Problem 4.1

Figure 1: Impeller with impeller eye

Problem definition: Calculate

- Blade inlet angle at root and tip
- Mach number at tip

Solution: The 1D continuity equation reads (derived during Lecture 5 - continuity in stagnation property form):

$$
\begin{equation*}
\frac{\dot{m} \sqrt{R T_{0}}}{A P_{0}}=\sqrt{\gamma} M\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{\gamma+1}{2(\gamma-1)}} \tag{1}
\end{equation*}
$$

where only the Mach number is unknown! Plugging the given data into 1 yields:

$$
\begin{equation*}
\frac{\dot{m} \sqrt{R T_{0}}}{A P_{0}}=0.4006 \tag{2}
\end{equation*}
$$

(where it was used that $A=\pi\left(r_{t i p}^{2}-r_{\text {root }}^{2}\right)$)

$$
\begin{aligned}
& \text { Iterate in } \mathrm{M} \\
& M=0.367
\end{aligned}
$$

The Mach number yields the static properties using the relations at page 448 in C.R.S, i.e. (also derived during Lecture 5 - Mach number relations for stagnation
properties):

$$
\begin{aligned}
\frac{T_{0}}{T} & =\left(1+\frac{\gamma-1}{2} M^{2}\right) \\
\frac{P_{0}}{P} & =\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}
\end{aligned}
$$

using the Mach number determined above produces:

$$
\begin{aligned}
T & =280.5 \mathrm{~K} \\
P & =0.911 \mathrm{bar} \\
\rho & =\frac{P}{R T}=1.132 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Continuity gives:

$$
C_{a}=123 \mathrm{~m} / \mathrm{s}
$$

The blade velocities are:

$$
\begin{aligned}
& U_{\text {root }}=2 \pi r_{\text {root }} \cdot N=\ldots=110 \mathrm{~m} / \mathrm{s} \\
& U_{t i p}=\ldots=254 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The blade angles are:

$$
\begin{aligned}
\alpha_{\text {root }} & =\arctan \left(\frac{C_{a}}{U_{\text {root }}}\right)=48.19^{\circ} \\
\alpha_{t i p} & =\arctan \left(\frac{C_{a}}{U_{t i p}}\right)=25.80^{\circ}
\end{aligned}
$$

The tip Mach number is:

$$
M_{t i p}=\frac{\sqrt{C_{a}^{2}+U_{t i p}^{2}}}{\sqrt{\gamma R T}}=\ldots=0.84
$$

