. Also change the endTime to 0.001.

./Allrun

Take a look at the result with paraView, as described in Section 3, to verify that it looks like the
result from interPhaseChangeFoam.

4 Add a Temperature Field to the Solver

The fires step in adding temperature dependent evaporation to the solver is to include temperature
in the solver. In this toturial we will only add a comon temperature transport constants for the two
phases liquid and vapor, it is left as an assignment for the reader to implement separate constants
for the two. Here we follow the guide from http://www.openfoamwiki.net/index.php/How_to_

add_temperature_to_icoFoam.

4.1 Adding the temperature field

First return to the solver directory.

cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase/myInterPhaseChangeFoam

Edit the file createField.H by adding the following to the top of the file:
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4 ADD A TEMPERATURE FIELD TO THE SOLVER

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportPropertiesDict

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ,

IOobject::NO_WRITE

)

);

dimensionedScalar DT

(

transportPropertiesDict.lookup("DT")

);

Info<< "Reading field T\n" << endl;

volScalarField T

(

IOobject

(

"T",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);
FIXME: the first 12 lines may not be needed. The transportProperties file are read already new-
PhaseChangeTwoPhaseMixture. But at the moment I cannot find an elegant way of extracting DT
through newPhaseChangeTwoPhaseMixture.

The first 16 lines are a new transport property related to the thermal diffusion which will be denoted
as DT. The last 13 lines are the creation of the temperature field, T .

4.2 Adding a new equation to solve

After adding the temperature field next step is to add an equation describing the temperature
transport. The temperature transport depends on the velocity field. Therefore the following equation
are to be included after the Pressure-velocity PIMPLE corrector loop, but before runTime.write();
in myInterPhaseChangeFoam.C.

fvScalarMatrix TEqn

(

fvm::ddt(T)

+ fvm::div(phi, T)

- fvm::laplacian(DT, T)

);

TEqn.solve();
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5 ADD TEMPERATURE FIELD TO A TEST CASE

This equation make use of the face flux variable, phi, which is already used in the momentum
equation solution.

Thats all it takes to add a temperature field with a common temperature constant for the water and
vapor. After saving the files, compile the solver using wmake.

wmake

5 Add Temperature field to a Test Case

Make a new copy of the cavitatingBullet case, and change the solver to myInterPhaseChangeFoam
in the controlDict :

cp -r $FOAM_TUTORIALS/multiphase/interPhaseChangeFoam/cavitatingBullet $FOAM_RUN/temperatureTest

cd $FOAM_RUN/temperatureTest

sed -i s/interPhaseChangeFoam/myInterPhaseChangeFoam/g system/controlDict

This time, to reduce the computional time, the “bullet” will be removed. This is done simply by
removing the line about snappyHexMesh in the file Allrun. The file should now look like this:

#!/bin/sh

cd ${0%/*} || exit 1 # run from this directory

# Source tutorial run functions

. $WM_PROJECT_DIR/bin/tools/RunFunctions

# Generate the base block mesh

runApplication blockMesh

# Run the solver

runApplication ‘getApplication‘

The files related to the “bullet” can also be removed ( rm -r constant/triSurface system/snappyHexMeshDict

) but they do no harm.

To include the temperature into the test case the constant DT and an initial temperature field needs
to be added. First add DT by including the following line the the file constant/transportProperties

DT DT [0 2 -1 0 0 0 0] 0.002; // [m^2/s]

The units of DT is m2/s, but the value is not importent at this point.

Now add an initial temperature field. The easiest way is to copy an existing field and adjust it.

cp 0/p_rgh 0/T

The initial temperature field will be 90◦C and the inlet will be a heat source of 110◦C. Edit the file
0/T to look like this:
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5 ADD TEMPERATURE FIELD TO A TEST CASE

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object T;

}

dimensions [0 0 0 1 0]; // [K]

internalField uniform 363.15; //90 degrees Celsius

boundaryField

{

inlet

{

type fixedValue;

value uniform 383.15; //110 degrees Celsius

}

outlet

{

type fixedValue;

value $internalField;

}

walls

{

type symmetryPlane;

}

}

Temperature field and the transport constant for the solver is in place, but the solver do not know
which discretization schemes to use for the new solver. Open the file system/fvSchemes and include
two lines so that the divSchemes and the laplacianSchemes sections includes the the following:

divSchemes

{

...

div(phi,T) Gauss upwind;

}

laplacianSchemes

{

...

laplacian(DT,T) Gauss linear corrected;

}

Next, open the fvSolution dictionary and add the T :
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6 ADD TEMPERATURE DEPENDENCE TO PHASE CHANGE

solvers

{

T

{

solver BICCG;

preconditioner DILU;

tolerance 1e-7;

relTol 0;

};

...

}

Now run the test case and look at the temperature field in paraView.

./Allrun

paraFoam

Have a look at the temperature distribution in paraView by following the guide in Figure 2.

6 Add Temperature Dependence to Phase Change

The solver now includes a temperature field and a we are now ready to make a temperature dependent
phase change algorithm. To keep it simple in this tutorial the cavating algorithm Merkel already
implemented in the interPhaseChangeFoam solver will be modified to be temperature dependent. As
described in Section 2 a constant saturation pressure is used to determing if the water evaporates (or
vapor condensate). In this section this static saturation pressure will be replaced by a temperature
dependent function.

As the boiling point depends on both the pressure and the temperature this modification should
be fine, however the algorithm is optimized for cavation at a constant temperature, therefore this
modification might not be valid.

The temperature dependensi of the saturation pressure to be implemented here are the August-
Roche-Magnus formula.

pSat ≈ 610.94 · exp

(
17.625 · Tcelsius
Tcelsius + 243.04

)
= 610.94 · exp

(
17.625 · (T − 273.15)

T − 273.15 + 243.04

)
= 610.94 · exp

(
17.625 · (T − 273.15)

T − 30.11

)
(3)

where:
T is the temperature messured in Kelvin.

This in a non-linear equation. The saturation pressure is used in two loops in the solver. To speed-up
the execution, the implementation will include a new field for the saturation pressure. This will be
created so that the saturation pressure only is calculated when the temperature field in updated,
and not every time the saturation pressure is used in the solver.
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6 ADD TEMPERATURE DEPENDENCE TO PHASE CHANGE

(a) Select the Volume Field T. Click Apply

(b) Click Slice. Click Apply. Click Set view direction to +X

(c) Select the Volume Field alpha1 from the drop down menu. Step one time step up. Click
Rescale to Data Range. Click Toggle Color Legend Visibility.

Figure 2: Screenshot
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6 ADD TEMPERATURE DEPENDENCE TO PHASE CHANGE

6.1 Create a Saturation Pressure Field

First the August-Roche-Magnus formula will be implemented in a source file. Create a file named
calcPSatField.H and include the following in the file:

{

const dimensionedScalar t30_11("30.11", dimensionSet(0,0,0,1,0,0,0), 30.11);

const dimensionedScalar t273_15("273.15", dimensionSet(0,0,0,1,0,0,0), 273.15);

const dimensionedScalar t1("1", dimensionSet(0,0,0,1,0,0,0), 1);

const dimensionedScalar p610_94("610.94", dimensionSet(1,-1,-2,0,0,0,0), 610.94);

// dimensionSet( [kg], [m], [s], [K], [kg*mol], [A], [cd]), [kg/(m*S^2)]=[Pa]

// August-Roche-Magnus formula

pSatField = p610_94 * exp( 17.625*(T-t273_15) / max(t1, T-t30_11) );

//max(1,...) is included to avoid problems with devision by 0

}

The field pSatField is not defined yet, but it will be done now. Open the file createFields.H and
remove the line

const dimensionedScalar& pSat = twoPhaseProperties->pSat();

And include this the following lines in file after volScalarField T and volScalarField p rgh but before
Creating phaseChangeTwoPhaseMixture

volScalarField pSatField

(

IOobject

(

"pSatField",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

p_rgh // initial value will be overwritten by calcPSatField.H

);

#include "calcPSatField.H"

FIXME: are there a better way to create the field than to initiate it to be equal to p rgh?

Also update the new field each time the temperature field is re-calculated. Include the line

#include "calcPSatField.H"

In myInterPhaseChangeFoam.C after TEqn.solve();.
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6 ADD TEMPERATURE DEPENDENCE TO PHASE CHANGE

6.2 Remove the Static Saturation Pressure Variable

In the folder phaseChangeTwoPhaseMixtures/phaseChangeTwoPhaseMixture/ open the file phaseChangeT-
woPhaseMixture.H and remove the lines

//- Saturation vapour pressure

dimensionedScalar pSat_;

And remove the lines

//- Return const-access to the saturation vapour pressure

const dimensionedScalar& pSat() const

{

return pSat_;

}

And instead insert the following lines:

//- Return const-access to the saturation vapour pressure

const volScalarField& pSat() const

{

const volScalarField& pSat = alpha1_.db().lookupObject<volScalarField>("pSat");

return pSat;

}

In the same folder open the file phaseChangeTwoPhaseMixture.C and remove everything correspond-
ing to pSat. That is remove the third line in following, and also remove the comma at the end of
the line just above

:

twoPhaseMixture(U, phi, alpha1Name),

phaseChangeTwoPhaseMixtureCoeffs_(subDict(type + "Coeffs")),

pSat_(lookup("pSat"))

{}

And remove the line

lookup("pSat") >> pSat_;

6.3 Compile and Enjoy

The saturation pressure will now be calculated from the temperature, making the phase change
temperature dependent. Clean up and compile the solver.

wclean

wmake

The solver can be tested using the test case from Section 5. Or by downloading the test case. The
temperatur distribution and coresponding liquid/vapor distribution can be seen in Figure 3 and 4.
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6 ADD TEMPERATURE DEPENDENCE TO PHASE CHANGE

Figure 3: Temperature

Figure 4: Alpha
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