Problem 3.1

Figure 1: Turbojet without afterburner

Problem definition: Calculate:

- Propelling nozzle area
- Net thrust
- SFC

Solution: The International Standard Atmosphere (ISA) table at page 150 yields the ambient conditions (altitude $=7000$ meter):

$$
\left\{\begin{array}{l}
T_{a}=242.7 \mathrm{~K} \\
P_{a}=0.4165 \mathrm{bar}
\end{array}\right.
$$

The inlet: C.R.S. p. 106 gives:

$$
T_{0 a}=[\text { adiabatic }]=T_{01}=T_{a}+\frac{C_{a}^{2}}{2 c_{p}}=\ldots=276.3 \mathrm{~K}
$$

and equation 3.10a produces:

$$
P_{01}=P_{a}\left[1+\eta_{i} \cdot \frac{C_{a}^{2}}{2 c_{p} T_{a}}\right]^{\frac{\gamma_{a}}{\gamma_{a}-1}}=\ldots=0.642 \mathrm{bar}
$$

The compressor: The pressure ratio was given \Longrightarrow

$$
P_{02}=8.0 \cdot P_{01}=5.137 \mathrm{bar}
$$

C.R.S. p. 60 gives:

$$
\begin{gathered}
T_{02}-T_{01}=T_{01}\left[\left({\frac{P_{02}}{P_{01}}}^{\frac{\gamma_{a}-1}{\eta_{\infty, c} \cdot \gamma_{a}}}\right)-1\right] \\
\Longrightarrow \\
T_{02}=\ldots=547.0 \mathrm{~K}
\end{gathered}
$$

The burner: The pressure drop and burner exit tempereture were given:

$$
\left\{\begin{array}{l}
P_{03}=0.94 \cdot P_{02}=4.83 \mathrm{bar} \\
T_{03}=1200 \mathrm{~K}
\end{array}\right.
$$

The turbine: The turbine/compressor work-exchange equality yields:

$$
\begin{gathered}
\frac{c_{p, a}}{\eta_{m}}\left(T_{02}-T_{01}\right)=c_{p, g}\left(T_{03}-T_{04}\right) \\
\Longrightarrow \\
T_{04}=T_{03}-\frac{c_{p, a}}{\eta_{m} c_{p, g}}\left(T_{02}-T_{01}\right)=\ldots=960.6 \mathrm{~K}
\end{gathered}
$$

P_{04} is obtained from 2.20:

$$
\begin{gathered}
T_{03}-T_{04}=T_{03}\left(1-\frac{1}{\left(\frac{P_{03}}{P_{04}}\right)^{\frac{\eta_{\infty, t} \cdot \gamma_{g}}{\gamma_{g-1}}}}\right) \\
\Longrightarrow \\
P_{04}=\ldots=1.70 \mathrm{bar}
\end{gathered}
$$

The nozzle: Does the nozzle operate unchoked? The choking pressure ratio for the given efficiency is (3.14):

$$
\frac{P_{04}}{P_{c}}=\frac{1}{\left[1-\frac{1}{\eta_{j}} \frac{\gamma_{g}-1}{\gamma_{g}+1}\right]^{\frac{\gamma_{g}}{\gamma_{g}-1}}}=1.919
$$

Here we have:

$$
\frac{P_{04}}{P_{a}}=\ldots=4.09
$$

Thus, the nozzle is choked. C.R.S. p. 111 gives:

$$
\left\{\begin{array}{l}
T_{5}=T_{c}=\frac{2}{\gamma_{g}+1} T_{04}=823.5 \mathrm{~K} \\
P_{5}=P_{04} \frac{1}{P_{04}}=0.887 \mathrm{bar}
\end{array}\right.
$$

The ideal gas law gives:

$$
\rho_{5}=\frac{P_{5}}{R T_{5}}=0.375 \mathrm{~kg} / \mathrm{m}^{3}
$$

The 1D continuity equation gives (together with $M_{5}=\frac{C_{5}}{\sqrt{\gamma R T_{5}}}$ and $M=1$):

$$
\begin{gathered}
\dot{m}=\rho_{5} A_{5} C_{5} \\
\Longrightarrow \\
A_{5}=\frac{\dot{m}}{\rho_{5} \sqrt{\gamma_{g} R T_{5}}}=\ldots=0.0712 \mathrm{~m}^{2}
\end{gathered}
$$

since C_{5} is equal to the speed of sound (the nozzle is choked).
The thrust is obtained from (C.R.S p.100, choked nozzle):

$$
F=\dot{m}\left(C_{5}-C_{a}\right)+A_{5}\left(P_{5}-P_{a}\right)=\ldots=7.870 \mathrm{kN}
$$

The SFC is obtained from ($\mathrm{f}=$ fuel air ratio):

$$
\mathrm{SFC}=\frac{\dot{m}_{f}}{F}=\frac{\dot{m} \cdot f}{F}=\frac{f}{F_{s}}
$$

We know that $T_{03}-T_{02}=653 \mathrm{~K}=$ combustion temperature rise. Fig 2.17 (C.R.S. p. 70) gives:

$$
\begin{gathered}
f_{\text {theoretical }}=0.0179 \\
\Longrightarrow \\
f_{\text {real }}=\frac{0.0179}{0.97}=0.0184
\end{gathered}
$$

The SFC is consequently:

$$
\mathrm{SFC}=\frac{15 \cdot 0.0184}{7870}=\ldots=35.07 \mathrm{mg} / \mathrm{s} \mathrm{~N}
$$

