

 OpenFOAM Project: WhipLashMotion Library

 Junfeng Yang

 2009

Introduction

Whiplash-like motion causes lot of human neck injury during the vehicle
crash accident. To investigate the transient blood flow inside the human
vertebra during the whiplash-like motion. The OpenFOAM is a powerful
CFD simulation tool to do such research. In this article, all the CFD
simulation are implemented in OpenFOAM-1.5dev version.

To mimic the whiplash motion, the icoDyMFoam application was adapted
for calculating dynamic mesh moments. With different needs for the users,
several different ways of ,moving mesh have been developed. In this work, a
new tool has been implemented, with the purpose of whiplash-like motion.
The mesh movement is done with topology change and mesh deformation.
This means that column cells extend in vertical direction depending on the
movement. Currently, only the mesh motion has been implemented. The
material of the moving object was regarded as solid wall. The focus is thus
solely the movement and topology changes of the mesh. Further on, the
soft or flexible wall (we can use compressible fluid) will be implemented.
the interaction between wall and liquid domain will be investigated.

Background

As starting point the movingConeTopo tutorial located in the icoDymFoam
folder of OpenFOAM-1.5-dev was used. This is a working tutorial that can
be run by simply copying the movingConetopo folder to your run directory
, and run it according to :

 1: cp –r $FOAM_TUTORIAL/icoDyMFoam/movingConeTopo/
$FOAM_RUN

2: cd $FOAM_RUN/movingConeTopo

3: blockMesh . .

4: icoDyMFoam . .

The case will run. The paraFoam could check the mesh motion.

For the aim of the present work, a new case setup was named
WhiplashMotion. The mesh will move according the experimental motion
data . The new mesh can be seen in Figure 1.

 Figure 1 Simple pipe mesh to represent blood vessels inside the vertebral

The new mesh motion implementation was generated by MatLab code for
the new case, so a dynamicWhiplashfvMesh library was created based on
the movingconeTopoFvMesh library:

1: cp –r $FOAM_SRC/dynamicFvMesh/dynamicFvMesh \
 $WM_PROJECT_USER_DIR/dynamicWhiplashFvMesh

The library was copied and the names were changed to the
dynamicWhiplashFvMesh. Copied were also the Make folder containing
the files : files and options

1: cp –r $FOAM_SRC/topoChangerFvMesh/Make/ \
 $WM_PROJECT_USER_DIR/dynamicWhiplashFvMesh

The files were rewritten into the following line order to only compile the
dynamicWhiplashFvMeshlibrary.

1: dynamicWhiplashFvMesh.C
2: LIB = $(FOAM_USER_LIBBIN)/ libmyDynamicFvMesh

In the options file, it should contain following line:

1: -I$(LIB_SRC)/dynamicFvMesh/lnInclude \

If it does not, please add the above line into the options file like :

1: EXE_INC = \
2: -I$(LIB_SRC)/dynamicFvMesh/lnInclude

The copied dynamicFvmesh can now be adopted for the new functionality.
To compile the changes made in the library, the command:

1: wmake libso

Was used. The complete dynamicWhiplashFvMesh.C can be found in the
appendix. The library were called libmyDynamicFvMesh. In order to used
the new library for a case, the constant/dynamicFvMeshDict
dictionaryshould sprcify the name of the new library. This case is based on
the movingConeTopo tutorial. The dynamicFvMeshDict is the dictionary
controlling the movement of the mesh. In this one can alter the velocity,
amplitude and period of the object. In this one also have to describe at
which position the moving cells are located. The dynamicWhiplashFvMesh
file can be seen in the appendix.

Methodology

In order to make this work the dynamicWhiplashFvMesh.C and
dynamicWhiplashFvMesh.H had to be changed in accordance with the
changes of the mesh. The most interesting part however is the changes
made for the movement. Initially the different regions where marked up as
can be seen in figure 2.

 P1 (x,y) P1

’(x,y)

 y
 P0 (x,y) P0

’(x,y)

 x
 T0 �t T1
 z
 Figure 2 Cells motion explanation

In the Figure 2, the block 0 is fixed, the block 1 can move and change the
shape. P1 and P0 are the central point of the block 1 and 0. Assuming after
�t time step (from T0 to T1), a vertical pipe moves as shown in figure. The
central point of P0 and P1 become to P0’ and P1’. The position of P0, P1
varied at both x-axis and y-axis direction (assume there is no movement in
z-axis). The movement in x-axis can be described by a 5 degree polynomial
equations: x(i)=a*y(i)5+b* y(i)4+ c* y(i)3+ d* y(i)2+ e* y(i)+f

Where a,b,c,d,e,f are the know coefficients. x(i), y(i) are the position of
central point of block in the Cartesian coordinates. Such coeeficients and y-
axis position have been recalculated using Matlab code.

Take block 1 as example, in �t time step, the total movement in x-axis of
central point is equal to �x=x-x(i), x(T1) is the current x position, x(T0) is
the x position in last time step. For each block, all the cells are regarded to
move the same distance in x-direction. By this way, all the cell move to a
new position that was specified based on the known data at each time step.
Finally, such movement will consist in a whiplash motion.

Mesh Generation and B.C

The pipe mesh was generated by the GAMBIT module. Then
fluent3DMeshToFoam will convert it to FOAM mesh. checkMesh will
show the mesh information.

Initial values and Boundary Conditions

In the ‘0’ folder, p and U files, all the initial value for pressure and velocity
are defined, see appendix.

In the constant/polymesh/boundary file, the B.C is defined, see appendix.

Results and Future Work

 a)

 b)

 c)

 d)

 e)

 f)

The results can be seen in Figure 3. The mesh moving according to the
experimental motion data to perform the whiplash-like motion

It show the dynamicWhiplashfvMesh application can do the same
whiplash-like motion simulation as commercial code: Fluent.

But, there are still a lot of work need to be done:

1. To specify the proper B.C (like liquid property and wall property) for
the whiplash motion and perform the simulation to calculate the
pressure and velocity transient inside fluid domain.

2. To modeling the compressible flow or flexible wall (weak-contrain
pipe)

3. Adaptive grid technology could be interesting aspect to develop to
avoid the zero or negative volume cell that normally occur during the
compress force applied on the cells

Appendix A

The dynamicWhiplashFvMesh.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) Original Authors
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
 Free Software Foundation; either version 2 of the License, or (at your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT
 ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

---/

#include "dynamicWhiplashFvMesh.H"
#include "addToRunTimeSelectionTable.H"
#include "volFields.H"
#include "mathematicalConstants.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{
 defineTypeNameAndDebug(dynamicWhiplashFvMesh, 0);
 addToRunTimeSelectionTable(dynamicFvMesh,
dynamicWhiplashFvMesh, IOobject);
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::dynamicWhiplashFvMesh::dynamicWhiplashFvMesh(const
IOobject& io)
:
 dynamicFvMesh(io),
 dynamicMeshCoeffs_
 (
 IOdictionary
 (
 IOobject
 (
 "dynamicMeshDict",
 io.time().constant(),
 *this,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)
).subDict(typeName + "Coeffs")
),
 newPoints_
 (
 IOobject
 (
 "points",
 io.time().constant(),
 meshSubDir,
 *this,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)
)
{
 Info<< "Performing a whiplash dynamic mesh calculation" << endl;

 FILE *file_1;
 FILE *file_2;

 //file_1=fopen("constant/vessel_motion_renew.mat", "r");
 //file_2=fopen("constant/vessel_node_y_renew.mat", "r");
 file_1=fopen("constant/vessel_motion.mat", "r");
 file_2=fopen("constant/vessel_node_y.mat", "r");

 Info<< "\nReading constant/vessel_motion_renew.mat:" << endl;
 for(int m=0;m<3000;++m){
 for(int v=0;v<6;++v){
 fscanf(file_1, "%f",&P_[m][v]);
 Info<< P_[m][v] << " ";
 }
 Info<<endl;
 }

 fclose(file_1);

 Info<< "\nReading constant/vessel_node_y_renew.mat:" << endl;
 for(int m=0;m<3000;++m){
 for(int v=0;v<7;++v){
 fscanf(file_2, "%f",&Y_[m][v]);
 Info<< Y_[m][v] << " ";
 }
 Info<<endl;
 }
 Info<<endl;

 fclose(file_2);

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::dynamicWhiplashFvMesh::~dynamicWhiplashFvMesh()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

bool Foam::dynamicWhiplashFvMesh::update()
{

 float x, y, z;
 float delta_1=0.0, delta_2=0.0, delta_x=0.0;
 float J=0.0, K=0.0;

 float up_nod0,dw_nod0,up_nod1,dw_nod1; //0=last timestep; 1=current
timestep
 int update_y,section_id;
 //int N=time().value()/time().deltaT().value();
 int N=1+time().value()/0.001;

 Info<< "Integer time:" << N << endl;

 forAll(newPoints_, nIter)
 {
 update_y = 0;
 section_id = -1;
 z = newPoints_[nIter].component(vector::Z);
 y = newPoints_[nIter].component(vector::Y);
 x = newPoints_[nIter].component(vector::X);

 if (y<0 && update_y==0) //deal with y<0 section
 {
 //Info<< "Section_id = 0" <<endl;
 update_y = 1;
 section_id = 0;
 J = 0;
 delta_x = x - (P_[N-1][0] * pow(y,5)+
 P_[N-1][1] * pow(y,4)+
 P_[N-1][2] * pow(y,3)+
 P_[N-1][3] * pow(y,2)+
 P_[N-1][4] * pow(y,1)+
 P_[N-1][5]);
 }
 for(int i=1;i<=6;++i)
 //N is time step, i is node index and section index
 {
 up_nod0 = Y_[N-1][i]; //last time step
 dw_nod0 = Y_[N-1][i-1];
 up_nod1 = Y_[N][i]; //current time step
 dw_nod1 = Y_[N][i-1];

 if(y>=dw_nod0 && y<=up_nod0 && update_y==0) //IN section 1~6
 {
 //Info<< "Section_id = " << i <<endl;
 update_y = 1;
 section_id = i;
 delta_1 = up_nod0-dw_nod0;

 delta_2 = up_nod1-dw_nod1;
 delta_x = x - (P_[N-1][0] * pow(y,5)+
 P_[N-1][1] * pow(y,4)+
 P_[N-1][2] * pow(y,3)+
 P_[N-1][3] * pow(y,2)+
 P_[N-1][4] * pow(y,1)+
 P_[N-1][5]);
 J = (y-dw_nod0)*delta_2/delta_1+dw_nod1;
 break;
 }
 }
 if(update_y==0) //IN higher then section 6 part
 {
 //Info<< "Section_id = 7" <<endl;
 update_y = 1;
 section_id = 7;
 J = Y_[N][6];
 delta_x = x - (P_[N-1][0] * pow(y,5)+
 P_[N-1][1] * pow(y,4)+
 P_[N-1][2] * pow(y,3)+
 P_[N-1][3] * pow(y,2)+
 P_[N-1][4] * pow(y,1)+
 P_[N-1][5]);
 }
 if(update_y)
 {
 //Calculate X value from motion equation:
 K = P_[N][0] * pow(J,5)+
 P_[N][1] * pow(J,4)+
 P_[N][2] * pow(J,3)+
 P_[N][3] * pow(J,2)+
 P_[N][4] * pow(J,1)+
 P_[N][5];
 newPoints_[nIter].component(vector::Z) = z;
 newPoints_[nIter].component(vector::Y) = J;
 newPoints_[nIter].component(vector::X) = delta_x+K;
 }
 else{
 Info<< "Found an un-updated point: " << x << y <<endl;
 //Add fatalError break!
 //Message("find a un-updated point: (%g,%g)",x,y);
 //Error("un-updated point error!");
 }

 }

 fvMesh::movePoints(newPoints_);

 volVectorField& U =
 const_cast<volVectorField&>(lookupObject<volVectorField>("U"));
 U.correctBoundaryConditions();

 return true;
}

Appendix B

The dynamicWhiplashFvMesh.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) Original Authors
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
 Free Software Foundation; either version 2 of the License, or (at your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT
 ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Class
 Foam::dynamicWhiplashFvMesh

Description
 Mesh motion specifically for the "pumping" system of an ink-jet
 injector.

 The set of points in the "pumping" region are compressed and expanded
 sinusoidally to impose a sinusoidal variation of the flow at the
 nozzle exit.

SourceFiles
 dynamicWhiplashFvMesh.C

Authors
 Håkan Nilsson
 OpenCFD

---/

#ifndef dynamicWhiplashFvMesh_H
#define dynamicWhiplashFvMesh_H

#include "dynamicFvMesh.H"
#include "dictionary.H"
#include "pointIOField.H"

// * //

namespace Foam
{

/*---*\
 Class dynamicWhiplashFvMesh Declaration
---/

class dynamicWhiplashFvMesh
:
 public dynamicFvMesh
{
 // Private data

 dictionary dynamicMeshCoeffs_;

 float P_[3000][6], Y_[3000][7]; /*P: coefficient Y: coordinate*/

 pointIOField newPoints_;

 // Private Member Functions

 //- Disallow default bitwise copy construct
 dynamicWhiplashFvMesh(const dynamicWhiplashFvMesh&);

 //- Disallow default bitwise assignment
 void operator=(const dynamicWhiplashFvMesh&);

public:

 //- Runtime type information
 TypeName("dynamicWhiplashFvMesh");

 // Constructors

 //- Construct from IOobject
 dynamicWhiplashFvMesh(const IOobject& io);

 // Destructor

 ~dynamicWhiplashFvMesh();

 // Member Functions

 //- Update the mesh for both mesh motion and topology change
 virtual bool update();
};

// * //

} // End namespace Foam

#endif

Appendix C

0 folder p file

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.5
\\ / A nd	Web: http://www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object p;
}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{
 wall
 {
 type zeroGradient;
 }

 bottom
 {
 type totalPressure;
 p0 uniform 0;
 U U;
 phi phi;
 rho none;
 psi none;
 gamma 1;
 value uniform 0;

 }

 top
 {
 type totalPressure;
 p0 uniform 0;
 U U;
 phi phi;
 rho none;
 psi none;
 gamma 1;
 value uniform 0;
 }

}

//
**
********* //

Appendix D

0 folder U file

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.5
\\ / A nd	Web: http://www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volVectorField;
 object U;
}
// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{
 wall
 {
 //type fixedValue;
 type movingWallVelocity;
 value uniform (0 0 0);
 }

 bottom
 {
 type pressureInletOutletVelocity;
 value uniform (0 0 0);
 }

 top
 {
 type pressureInletOutletVelocity;

 value uniform (0 0 0);
 }

}

//
**
********* //

Appendix E

Polymesh /boundary

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.6.x
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class polyBoundaryMesh;
 location "constant/polyMesh";
 object boundary;
}
// * //

3
(
 wall
 {
 type wall;
 nFaces 10056;
 startFace 113038;
 }
 bottom-vent
 {
 type patch;
 nFaces 48;
 startFace 127923;
 }
 top-vent
 {
 type patch;
 nFaces 48;
 startFace 127971;
 }
)

