CHALMERS

How to implement your own application

e The applications are located in the SWM_PROJECT_DIR/applications directory.

e Copy an application that is similar to what you would like to do and modify it for your
purposes. In this case we will make our own copy of the icoFoam solver and put it in our
SWM_PROJECT_USER_DIR with the same file structure as in the OpenFOAM installation:

cd SWM_PROJECT_DIR

cp —-riuv —--parents —-backup applications/solvers/incompressible/icoFoam \
SWM_PROJECT_USER_DIR

cd $WM_PROJECT_USER_DIR/applications/solvers/incompressible

mv icoFoam myIcoFoam

cd myIcoFoam

wclean

mv icoFoam.C myIcoFoam.C

e Modify Make/files to:

mylcoFoam.C
EXE = $(FOAM_USER_APPBIN)/myIcoFoam

e Compile with wmake in the myIcoFoam directory. rehash if necessary.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

A look 1nside icoFoam

e The icoFoam directory consists of the following:
createFields.H FoamX/ Make/ icoFoam.C

e The FoamX directory is of no interest unless you use FoamX. We will not care about that
here.

e The Make directory contains instructions for the wmake compilation command.

e icoFoam.C is the main file, and createFields.H is an inclusion file, which is included in
icoFoam.C.

e In the header of icoFoam.C we include £vCFD. H, which contains all class definitions that
are needed for icoFoam. fvCFD.H is included from (see Make/options)
SWM_PROJECT_DIR/src/finiteVolume/lnInclude, but that is actually only a link to
SWM_PROJECT_DIR/src/finiteVolume/cfdTools/general/include/fvCFD.H.
fvCFEFD.H in turn only includes other files that are needed (see next slide).

e Hint: Use find PATH —-iname "*LETTERSINFILENAME*" to find where in PATH a file
with a file name containing LETTERSINFILENAME in its file name is located.
In this case: find $WM_PROJECT_DIR —-iname "*fvCEFD.H*"

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

A look inside icoFoam, tvCFD.H

#ifndef fvCFD_H #include "OSspecific.H"
#define fvCFD_H #include "argList.H"
#finclude "parRun.H" #ifndef namespaceFoam

#define namespaceFoam
#include "Time.H" using namespace Foam;
#include "fvMesh.H" #endif

#include "fvc.H"
#include "fvMatrices.H" #endif
#include "fvm.H"

#include "linear.H"
#include "calculatedFvPatchFields.H" | The inclusion files are all class
#include "fixedValueFvPatchFields.H" |definitions that are used in

#include "adjustPhi.H" icoFoam. Dig further into the
#include "findRefCell.H" source file to find out what these
#include "mathematicalConstants.H" classes actually do.

At the end we say that we
will use all definitions made in
namespace Foam.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

A look inside icoFoam

e icoFoam starts with
int main(int argc, char *argvl[])

where int argc, char *argv[] are the number of parameters, and the actual parame-
ters used when running icoFoam.

e The case is initialized by:

include "setRootCase.H"

include "createTime.H"

include "createMesh.H"

include "createFields.H"

include "initContinuityErrs.H"

where all inclusion files except createFields.H are included from
src/OpenFOAM/1nInclude and src/finiteVolume/lnInclude. Have a look at them

yourself. (find them using the £ind command)

e createFields.H is located in the icoFoam directory. It initializes all the variables used
in icoFoam. Have a look inside it and see how the variables are created from files.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

A look inside icoFoam

e The time loop starts by:
for (runTime++; !runTime.end(); runTime++)

and the rest is done at each time step.

e The fvSolution subdictionary PISO is read, and the Courant number is calculated and
written to the screen by (use the £ind command)

include "readPISOControls.H"
include "CourantNo.H"

e The momentum equations are defined and a velocity predictor is solved by

fvVectorMatrix UEQn
(
fvm: :ddt (U)
+ fvm::div(phi, U)
— fvm::laplacian(nu, U)

) ;

solve(UEgn == —-fvc::grad(p));

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

A look inside icoFoam, the PISO loop

e A PISO corrector loop is initialized by
for (int corr=0; corr<nCorr; corr++)

e The member functions of the PISO algorithm are:
(Descriptions taken from the classes of each object used when calling the functions)
A (): Return the central coefficient of an fvvectorMatrix.
H(): Return the H operation source of an fvvectorMatrix.
St (): Return cell face area vectors of an fvMesh.
flux(): Return the face-flux field from an fvScalarMatrix
correctBoundaryConditions(): Correct boundary field of a volvectorField.

e F'ind the descriptions by identifying the object type (class) and then search the OpenFOAM
Doxygen at: http://foam.sourceforge.net/doc/Doxygen/html/ (linked to from
www.openfoam.org).

e See Rhie and Chow in OpenFOAM, by Fabian Peng Karrholm at the course homepage for a
detailed description of the PISO algorithm and Rhie and Chow in OpenFOAM.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS

A look inside icoFoam, write statements

e At the end of icoFoam there are some write statements:

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " g"
<< " ClockTime = " << runTime.elapsedClockTime() << " g"
<< nl << endl;

e write () makes sure that all variables that were defined as an TOobject with
IOobject: :AUTO_WRITE are written to the time directory accoring to the settings in the
controlDict dictionary.

e clapsedCpuTime () is the elapsed CPU time.

e clapsedClockTime() is the elapsed wall clock time.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

