Problem 7.1

Figure 1: Rotor with air and blade angles

Problem definition: Calculate

- Rotor blade angles
- Degree of reaction
- Temperature drop coefficient
- Power output

Solution: Some trigonometric relations give:

$$
\begin{array}{r}
C_{2}=\frac{C_{a}}{\cos \left(\alpha_{2}\right)}=615.2 \mathrm{~m} / \mathrm{s} \\
C_{w 2}=\sqrt{C_{2}^{2}-C_{a}^{2}}=557.5718 \mathrm{~m} / \mathrm{s} \\
\beta_{2}=\arctan \left(\frac{C_{w 2}-U}{C_{a}}\right)=\ldots=37.23 \\
C_{w 3}=C_{a} \tan \left(\alpha_{3}\right)=45.84 \mathrm{~m} / \mathrm{s} \\
\beta_{3}=\arctan \left(\frac{C_{w 3}+U}{C_{a}}\right)=\ldots=57.35
\end{array}
$$

Since it was given that $C_{1}=C_{3}$ and C_{a} is constant Equation 7.7 can be used to compute the degree of reaction:

$$
\Lambda=\frac{C_{a}}{2 U}\left(\tan \beta_{3}-\tan \beta_{2}\right)=\ldots=0.2892
$$

The temperature drop coefficient is obtained from:

$$
\Psi=\frac{2 c_{p} \Delta T_{0, s}}{U^{2}}=\frac{2 U \Delta C_{w}}{U^{2}}=\ldots=3.3523
$$

The power output is obtained from:

$$
\text { Power output }=m U \Delta C_{w}=4344.6
$$

The throat area is obtained from the nozzle coefficient $\lambda_{N}=0.05$ according to:

$$
\begin{array}{r}
T_{2}=\left[T_{02}=T_{01}\right]=T_{01}-\frac{C_{2}^{2}}{2 c_{p}}=835 \mathrm{~K} \\
T_{2}^{\prime}=T_{2}-\lambda_{N} \frac{C_{2}^{2}}{2 c_{p}}=826.9 \mathrm{~K}
\end{array}
$$

The pressure ratio gives p_{2} according to:

$$
\begin{gathered}
\frac{P_{01}}{P_{2}}=\left(\frac{T_{01}}{T_{2}^{\prime}}\right)^{\frac{\gamma}{\gamma-1}}=2.140 \\
P_{2}=\frac{P_{01}}{\frac{P_{01}}{P_{2}}}=1.869 \mathrm{bar}
\end{gathered}
$$

For isentropic flow, the critical pressure ratio is $r_{\text {crit }}=1.852$. Thus, the nozzle is choking. The throat conditions are then:

$$
\begin{array}{r}
P_{c}=\frac{P_{01}}{r_{c r i t}}=2.159 \\
T_{c}=\frac{2}{\gamma+1} T_{01}=857.3 \mathrm{~K} \\
\rho=\frac{P_{c}}{R T_{c}}=0.8777 \mathrm{~kg} / \mathrm{m}^{3} \\
C_{c}=\sqrt{\gamma R T_{c}}=572.7 \mathrm{~m} / \mathrm{s} \\
A_{\text {throat }}=\frac{m}{\rho_{c} C_{c}}=0.03979 \mathrm{~m}^{2}
\end{array}
$$

