

Lecture 5

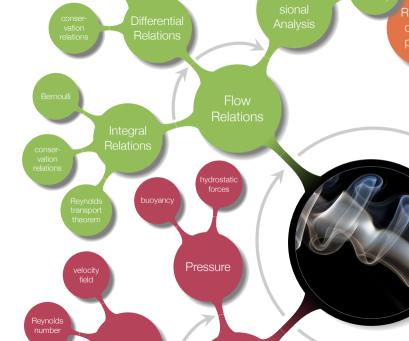
Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se

Chapter 3 - Integral Relations for a Control Volume

Overview



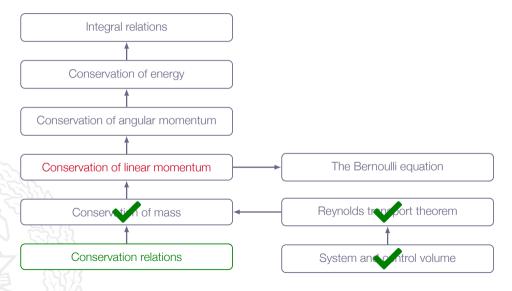
Learning Outcomes

- 4 Be **able to categorize** a flow and **have knowledge about** how to select applicable methods for the analysis of a specific flow based on category
- 12 **Define** Reynolds transport theorem using the concepts control volume and system
- 13 **Derive** the control volume formulation of the continuity, momentum, and energy equations using Reynolds transport theorem and solving problems using those relations
- 15 **Derive** and use the Bernoulli equation (using the relation includes having knowledge about its limitations)

we will derive methods suitable for estimation of forces and system analysis

fluid flow finally ...

Roadmap - Integral Relations



Conservation of Linear Momentum

Linear Momentum

Reynolds transport theorem with $B = m\mathbf{V}$ and $\beta = dB/dm = d(m\mathbf{V})/dm = \mathbf{V}$

$$\frac{d}{dt}(m\mathbf{V})_{\text{SYS}} = \sum \mathbf{F} = \frac{d}{dt} \left(\int_{CV} \mathbf{V} \rho dV \right) + \int_{CS} \mathbf{V} \rho(\mathbf{V_r} \cdot \mathbf{n}) dA$$

- 1. V is the velocity relative to an inertial (nonaccelerating) coordinate system
- 2. $\sum \mathbf{F}$ is the vector sum of all forces on the system (surface forces and body forces)
- 3. the relation is a vector relation (three components)

Linear Momentum

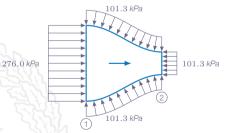
Forces:

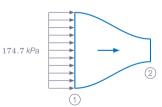
- 1. solid bodies that protrude through the control volume surface
- 2. forces due to pressure and viscous stresses of the surrounding fluid

Surface Pressure Force

$$\mathbf{F}_{p} = \int_{CS} p(-\mathbf{n}) dA$$

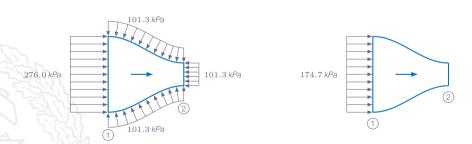
$$\mathbf{F}_{\rho} = \int_{CS} (\rho - \rho_{atm})(-\mathbf{n}) dA = \int_{CS} \rho_{gage}(-\mathbf{n}) dA$$





Surface Pressure Force

A free jet leaving a confined duct and exits into the ambient atmosphere will be at atmospheric pressure



Linear Momentum - Example

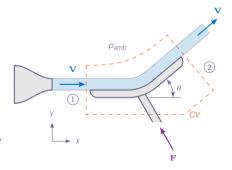
Steady-state flow: deflection av a water jet without changing its velocity magnitude

- steady-state
- ▶ water ⇒ incompressible
- atmospheric pressure on all control volume surfaces
- neglect friction

$$\mathbf{F} = \dot{m}_2 \mathbf{V}_2 - \dot{m}_1 \mathbf{V}_1$$

$$|\mathbf{V}_1| = |\mathbf{V}_2| = V$$

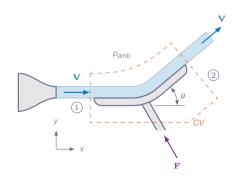
• mass conservation: $\dot{m}_1 = \dot{m}_2 = \dot{m} = \rho AV$



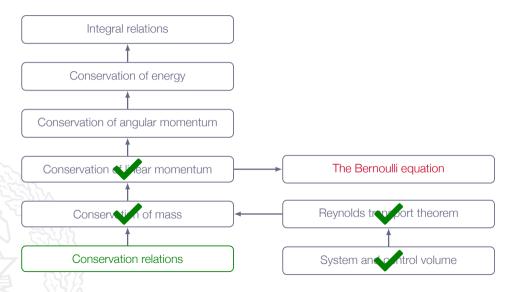
Linear Momentum - Example

$$F_X = \dot{m}V(\cos\theta - 1)$$
$$F_V = \dot{m}V\sin\theta$$

$$\mathbf{F} = \dot{m}V(\cos\theta - 1, \sin\theta, 0)$$



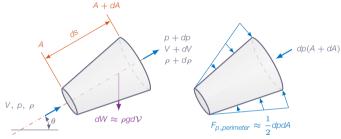
Roadmap - Integral Relations



Daniel Bernoulli

The relation between pressure, velocity, and elevation in a <u>frictionless</u> flow

Frictionless flow along a streamline (streamtube with infinitesimal cross section area)



conservation of mass:

$$\frac{d}{dt}\left(\int_{CV}\rho d\mathcal{V}\right) + \dot{m}_{out} - \dot{m}_{in} = 0 \approx \frac{\partial\rho}{\partial t}d\mathcal{V} + d\dot{m}$$

where $\dot{m} = \rho AV$ and $dV \approx Ads$

$$d\dot{m} = d(\rho AV) = -\frac{\partial \rho}{\partial t} Ads$$

linear momentum equation in the streamwise direction:

$$\sum dF_{s} = \frac{d}{dt} \left(\int_{CV} V \rho d\mathcal{V} \right) + (\dot{m}V)_{out} - (\dot{m}V)_{in} \approx \frac{\partial}{\partial t} \left(\rho V \right) A ds + d \left(\dot{m}V \right)$$

frictionless flow means: only pressure and gravity forces

$$dF_{s,p} \approx \frac{1}{2}dpdA - (A + dA)dp \approx -Adp$$

$$dF_{s,grav} = -dW \sin \theta = -(g\rho A)ds \sin \theta = -g\rho Adz$$

$$\sum dF_{s} = -g\rho Adz - Adp = \frac{\partial}{\partial t} (\rho V) Ads + d (\dot{m}V)$$

$$-g\rho Adz - Adp = \frac{\partial \rho}{\partial t} VAds + \frac{\partial V}{\partial t} \rho Ads + \dot{m}dV + Vd\dot{m}$$

the continuity equation gives

$$V\left[\frac{\partial\rho}{\partial t}Ads + d\dot{m}\right] = 0$$

and thus

$$\frac{\partial V}{\partial t}\rho Ads + Adp + \dot{m}dV + g\rho Adz = 0$$

Now, divide by ρA

$$\frac{\partial V}{\partial t}ds + \frac{dp}{\rho} + VdV + gdz = 0$$

Bernoulli's equation for unsteady frictionless flow along a streamline (the relation just derived) can be integrated between any two points along the streamline

$$\int_{1}^{2} \frac{\partial V}{\partial t} ds + \int_{1}^{2} \frac{dp}{\rho} + \frac{1}{2} (V_{2}^{2} - V_{1}^{2}) + g(z_{2} - z_{1}) = 0$$

Steady $(\partial V/\partial t = 0)$, incompressible (constant density) flow:

$$\rho_1 + \frac{1}{2}\rho V_1^2 + \rho g z_1 = \rho_2 + \frac{1}{2}\rho V_2^2 + \rho g z_2 = const$$

Note! the following restrictive assumptions have been made in the derivation

1. steady flow

many flows can be treated as steady at least when doing control volume type of analysis

2. incompressible flow

low velocity gas flow without significant changes in pressure, liquid flow

3. frictionless flow

friction is in general important

4. flow along a single streamline

different streamlines in general have different constants, we shall see later that under specific circumstances all streamlines have the same constant

One should be aware of these restrictions when using the Bernoulli relation

Relation to the Energy Equation

$$\rho_1 + \frac{1}{2}\rho V_1^2 + \rho g z_1 = \rho_2 + \frac{1}{2}\rho V_2^2 + \rho g z_2 = const$$

- ▶ Derived from the momentum equation
- ▶ May be interpreted as a idealized energy equation (changes from 1 to 2)
 - reversible pressure work
 - kinetic energy change
 - potential energy change
 - no exchange due to viscous dissipation

Stagnation, Static, and Dynamic Pressures

In many flows, elevation changes are negligible

$$\rho_1 + \frac{1}{2}\rho V_1^2 = \rho_2 + \frac{1}{2}\rho V_2^2 = \rho_0$$

- ▶ Static pressure: p_1 and p_2
- ▶ Dynamic pressure: $\frac{1}{2}\rho V_1^2$ and $\frac{1}{2}\rho V_2^2$
- Stagnation (total) pressure: p_o

Pitot Static Tube

Pitot Static Tube

$$\rho_{1} + \frac{1}{2}\rho_{air}U_{1}^{2} + \rho gz_{1} = \rho_{2} + \frac{1}{2}\rho_{air}U_{2}^{2} + \rho gz_{2}$$

$$U_{1} = 0.$$

$$U_{2} = U$$

$$z_{1} \approx z_{2}$$

$$\rho_{1} - \rho_{2} = \rho_{water}gh$$

$$\Rightarrow U = \sqrt{\frac{2\rho_{water}gh}{\rho_{air}}}$$
water

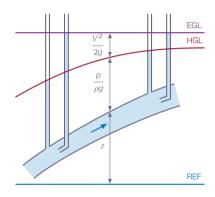
Hydraulic and Energy Grade Lines

EGL:
$$\frac{\rho}{\rho g} + \frac{V^2}{2g} + Z$$

constant if:

- no friction
- no heat transfer
- ▶ no work

HGL:
$$\frac{p}{\rho g} + z = \text{EGL} - \frac{V^2}{2g}$$



Venturi Tube

$$\frac{\rho_1}{\rho} + \frac{1}{2}V_1^2 + gz_1 = \frac{\rho_2}{\rho} + \frac{1}{2}V_2^2 + gz_2$$

 $z_1 = z_2$ gives

$$V_2^2 - V_1^2 = \frac{2\Delta p}{\rho}$$

 $\begin{array}{c|c} & & & & \\ \hline & \rho_1 & & & \\ \hline & \rho_2 & & \\ \hline & & & \\ \hline & & & \\ \end{array}$

continuity:

$$A_1V_1 = A_2V_2 \Rightarrow V_1 = \frac{A_2}{A_1}V_2 = \frac{D_2^2}{D_1^2}V_2$$

inserted in the Bernoulli equation, this gives

$$V_2 = \left[\frac{2D_1^4 \Delta \rho}{\rho (D_1^4 - D_2^4)}\right]^{1/2} \Rightarrow \dot{m} = \rho A_2 V_2 = \frac{\pi D_1^2 D_2^2}{4} \left[\frac{2\rho \Delta \rho}{D_1^4 - D_2^4}\right]^{1/2}$$

Tank Problem - Solution 1

conservation of mass:

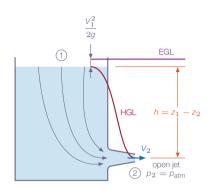
$$A_1V_1 = A_2V_2 \Rightarrow V_1 = \frac{A_2}{A_1}V_2$$

Bernoulli:

$$\frac{\rho_1}{\rho} + \frac{1}{2}V_1^2 + gz_1 = \frac{\rho_2}{\rho} + \frac{1}{2}V_2^2 + gz_2$$

$$p_1 = p_2 = p_{atm}$$

$$V_2^2 - V_1^2 = 2g(z_1 - z_2) = 2gh$$



$$V_2 = \sqrt{\frac{2gh}{1 - \left(\frac{A_2}{A_1}\right)^2}}$$

$$A_2 \ll A_1 \Rightarrow V_2 \approx \sqrt{2gh}$$

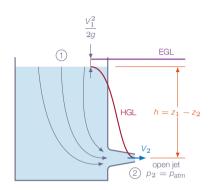
Tank Problem - Solution 2

The outflow is very small in compared to the tank volume and thus the water surface hardly moves at all, i.e. $V_1 \approx 0$

Bernoulli:

$$\frac{\rho_1}{\rho} + \frac{1}{2}V_1^2 + gz_1 = \frac{\rho_2}{\rho} + \frac{1}{2}V_2^2 + gz_2$$

$$V_1 \approx 0, \ \rho_1 = \rho_2 = \rho_{atm}$$



$$V_2^2 = 2g(z_1 - z_2) = 2gh$$

 $V_2 = \sqrt{2gh}$

Airfoil

