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Learning Outcomes

1 Explain the difference between a fluid and a solid in terms of forces and
deformation

2 Understand and be able to explain the viscosity concept
3 Define the Reynolds number

5 Explain the difference between Lagrangian and Eulerian frame of reference and
know when to use which approach

7 Explain the concepts: streamling, pathline and streakline
8 Understand and be able to explain the concept shear stress

9 Explain how to do a force balance for fluid element (forces and pressure
gradients)

10 Understand and explain buoyancy and cavitation
16 Understand and explain the concept Newtonian fluid

in this lecture we will find out what a fluid flow is
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Fluid Mechanics

"Fluid mechanics is the branch of physics concerned with the mechanics of
fluids (liquids, gases, and plasmas) and the forces on them. It has
applications in a wide range of disciplines, including mechanical, civil,
chemical and biomedical engineering, geophysics, oceanography,
meteorology, astrophysics, and biology.”

Wikipedia
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Fluid Flow Applications

» Analytical solutions limited to very specific simplified cases

» Complex geometries and flows leads to the need for experiments and
Computational Fluid Dynamics (CFD)

» Understanding the basic principles is a key factor for a correct analysis



Roadmap - Introduction to Fluid Mechanics

[ Fluid Mechanics - Basic Concepts ]

| S
T

Fluid ] Flow
Viscosity [ Thermodynamic properties ] Flow analysis
Continuum No-slip condition

f

e N o N s N G

Fluid concept

)
)
)

f

Velocity field

i

Frame of reference




The Concept of a Fluid

“In physics, a fluid is a substance that continually deforms (flows) under an
applied shear stress, or external force. Fluids are a phase of matter and
include liquids, gases and plasmas. They are substances with zero shear
modulus, or, in simpler terms, substances which cannot resist any shear
force applied to them.”

Wikipedia



The Concept of a Fluid

"A solid can resist a shear
stress by a static deflection;
a fluid cannot”
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The Fluid as a Continuum

Fluid density is essentially a point function

fluid properties can be thought of as varying continually in space

Volume large enough such that the number of molecules within the volume is
constant

Volume small enough not to introduce macroscopic fluctuations

Microscopic uncertainty

P

Macroscopic uncertainty

. om MW
= 111 —
P SV—=6V* OV

standard air: 6V* ~ 10~°mm?® =~ 3 x 10" molecules -



The Fluid as a Continuum

Flow properties varies smoothly

Differential calculus can be used
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Frame of Reference

2O

Eulerian

fluid properties as function of position and time
most often used in fluid mechanics

Lagrangian
follows a system in time and space
can be used in fluid mechanics
most often used in solid mechanics
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Properties of the Velocity Field

The fluid velocity is a function of position and time

Three components u, v, and w (one in each spatial direction)

Vx,y,z,t) =ux,y,z,t)ex +v(x,y,z,t)e, + W(X,y,Z,t)e;



Properties of the Velocity Field

Acceleration:

V(x,y,z,t) = u(x,y,z, t)ex + v(x,y,z,t)e, + w(X,y,z,t)e;
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Thermodynamic Properties

» Thermodynamic properties describe the state of a system, i.e., a collection of
matter of fixed identity which interacts with its surroundings

» In this course, the system will be a small fluid element, and all properties will be
assumed to be continuum properties of the flow field
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Thermodynamic Properties

Pressure p Pa

Density p kg/m? most common properties
Temperature T K

Internal energy U
Enthalpy h =G +p/p
Entropy s

Specific heats C, and C,

work, heat, and energy balances

Viscosity

Thermal conductivity k friction and heat conduction



Thermodynamic Properties

» For a single-phase substance, two basic properties are sufficient to get the
values of all others

p=pp.T),h=hp,T), p=mnp,T)

» In the following it will be assumed that all thermodynamic properties exists as
point functions in a flowing fluid

» large enough number of molecules

» any changes are slower than the fluid time scale = equilibrium



Thermodynamic Properties

Pressure: p[Pa]
» the compression stress at a point in a static fluid
» a fluid flow is often driven by pressure gradients
» if the pressure drops below the vapor pressure in a liquid, vapor bubbles will form

Temperature: T[K]
» related to internal energy
» large temperature differences = heat transfer may be important
Density: plkg/m?®]
» mass per unit volume
» nearly constant in liquids (incompressible) - for water, the density increases about
one percent for a pressure increase by a factor of 220
» not constant for gases

P=RT



Potential and Kinetic Energies

The total stored energy per unit mass:
o1,
e=u-+ 5\/ +9z

the internal energy is a function of temperature

the potential and kinetic energies are kinematic quantities



State Relations for Gases

The perfect gas law:

where R is the gas constant

p = pRT

R:Cp—CV _____________ T

kg °K

3.13kJ 5.2kJ



State Relations for Gases

The ideal gas law requires: u = U(T) and thus

specific heat (constant volume):

a0 di
C, = <ar>p = = =Cu(T)



State Relations for Gases

specific heat (constant pressure):

ratio of specific heats:



State Relations for Gases




Speed of Sound

Speed of sound plays an important role when compressible effects are important
(Chapter 9)

where 75 is the fluid compressibility

for an ideal gas:



Vapor Pressure

“the pressure at which a liquid boils and is in equilibrium with its own vapor”

Vapor pressure for water:

T[°C] | vapor pressure [Pa]

20 2340
100 101300




Vapor Pressure

If the pressure in a liquid gets lower than the vapor pressure, vapor bubbles will
appear in the liquid

If the pressure drops below the vapor pressure due to the flow itself we get
cavitation




Roadmap - Introduction to Fluid Mechanics

[ Fluid Mechanics - Basic Concepts ]

Fluid | ~l‘ [

e N &
Viscosity J [Thermodyw prODertieS] Flow analysis

i

t
CMJm ] No-slip condition
f f

— /N /N /N

FluiVCept J Velagifeld

i

[ Frame%erence







Viscosity

“relates the local stresses in a moving fluid to the strain rate of the fluid
element”

“a quantitative measure of the fluid’s resistance to flow”



Viscosity

ust

Oy [e—ay

) velocity profile

no slip at wall
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Viscosity
for infinitesimal changes:
a9 _ du
dt  dy
00
from before we know that 7 o 5 and thus 7 x o

For newtonian fluids:

_ 90 du
Tt T Fay

where p is the fluid viscosity



Viscosity

» Liquids have high viscosity that decreases with temperature
» intermolecular forces decreases with temperature

» (Gases have low viscosity that increases with temperature
» increased temperature means increased molecular movement



Viscosity

o, Ratio I8 (0 Ratio
Fluid kg/(m - s)’ p/pHs) kg/m® m?/s’ vfv(Hg)
Hydrogen 8.8 E-6 1.0 0.084 1.05 E—4 920
Air 1.8 E-5 2.1 1.20 1.51 E-5 130
Gasoline 29E-4 33 680 4.22E-7 37
Water 1.0 E-3 114 998 1.01 E-6 8.7
Ethyl alcohol 1.2 E-3 135 789 1.52 E-6 13
Mercury 1.5 E-3 170 13,580 LI6 E-7 1.0
SAE 30 oil 0.29 33,000 891 325E-4 2,850
Glycerin 1.5 170,000 1,264 LISE-3 10,300

Note! there are two different viscosities in the table (dynamic viscosity ;. and

kinematic viscosity v = 1/p)



Viscosity

Inviscid flows: flows where viscous forces are negligible

Viscous flows: flows where viscous forces are important



Reynolds number

» Dimensional number that relates viscous forces to inertial forces
» Very important parameter in fluid mechanics

» V and L are characteristic velocity and length scales of the flow



Reynolds number

Reynolds number flow description

low viscous, creeping motion (inertial forces negligible)
moderate laminar flow
high turbulent flow



Nonnewtonian Fluids

shear stress T

yield stress

ideal Bingham plastic

dilatant

Newtonian

pseudoplastic

) de
shear strain rate —
at
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No Slip/No Temperature Jump

"When a fluid flow is bounded by a solid surface, molecular interactions
cause the fluid in contact with the surface to seek momentum and energy
equilibrium with that surface”



No Slip/No Temperature Jump

At a solid wall, the fluid will have the velocity and temperature of the wall




Laminar/Turbulent Flow

T TRANSITION

TURBULENCE

LAMINAR FLOW—.
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Flow Analysis

Chapter 3 - Control-volume (integral) approach
Chapter 4 - Infinitesimal system (differential) approach

Chapter 5 - Dimensional analysis approach



Flow Analysis

v

Conservation of mass (continuity)

Conservation of momentum (Newton’s second law)
Conservation of energy (first law of thermodynamics)
State relation (for example the ideal gas law)

Second law of thermodynamics

v

v

v

v

v

Boundary conditions



Flow Visualization

Streamline
a line that is tangent to the velocity vector everywhere at an instant in time

Pathline
the actual path traversed by a fluid particle

Streakline
the locus of particles that have earlier passed through a prescribed point

Timeline
a line formed by a set of particles at a given instant



Flow Visualization

Streamline
a line that is tangent to the velocity vector everywhere at an instant in time

Pathline
the actual path traversed by a fluid particle

Streakline
the locus of particles that have earlier passed through a prescribed point

Timeline
a line formed by a set of particles at a given instant

Note! In a steady-state flow, streamlines, pathlines and streaklines are identical



Streamline

Tangent to flow velocity vector everywhere

——
— \.



Streamtube

"Constructed” from individual streamlines

No flow across streamtube walls (by definition)




Pathline vs Streakline

L]

[T ][] ]]]

[ 1] 7] 7] ]]]7]

/

Jododododod
[T] T T

/

FTrrrrrrrTry

pathline t = tg

111111717111}

[T ][] ]]]
[T ][] ]]]

/

/

/

FTrrrTrrrry

streakline t = tg

— streamlines t < tg

1171117111717 —>  streaminest > to

Frrrrrrrrry

pathline t > tg

1111111111}

[1]]]
[1]]]

/
/
/
/

Frrrrrrrrry

streakline t > tg



Roadmap - Introduction to Fluid Mechanics

[ Fluid Meohanitwasic Concepts ]

v

i f

f
va J [ Thermodyw properties ] Flovasis
T L

C%Jm ] ' No—slwdition

FluiVCept J Velagifeld

f

[ Framewerence




Example - Flow Between Plates

u=YV
_—
h u(y)

No acceleration
No pressure gradients
two-dimensional flow



Example - Flow Between Plates

<T+§;AY>AXX1

-+

PAYy x1  —— -— <p+g’iAx>Ay><1

_

TAX x 1

op or B
ZFX_,oAy—<p+8XAX> Ay+TAx—<T+ayAy>AX—O

or op
_—= — = — t
ay Ix O0=r1 cons



Example - Flow Between Plates
u=V

_—

h u(y)




Flow Categories

[ viscous ]<—>[ inviscid




Flow Categories

[ viscous ]<—>[ inviscid ]

( compressible }—»[ incompressible ]




Flow Categories

[ viscous ]<—>[ inviscid ]
[ compressible ]<—>[ incompressible ]
[ turbulent ]<—>[ laminar ]




Flow Categories

viscous

compressible

turbulent
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Flow Categories

viscous

inviscid

compressible

incompressible

turbulent

laminar

unsteady

steady-state

T N o N e N T R

3D
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Learning Outcomes

9 Explain how to do a force balance for fluid element (forces and pressure
gradients)

10 Understand and explain buoyancy and cavitation
11 Solve problems involving hydrostatic pressure and buoyancy

we will have a look at the pressure distribution in a fluid at rest, i.e. no flow yet...
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Motivation

» Many problems does not include fluid motion
» pressure distribution in a static fluid
» pressure on solid surfaces due to presence of static fluid
» floating and submerged bodies



Motivation

Examples:

pressure distribution in the atmosphere and in oceans
design of pressure measurement devices
buoyancy on a submerged body
behavior of floating bodies
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Pressure

v

Pressure is a thermodynamic property

Pressure is not a force and has no direction

v

Forces arise when the molecules of the fluid interacts with the surface of an
immersed body

v

v

A force in the surface-normal direction is generated due to the collision of fluid
molecules and the surface



Pressure Variation in a Fluid at Rest

Fluid at rest - no shear (by definition)
Pressures py, pz, and p, may be different
Small element = constant pressure on each face

As




Pressure Variation in a Fluid at Rest

S " Fi=0=pbAz — pybAssing

1
> Fr=0=pbAx — ppbAs cos b — 5 PIbAXAZ

{

Az = Assin 0
AXx = Ascosf

Px —>

As

Az




Pressure Variation in a Fluid at Rest

ZFX =0 = pybAz — p,bAz

1
ZFZ =0 =p,bAX — phbAx — §,OgbAXAZ

Px = Pn
1
Pz =pPn+ inAZ

Px ———

As

Az




Pressure Variation in a Fluid at Rest

Since @ is arbitrary, the result is general
There is no pressure change in the horisontal direction

The pressure change in the vertical direction is proportional to the depth

"The pressure in a static fluid is a point property, independent of orientation”



Pressure Forces on a Fluid Element y

az

1]
pdydz —> — (p + '—pdx) adydz
dy ox

p=px,y,z1)

B ap B ap Sw ok
dFy = pdydz — (/o + ade) dydz = —&dxdyo’z

o o 0
dF, = — {af:ex + gey + a’;ez} axdydz

f is the net force per unit volume



Pressure Forces on a Fluid Element

"it is not the pressure but the pressure gradient causing a net force which
must be balanced by gravity or acceleration”
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Equilibrium of a Fluid Element

Force balance for a small element

pressure gradients gives surface forces
body forces (electromagnetic or gravitational potentials)
surface forces due to viscous stresses

Newton’s second law:

d f=fy+fy+1f,=-Vp+pg+f =pa



Equilibrium of a Fluid Element

Hydrostatic problems:

no viscous forces
no acceleration

Newton’s second law reduces to:

Vp = pg

(the general form of Newton’s second law will be studied later)
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Hydrostatic Pressure in Liquids

Vp = pg

Vp is perpendicular to everywhere to surfaces of constant p

The normal of constant-pressure surfaces will be aligned with g



Hydrostatic Pressure in Liquids

g = —ge;
dp
4z —pg

2
pzpl—/ p9az
J1



Hydrostatic Pressure in Liquids

2
for liquids, we assume constant density = py — p1 = —/ pgdz = —pg(z2 — 21)
1

Atmospheric pressure
Free surface
Water
a b © d
Depth 1 O o O O
Mercury
A B C D
Depth 2 ° ° o °

Pa = Pp = Pc = Pg
pPa =P = Pc # Pp



Hydrostatic Pressure in Liquids

Is the incompressible assumption for liquids a good assumption?
the density is 4.6 percent higher at the deepest part of the ocean - so yes!

2
P2 —pP1 = — / p9dz = —pg(za — 21)
J1




Hydrostatic Pressure in Liquids

2
P2 —P1 = — / p9dz = —pg(z2 — 21)
J1

Why is mercury used for pressure measurements?



Hydrostatic Pressure in Gases

o _ P
@z~ M7 Rt

both pressure and temperature varies with altitude

/‘delnpz_g/de
1P p1 R/ T

Temperature variation T (z) needed



Hydrostatic Pressure in Gases

Altitude (km)

60

40

20

s 20.1 km —
o
o
©
i
- 11.0km
Troposphere
15°C
| 1 1 1
—60 —40 -20 0 20

Temperature (°C)

Altitude (km)

60

40

20

101.33 kPa

40 60 80
Pressure (kPa)

100

120
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Manometry

Known pressure py

p2 —p1 = —pog(22 —21)

p3 — P2 = —pw9g(Z3 — 22)

Glycerin (pg)
’ Pa —P3 = —pgg(z4 — 23)

I Zs5 P5 — P4 = —pm9(Z5 — 24)

Ps — P1 = —pm9(Z5 — Z4) — pg9(Za — 23) — pw9(Z3 — Z2) — po9(Z2 — 1)

Niklas Andersson - Chalmers 87/655



Manometry

Open, Patm

\, /

— 22, P2 = Patm

Ay PA —

jump across p =pyatz =zq influid 2

P2

Pascal’s law:

"Any two points at the same elevation in a continuous mass of the same
static fluid will be at the same pressure”



Manometry

Pa + p19(Za — 21) — p29(Z2 — Z1) = P2 = Patm

Open, Patm

\, /

— 22, P2 = Patm

Ay PA —

jump across p =pyatz =zq influid 2

P2

Pascal’s law:

"Any two points at the same elevation in a continuous mass of the same
static fluid will be at the same pressure”



Manometry

22, p2 —
P1

jump across

—

jump across

— 71, P1

23, P3 —

P2

P3

— 22, P2

jump across
—_—

— 73, P3

P4

— 2B, PB
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Buoyancy

Archimedes:

A body immersed in a fluid experiences a vertical buoyant force equal to the
weight of the fluid it displaces

A floating body displaces its own weight in the fluid in which it floats



Buoyancy

p9VaBCD

F=



Buoyancy

p9VaBcD

F =




Buoyancy




Buoyancy

Fup = p9(Va + V) o c

Faown = pGVa i




Buoyancy

In general

Fg = Z pig(displacement volume);

Floating bodies

Fg = body weight



Buoyancy - Stability

line of symmetry small disturbance small disturbance

v

Center of gravity G

v

v

G
Center of buoyancy B w%F
Symmetry line 3
Metacenter M ‘

v

restoring moment overturning moment

Note! the center of buoyancy (B) is, in this case, the centroid of the displaced volume of liquid



Buoyancy - Stability
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Pressure measurement

Pressure is a derived property

The force per unit area related to fluid molecular bombardment of a surface



Pressure measurement

(G

Section AA
Bourdon ron

tube

Pointer for

N
. A\ Flattened tube deflects
dial gage

\ \ outward under pressure

iy
N

Linkage

I

High pressure



Pressure measurement

fluid

membrane

strain gauge
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Manometer Example

P1+ Z PigA; — ZP/QA/ = P2 -

down
;

P14+ (A2 + A1)pag — A1peg — (A + A3z)pag = p2 A2
_x /

flow

P1+(A2+A1)pag—A1ppg—(Do+22 — Z1)pag = P2

(=) (=)= (2
pPAg9 pag PA
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

12 Define Reynolds transport theorem using the concepts control volume and
system

13 Derive the control volume formulation of the continuity, momentum, and energy
equations using Reynolds transport theorem and solving problems using those
relations

15 Derive and use the Bernoulli equation (using the relation includes having
knowledge about its limitations)

we will derive methods suitable for estimation of forces and system analysis

fluid flow finally ...
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Motivation

Fluid motion analysis:

differential approach (chapter 4):
describe the detailed flow pattern at every point in the flow

control volume approach (chapter 3):
working with a finite region, balance in and out flow and determine gross flow
effects (force, torque, energy exchange, ... )
gives useful engineering estimates
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f

Conservation of energy

t

Conservation of angular momentum

f

Conservation of linear momentum ]—»‘ The Bernoulli equation

t

Conservation of mass ] Reynolds transport theorem

1 f

Conservation relations [ System and control volume




System vs Control Volume

All laws of mechanics are written for a system:

» A system is an arbitrary quantity of mass of fixed identity m
» The system is separated from its surroundings by its boundaries

» Interaction between the system and its surroundings



System Mass

msyst — COI’]SZ‘

am
ar Y

obvious in solid mechanics
needs attention in fluid mechanics



Conservation Relations

Mass

Linear momentum
Angular momentum
Energy



Linear Momentum

If the surroundings exert a net force F on the system, the mass in the system will
begin to accelerate



Angular Momentum

If the surroundings exert a net moment M about the center of mass of the system,
there will be a rotation effect
JdH
M= —
at

where H = X(r x V)dm is the angular momentum of the system about its center of
mass



Energy

First law of thermodynamics

Second law of thermodynamics



State Relations

» The above-listed relations includes thermodynamic properties
» Needs to be supplemented by a state relation

» Remember: a thermodynamic property can be calculated from any two other
thermodynamics properties

p=pp,T), e=elp,T)



\Volume and Mass Flow Rate

Q= [ (V.n)oA
J o

m = p(V -n)dA
00
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Reynolds Transport Theorem

Converts mathematical relations for a specific system to relations for a specific region

fixed control volume
moving control volume
deformable control volume _ /

Control




Reynolds Transport Theorem

Let B be any extensive property of the fluid (energy, momentum, enthalpy, ... )
5 is the corresponding intensive value (the amount B per unit mass)

The total amount of B in the control volume is

Boy = / Bam — / BpdV
cVv cVv

where 8 = %



Reynolds Transport Theorem

system ABoyt
- controlsurface P====77 = ==

7

I 1 f 1

I 1 f 1

I 1 f 1

I Bey (t) ] | Bev (t + At)

I I | 1

I I | 1

I I | 1

I I | 1

I I i 1

I 1 f 1
flow _2Bn : : flow | 1
— — 1 I
— L ! — | j

system at time t system at time t + At

Bsys(t) = Bey(t) + ABj

Bsys(lL + At) = Bev (t + At) + ABout



Reynolds Transport Theorem

The rate of change of B for the system:

styS o 1 Bsys (t + At) - Bsys (t)
= 11m
at At—0 At

Apply relations from previous slide =

dBS)/S N\ BCV (t + At) + ABout - BCV(ZL) — AB/n
= lm
at At—0 At



Reynolds Transport Theorem

Rewriting =
stys . Bcv (t + At) - Bcv(” . ABout . AB/n
= 1 _
at A, At TA AL At At
dBey Bout Bin
at
Bnet
aB aB .
sys cv 4+ Bt

gt dt




Reynolds Transport Theorem

Rate of change of B within the control volume

d

dt </ o dV)
Net flux of B over the control volume surface

 Bp(V - n)aA
CS



Reynolds Transport Theorem

d d '
gt Bas) = (/Cvﬁp >+/CS[>’/J( n)

Lagrange Euler




Reynolds Transport Theorem

For a fixed control volume (the volume does not change in time)

d ’ 0
° ( y deV> - /C S epav



Reynolds Transport Theorem

If the control volume moves with the constant velocity Vg, the relative velocity of the
fluid crossing the control volume surface V., is

and thus
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Conservation of Mass

Reynolds transport theorem with B = m and 8 = dB/dm = dm/dm = 1

d d
a(msys) =0= at (/CVPO'V> +/CS/)(Vr'n)d’L\

for a fixed control volume

@dv +/ p(Vy-n)dA =0
cv Ot cs




Conservation of Mass

for a control volume with a number of one-dimensional inlets and outlets

dp

ot —dV + Z (PAV out = D _(pAV)in = 0

i

Control surface (CS) @

Control volume (CV)



Conservation of Mass

Steady state = dp/0t =0

/ (Vi - n)dA = 0
CS

or

> (pAVout =D (pAV)in

I I



Conservation of Mass

Incompressible flow = dp/0t = 0

/CS(V,r ‘n)dA = 0

or

Z(A/Vi)out = Z(Af\//)/n

I I



Conservation of Mass - Example 1

V- -n=20
Steady flow through a streamtube e Vo
» steady state = no changes in time \
» streamtube =- only flow through the surfaces ®
1 and 2 1 \® Streamtube control volume

m = p1A1V1 = p2A2V2 = const

if the density is constant (incompressible flow)

A
Q=AV) = AV, = const = Vo = A—IV1
2



Conservation of Mass - Example 2

Compute the average velocity for a steady incompressible viscous flow through a
circular tube with given axial velocity profile

FAm r=R u = 0 (no slip)
u=Up(1-5) :
u(r)
» steady = no changes in time o L.X, ) .
» incompressible = constant density
> laminar flow: m ~ 1/2
» turbulent flow: m ~ 1/7 u = 0 (no siip)

Vaw = — /dA_7rR2 RUO<1—,;>m27rrdr:2;0/0R<1—/;)mrdr



Conservation of Mass - Example 2

(r—R)(1—£5)"(mr+r+R) 4
(m+41)(m+2)

20, (R ™ . 2Uo
Vav_l?2/0 (1-g) ror="g7

2U,

Vay = (m+1)(m+2)

laminar flow: m ~ 1/2 = Vg, = 8U, /15 ~ 0.53U,
turbulent flow: m ~ 1/7 = Vg, = 49U, /60 ~ 0.82U,

We will show later that the correct solution for laminar flow is V4, = 0.5U,
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Linear Momentum

Reynolds transport theorem with B =mV and 5 = dB/dm =d(mV)/dm =V

d d
—_— — F: [— r-
dt(mv)sys g = < » VpdV> —l—/cs Vp(Vy - n)dA

1. 'V is the velocity relative to an inertial (nhonaccelerating) coordinate system

2. Z F is the vector sum of all forces on the system (surface forces and body
forces)

3. the relation is a vector relation (three components)



Linear Momentum

Forces:

solid bodies that protrude through the control volume surface
forces due to pressure and viscous stresses of the surrounding fluid



Surface Pressure Force

Fp = /Csp(—n)o’A

Fp = /cs(p — Patm)(—n)dA = /Cspgage(—n)d/‘\

101.3 kPa

276.0 kPa > —> 101.3 kPa 174.7 kPa

; ® ;

@ 101.3 kPa




Surface Pressure Force

A free jet leaving a confined duct and exits into the ambient atmosphere will be at
atmospheric pressure

101.3 kPa

276.0 kPa > —> 101.3 kPa 174.7 kPa —

; ® ;

@ 101.3 kPa




Linear Momentum - Example

Steady-state flow: deflection av a water jet without changing its velocity magnitude

» steady-state

» water = incompressible
» atmospheric pressure on all control volume surfaces
» neglect friction

F =myVy —mVy

Vi =[Vo| =V

» mass conservation: m; = ms = m = pAV



Linear Momentum - Example

Fx =mV/(cosf — 1)
Fy, =mVsin@

F =mV(cosf — 1,sin6,0)
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The Bernoulli Equation

The relation between pressure, velocity, and elevation in a frictionless flow



The Bernoulli Equation

Frictionless flow along a streamline (streamtube with infinitesimal cross section area)

A+ dA
A & \ p+dp
V +av dp(A + dA)
p+dp «~
V,p, p
conservation of mass: - @v W % pgdV

1
F p,perimeter = EdpdA

d . : d .
where m = pAV and dV ~ Ads

dm = d(pAV) = —%Ads



The Bernoulli Equation

linear momentum equation in the streamwise direction:

. . 0 .
S = S ([ VoaV )+ () — (), = 5 (V) AdS + V)
at \ oy ot

frictionless flow means: only pressure and gravity forces

1
dFsp ~ §ClpdA — (A+dA)dp ~ —Adp
dFsgrar = —dWsin = —(gpA)ds sin @ = —gpAdz

ZO’FS = —gpAdz—Adp = % (pV)Ads +d (mV)



The Bernoulli Equation

% . .
—gpAdz—Adp = %VAO/S + %t pAds + mdV + Vdm

the continuity equation gives

ap N
4 [atAo’s + dm} =0

and thus

% pAds + Adp + mdV + gpAdz = 0

Now, divide by pA
oV ap

—ads+ —+VdV +gdz =0
ot P



The Bernoulli Equation

Bernoulli's equation for unsteady frictionless flow along a streamline (the relation just
derived) can be integrated between any two points along the streamline

—d +/ ~Vi)+g@z—21)=0
1



The Bernoulli Equation

Steady (0V /ot = 0), incompressible (constant density) flow:

1 1
p1 + §PV12 + p9z1 = P2 + §pV22 + pgzy = const




The Bernoulli Equation

Note! the following restrictive assumptions have been made in the derivation

steady flow
many flows can be treated as steady at least when doing control volume type of
analysis
incompressible flow
low velocity gas flow without significant changes in pressure, liquid flow
frictionless flow
friction is in general important
flow along a single streamline

different streamlines in general have different constants, we shall see later that
under specific circumstances all streamlines have the same constant

One should be aware of these restrictions when using the Bernoulli relation



Relation to the Energy Equation

1 1
p1 + §PV12 + p9z1 = p2 + §pV22 + pgzy = const

» Derived from the momentum equation

» May be interpreted as a idealized energy equation (changes from 1 to 2)
» reversible pressure work
» Kinetic energy change
» potential energy change
» no exchange due to viscous dissipation



Stagnation, Static, and Dynamic Pressures
In many flows, elevation changes are negligible
1 2 1 2
p1 + §PV1 = P2 + 5/’\/2 = Po

Static pressure: p; and po
Dynamic pressure: 5pV1 and ipV2

Stagnation (total) pressure: po






Pitot Static Tube

1 1
p1 + ipa/‘ru% + p9z1 = P2 + §PafrU§ + p9Z2

U1 = 0. (1N
Us =U LU= 2pwater@h
21 ~ 22 Pair
P1—pP2 = Pwatergh

water




Hydraulic and Energy Grade Lines

2
EoL: L+ s
P9 29

constant if:

no friction
no heat transfer
no work

P

HGL: — +z=EGL - v
Je] 2

] e

2

ZE
29

&|o

S

HGL

REF




Venturi Tube

o1 + V1 +9z1 = Pz + V2 + 972
P P
71 = Zo gives
2Ap
vZ_oyz=""0
2 1 P
continuity:
A
A1V1 :A2V2 = V1 /?2\/2
1

inserted in the Bernoulli equation, this gives

4 1/2
QDIAIO ):| =m= pAQVQ =

Y D202 [ 2pAp 1Y/?
‘7 [p0f - D}

4 |DI—DI



Tank Problem - Solution 1

conservation of mass:

A
A1V1 :AQVQ = V1 = lVQ
A1

Bernoulli:

P1

1 P2
“V2 4 gz =22
p+21+gl

1
P + 5\/22 +QZQ
P1 = P2 = Patm

V2 - V2 =29(z1 —z2) = 2gh

vi
29

— 7o

Y

open jeT
@ P2 = Patm

Ay <Al = Vo x \/2gh



Tank Problem - Solution 2

The outflow is very small in compared to
the tank volume and thus the water
surface hardly moves at all, i.e. V4 =~ 0

Bernoulli:

1 1
%+2V§+gzl = pr—l- S Vs +922

Vi~ 0, p1 = P2 = Patm

vi
29

@ P2 = Patm

— 75

v _
open jet

V22 = 29(21 —22) = 2Qh

Vy = \/2gh



HANDLING A STUDENT WHO
|CHALLENGES, YOUR EXPERTISE
WITH AN INSIGHTFUL QUESTION

50, KIDS, THE. AIR ABOVE THE WING
TRAVELS A LONGER DISTANCE, 50
T HAS T0.Go PASTER T KEEPUPR
FRSTER AIR EXERTS LEK PRESSURE,
SOTHE WING IS LIFTED UPLIARD:

BUT THEN WHY

RIGHT:
Wow, GOoD QUESTION!
~MAYBE THIS PICTURE IS
SIMPUIFIED~OR WRONG!
\WE SHOULD LEARN MORE.

IT5... COMPUCATED,

L aouesen

:
:

SANTA CLALS 15
“— YOUR PRRENTS.
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Angular Momentum

Angular momentum about a point o

Ho—/ (r x V)dm = B
syst

where r is the position vector from o to the element mass dm and V is the velocity of
that element

The amount of angular momentum per unit mass

 dH,

o =rxV

B




Angular Momentum

Reynold’s transport theorem:

dH,
at

syst

for inertial coordinate systems:

d;{to => My=) (rxF)



Angular Momentum

Nondeformable inertial control volume:

M= |

one-dimensional inlets and outlets

/C S(r x V)p(V-m)0A =Y (v x V)ouriou — Y _(r x V)infy



Angular Momentum Example - Lawn Sprinkler

SM, = % {/Cv(r « V)pdV} + /Cs(r X« V)p(Vy - n)dA

absolute outlet velocity

{ V2 - (VO - RW,0,0) — mr—V Vo = (Vo — Rw)ex

VO - (07 07 VO)

rs = (0,R,0) B
{ [
ro = (0,0,0) )

inlet velocity

cv

\
|
|
|
|
|
|
|
I
| xetarding torque To
I

1

> X

Vo = ;ez



Angular Momentum Example - Lawn Sprinkler

steady-state:

% {/Cv(r . V)pdv} =0



Angular Momentum Example - Lawn Sprinkler

ZMO = /CS (r x V)p(Vy-n)dA

inlet:
(rO X VO) - (070*0) X (070a VO) = (O7Oa0>

(Vo 10) = (0,0,V,) - (0,0, 1) = —V,

(o X Vo)p(Vo - 1p)As = —(0,0,0)pVoAo = (0,0,0)

outlet:
(ry x V3) = (0,R,0) x (Vo — Rw,0,0) = (0,0,R%w — RV,)

(V2’r $ Ilg) = (VO.,O,O) . (1,0,0) = Vo

(I‘Q X V2)p(V2 . n2)A2 = (O7 0,R2w — RVO)pVOAQ = [)Q(O/ O,RQLU — RVO)



Angular Momentum Example - Lawn Sprinkler

> Mo = (0,0,~To) = pQ(0,0,R*w — RV,)

Vo To

R  pQR2

V,
Note: with a negligible retarding torque, i.e. T, ~ 0, we get w ~ ﬁo
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The Energy Equation

Reynold’s transport theorem applied the the first law of thermodynamics
B=E, p=dE/dm =¢)

aQ dw dE d

Recall:
» positive Q: heat added to the system
» positive W: work done by the system on its surroundings



The Energy Equation - Energy per Unit Mass

€ = Cinternal + Ckinetic + epotent/a/ =+ €other

Eother COUld be related to, for example, chemical reactions, nuclear reactions, or
magnetic fields and will not be considered here

.1
e=10+ §V2+gz



The Energy Equation - Work

The work term W can be divided into shaft work, pressure work, and work related to
viscous forces

v‘vp:/ p(V -n)dA
CS

WV:—/ - VdA
CS



The Energy Equation - Pressure Work

W, = [ p(V-n)dA
CS

The rate of work done by pressure forces on the control volume surfaces

Internal forces will always have an opposite force leading to cancelation



The Energy Equation - Viscous Work

The rate of work related to viscous stresses on the control volume surfaces

Important or not depending on flow situation



The Energy Equation - Control Volume Boundaries

Solid walls:
no-slip = W, =0

Machine surfaces:
viscous work included implicitly in shaft work

Inlets/outlets:

flow aligned with surface normal (usually) and normal viscous stress components
are in most cases very small

Streamlines:
viscous stresses may be significant depending on streamline location



The Energy Equation

. . d
Q-Ws-W, =— </ epdV> +/ pe(V-n)dA+ [ p(V-n)dA
at \Jev cs cs

collecting surface integrals gives



The Energy Equation

or

Q—Ws—wy—j{ <a+;v2+gz)pdv]+

~

cv

+/ (ﬁ + Ly +gz> p(V - n)dA
cs 2

where h is the enthalpy defined as h = i+ p/p



The Energy Equation
Steady state:
Q- Ws— W, :/ <f7+ 1V2+gz) p(V -n)dA
cs 2
Special case: one inlet and one outlet (both one-dimensional)
: M M . o 1 2 . ~ 1 2
Q—-Ws—-W, =-my|h+ 5\/1 +9z1 ) +ma | ha + §V2 + 922

continuity = m; = my = m, divide by m gives

A 1 A 1
h1+§\/12+921 :h2+§v22+gZQ*Q+WS+WV



The Energy Equation

| .1
h1+§\/12+921:h2+§V22+QZ2_C7+Ws+WV

all terms has the dimension [m?/s?], divide by g [m/s?] to get dimension [m]

ap V3 Gy V3
PL it Ay =2 2.0

+29 —hg+hs+h,
pg g 29 pg g 2g  P9TE

» p/(pg): pressure head
» /2 /2g: velocity head



The Energy Equation

v

steady-state flow
incompressible (low speed)

v

v

pipe/duct that may or may not include turbines and pumps
solid walls = h, =0

% V3 Uy — Uy —
<p1++ > <p2++ >+21q

v

p9 29 pg 29 g
ho, hoy

where h, is available head or total head



The Energy Equation

U2 —U1—q _ o, — hoy
» pump head input hy

» turbine head extraction h;

» friction head losses hy (always positive)

V2 V2
<pl+1+zl> —(pz+2+22> +hr —hp + hy
in out

P9 29 r9 29




Kinetic Energy Correction Factor

One-dimensional flow through inlets and outlets is of course not true in reality

Introducing the correction factor «

04Vav2
2

/ %VQp(V-n)dA =

where (for incompressible flow)

1
Va\/ — A/UdA



Kinetic Energy Correction Factor

% %
<pl+a11+zl> —<DZ+“2 2+22> +hy = hp + hy
pg Zg in pg 29 out




Kinetic Energy Correction Factor

Laminar pipe flow:

1
which gives V,, = iumax and o = 2.0




Kinetic Energy Correction Factor

U(r) = Upax [1 - (;)1 V= % /'udA

1 . ry? 2Umax r? rt RfUmax
VaV_W/O Umax{l—(ll:?)]?ﬂl’dl’— =5 5—@0_ 5




Kinetic Energy Correction Factor

u(r) = Umax [1 — (;)1
[ aveov waa = [ 0 [1= (5)] st 1 (5] 2ror

"1 ‘ r\21?
/2V2p(V-n)O’A—p7TU,‘;aX/ [1— (E) } rdr

1
/;V%(V -n)dA = épWRQU?naX



Kinetic Energy Correction Factor
1 2 1 27113
§V p(V -n)dA = épm’? Unax

the massflow m can be obtained as:

. 1

m= VanWRQ = iumaxPWRQ
which gives
U2

max ,n
4

/;V%(V-n)dA _

from the definition of «

2 U2
/;VQp(V.n)dA = %rh = {Vav — ;Umax} _ ®Ymax



Kinetic Energy Correction Factor

comparing the two expressions we have that

2 2
Uhax - _ alUfax -

4 8

and thus « = 2 for laminar incompressible flow



Kinetic Energy Correction Factor

Turbulent flow:

u(r) = Unax (1 — %)m, m =~ B

From one of the continuity equation examples we have:

QUmax |
(1+m)(2+m) ‘ Umax

Vav -

Performing the integration and comparing terms gives:

(A +myA24m)
“T 41+ 3m)2 +3m) g




Kinetic Energy Correction Factor

m| 1/5 | /6 | 17 | 1/8 | 1/9

a | 1.106 | 1.077 | 1.058 | 1.046 | 1.037

For turbulent flows, o = 1 is often a good assumption
For laminar flows, o = 2 should be used



The Energy Equation - Pump Example

» Calculate:
» Pump power if n = 0.8
» Given:
» Geometry and pressures from figure
» The pump delivers water at a flow
rate Q = 0.04 m*/s
» Friction losses between 1 and 2 are
given by hy = KVZ/(2g) where ot
K=a~T75 z1 =0.0m
» o~ 1.07

» Assumptions:

» steady-state flow
» negligible viscous work
» large reservoir (V1 = 0)

machine

p2 = 70.0 kPa
73 = 6.0m
Dy = 8.0cm

water —»



The Energy Equation - Pump Example

Vo = Z =796m/s

V2 V2
(/91 + 21 +zl> - <p2 + 22 +22> +he—ho+he

P2 — P71 \/22 p1 = 101.3kPa

hp = +(z2—21)+(a2+K) 2= = 30.5m 2 =00m o

P g ( 29 n
water —- pump p2 = 70.0kPa

75 =6.0m
h Doy = 8.0cm

Poump = & 9 _ 14960 w (or 20 hp) 0
n
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Integral Relations - Considerations

control volume type: nondeforming?, nonaccelerating?
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Integral Relations - Considerations

control volume type: nondeforming?, nonaccelerating?
steady flow? if not can the frame of reference be changed?
can friction be neglected?

can the fluid be assumed to be incompressible?

if compressible, can the ideal gas law be used?

do we need to account for body forces (gravity etc)?

is there heat transfer, shaft work or viscous work



Integral Relations - Considerations

control volume type: nondeforming?, nonaccelerating?
steady flow? if not can the frame of reference be changed?
can friction be neglected?

can the fluid be assumed to be incompressible?

if compressible, can the ideal gas law be used?

do we need to account for body forces (gravity etc)?

is there heat transfer, shaft work or viscous work

can inlets/outlets be assumed to be onedimensional
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

14 Derive the continuity, momentum and energy equations on differential form
36 Define and explain vorticity

let’s push the control volume approach to the limit ...
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Differential Relations

seeking the point-by-point details of a flow pattern by analyzing an
infinitesimal region of the flow



Differential Relations

v

Apply the four basic conservation laws to an infinitesimally small control volume

v

The differential relations are in general very difficult to solve

v

analytical solutions exists for a few cases

The differential relations form the basis for CFD software

4



High-Speed Nozzle Flow

)

P s



The Acoustic Signature of a Supersonic Jet

Screeching rectangular supersonic jet




Lots of Equations Ahead
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—>= MANY

’
HOW MANY YEARS OF MATH ARE
NEEDED To UNDERSTAND THE ANSLJERS

WHY S0 MANY PEOPLE. HAVE WEIRD
IDEAS ABOUT QUANTUMN MECHANICS
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Frame of Reference

Eulerian: observer fixed in space

Lagrangian: observer follows a fluid particle

recall the speedometer/traffic-camera analogy




Acceleration Field

In order to get to Newton’s second law, we need the acceleration vector

Velocity field:

V(r,t) = e(x,y,z,t) +ev(x,y,z,t) + e;w(x,y,z,t)

Acceleration field:

a—d—v e%Jre%Jred—W
T odt Xdt " Vdt | Yt



Acceleration Field

Each scalar component of the velocity vector (u, v, w) is a function of four variables
x,y,z,t) and thus

Au(xy,z,t) _0u  oudx  oudy oudz
dt Ot Oxdt  Odydt  ozdt

By definition dx/dt = u, dy/dt = v, and dz/dt =

au(x,y,z, t) ou 8u ou ou  ou



Acceleration Field

oV ov ov ov oV _Dv
+ ( > = +(V-V)V=—

3 wx Vet ) T ~ Dt

/003/ convective

a —




Acceleration Field

oV ovV oV ovV ov DV

convective

local acceleration: only in unsteady flows

convective acceleration: fluid particle that moves through regions of spatially
varying velocity

» nozzle flow

» diffuser flow



Substantial derivative

» The total temporal derivative

» the sum of the local derivative and the convective derivative
» often referred to as the substantial derivative

» The substantial derivative follows a fluid particle but is expressed in an Eulerian
frame of reference

The substantial derivative is an operator that can be applied to any variable

Do  dp op op dp _9p
Do TV Ty tWa e TP
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Mass Conservation y

pudydz

ot %qy 4 > _(pAViout = D (pAV)in = 0
i

i

/ 9 4y~ —pdxo’ydz
C\/

9P ixalyaz + -2 (pu)axaydz + 2 (pv)dxayaz + 2

ot ox oy 0z

az

15}
o (pu + *(pu)dx) dydz
dy ox

0 — (pw)dxdydz = 0



Mass Conservation

The result is the continuity equation - conservation of mass for an infinitesimal control
volume

ap 0 9 o
E‘i‘a( )4‘@( )‘i‘&(PW)—

or in more compact form using vector notation

op
ot V- (pV) =0

Incompressible flow (constant density)

o ov ow
ox oy 0z
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Linear Momentum

Z F — /cv %(Vp)dv + Z(m/V/)out - Z(m/V/)m

3} 0
B (Vp)dV = 5 (Vp)dxdydz



Linear Momentum

— <

az

a
e (pUV + o (puV)dx) dydz
X

puVdydz —1 dy
A, dx
Face Inlet momentum flux Outlet momentum flux
[ 0
X puVdydz puV + a(puV)o’x dydz
[ 0
1% pvVaxdz pvV + 8y(va)dy] dxdz
[ d
z pwVaxady WV + E(pwV)dz axdy




Linear Momentum

0 0 0 0
pu— — —_— —
E F [at(Vp)Jr 0X(puV)+ ay(va)Jr OZ([)WV) dxdydz



Linear Momentum

0 0 0 0
at (Vp) + % (puV) + EY, (V) + 9z (pwV)
~— —_—— N~—

e] [oAYA o oV o oV
Vatror  Vax(pteuge V2 ()+pr QL Vi (pw)tew g

can be rewritten as

p oV oV ov oV

inui i av _DV
continuity equation o+ (V-V)V= =

and thus

D
> F= p%dxdydz



Linear Momentum - Forces

> F= pDD—dedydz

SF;
body forces: gravity and other field forces
surface forces: pressure and viscous stresses



Linear Momentum - Gravity Force

dFgravity = pgadxdydz

if gravity is aligned with the negative z-direction

dF gravity = —ezpgdxdydz



Linear Momentum - Surface Forces

Ozx
—P + Txx Tyx Tzx
—» Oxx
g, /] = Txy *p + Tyy sz dy Ozy 3

Txz Tyz —P + Tz

—_— X




Linear Momentum - Surface Forces

dxd a
y T (ayx 4+ dy) dxciz
A 8}/

7z —

do,

oxxdydz <4—1—— — (gxer
ay ——>

!
Lo

a
g oo 4 2 dz) dxdy

al dx) dydz
X

oz
0

0 0
dFX,Surf - |:6X(Uxx) + @(ny) + ((TZX):| dxdydz

0z



Linear Momentum - Surface Forces

0 0 0
dFx surt = |:6X(O—XX) + @(ny) + &(sz)} dxdydz

Oxx = Txx — P, Oyx = Tyx, Ozx = Tzx

0 0 0
dFx surt = [,O + = (7x) + @

0

0z



Linear Momentum - Surface Forces

e 0 0 0

dFx surt = __ali + 67(Txx) + @(Tyx) + 82(7'2)()] dxdydz
[ op 0 0 0

afy sur = oy + &(Txy) + @(Tyy) + &(sz)} dxdydz
T o o ) B

aFz surf = oz + a(sz) + @(Tyz) + aZ(TZZ)] dxdydz



Linear Momentum - Surface Forces

dF = [~Vp + V - 75| dxdydz
where
Txx  Tyx Tzx

Ti =1 v Ty Tz
Txz Tyz Tzz

is the viscous stress tensor



Linear Momentum - Forces

Now, inserting the forces into the momentum equation gives

DV

pg = Vp+V 7 =pp-




Linear Momentum

vector notation is powerfull, tensor notation is even better ...

op  Omx | Omyx  Omax ou ou ou ou
o T ox Yoy Tz T (81‘+ Yox Ty TV 62>

8p aTxy 8Tyy asz - 8\/ 3V 8\/ 8\/
P9y 8y+8x+6y+8z - ot Yok T 87+ oz

P  One O O (W ow  ow  ow
Pt o Yoy Tz T <8t+ ox VY TV az>

Note! the convective term (RHS) is nonlinear



Linear Momentum

Recall:

"For a Newonian fluid, the viscous stresses are proportional to the element

Strain and the viscosity”

For incompressible flow:
U oy ow

0
Txx = 2#&, Tyy = 2”@, Tzz = 2/,65

ou ov ou
Txy = Tyx = b 87)/_'_& y Tz = Tzx = 1 oz

o ow
Tyz = Tzy = [ E"'@

L ow
154



Linear Momentum

The incompressible Navier-Stokes equations

o, (P oo
P = P T o TH e T o T oz

Dv _d o, (Pv v v
Por = P Ty T o Tax T oz

Dw op <02W 0*w (92W>
+ 1

Por = M2y, 2 o T o



Linear Momentum

The incompressible Navier-Stokes equations

Non-linear equations

Three equations and four unknowns (o, u, v, w)

Combined with the continuity equations we have four equations and four
unknowns



I ABOUT  PROGRAMS  [MIENNIUMPROBIENS] FEOPLE  PUBLICATIONS  EVENTS  EUCLID

Millennium Problems

Yang-Mills and Mass Gap

2" mass gap" inthe solution to the quantum versions of the Yang: Mills equations. But
70 proof of this property is known.

Riemann Hypothesis
The prime number i listribution of the primes. Th tells us about e
average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part 1/2.

P vs NP Problem

IFiti heck that o is correct, the problem? This s the essence of the Pvs NP question, Typical of

thatof the i 3 twice? If yougiveme a
solution, | thatit is correct. But | find asol

Navier-Stokes Equation
This s the e fuics sueh 2N air. However, there s 1o proof for the moss basic questions one can ask: o
solutions exst and are they unique? Wiy ask for  proot? Because proof gives not oy certtude, but lso understanding.

Hodge Conjecture
The answero ot of a system of agebraic equations canbe defined i terms of
further algebraic equations. tureisknowni pecialcases. e nset Jonessthan four.But in

iension four it s unknown.

Poincaré Conjecture

101904 the F ian Henri if i is characterized as the unique simply connected three

manifold. This question, the Poincaré conjecture, was a special case of Thurston's geometrization conjecture. Perelman's proof tellsus that every
threemanifold is built from 2 set of standard pieces, each with one of cight well-understood geometries.

Birch and Swinnerton-Dyer Conjecture
peri jdence,h e number ofpoints totherank ofthe group of
' v twovariabies, arise in many areas: Wies
proof ofthe Fermat Corjecture,factorizationof numbers into primes, and ryptography, to name three.

rational point:




Example - Coutette Flow

u(y)

y=—h
fixed wall

incompressible (p = const)
steady-state
lower plate fixed, upper plate moving with the velocity V

flow only in the x-directionv =w =0, u # 0
no pressure gradient



Example - Coutette Flow

continuity:
6;(/+g\;+%\/zv20:>{v_ —0}:2:1
momentum equation (x-direction):
ou  0Ou _dp Pu %
P<U0X 8y> ~ox PO I <0X2+8y2> = {v=w=0,

0



Example - Coutette Flow

0%u
872_0:>u_ay+b
boundary conditions:
uth)y=Vv
u(=h)=0 }:>
V. = ah + b vV = ah + b
+ 0 = —-ah + b 0 = —-ah + b
%4 2b V = 2ah
V %



Example - Coutette Flow ;

y=—h

fixed wall

=4



Example - Poiseuille Flow

fixed wall

y=-—h

fixed wall

incompressible (p = const)

steady-state

lower and upper plate fixed

flow only in the x-directionv =w =0, u # 0
pressure gradient driven



Example - Poiseuille Flow

continuity:

ou ov ow ou
a4_074-5_0:»&— _O}:>0X 0

momentum equation (x-direction):

U@—FV@ = 8p+ + u 82u G ={v=w=0}=pu Pu u_op
P\%x "oy ] T " ox PIx T Bx2 0y2 S Hay2 =~ ox



Example - Poiseuille Flow

momentum equation (y-direction and z-direction):

op
= =0
oy
=P =p(x)
9p _

82_0



Example - Poiseuille Flow

d’u  dp
Why constant?

RHS function of x only
LHS function of y only
RHS=LHS = must be a constant

Why < 07
pressure must decrease in the flow direction



Example - Poiseuille Flow

d’u  dp
udT/? = =const <0
1d
py +ay +b

2/ ax



Example - Poiseuille Flow

boundary conditions:

uth)=0 -
u(=h)=0
1 dp,, 1 dp
= ——h h b = _—Tp?
0 ok toah 0 2deh + ah
1 dp, 1 dp,s
= ——h" — ah b — = ——
+ 0 o1 dx ah + 0 2deh ah
1 ax
a=>0
b__idﬁ 2

241 AX



Example - Poiseuille Flow

fixed wall

y=h
YL
u(y)
y = —h
fixed wall
_hdo () (X)2
2p dx h
du dpy _adu|l B _ dph?
dy dxp  ady ij_OjumaX_u(O)_ ax 2

(remember: dp/dx < 0)
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Angular Momentum



Angular Momentum

o
Tyx + a—y (Tyx )y

» axis through o parallel to the z-axis

14}
Txy Txy + &(‘rxy)dx

» axis through the centroid of the element
» 6 angle of rotation about o

-—

Tyx

19 10
Txy — Tyx + ia(TXY)dX - 5@(7-)’)()0')/ dXdde -
L (o) (ax? + oy L2
P Y e

Niklas Andersson - Chalmers 249/655



Angular Momentum

10 10
Ty — Tyx + 567(%/)@( - 5@( yx)Ay | dxdydz =
— p(axdydz) (dx? + d Q)die
12)0 i1 y dt2

Neglect higher-order differential terms gives

Txy ~ TyX

Analogously, we may obtain 7 ~ 7z and 7z, ~ 7y,



Angular Momentum

Note! there is no differential angular momentum equation ...

the only result from this section is that shear stresses are symmetric: 7; = 7



Roadmap - Differential Relations [ Rotation and vorticity ]

[ Differential relations ]—»%}

[ Boundary conditions ]—»O [ Streamfunction ]
[ Conservation of energy ]

[ Angulavﬂentum ]4—%)

[ Conservation %ar momentum ]
[ ConservM of mass ]

[ The substw derivative ]—> 4—[ Integral relations ]




The Energy Equation

Integral formulation:

Q—WS—WV—d</ epdV>+/ <e+p>p(V-n)dA
at \Jev cs p

h=e+p/p
Differential form:

ciz_wyz{8

pr (pe) + g(puh) + g(pvh) + 8(pwh)] adxdydz

Ox oy 0z

Ws = 0 we can not have a infinitesimal shaft protruding the control volume



The Energy Equation

Part I.

ot ot

adxdydz



The Energy Equation

Part Il.
P P P
&(Pum + @(PVh) + @(Pwm
) ) ) ) )
a(ﬂue) + @(PVe) + E(PWG) X (up) + @(VD) 82( wp)
Part II*
P P )
a*X(PUG) + a*y(f)ve) + &(PW@
e | 2 (pu) + () + 2 ow)| +p |u2 2 w0
ax P T gy P T 7\ PI%x Ty T Moz



The Energy Equation

Part II**

£ (UP)+ 5 (P) + £ ()

v v ow) o
pax oy 0z

pV -V +V-Vp



The Energy Equation

reassemble and collect terms:

0 0 0
&(Pe) + a(PUh) + g(PVh) + &(/)Wh)
Plot ™ ox oy T oz
2 4H(V-V)e=2
dp 0 0 0
e {81‘ + &(PU) + @(PW + 82(/?W>] +

continuity equation

PV -V +V.-Vp



The Energy Equation

L D
Q- W, = p§+pv-v+v.w) axdydz



The Energy Equation - Added Heat

Now, let’s have a look at the added heat term Q
Only conduction will be considered (no radiation)

According the Fourier’s law of conduction, the heat flux is proportional to the
temperature gradient

q=—-kVT

where k is the thermal conductivity and q is heat transfer per unit area



The Energy Equation - Added Heat

az

Qxdydz  — oy
Face Inlet heat flux Outlet heat flux Rz
X Qxdydz :qx + (?):dx] dydz where gy = —k%t
y qyadxdz :qy + a;}//yc/y} dxdz where g, = kg;
z q-axdy :Clz + aaizo’z] dxdy where g, = —kgz

Fe)
> — > (ax + o (qx)dx) dydz
X



The Energy Equation - Added Heat

net added heat:

- OQX (}Qy 0(72
= — | —= 4+ —= + —= = —V - qdxayd.
Q I + ay axdydz V - qdxdydz

or

Q =V - (kVT)dxdydz



The Energy Equation - Viscous Work

The rate of work done by viscous stresses equals the product of the stress
component, its corresponding velocity component and surface area



The Energy Equation - Viscous Work y

Wx = — (UTXX + VTxy + WTXZ)

az

Wy dydz

17}
—> —> (WX + = (WX)UX) dydz
dy ox

: 0
WI/ = — &(UTXX + VTxy + Wsz> +

8(u + vy +W )—|—8(u + VTzy + WTz)
o T, — (ur; T: =
dy Tyx Tyy yz gz YTz zy 7z

-V - (V- 7;)dxdydz



The Energy Equation

with the derived expressions for heat and viscous work we end up with

De

Vo kVT)+ V- (V7)) = ppp

+pV-V+V.-Vp



The Energy Equation

Now, introducing the viscous-dissipation function ¢ for Newtonian fluids and
incompressible flows

V-A(Very) =V (V7)) + 6

ou\ 2 ov\?2 ow \ 2
¢—“F<@J w2(5) (%) +

v ouN L (ow v\ (ou ow?
ox oy oy 0z 0z  0Ox

where



The Energy Equation

Note!

"All terms in the viscous-dissipation function are quadratic which means
that in a viscous flow there will always be losses, which is in line with the
second law of thermodynamics”



The Energy Equation

Now, let’s eliminate the term V - (V - 7;) in the energy equation:

Momentum equation:
v
P =pg—Vp+V 7

Multiply the momentum equation with the velocity vector (scalar product)



The Energy Equation

Energy equation:

De
pE+V~Vp+pV-V:V-(kVT)+V-(V~T,]-)+q5
eliminate V - (V - 7;) using the result from previous slide

De DV
pE+V-V,o+pV-V:V-(kVT)+pV-E—pV-g+V-Vp+¢



The Energy Equation

Finally, write out energy per unit mass ()

o1
e:u+§V2+gz

Apply the substantial derivative to e

De DO 1D D Di DV 0
B (gx)=V-g
De_DquV.DiViv.g

Dt~ Dt Dt



The Energy Equation

Now, insert
De Du DV
ot ot Yo Ve
in the energy equation
Da DV
Poi +pV - or —pV.-g4+V.Vp+pV.-V =

DV
V- (kVT)+pV -

B —pV-g+V-Vp+9¢

The highlighted terms cancel each other



The Energy Equation

Du

P TPV V=V (kVT)+¢
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Flow Equations on Differential Form

- 0
Continuity: 87[; +V-(pV)=0
A\
Momentum: pfif:ﬁgg,vp4,v.m
Du
Energy: P5;+PV'V52V'WVTX+¢

five equations and seven unknowns (p,u,v,w,p, U, T) = two additional relations
needed:

p=ppT), u=0p,T)



Flow Equations on Differential Form

Boundary conditions:
solid wall: no slip, no temperature jump
inlet, outlet
liquid-gas interface
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The Streamfunction

fullfil the continuity equation and solve the momentum equation directly for
the single variable 1



The Streamfunction

incompressible, two-dimensional flow

ox oy
define ¢ (x, y) such that
o (oY 0 o\
o (3) tay () =
and thus
oy
YT T T

or

_ oy oy
V‘{ay’ ax}



The Streamfunction (for the interested)

The rotation of the flow field is calculated using the curl operator

curl(V) =V x V= —V%)e,



The Streamfunction (for the interested)

Now, apply the curl operator to the momentum equation

V><D—V:ng—leprva?V:quv?V
S A

Vx%—Y+Vx(V~V)V:VV><V2V
A%

v 0 (steady)

=V x(V-V)V=vV3V xV)
vV x V2V = vV3(V x V)



The Streamfunction (for the interested)

(V-V)V—;V(V-V)—Vx(VXV)—V<V;>—V><(V><V)
and thus

2
Vx(V~V)V—V><V<V2>—V><V><(V><V)—V><(V><V)><V

—_——
=0

VXx(VxV)xV=

(V-V)(VXV)=(VxV)-V)VH(VXV)(V-V)+V (V- (VxV)) =

=0 (incompressible) =0

(V- V)(VXxV)-(VxV)- V)V




The Streamfunction (for the interested)

(V-V)(VxV)=((VxV)-V)V=uvV3VxV)
insert the streamfunction
(V9T x V) = (50, = S20) - (5L 2 2)(0.0,-5%
(T % V)- 9V = 0.0,-V20) - (g 5 ) (G = 52,00 =



Streamfunction

(V24) = S 2L (V20) = voA (V)

% 9
ay Ox

+ one equation for ¢ that fullfils both the momentum and continuity equations
+ scalar equation
- contains fourth-order derivatives



Streamfunction

Definition of a streamline in two dimensions:

ox _d
u v
or
udy —vdx =0
and thus
o oy B

or ¢ is constant along a streamline ...



Streamfunction

Implication:

» Lines of constant v are streamlines of the flow

» If we know (X, y), lines of constant ¢ will be streamlines of the flow
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Flow Rotation

» |s the Couette flow irrotational?
» Note the change of the fluid element bisector angle ¢



Flow Rotation

A
A ﬂ-
5 B=-+0g—0a
0 15} T 1
0==+0r=—-—+—-(0 0
i 5 T 0a= " +5(0a+08)
S  gernett
e 7 - the angular velocity of the bisector:

o= 5 (fa+ )



Flow Rotation

, Ayy  (v+ ZAx)At—vAt oy 1.5
sin(Afy) = Ax Ax 8—At R
) NS
sin(Af) &~ A, for small angles | A
7 I
= % — @ “ ox :AQA 1/ 7Ay1
At 8X o’ ! VAL
:éA 0 Ax =1 >
ou '
the same way g ~ ——
in the Y UB dy

N . 1
the angular velocity of the bisector: § = 3 (9A + 95> =3 < - )



Flow Rotation

From previous slide we get the angular velocity about the z axis
1 /0v oOu
Wz ==\ 5= — &
7 2\ox oy

Using the same reasoning, we can get the angular velocities about the x and y axes

1 (ow
=9 \ay oz

_1fou _ow
W= o \az T ox



Flow Rotation

W= ! 6 9 9 |- 1cur/(V)
2 ox oy oz 2
u v oow

The flow vorticity ¢ is defined as:

¢ =2w=cur(V)

Flows with zero vorticity are called irrotational



Frictionless Irrotational Flow

If the flow is both frictionless and irrotational:

1. the momentum equation reduces to Euler’s equation

DV

PDit:Pg—VD

2. the acceleration term can be simplified

DV aV

ot = o TV

where we can use the vector identity

(V~V)V:V(%V2)+C XV



Frictionless Flow

1. combine Euler’'s equation with the modified acceleration term
2. divide by p
3. dot product between the entire equation and an arbitrary displacement vector dr

oV 1, 1 B



Frictionless Flow

Now we want to get rid of the term (¢ x V) - dr

1. 'V = 0; no flow - not interesting

2. ¢ = 0; irrotational flow

3. dr perpendicular to (¢ x V); strange

4. dr parallel to V; integrate along a streamline



Frictionless Flow
Fourth alternative: integrate along a streamline:
oV

1 1
V=V IVp —gl| -dr =
o T (2 )+p p—g|-dr=0

performing the scalar products gives

—g-dr = {g= —ge;} = gdz

_Op op op
Vp - dr = 8de+8ydy+§dz_dp

1 1 /ov? ov? ov? 1



Frictionless Flow

d
d&)\tf dr + d(V2)+?p+go’z:()



Frictionless Flow

Integrate between any two points along the streamline

2ov d,o
! Eds / P (V2 V12) —i—g(Zg —Zl) =0

The Bernoulli equation frictionless unsteady flow

Steady incompressible flow gives

1
P + §V2 + gz = constant
p

Note! for irrotational flow this last results holds in the entire flow field with
the same constant
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Millennium Problems

... PROVING THAT ONE OF THESE FOUR IS UNSOLUABLE,
BUT NOT WHKH. IF ITS ONE OF THESE, IT WOULD OPEN
A HOLE N PERLMAN'S PONCARE. (CNJECTURE. PROOF,

BUT IT WOULD ALSE

- MEAN THAT SOLYNG

| EMHER OF THE OTHER
'\.‘ TWO LIOULD RE-PROVE
| PONCARE, AND IMPLY

\ HuDGE 15 150MORPHIC TO...

SECM‘WY"'

5

RS [
S pomtﬁﬁﬁ

IM TRYING TO MAKE IT S0 THE CLAY MATHEMATICS
INSTITUTE HAS TO OFFER AN EIGHTH PRIZE TO WHOEVER
FIGURES OUT WHO THEIR OTHER PRIZES SHOULD GO TO.
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Learning Outcomes

3 Define the Reynolds number

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

17 Explain about how to use nondimensional numbers and the I1 theorem

we will learn about how to plan experiments and compare experimental data
using dimensionless numbers
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Motivation

"Most practical fluid flow problems are too complex, both geometrically and
physically, to be solved analytically. They mus be tested by experiments or
approximated by CFD”

Dimensional analysis:
» Large data sets may be represented by a few curves or even a single curve
» A systematic tool for data reduction
» Experimental/simulation data are more general in dimensionless form



Dimensions

To END MANY YEARS OF CONFUSION,
THE INTERNATIONAL COMMITTEE. FOR
WEIGHTS AND MEASURES HAS JUST
VOTED TO REDEFNE THE. KILOGRAM.

AS OF NEXT MAY, IT WILL
EQUAL EXACTLY ONE POUND:

OH, CooL.

THAT DOES MAKE
THINGS SIMPLER.

Ki

A
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Dimensional Analysis

Dimensional analysis is a tool for systematic

planning of experiments
presentation of experimental data
interpretation of measurements



Dimensional Analysis

“If a phenomenon depends on n dimensional variables, dimensional
analysis will reduce the problem to only k dimensionless variables, where
the reduction n — k depends on the problem complexity”

"Generally, n — k equals the number of primary dimensions”



Dimensional Analysis

Suppose that we know that the force F on a particular body shape in a fluid flow
depends on

» The length of the body L
» The flow velocity V

» The fluid density p

» The fluid viscosity u

F:f<L7V’p7/’L>



Dimensional Analysis

Let’s say that we need ten points to define a curve
We need to test 10 lengths and for each of those, 10 velocities, ....
The result in this case would be 10000 experiments

With dimensional analysis, the problem can be reduced as follows

F
pV2[2

=g <pVL> or Cr = g(Re)
1



Dimensional Analysis

Dimensional analysis:
Gives insight into physical relationships
Helps in identifying important and unimportant parameters for a specific problem

Provides scaling laws

convert data from model-scale to prototype-scale
similarity between model and prototype



Similarity

Let’s go back to the force example from before

Cr =9g(Re)

so if Rey = Rep that means that Cr ,, = Cg, (where m is model and p prototype)

o
poViLp

G () (2)
pmVALE ppVgL,% Fm  pm \Vnm Lm

Crm and Crp =

—-_m
Pm V%L?n
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The Buckingham II-theorem

“If there is a physically meaningful equation involving a certain number n of
physical variables, then the original equation can be rewritten in terms of a
set of k dimensionless parameters 114, 1y, ..., llx. The reductionj =n —k
equals the number of variables that do not form a I1 among themselves and
is always less than or equal to the number of physical dimensions involved”



The Buckingham II-theorem

Systematic identification of IT groups:

1. List and count the number of variables in the problem n

2. List the dimensions for each of the n variables
3. Find the reduction j

» initial guess: j equals the number of dimensions
» look for j variables that do not form a IT
» if not possible reduce j by one and start over

4. Select j scaling parameters

5. Add one of the other variables to your j repeating variables and form a power
product

6. Algebraically, find exponents that make the product dimensionless



The Buckingham II-theorem - Example

F=f(LU,pp)
number of variables: n = 5
F ‘ L ‘ U ‘ P ‘ 7
oy | |y | ey | ey

number of dimensions is 3 and thus the reduction is: j < 3

number of dimensionless groups (IIs): k =n —j > 2



The Buckingham II-theorem - Example

Inspecting the variables, we see that L, U, and p cannot form a I1-group

only p contains M (mass)
only U contains T (time)

L, U, and p are selected as the j repeating variables
The reduction willbej =3 andthusk =n—j =2

One of the TI-groups will contain F and the other will contain p



The Buckingham II-theorem - Example

Iy = [AUPp°F = (L)*(LT )P (ML™®)®(MLT %) = M°LOT?

L: a + b — 3¢ + 1 0
M - c + 1 =0
T: — b - 2 =0
which gives
a=-2,b=-2,c=-1
and thus



The Buckingham II-theorem - Example

I = L3Pt = (LALTHP(ML=3) (MLT %) = M°LOTO

L: a + b — 3¢ + 1 0
M - c — 1 =0
T: — b + 1 =0
which gives
a=b=c=1
and thus
pUL



The Buckingham II-theorem - Example

If F =f(L,V,p, ), the theorem guaranties that, in this case, I1; = g(Il)

F

pUL
PR g <M) or Cr = g(Re)
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Nondimensionalized Equations

Why would one want to make the governing equations nondimensional?
Understand flow physics
Gives information about under what conditions terms are negligible

A way to find important nondimensional groups for a specific flow



Nondimensionalized Equations

The incompressible flow continuity and momentum equations and corresponding

boundary conditions:

Continuity:

Navier-Stokes:
Solid surface:

Inlet/outlet:

V-V=0

v AV

no-slip (V = 0 if fixed surface)

known velocity and pressure



Nondimensionalized Equations

The variables in the continuity and momentum equations contain three primary
dimensions; M, L, and T

All variables included (p, V, p, X, y,Z) can be made nondimensional using three
constants:

density: p
reference velocity: U
reference length: L

reference properties are constants characteristic for a specific flow



Nondimensionalized Equations

nondimensional variables are denoted by an asterisk:

v

V= U Check:

V=LV e L B
VipT = WV(DJrPQZ) =

L
* * * 1 —_— _—

(X W, Z ): Z (X:%Z) pu2 [V,O Pg]

L.

N u_ o) _Uow
ox  O(Lx*) L ox*

Pt = P+ p9z

pU?



Nondimensionalized Equations

Continuity: V*-V*=0

bv* M 2
— * K = * V*
o = VP oY

Solid surface:  no-slip (V* = 0 if fixed surface)

Navier-Stokes:

Inlet/outlet: known velocity and pressure (V*, p*)



Nondimensionalized Equations

The Reynolds number appears in the nondimensional Navier-Stokes equations

DV*_ * %k 1% *2x 7%
o~ VP Ty Y
Re:&

o

Reynolds number - ratio of inertia and viscosity
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Dimensionless Groups

parameter definition interpretation  importance
Reynolds number Re = & % almost always

"

flow:

Mach number M= % speoedi% compressible flow

2 B
Froude number Fr= U— nertia free-surface flow

gL gravity

UL inertia
Weber number We =2 ————  free-surface flow

T surfacetension
Prandtl number Pr= % % heat convection

C, thal §
specific heat ratio N = C—“ % compressible flow
v
Strouhal number St = % %:gg; oscillating flow
€ I
roughness ratio T %‘m& turbulent flow
1. PP staticpressure .

pressure coefficient = 05,07 Gynamicoressure aerodynamics
) y Fi liftforce .
I fficien Yy — 5 B — nam
ift coefficient Cp 05pUPA Gynamicforce aerodynamics

Fp dragforce
drag coefficient = — aerodynamics

9 Y 0.5pU2A dynamicforce i
P - . Twal wallshearstress

skin friction coefficient C; = 057 Gynamicpressire boundary layers




The Reynolds Number

e miner flow
s trouient fow

LU
v




https://www.youtube.com/watch?v=wRaDPnpnx04

Compressible Flow



https://www.youtube.com/watch?v=wRaDPnpnx04

Oscillating Flows

0.4 T
St =
0.3 .

data spread

fL
u

Von Karman vortex street

0 1 \HHH\K\ \HHH\I\\HHH\'\ \HHH\“\ Ll ‘\ wmm_]
108 102 10*° 10" 10° 108 107
Rep




Oscillating Flows




OSC| | | a‘t' ng Fl OWS https://www.youtube.com/watch?v=XggxeuFDaDU

Tacoma bridge collapse 1940

oscillating frequency close to the natural vibration frequency of the bridge structure


https://www.youtube.com/watch?v=XggxeuFDaDU

O SC i | | a‘t i n g Fl OWS https://www.youtube.com/watch?v=awtgPCWD58w



https://www.youtube.com/watch?v=awtgPCWD58w

Example of Successful Dimensional Analysis

collection of data from a large number of experiments

. Fp
cylinder: Cp = ——~—
Y P= Tl
Fp
sphere: Cp = —————
P D= T (e lge
Fp
general: Cp = ———
3PUAp

Ap is the projected area

Cp

)

— Cylinder (2D
— Sphere

0 Ll \\HHH\‘\\HHH
100 102 10°



Example of Successful Dimensional Analysis

collection of data from a large number of experiments




Example of Successful Dimensional Analysis

collection of data from a large number of experiments

Separation

boundary layer

Turbulent
boundary layer
Separation
Transition

boundary layer

ot

—— Cylinder (2D)
Al — Sphere

0 Ll \HHH\[\ Ll vl .\ Ll
100 102 10*° 10* 10° 108 107
Rep




Example of Successful Dimensional Analysis

collection of data from a large number of experiments

)

—— Cylinder (2D,
— Sphere

0 Ll \\HHH‘\\HHH\ Ll 1 .\\\H
108 10> 10*° 10" 10° 10
Rep
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Modeling and Similarity

Scaling of experimental results from model scale to prototype scale:

"Flow conditions for a model test are completely similar if all relevant
dimensionless parameters have the same corresponding values for the
model and the prototype”



Geometric Similarity

"A model and prototype are geometrically similar if and only if all body
dimensions in all three coordinates have the same linear-scale ratio”

"All angles are preserved in geometric similarity. All flow directions are
preserved. The orientations of model and prototype with respect to the
surroundings must be identical”



Geometric Similarity




Geometric Similarity

Homologous points - points that with the same relative location

7
é 10° ; 10°
K Tm Vm%’

angle of attach should be the same
scaled nose radius

% PP

scaled surface roughness

[«—08m—>

£ 0.1m

all dimensions should be scaled with the same linear scaling ratio



Kinematic Similarity

“The motions of two systems are kinematically similar if homologous
particles lie at homologous points at homologous times”

Geometric similarity is probably not sufficient to establish time-scale equivalence

Dynamic considerations:

» Reynolds number equivalence
» Mach number equivalence



Kinematic Similarity

*Incompressible frictionless low-speed flows without free surfaces are
kinematically similar with independent length and time scales”

1
/\ .
Voo = B Voop y y
Vi, = BV, b N
V2m = B \/2p \/ \/Q/
2

prototype



Dynamic Similarity

“Dynamic similarity is achieved when the model and prototype have the
same length scale ratio, time scale ratio, and force scale ratio”

Compressible flow:

Reynolds number equivalence

Mach number equivalence

specific-heat ratio equivalence
Incompressible flow without free surfaces:

Reynolds number equivalence
Incompressible flow with free surfaces:

Reynolds number equivalence
Froude number equivalence (and if necessary Weber number and/or cavitation
number)



Dynamic Similarity

Finertia = Fpressure + F gravity + Firiction

"Dynamic similarity ensures that each of the force components will be in the
same ratio and have the same directions for model and prototype”
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Overview

Reynolds
SEREES]
Turbulence
viscosity

Reynolds
decom-
position
Turbulence

Turbulence

Modeling

laminar
flow flow
regimes

turbulent
flow

Duct Flow
friction
and losses



Learning Outcomes

3
4

6

8
18
19
20
24
25
20
27

Define the Reynolds number

Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category
Explain what a boundary layer is and when/where/why it appears
Understand and be able to explain the concept shear stress

Explain losses appearing in pipe flows

Explain the difference between laminar and turbulent pipe flow

Solve pipe flow problems using Moody charts

Explain what is characteristic for a turbulent flow

Explain Reynolds decomposition and derive the RANS equations
Understand and explain the Boussinesq assumption and turbulent viscosity

Explain the difference between the regions in a boundary layer and what is
characteristic for each of the regions (viscous sub layer, buffer region, log region)

if you think about it, pipe flows are everywhere (a pipe flow is not a flow of pipes)
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Typical Pipe-Flow Problems

Example I:

Given pipe geometry, fluid properties, flow rate, and locations of valves, bends,
diffusers etc - estimate the pressure drop needed to drive the flow

Example I
Given the pressure drop available from a pump - what flow rate can be expected
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Transition to Turbulence




Transition to Turbulence

Factors that effects transition:
Wall roughness
Fluctuations in incoming flow
Reynolds number



Transition to Turbulence
Reynolds number

small natural disturbances damp quickly| intermittent bursts of turbulence continuous turbulence

=

M U | P AWV W AN A V-

t

Fluctuations in the fully turbulent flow velocity signal:
» typically 1% to 20% of the average velocity
» not periodic
» random

» continuous range (spectrum) of frequencies



Transition to Turbulence




Transition to Turbulence

0 <Rec< 1 highly viscous laminar “creeping” motion
1 < Re< 100 laminar, strong Reynolds number dependence
100 <Re < 10® laminar, boundary layer theory useful
10> <Re< 10* transition to turbulence
10* <Re < 10° turbulent, moderate Reynolds number dependence
10° <Re< oo turbulent, slight Reynolds number dependence

Note! The ranges will vary somewhat with geometry and surface roughness



Transition to Turbulence

An accepted design value for pipe flow transition is

Red,cn't =~ 2300

Note!
1. this value is for pipe flows, other applications have different transition Reynolds
numbers
2. by careful design the Reynolds number can be pushed to higher values



Transition to Turbulence

The great majority of our analyses are concerned with laminar flow or with
turbulent flow, and one should not normally design a flow operation in the
transition region.



Transition to Turbulence

laminar flow

-+
:—@ﬁ

turbulent flow

Sel



Internal Flows

Constrained by bounding walls - wall-bounded

Boundary layers grows and meet at the center



Velocity Profile Development

~\ Y

u(r, x

-
.



Velocity Profile Development

~\ Y

u(r, x

-
.



Velocity Profile Development

Inviscid core
Gron\ng boundary ayer/ Boundary layer merge

\—\g\}z / 7
\‘::::= X
==u(.»)

~\

\!
\
\
/
1
/
I



Velocity Profile Development

~\ Y

I
\!
\
\
/
1
/
I



Velocity Profile Development

V=N G
— I X
ed E=—=2u(r,x) u(r)
7oy
1
/
I {<«— Entrance length Le —<— Fully developed —
(developing profile region) flow region

A Pressure

Entrance pressure drop




Velocity Profile Development

Le =1(d,V,p,u), V= %, Q:/udA:const

Dimensional analysis gives:



Velocity Profile Development

Laminar flow:
Le
— =~ 0.06Re
d d

The maximum laminar entrance length, at Req = Rey it = 2300, is Le = 138d, which
is the longest development length possible



Velocity Profile Development

Turbulent flow (Rey < 107):

Le 1/4
> ~ 1.6Re,

Rey ‘ 4.0 x 10? ‘ 1.0 x 104 ‘ 1.0 x 10° ‘ 1.0 x 10° ‘ 1.0 x 107

Lejd| 13 [ 16 | 28 | 51 | @
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Head Loss




Head Loss

Q=Q=Q,Vi=V,=V
Steady-flow energy equation:

& V2
(p +oa— +z> = (p +a— +z> + hy
P9 29 1 P9 29 2
» No pumps or turbines between 1 and 2
» Fully developed flow (a1 = ag)

pP1 — P2 Ap
hf =(z; —z +< >_—Az+
=@ 2) 28] jZ¢]



Head Loss

p1 = p2 + Ap
Apply the momentum equation along the pipe: ? g| FTE™

4\

> Fo=Ap(aR?) + pg(wR?)L sina — 7y (27R)L

> Fe=m(Va— Vi) =0




Head Loss

Ap(7R?) 4 pg(rR*)Lsin a = 7, (27R)L

p1 = p2 + Ap
gx = gsina
27y, L

—'o—i—Lsina: ——
P9

g R
£+AZZ4TWL
je] pg d
py = Ak

pg d




Friction Factor

where

fo = f(Req,/d, duct shape)

is the Darcy friction factor

41y L LVv? 8Tw

cwE sl L 2w
pgd Pdag P T L2

Henry Darcy 1803-1858

Note! for non-circular pipes, 7, is an average value around the duct perimeter
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Fully Developed Laminar Pipe Flow

— =

Fully developed
circular pipe with the diameter D and radius R

Pressure driven (Poiseuille flow) 716)

Umax

> X

dp R*

r\2
u(r) = Umax <1 - (ﬁ) ) where Umax = “ X i

_dp _ (Ap+pgAz
ax L



Fully Developed Laminar Pipe Flow

i .

Ap + pgAz\ R?
Unax = | ———— M

V= Umax <AD+PQAZ> R?

2 L 84
au r r
E — *QUmQX@ — *4\/@
|
wERar T R




Fully Developed Laminar Pipe Flow

We can now calculate the head loss according to

L\V? 87
hs = fDE@ where fp = p—v";

hy

_dml 16V 32aVL f, 4Q ) _ 128uQL
~ pgD  pgDR — pgD* | wD? [ mpgD*

2 4
Q—/uc/A—\/A—v”D —(ADHQAZ) D

4 L 1284



Fully Developed Laminar Pipe Flow

For laminar flow:

£ 87w { SuV ! 64p 64
= — = T\ = = -
b= vz > VD~ Rep

Note! in laminar flow, the friction factor is inversely proportional to the Reynolds
number
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Turbulence

Leonardo Da Vinci
"Observe the motion of the surface of the water, which resembles that of
hair, which has two motions, of which one is caused by the weight of the
hair, the other by the direction of the curls; thus the water has eddying
motions, one part of which is due to the principal current, the other to
random and reverse motion”



Governing Equations

We are assuming:
constant density and viscosity
no thermal interaction

continuity: V-V =0

DV
momentum: - = ~Vp + pg + veaY



Governing Equations

The differential energy equation is not included here but let’s have a look at it anyway

Du

o PV -V =V (kVT)+¢

» Pressure work:

» pressure drives the flow through the duct
» Viscous work:

» no-slip condition

» zero velocity at the walls

» no work done by wall shear stress

So, where does the energy go?
» pressure work is balanced by viscous dissipation in the interior of the flow



Reynolds’ Decomposition

Not possible to solve analytically
Often, the time-averaged quantities are what we are looking for



Reynolds’ Decomposition




Reynolds’ Decomposition

The mean square of the fluctuations are, however, not zero

c

— 1,
2 = 2ot
T/ou 70

measure of turbulence intensity

Mean fluctuation products are generally not zero (U'V/, u’p’)



Reynolds’ Decomposition

Reynolds’ idea was to split all properties into mean and fluctuating parts:

u=u+u,v=v+v, w=w+w, p=p+p

insert into the governing equations
time average the equations



Reynolds’ Decomposition

Continuity:

ou  ov ow

x Ty T

Momentum (x-component):

r y T Tox TP TR k2 dy? = 922



Reynolds’ Decomposition

Continuity:

og ov ow ou o ow _0

x Tyt T Ty ez

time averaging the equation gives

ox oy 0z
and as a consequence
ou  ov  ow
u v W,

x oy T



Reynolds’ Decomposition

Momentum (x-component):
P\at ™ ot
( oo _ou  ,0u 8u’>
p +

U—+U—+U—+U—
6X+ 8x+ 8X+ ox

_ou  _ou ,0u ,ou’
p(Va)/‘i‘Va)/“v‘Vay‘i‘Va)/)“v‘
(7 4w D)

0z 1974 0z 0z
op  op o%u  0%u

o (8)( Tar T

T2 Tz



Reynolds’ Decomposition

Momentum (x-component):

time averaging the equation gives

f+u—+v—+W;+u’% o
ot ox oy

WL Jou
9) Ox ay oz
B, (P P 5
ox TP ke dy?  9z2
The highlighted terms can be rewritten as
Ul%‘l‘ é)u’Jr ouaud UV
ox oy oz

. Jr8u’w’ Y 87u’+87\/’+8w’
O0x oy 0z ox oy 0z

=0



Reynolds’ Decomposition

the continuity equation reduces to

ov

oy

v ow
Ox 0z

|

the axial component of the momentum equation:




Reynolds’ Decomposition

By applying Reynolds’ decomposition to our governing equations, we have
introduced a number of new unknowns

The number of equations is the same as before, which means problems

Our new problem has a name

The closure problem



Reynolds’ Decomposition

The three correlation terms —pu’2, —pu'v’, and —pu'w’ are called Reynolds stresses
or turbulent stresses

In duct and boundary layer flow, the stress —pu’v’, associated with the direction
normal to the wall, is dominant
y

T —pu'v’

Do o or —
bt~ " ax pox oy Lotwt| —b — o7
e




Reynolds’ Decomposition

z

mass flow through surface element: m, = pv'dA

momentum balance in x-direction: F = myu = pv' (U + U") dA

F -, = . N p— R T T Er—
Taa = —d—;\ = —pV' ([U+U)=—pVU—puV = {VU=VU=0} =—puV



Reynolds’ Decomposition

Introducing turbulent viscosity i+ defined such that

L
oy

Boussinesq's assumption

With the turbulent viscosity, the total shear stress = becomes:

ou

— U
= pg, AV = (et )

ay



Reynolds’ Decomposition

laminar shear (7;;,) dominates in the near-wall region
turbulent shear () dominates in the outer region
both are important in the overlap layer

outer region

overlap region

viscous sublayer
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Viscous Sublayer

U@—FV@ ——@_{_ _|_&
P dx ay R P9x dy
1 0=U—0 V%O:ﬁ—djju
Y= ) ay_dX PI9x

a,
2. 7(y) = <d§+pgx>y+0buty—>0:>7(o):c:TW

3.y—=0=Uu—=0 V,—>0:>T:TW:M@— W:M%
' oy oy

4u="ry 4 C={00)=0=C=0} =Ty



Viscous Sublayer

Introducing friction velocity defined as

and thus

which can be rewritten as:

Y _YY aiidforyt < 5— 10




The Log Region

Now, let’'s move a bit further out from the wall

1. 7 = const = 1, still (we have not moved that far out from the wall)

2. outside of the viscous sublayer pu; > p and thus

_ U
o u/V/ ~ — ulv/ —
P v = gy

T =Tw =

au
oy

We need an estimate of u; to be able to solve this ...



The Log Region

Prandtl’s mixing length concept

“the average distance that a small mass of fluid will travel before it
exchanges its momentum with another mass of fluid”

ot y

aly +1m) =u(y) +/may /
N , ou o
U(y—/m)—u(w—/m@ + : :/m
I Y 4 B : -
Prandtl assumed v’ ~ /m@ /
oy

Y

He further assumed V' to be of the same size as v/



The Log Region

Prandtl’s mixing length concept

_— au\?
= —pu'v' = pl}, ()

ay
i oy el |
oy M oy
Lt 2 OU
=t —
T T gy




The Log Region

Prandtl’s mixing length concept

So, how do we estimate the mixing length /n,

2
In(y) =a0 +aiy +asy” + ... Theodore von Karmén 1881-1963

y—0=Ilh—>0=a,=0
small values of y (we are still very close to the wall) = I, = a1y

Im = Ky

where k is Karman’s constant x ~ 0.41



The Log Region

ou au\ 2 .
Twplm(%/_PQ)/Q(a)/) :PU2
.\ 2
E2y2<g;> _ 2

1 10 1



The Log Region

1
=—lny+C
K

S|

or in nondimensional form

u* K v

From experiments we have:
k~04land 4.9 <B < 5.5
flow over a flat plate (external flow): B =~ 4.9
duct flow (internal flow): B ~ 5.3 (White: B ~ 5.0)
valid for 30 <y < 1000



The Log Region

» between the viscous sublayer and the
log region, none of the models works

» in the outer region, inertial forces
needs to be included

Il
IR
[V:

Ll Lol Lol Lo
10" 102 10° 10*

y+
viscous sublayer
buffer layer
log-law region
outer layer



Quter region

In the outer region it has been found that

where ¢ is the thickness of the outer layer and U the velocity at the edge of the outer
layer
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Turbulent Pipe Flow

Umax Laminar flow

Umax Turbulent flow




Turbulent Pipe Flow

As we did for laminar pipe flow, we will now obtain the friction factor for turbulent
pipe flow

-2
p\/2 *2 v
=fp——=pu"" =>H=8(—
Tw =1p 3 p D <U*>
So, what we need now is an estimate of the average flow velocity in the tube V' ...

There are different ways to do this and here is one example:

1. Assume that we can use the log-law all the way across the pipe
2. Integrate to get the average velocity
3. Insert the calculated average velocity into the relation above



Turbulent Pipe Flow

with k = 0.41 and B = 5.0 we get

*

Ve oaam Y

u* v

+1.34




Turbulent Pipe Flow

*

Vo oaam Y

u* v

+1.34

The argument of the logarithm can be rewritten as

=—— =_Re
v 2v V 9 b

Ru*  VDu* 1 (fD>1/2

and thus:

1
—— ~ 1.991og(Rep\/fp) — 1.02
e )




Turbulent Pipe Flow

With k71 = 2.5 and B = 5.5 we get

1
—— ~ 2.03log(Rep+/Tp) — 0.91
Nz (Rep o)




Turbulent Pipe Flow

Alternative 2:

If we assume that v 8.3 <U Y
u* v

1/7
> applies all over the cross section we get
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Wall Roughness

25
20 -
U+ 15+
Effects of surface roughness on friction:
10
» Negligible for laminar pipe flow
: ra] 51 ‘ “HHMZ ‘ “HH‘S
» Significant for turbulent flow 10 10 10
» breaks up the viscous sublayer y*

» modifies the log law (changes the value of the integration constant B)

*

AB o (1/k)Inet where et = -
v



Wall Roughness

<5

> 70

hydraulically smooth
no effects of roughness

0.04 o8 0.00833

0.00397

transitional | 0008

moderate Reynolds number effects*”~ - W
Eq. (5.55:?%&‘{"5 A’\

fully rough oo G e re

Re,

Sublayer totally broken up
independent of Reynolds number



Wall Roughness

(i)

)
—_
é\




The Moody Chart

Values of (V) for water at 60°F (velocity, fus * diameter, in) -

i 2 4 6w 2 a0 @ 100 200 400 600 00 100 200 4000 600 10000

| Values of (Va) for atmospheric air at 60°F

Tl
T
I
I
I

T T
[ |t wibo
200 | aow leaoo ool n0m | 10000 sommo 10

i
010 T T

et iiNA i
T zone | Transition I
zone red— C
007 H

40 leo hool

==k

0.05
< 0.04

0.03

0.02
0.015

)

0.01
= 0.008
= 0.006

h
Ly
d g

(

0.004

0.002

0.02

0.001

0.0008
0.0006
0.0004

Friction factor f

0.015

0.0002
= 0.0001

0.000,05
0.01

0.009 S

0.008 = 0.000,01
103 2“03)1 456 gl(]‘ 2“04)3 456 !105 2(105)3 456 )!106 2“06)3 456 8107 2(107)3 456 !10!

Reynolds number Re = ? £=0m000 £ =0000005

E
d

Relative roughness




Wall Roughness

Material

Condition

mm

Uncertainty, %

Steel

Brass
Plastic
Glass
Concrete

Rubber
Wood

Sheet metal, new
Stainless, new
Commercial, new
Riveted

Rusted

Cast, new
‘Wrought, new
Galvanized, new
Asphalted cast
Drawn, new
Drawn tubing
Smoothed
Rough
Smoothed

Stave

0.00016
0.000007
0.00015
0.01
0.007
0.00085
0.00015
0.0005
0.0004
0.000007
0.000005
Smooth
0.00013
0.007
0.000033
0.0016

0.05
0.002
0.046
3.0
2.0
0.26
0.046
0.15
0.12
0.002
0.0015
Smooth
0.04
2.0
0.01
0.5

* 60
* 50
* 30
=70
* 50
=50
=20
*= 40
* 50
* 50
=60

* 60
* 50
* 60
* 40
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Non-circular Ducts

Use the same formulas of the Moody chart but replace the pipe diameter D with the
hydraulic diameter Dy,

4A
thg

where A is the cross section area and P is the wetter perimeter

L pV? VD €
Apr = fDthTv Rep, = Tha D



Non-circular Ducts

d’I a’:g

— ]
b ——
a do

ab D, C b/a D, © b, ¢ a1/ c o, ©
07 117a 650 10 1.00a 570 0582 530 ) 202 96.0
05 1802 680 125 1.i1a 576 P
03 1d44a 730 20 138 620 o, =010 89.2
02 1502 780 30 1502 69.0 .
0.1 1558 79.0 40 1602 730 j

50 167a 780 2 0% 94.0

8.0 1.78a 83.0

d.
1000 182 850 0.5 < d—’ <1.0 960
o

Dy =do —dj



Non-circular Ducts

Laminar flow:
C

fr =

b F?eDh

(for circular pipes: C = 64 and Dy, = D)



Non-circular Ducts

Flow between parallel plates

vertical distance between plates: a
plate width: b

D _ﬁ_ 4ab
"="P T 2a+2b

b—o0

_ dab _
2

= 2a
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Local Losses

7

ﬂ
7,
4{/"’//////////
(b)

ez
'IIIIIII//;Z/II///.."II/;?I/I/I// |
J— j— D
227770 777
U ) O
(d)




Local Losses

Swirl generated by:

Inlets or outlets

v

v

Sudden area changes
Bends
Valves

v

v

v

Gradual expansions or contractions

Secondary
flow pattern:




Local Losses

Generated swirl will be damped out by inner friction

Kinetic energi is converted to internal energy, which results in a pressure loss



Local Losses

Sudden expansion
0.8 —

Eg. (6.101)

T
Vi2g)

I
o 04

Sudden contraction:

Vena contracta
02 — 5

~J] \'2
I d
B e
| | |
0 0.2 04 0.6 0.8 Lo

o

0.15
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On-Demand Hyperloop-Style Water Delivery

NOL) THAT AMAZON 1S ADVERTISING
ONE-HOUR DELIVERY OF BOTTLED LWATER,

k
(8] —4
&1~ (0] (6] (6] (8] [6] (6] %
£ 000AB0000AAGOAEOARNN ~4

= i

T WOTE WE START CALLING MUNICIPAL PLUMBING
“ON-DEMAND HYPERLOOP-STYLE WATER DEUVERY*
PND SEE. IF WE CAN SELL ANYONE ON THE. IDER.
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Learning Outcomes

4

6
21

22
23
24
29
30
31
32
33

Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category
Explain what a boundary layer is and when/where/why it appears

Explain how the flat plate boundary layer is developed (transition from laminar
to turbulent flow)

Explain and use the Blasius equation

Define the Reynolds number for a flat plate boundary layer

Explain what is characteristic for a turbulent flow

Explain flow separation (separated cylinder flow)

Explain how to delay or avoid separation

Derive the boundary layer formulation of the Navier-Stokes equations
Understand and explain displacement thickness and momentum thickness
Understand, explain and use the concepts drag, friction drag, pressure drag,
and lift

Let’s take a deep dive into boundary-layer theory
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Motivation



External Flow

v

Significant viscous effects near the surface of an immersed body
Nearly inviscid far from the body
Unconfined - boundary layers are free to grow

v

v

v

Most often CFD or experiments are needed to analyze an external flow unless
the geometry is very simple
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Reynolds Number Effects

S~ L B
Large viscous displacement effect _ _ — ~ -
L7
U / L
UL P \
Re; =10 N
ReL — L N L—» X
1% S
RS Viscous region

Note: no simple theory exists for 1 < Re; < 1000

Inviscid region

‘ Laminar Turbulent
[ [
KL S
Small viscous displacement effect _ -7
u —_— -
_ ==
ReL:107 &_, x T T ~~<_ Viscous
Inviscid [

u<u



Reynolds Number Effects

Laminar Turbulent
[~ o U
§<L e
U Small viscous displacement effect -7 -
- > -
_— == u<u
ReL:107 F’X “*—\\\\Viscous
Invis;id\ T U
5.0 , : : UL
—1 laminar  10° < Rey < 10° Re, = —
5 Rex
x ] 016 Ux
———  turbulent 10° < Rey Rex = —
Rey/"
X

Note! Re; and the local Reynolds number Re, are not the same



Blunt Objects

Beautifully behaved
but mythically thin
boundary layer

Outer stream grossly
perturbed by broad flow
separation and wake

Thin front
boundary layer
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The Von Karman Integral Relation

Approximate solutions for §(x) and 7 (x)
Control volume approach applied to a boundary layer

Assuming steady-state incompressible flow

> F= | va n)dA



The Von Karman Integral Relation

> U(x)
5(x)
Massflow - —
’ *9)
. - ux,y
Mag = p /0 udy i B
5 d 5 ARV
Mcp = p / udy + — {p / udy} ax
Jo ax " Jo

. d[/[°
Mpe = P {/0 udy] ax



The Von Karman Integral Relation

Momentum
) 5
Iag = P/ u*dy
0

] ’ 2 d ’ 2
/ —p/uo’y+[p/udy]dx
cD /, dx .

- : d[[°
Igc = Umpe = pU& {/0 udy] ax

. . | ad 0
leo — Iag — Isc =P {/0

ue)

5(x)

ux,y)

u%’y} dx — pU

d d
» {/0 udy] ax

ax



The Von Karman Integral Relation

Pressure Forces

po

adp . dé
— <p + dxdx> <() + dXdX)

1dp do

Shear Forces

— Ty aX

> U(x) 500

u(x,y)

ax



The Von Karman Integral Relation

Forces
dFX ==
do dp dp dd do 1dpdo
—TwaX +pd — |pd + p&o’x + 5&0’)( + &&dxdx + p&dx + Sk &dxdx

products of infinitesimal quantities can be regarded to be zero and thus

ax



The Von Karman Integral Relation

Momentum equation

Now we have all components of the momentum equation defined

d [, arf(° dp
p& {/0 udy} —pU& [/0 udy} ——TW—(S&

The momentum equation for boundary layers or Von Karman’s integral relation

Note! the relation is valid for laminar and turbulent flows (for turbulent flows use
time-averaged quantities)



The Von Karman Integral Relation

Qutside of the boundary layer the flow is inviscid = we can use Bernoulli

15 dp au 1ldp au
p+2pU _const:>d +p Ua 0= — o dx U&



The Von Karman Integral Relation



The Von Karman Integral Relation

au o au o au o
de/ody_o’x/o udy—& 0(U—u)o/y
)

d dafr,
o’x[u/o udy]—dx{/oudy

d 1)
= dx/o u(U —u)dy




The Von Karman Integral Relation




The Von Karman Integral Relation

w _d [? au [°
W T ax ), u(Uu)derdX/O(Uu)o’y

Now, let’s apply the relation to a laminar boundary layer over a flat plate

au w _d [°
dX_0:>p_O'X/0 u(U —u)dy

We need a velocity profile u = u(y) to continue ...



The Von Karman Integral Relation
Laminar flow = parabolic profile

u(y) =A+ By +Cy?

The constants A, B, and C are defined using boundary conditions
ul0)=0=A=0

y-6¢§5-0¢8+205—0$8_—26C
u

y=0=u=U=B+C*=U= -2C°+C8*=U=C=——
52

uly)=U (?y 524 )



The Von Karman Integral Relation

T d 0
o T x /0 u(U —u)dy
B ou MQU
. o _ =
v 0y |,—o B

L 4

0 o (2 1 2
2 2 2 2
U—u\d U U . dy = —U?

/0 (U~ udy /0 <5y 52y> <52y 53y 54y> =15

puU _d (2 psy v _Udd
B (Ua 75 15dx

= 6dd = L)de



The Von Karman Integral Relation

5d§ = 155dx

52
— =15
2

1

U

s_ [3x 8 30w 55
N U x  V Ux ~ /Rey

1%

X+C:{x:0:>6:0:>C:0}:15U

X




The Von Karman Integral Relation

2U  2uU 2 pU? . 0-365 U2
i 301/X V30 UX /%’exp

Introducing the skin friction coefficient c¢

o 2w 073
T o02 T JRey

Note! more accurate solutions for laminar flat plate boundary layers exists:

o 0664 6 5.0
"= JRe,  x  /Rey
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Displacement and Momentum Thickness

displacement thickness 5* momentum thickness 6
¥ 340
same massflow same momentum

“The presence of a boundary layer will result in a small but finite
displacement of the flow streamlines”



Displacement Thickness

displacement thickness &

¥

momentum thickness 6

same massflow

)
/ p(U — u)bdy = pUbs* = 6* =
0

2N
:

same momentum



Displacement Thickness

2
with u(x,y) =~ U <2y Y > we get

L =

ﬁ 183
X Re)l(/z

Note! since 6* is much smaller than x for large values of Rey, the velocity component
in the wall-normal direction will be much smaller than the velocity parallel to the plate



Momentum Thickness

displacement thickness & momentum thickness 6

Td* > %0
?

same massflow same momentum

5 é
- U2 _ [ Yy
/0 pu(U — u)bdy = pUbl = 0 = /O 5 (1 u) dy



Momentum Thickness

The drag D for a plate of width b > p=pa

x D )

from before we have |

w _d [? d 2/5 u u ,do
= —_ [ — I 17 —
/0 u(U —u)dy dx“ ; ( )dy = U —

o dx U dx
0

and thus

@ = prQ% = D(x) = pbU?0

ax ax



Momentum Thickness

fol7}

D(x) = pbU?8, 7, = pU2&

=[50

Note!

1. the momentum thickness 6 is a measure of the total drag
2. can be used both for laminar and turbulent flows
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Boundary Layer Equations

v

We will now derive a set of equations suitable for boundary layer analysis

v

Starting point - the non-dimensional equations derived in Chapter 5

v

We will assume two-dimensional, incompressible, steady-state flow

v

We will look at each of the terms and find terms that can be neglected in a thin
boundary layer flow



Boundary Layer Equations

continuity: x*=x/L,y*=y/L
ou* +8V* _0 ut=u/U, v =v/U
ox* Oy p* =p/(pU?)
X-momentum: Re — uL
o ou* L our  op* L1 1 [0%u* N o*u* v

Ox* dy*  ox* ' Re \ax*Z ' gy*?

y-momentum:
LOvE vt op* 1 <82v* 82v*>

OX* +v dy* - _(9)/* Ox*2 + dy*2

u




Boundary Layer Equations

To be able to find the relative sizes of different terms in the equations, we will first
have a look at the flow parameters and operators

ut=u/U~1
xX*=x/L~1
y'=y/L~d

d denotes boundary layer thickness and 6* = § /L

Note! here, 6" is not the displacement thickness



Boundary Layer Equations

What about derivatives?

ou* 1-0 1
oy* 5 6*

o’ur 9 our 1/6*—0 1




Boundary Layer Equations

o 10—1|
~ =1 ut =1 ut =0
ox* 1-0
x*=0 X =1
ou* ou*
- =0 — — 1
o*ur 0 our 1-0_, o o

X2 ax ox*  1-0



Boundary Layer Equations

continuity:
ou*  ov*
=0=Vv"~ "
ox* — Oy*
~ X~
N% N,%
oy must be of the same order of magnitude as o in order to fullfil the

continuity equation



Boundary Layer Equations

X-momentum:

Lour o our opr 1 | d%ur dPur

u % - — +— | =+ —
ox* oy* ox*  Re | Ox*2  Oy*?
\,1_/ \ . \x,l—/ ——
Mk T~

the boundary layer is assumed to be very thin = §* < 1 and thus

o*u* QU

aX*Q < ay*Q

assuming the inertial forces to be of the same size as the as the friction forces in the
boundary layer we get: 1/Re ~ 52



Boundary Layer Equations

y-momentum:

LOv* op* 1 | 9> 9%v*

+v =— o 5+ a3
OX* oy* oy*  Re | Ox* ay*

N—— , ~— | ~~~

~19% S5* *2 0\ Lo 5%
1 N(S*F N(S T

examining the equation we see that all terms are at most of size 6* =

0" is small = p is independent of y

op*
oy*

~oF



Boundary Layer Equations

With the knowledge gained, we now move back to the dimensional equations

laminar

u v
ox Oy
@ ou  1dp

8X+ 8y pax

dy?

turbulent

o, v
ox oy
_ou  _ou

8X+ 8y

=0

1dp
pO’X

o
oy?

oy

— /



Boundary Layer Equations

Limitations
The boundary layer equations do not apply close to the start of the boundary
>1

layer where ou
y ox*

The equations are derived assuming a thin boundary layer



Boundary Layer Equations

The pressure derivative can be replaced with a velocity derivative

Qutside of the boundary layer the flow is inviscid = we can use the Bernoulli
equation

| S ap au ldp ,,dU
,O+2pU _const:>d +p Uo’x 0= de_UdX



Boundary Layer Equations

laminar boundary layer

ox oy
ou ou du 0%u

Ua‘kvafy:U&“rl/ai)ﬂ

Two equations and two unknowns = possible to solve @



Boundary Layer Equations

Note! the boundary layer equations can be used for curved surfaces if the boundary
layer thickness ¢ is small compared to the curvature radius r
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The Blasius Velocity Profile

For laminar flow the boundary layer equations can be solved exactly for u and v

Blasius presented a solution 1908 where he had used a coordinate transformation

and showed that % is a function of a single dimensionless variable n = y1/ %
1%

The coordinate transformation corresponds to a scaling of the y coordinate with the
boundary layer thickness &

vy v x_, Y
§ x/VRex xV v YV ox




The Blasius Velocity Profile

1. Rewrite the boundary layer equations using the stream function (Chapter 4)

2. Rewrite the equation again ¥ = f(n)vrUx where 7 is the scaled wall-normal
coordinate and f(n) is a nondimensional streamfunction

3. Lots of math ....

The Navier-Stokes equations are reduced to an ordinary differential equation (ODE)

f/// + %ffﬂ — 0

with the boundary conditions



The Blasius Velocity Profile

% =1'(n)

Note! u/U — 1 as y — oo and therefore ¢ is usually defined as the distance from the
wall where u/U = 0.99




The Blasius Velocity Profile

Laminar boundary layer (Blasius)

‘5,
u

U:f/(n) 4t
/i
U A
T}:y ; 2k
U al

099%\[ 7 ~ 50 0 ‘ ‘ ‘ ‘




The Blasius Velocity Profile

ou

Tw — ,u/ e

d sund
o o [d (U)o’ﬂ

T[22 (8, P (5).




The Blasius Velocity Profile

0.4
close the the wall the velocity profile is linear
0.3
u
n=02= - =0.0664 Loz
vX
d ru 0.0664
(=) = = 0.332 o
dT] (U)n—o 02
0
pU? d (U> pU?
Tw = — (= =0.332
Y VRe dn \U/ =0 VRex

Near-wall velocity distribution (Blasius)

0.1 0.1¢

Il
5-1072

Cle



Laminar Boundary Layer

0-332P1/2M1/2U3/2
Tw(X) = 172

Note! the wall shear stress drops off with increasing distance due to the boundary
layer growth

Recall for pipe flow, the wall shear stress is independent of x



Laminar Boundary Layer

wall shear stress:

0.332p"/2 1 /2U3/2
Tw(X) = X1/2

drag force:
X

D(x) = b/ Tw(X)ax = 0.664bp"/ 22U 2x 12
0

drag coefficient:

_2D(L)  1.328
P p2bL  /ReL




Laminar Boundary Layer
d(x
From before we have D(x) = pb/ u(U —u)dy
0

If we calculate the drag coefficient using D(x) above, we get

20(L)
Co = U%L L / U dy L

0.664

0
and thu s —
-~ VRey




Laminar Boundary Layer

1
0.8
0.6 -
u
U
0.4 r
0.2 — Parabolic approximation ||
—— Blasius profile
! . . ‘
% 02 04 06 08

<



Laminar Boundary Layer

description

boundary layer thickness

displacement thickness

momentum thickness

shape factor

wall shear stress

local skin friction coefficient

drag coefficient

variable

Xl x| XI>

T
I
|2

laminar flow (Blasius) turbulent flow (Prandtl)

ot

.0
vRey




The Blasius Velocity Profile - Self Similarity

Blasius Velocity Profile Blasius Velocity Profile

'1073

ot
T
1

0 1 1 1 1

1
0 0.2 0.4 0.6 0.8 1
u u
U U

X >
y_n\/67 x€{0.1:0.1:1.0}, U=1.0, v= 10~



The Blasius Velocity Profile - Boundary Layer Growth

Boundary Layer Thickness

3 s Blasius Velocity Profile
0 10~

57 - L

0 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X

u
U

y—n\/f, x€{0.1:0.1:1.0}, U=1.0, v= 10~
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Boundary Layer Transition

Y

Yy

YYVYY

Y

laminar
X

Xer

transition

turbulent




Boundary Layer Transition

» For small Rey, disturbances in the flow are damped out by viscous forces

» For somewhat higher Reynolds numbers, friction forces are less important and
the flow becomes unstable

» The transition region is short - can be treated as a point (the transition point)



Boundary Layer Transition

The onset of transition from laminar to turbulent is affected by a number of factors
such as:

» Turbulence in the freestream
» Surface roughness
» Pressure gradient

With a smooth surface, no turbulence in the freestream, and zero pressure gradient,
the onset of transition can be pushed up to Rey ~ 3.0 x 10°

As a rule of thumb, we can assume Rey,, ~ 5.0 x 10°



Boundary Layer Transition

Freestream turbulence:
frestream turbulence reduces the critical Reynolds number

with large turbulence intensity in the freestream, the transition can start already
at Rey ~ 3.0 x 10° or lower



Boundary Layer Transition

Surface roughness:

iy - . U
surface roughness does not affect transition significantly if Re, = - < 680
1%
Note! rule of thumb

if Re. > 680, the extent of the laminar region can be shortened significantly
(Rex ~ 3.0 x 10%)



Boundary Layer Transition

Pressure gradient:

increasing pressure in the flow direction makes the flow more unstable and thus
more prone to separation

decreasing pressure in the flow direction has a stabilizing effect on the flow
(delayed transition)



Boundary Layer Transition

Forced transition:

a trip wire or added surface roughness can make the transition to turbulence
really fast

the critical Reynolds number is not meaningful if the boundary layer is forced to
transition



Flat Plate - Turbulent Boundary Layer

The velocity profile is far from the parabolic profile used for laminar flow

1

0.8+ i
0.6 B
u
U
04 i
— Parabolic approximation
0.2 — Blasius profile b
— Prandtl’s 1/7-power profile
0 | | | |
0 0.2 0.4 0.6 0.8 1

> <



Flat Plate - Turbulent Boundary Layer

A turbulent boundary layer grows faster than a laminar boundary layer

» the velocity fluctuations (U, v/, w') leads to increased exchange of momentum

» increased shear stress compared to the laminar case where we only have forces
related to molecular viscosity

» larger portion of the fluid will be decelerated close to the wall



Flat Plate - Turbulent Boundary Layer

Approach 1: the log law

u 1 u*
— =~ —1In <y > +Bwhere k =041and B=5.0
u* K v
u* is the friction velocity defined as u* = Tw
p

at the edge of the boundary layer u = U and y = ¢ and thus

Uz11n<6u >+B

u* K v



Flat Plate - Turbulent Boundary Layer

Approach 1: the log law

e - , . 2Ty 1
The skin friction coefficient ¢y is defined as ¢y = U2 =T = Cf§ ,oU2

. . / /C
the friction velocity can be expressed as u* = W _y Ef
p

insert in the log-law and we get

2 1
e s B
c /an (R&;\/Z)Jr

rather difficult to work with ...



Flat Plate - Turbulent Boundary Layer

Approach 2: Prandtl’'s power law approximation

Prandtl suggested the following relations:

¢ ~ 0.02Re; /°

u N y 1/7
o~ ()

0 0
from before we have the following relation: 7, = pUQ% = Cr = QZ—X

5
. u u 7
calculate the momentum thickness ¢ = /0 U (1 — U) dy = —726



Flat Plate - Turbulent Boundary Layer

Approach 2: Prandtl’'s power law approximation

Now, combining the two skin friction coefficient relations we see that

0.02Re; /6 = 2.9 <75>

ax \72
_ R
and thus Re; /6 9.722—){ = 9.723ER25§
X

. ( , ) 0.16
integration gives Rey ~ 0.16/?9)6/7 or — = 77
X Rey

Note! the turbulent boundary layer grows significantly faster than the laminar
Stury X XS/ VS 8 ox Xx1/?




Flat Plate - Turbulent Boundary Layer

Approach 2: Prandtl’'s power law approximation

- 0.027
f ~ —
E’ei/7

0.0135/L1/7p6/7U13/7
TWi ~ X1/7

Note! friction drops slowely with x, increases nearly as p and U?, and is rather
insensitive to viscosity



Flat Plate - Turbulent Boundary Layer

description

boundary layer thickness

displacement thickness

momentum thickness

shape factor

wall shear stress

local skin friction coefficient

drag coefficient

variable

I X[ XI>

laminar flow (Blasius) turbulent flow (Prandtl)

5.0

Rey
2
Rey
6
Rey

j

[
N
[y

7

o
[N
~

7

2.59

0.332

0.664

Rey
2
E’eL

T

—_
w
o

7

pU?
v Rey

0.16
Rei/ !
0.02
Re)/™
0.016
Rei/ !

1.29

2
0.0135 27"
/%’ei/7

0.027
F?ei/7
0.031
Rei/7




Flat Plate Boundary Layer

YYYYVYYYVYYYYY

< > >
laminar Xer transition turbulent
X

N
D—bsz

/XU 0.664dx+/L 0.027
>0 F?ei/ ’ Xer F%ei/ !

dX]




Flat Plate Boundary Layer

Boundary layer thickness Boundary layer thickness
‘ | I I
‘ | 1 1
‘ | 1 1
| | (I
; | [
‘ | [
| | (I
; | [
| | »
| ; L 0.16x
| 7 . = a7
v 0.16x 1 ’f’ I y Lo ReX
- | I I
B’exl/7 ! /’ ! =
d ‘ o0 L 5.0x
S ! = 75 Lo o
,” : : F\’ex/ ] : : Rex/
- : _____ ‘p --------- : } )
'l o | 'w L mmmmmmmmmmmmmmmmT
‘ . AR
X X

For a long boundary layer the length of the laminar region becomes relatively short in
comparison with the length of the turbulent region



Wall Roughness

laminar:
1.328
Cp=—+
1/2
Re,

turbulent (smooth):
~0.031

Cop=—7
F?ei/ !

turbulent (fully rough):

Cp = (1.89 + 1.621og(L/e))~2®

Cp

0.5

fully rough

turbulent (smooth)

laminar

L/e = 200 —
L/e = 300 ——
L/e = 500 ——
L/e = 1000 —
L/e = 2000 —
L/e = 5000 —

L/e = 10000 —
L/e = 20000 —

0
10°

106

107 108 10°

Re;



Wall Roughness

transition (Reyans = 5.0 x 10°):

©0.031 1440

Ch — 427 _
b E’eiﬁ Re;

transition (Reyans = 3.0 x 10°):

C 0.031 8700
D= =77 " Ba
Re)/”  Rev

Co

0.5

L/e = 200 —

L/e = 300 ——

L/e = 500 =——
fully rough

\ L/e = 2000 ——

turbulent (smooth)

laminar

L/e = 1000 —

L/e = 5000 —

L/e = 10000 —
L/e = 20000 —

0
10°

106

107 108 107
Re;
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Pressure Gradient

Beautifully behaved

but mythically thin

boundary layer
and wake

» Adverse pressure gradient

» pressure increases in the flow direction
» may lead to separation

Re,=10°

Outer stream grossly
perturbed by broad flow
separation and wake

» Favorable pressure gradient

» pressure decreases in the flow direction
» the flow will not separate

Thin front
boundary layer

» Separation mechanism
» loss of momentum near the wall
» adverse pressure gradient
» decelerated fluid will force flow to separate from the body



Pressure Gradient

Boundary layer formulation of the momentum equation:

ou ou UdU 107

ax Vay T Tax ooy
with u = v = 0 close at the wall, we get

o

or

Uo’U _dp 9l
ay

ax dx o2

wall wall wall

Note! applies both for laminar and turbulent flow

_lap
T pax



Pressure Gradient

9
%

wall

a
Adverse pressure gradient (d—i > 0):

0%u
ay?
0%u
ay?

> ( at the wall

< 0 at the outer layer y = o

2

1
©opdx

thus @ = (0 somewhere in the boundary layer

Oy?



Pressure Gradient

u(y)

Favorable gradient
(dp/dx < 0)

Point of inflection:
inside wall

No separation



Pressure Gradient

u(y)

u(y)

Favorable gradient
(dp/dx < 0)

Point of inflection:
inside wall

No separation

Zero gradient
(dp/dx = 0)

Point of inflection:
at the wall

No separation



Pressure Gradient

y y y
A A
v | v | v |
u@y) uy) uy)

Favorable gradient Zero gradient Weak adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow

No separation No separation No separation



Pressure Gradient

y y y y
A A A
v | v | v | v |
u@y) uy) uy) u@y)

Favorable gradient Zero gradient Weak adverse Critical adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow in the flow
No separation No separation No separation Separation

zero slope at wall
Tw =20



Pressure Gradient

y y y y y
A A A A
v | v | v | v | v |
u@y) uy) uy) uy) u@y)
Favorable gradient Zero gradient Weak adverse Critical adverse Excessive adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0) gradient (dp/dx > 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow in the flow in the flow
No separation No separation No separation Separation Separated flow
zero slope at wall backflow at wall

Tw =20



Pressure Gradient

500X

Inviscid core flow — ===

S(X)_ 2
-

Nozzle
decreasing area

favorable pressure
gradient

dp/dx < 0

du/dx > 0

Throat

minimum area

Zero pressure

gradient
dp/dx =0
du/dx =0

ww

Diffuser
increasing area

adverse pressure
gradient

dp/dx > 0

dU/dx < 0



Shape Factor 5
Shape factor: H = 7

1 ‘ ‘ Laminar flow:
Favorable pressure gradients
0.8 No pressure gradient: H ~ 2.6
— —
(.6 | decreased shape factor increased shape factor .
u Separation: H ~ 3.5
U
0.4F
Turbulent flow:
0.2+ Adverse pressure gradients
No pressure gradient: H ~ 1.3
0
0 0.2 0.4 0.6 0.8 1

Separation: H ~ 2.4

> <



Avoid or Delay Separation

Decrease magnitude of adverse pressure gradient

Guide vanes
Streamlining



Avoid or Delay Separation

Decrease wall friction

Polish surfaces
Fluid injection



Avoid or Delay Separation

Remove decelerated fluid

Boundary layer suction



Avoid or Delay Separation

-/ KV

Increase near-wall momentum —

Force transition to turbulence

surface roughness
surface irregularities (dimples on the surface of a golf ball)
trip wires

Side effect: increased friction
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Drag of Immersed Bodies
%f"

o= 2991 (1)

%pU 2A v s cwrc‘u\ar oylinder
Characteristic area A:
0.2 Cp based on frontal area (tb) o
1. Frontal area o
blunt objects: cylinders, cars
2. Planform area 0.1r 1
wide flat bodies: wings, hydrofoils
3. Wetted area ot e Cp based on planform area (cb)
ships % 02 04 06 03 1

t/c



Drag of Immersed Bodies

No reliable theory for drag prediction (with the exception of flat plates)

The separation point can be predicted with some accuracy but not the wake
flow

CFD or experiments needed



Drag of Immersed Bodies
CD - CDpressure + CDfn’cﬁon

» Pressure drag
» difference between the high front stagnation
pressure and the low wake pressure on the
backside of the body
» often larger than the friction drag

» The relative importance of friction and
pressure drag depends on
» shape
» surface roughness

Friction drag percent

100

80

60

40

20

- I

of pressure drag

percentage

0.2

0.4

t/c

0.6

0.8 1

Note! for a cylinder, friction drag can be as low as a few percent of the total drag



Cylinder Surface Pressure

Separation Separation _ p - /OC>C
— P pV2/2
v v ,‘\
p—> Broad wake p—> Narrow wake
oo oo J T T
— Inviscid theory
U Turbulent b
Laminar
Cp —1| 1
9L i
_3 Co=1- ‘r"l sin® 0 ‘
0 45 90 135

180



Cylinder Drag

5 T T T T T T T T T T TTTTTT T I [ TTTTI
— Cylinder (2D)
— Sphere

1, |

0 T Y Y I N \’_\—\HHH
' 102 10° 10* 10° 10° 107
Rep




Streamlining

Cp =20

)
-

L



Streamlining

Cp =20

J

Q

-

Cp=1.1

)
-



Streamlining

V —>

/)

Cp = 2.0

>

—°

-
-2

vV —>

o
2

Cp=1.1

)
-



Streamlining

/)

vV — Cp = 2.0

o

— @
\ /

>

—°

-
vV — Cp=1.1
-2

same drag

J

-
9

—°

SRR



Drag vs Reynolds Number for Immersed Bodies

100 ‘ -

Smooth Plate

circular Square normal

10 cylinder Jind R \
Lo —[° —? 10
D gl ~0 . ¥
S~ =5 e Stokes' |
law: \__ Disk
! P --=-- c, | _24Re s el e
cy sLE— b — -
Seagull [\, _ Pigdon = : —
o i e satplane ]\ T 21 \ -
at plat ailplane \< B o1 -
parallel N Aol ip ~ [
e = Airship hull
001 —— ‘
y ool 3 4 5
Transition 0.1 1 10 100 10 10 10
l R
0.001 .
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Wing Lift and Drag

p—




Wing Lift and Drag




Wing Lift and Drag

planform area: A, = bc

angle of attack («)

A

chord (c) |

lift

dra
9 span (b)

thickness (f)

CL=

A
3PUAp

Ce
/\Rm:(leOs A
16 & Y —— .04 el T
|
/ Split
ﬂaPI n
/| With fla
12 0.037777 ' e
With flap Re, =9x 10 |
[~ at60°, |
8 6% 106 o0z / Re, =3 x10°
/ 3x10° /
610
-
No flap - o x 106
/ 04 —0.01
Noflap
| |
12 -8 -4 0 4 8 12 16 -8 -4 0 4 8§ 12 16

o, deg



Wing Lift and Drag
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Joukowsky Transform

s
o~

\
¥

¢=x+in




Complex Conjugate

OKAY, ANYONE. WHO'S FEELING' | BECAUSE TMMULTIPLYING | SHIT JUST
LIKE THEY CAN'T HANDLE THE WAVEFUNCTION BY ITS | GOT AEAL.
THE PHYSICS HERE SHOULD CoMPLEX  CONTUGATE,

PROBABLY JUST LEAVE NOW. /

THATS RIGHT,

0/
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

37 Understand and explain basic concepts of compressible flows (the gas law,
speed of sound, Mach number, isentropic flow with changing area, normal
shocks, oblique shocks, Prandtl-Meyer expansion)

Let’s go supersonic ...
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Motivation

» Compressible flow:

flows where variations in density are significant

most often high-speed gas flows (gas dynamics)

fluids moving at speeds comparable to the speed of sound
not common in liquids (would require very high pressures)

vV VY VYy



Historical Milestones

First supersonic flight - Charles Yeager 1947 Steam turbine with convergent-divergent nozzles - Carl Gustav de Laval 1893



Compressible Flow Applications




Compressible Flow Applications




Compressible Flow Applications

feed tube

feed tube \ 3 D gas cooler
» D

compression passage

- - v

expansion cylinder compression cylinder




Governing Equations

v

With significant density changes follows substantial changes in pressure and
temperature

v

The energy equation must be included
Four equations:

1. Continuity

2. Momentum

3. Energy

4. Equation of state

Unknowns: p, p, T, and V
The four equations must be solved simultaneously

v

v

v



Mach Number Regimes

Incompressible flow
insignificant density changes
subsonic flow
local and global Mach number less than unity
transonic flow
subsonic flow with regions of supersonic flow
(local Mach number can be higher than one)
supersonic flow with regions of subsonic flow
(local Mach number can be less than one)
supersonic flow
local and global Mach number higher than one
hypersonic flow
Mach number higher than 5.0
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Ratio of Specific Heats

v

The ratio of specific heats is important in compressible flow

_ G
Ley

v

~ is a fluid property

v

For moderate temperatures + is a constant

v

For higher temperatures ~ varies with temperature
Forair, vy = 1.4

v



Equation of State

In the following ideal gas law and constant specific heats will be assumed:
p = pRT

R =C, — C, = const

—C = const
fy_cv -

Auxiliary relations:



Internal Energy and Enthalpy

Constant specific heats: Variable specific heats:
dh = CpdT



Isentropic Relations

compute entropy change from the first and second law of thermodynamics

TdS:dh—d;)

for calorically perfect gases, dh = C,dT
2 2 ar 2 O’p
ds = / Co— —R / —
/1 1 T 1 P
for constant specific heats

Ty P2 T P2
S9—8$1=Coln=—-RIlhn—==CyIn= —RIln==
3 PTT P1 T p1



Isentropic Relations
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Speed of Sound

» The rate of propagation of a pressure pulse of infinitesimal strength through a
fluid at rest

» Related to the molecular activity of the fluid
» A thermodynamic property



Speed of Sound

Niklas on - Chalmers




Speed of Sound

frame of reference fixed to fluid

frame of reference following the wave
<
p p+ Ap p p+ Ap
P p+Ap P p+ Ap
T T+ AT T T+ AT
V=0 vV =AV V==C V=C-AV
- —



Speed of Sound

frame of reference following the wave

p B[ < o]
P ! p+ Ap
T PN
|
inuity: v=cCc !|1v=Cc-AV
continuity: Sl >

pAC = (p+ Ap)A(C — AV)

Ap
AV =C
p+Ap

Note! there are no gradients in the flow so viscous effects are confined to the interior
of the wave



Speed of Sound

frame of reference following the wave

p B[ < o]
P LoptAp
t T N N
. |
momentum: v=c '|[1v=c-av
— i —

pA — (D + ApP)A = (pAC)(C — AV — C) = Ap = pCAV

with AV from the continuity equation we get

Ap Ap
C*="" (1 + )
Ap P

Note! the larger Ap/p, the higher the propagation velocity



Speed of Sound

In the limit of infinitesimal strength Ap — 0 and thus

2= P
dp
» There is no added heat and thus the process adiabatic
» For weak waves the process can also be assumed to be reversible

2_ %

a” =
op g



Speed of Sound

2_ 9P
ap |s
The isentropic relation gives
. 0 -
p=p= 2 =yl =42 —yRT
dp P

and thus
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Stagnation Enthalpy

Consider high-speed gas flow past an insulated wall

1 1
h1+§V12+gzl :h2+§v§+922—q+wy

» differences in potential energy extremely small
» outside the boundary layer, heat transfer and viscous work are zero

1 1
hi + §V12 =hy + §V22 = const



Stagnation Enthalpy

1
h+2V2:ho]

”The maximum enthalpy that the fluid would achieve if brought to rest
adiabatically”



Stagnation Temperature

For a calorically perfect gash = CpT

1
h+§V2:ho

1

Where T, is the stagnation temperature



Mach Number Relations

V2 To

2C, T T

1

YR T_ yRT a’

C,T =
PPy —1 T y=1" y-1




Mach Number Relations

Since a oc T2 we get



Mach Number Relations

If the flow is adiabatic and reversible (isentropic), we may use the isentropic relations

Do E v/(v=1) _ '1 . v MQ— v/ (v=1)
T I 2




Stagnation Properties

v

Po and p, - the pressure and density that the flow would achieve if brought to
rest isentropically

v

All stagnation properties are constants in an isentropic flow

v

he, T, and a, are constants in an adiabatic flow but not necessarily p, and po

v

Po and p will vary throughout an adiabatic flow as the entropy changes due to
friction or shocks



Critical Properties

Another useful set of reference variables is the critical properties (sonic conditions)

TT":1+(72_1>M2={M=1-0}:H<7;1>:<2+g_1>:<7_2H>




Critical Properties

9 \M/O-D
Y+ 1>

(

p*
Po



Critical Properties

Ary=14
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Isentropic Quasi-1D Flow

Quasi-1D:

Flow properties varies in one direction only (x)
The flow area is a smooth function A = A(x)
Steady-state, inviscid and isentropic flow

r

N

>

Sy Sa



The Area-Velocity Relation

Continuity:

p()V(X)A(x) = const = d(pVA) = 0 = AVdp + pAdV + pVdA = 0

divide by pVA gives



The Area-Velocity Relation

From the definition of stagnation enthalpy and isentropic flow we get

1
hO:h+§V2:const:>o’h+VdV:0

The second law of thermodynamics and isentropic flow

Tds:ozo’h—d—p:>o’h:d—p
p P
and thus
C’I—erVdVZO

P



The Area-Velocity Relation

dp +Vav =0
P

From the definition of the speed of sound

1
dp:azdf)iaQ@ +VavV =0 = dp _ ——Vav
p p a



The Area-Velocity Relation

dp dV dA aV
4+ — 4+ — =

1
ar CAMERERVYY
vita-v @2Vt

&/ _ 1 dA__op
V MZ_1A o2




The Area-Velocity Relation

Subsonic M < 1 Supersonic M > 1

supersonic nozzle
av >0
dp < 0

subsonic diffuser
av <0
dp >0

supersonic diffuser
dv <0
dp >0

subsonic nozzle
av >0
dp < 0



The Area-Velocity Relation

What happens when M = 17?



The Area-Velocity Relation

What happens when M = 17?

M =1whendA =0



The Area-Velocity Relation

What happens when M = 17?
M =1whendA =0

maximum or minimum area



The Area-Velocity Relation

M<1 M=1 M>1 /—'—\
|
|

subsonic | supersonic subsonic ! subsonic
—_— —_— —_— | —_—
! supersonic | supersonic
|



The Area-Mach-Number Relation

* * 1 1/(v—1)
PP _ [2 <1+ VQMz)}

Ve B (’yRT*)l/Z B (,ﬂ:ﬂ')l/z E 1/2 E 1/2 B l 9 - y 1M2 1/2
Vo v oV To T T M| y+1 2

AN\ 2 1 2+(771)M2 (v+1)/(v=1)
(&) =[5




The Area-Mach-Number Relation

A\ 2 1 [2+ (v —1)M? (y+1)/(v=1)
(&) = [
supersonic
L e
M subsonic
) 3 4 5 6 7 8 910

-1
100123



The Area-Mach-Number Relation

A 2 1 2+ ('7 o 1)M2 (v+1)/(v—1)
(&) = [ 55

supersonic

(O
% al
N t ! e subsonic
ote A ,OV M b
; 4 6 ‘7 8 E; 10

~1
100123



The Area-Mach-Number Relation

Sub-critical (non-choked) nozzle flow

100 |

1071

supersonic
subsonic

hroat

1

I

I

I

I 2

I

; 1 1

1 2 3 4 6 7



The Area-Mach-Number Relation

Critical (choked) nozzle flow
L | -
supersonic
' i 100 T
w ‘ M E | subsonic E
‘ i AN ]
10—1 ; 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
A
A*



Choking

A* pV
VA= p"AV* = — =

From the area-Mach-number relation

A+ <1 if M<1
T 1 if M=1
<1 if M>1

2%
p* V*

0.8

0.6

0.4

The maximum possible massflow through a duct is achieved when its throat reaches

sonic conditions



Choking

% ( 2
Po v+1
V* = \/yRT*
T*_ 2

To _’YJrl
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Shock Waves

"Shock waves ar nearly discontinuous changes in a supersonic flow”

» higher downstream pressure
» sudden changes in flow direction

v

blockage by a downstream body

v

explosion



Normal Shocks

@ ®
Continuity: 1k
p1Ur = pals . | |
The Rankine-Hugoniot relation;
Momentum: 1 : 1
D1—p2:p2u§—p1uf h2—h1:§(ﬁ92—p1) ([)2+/)1>
Energy:

1 1
M+ Ut = + Su3 = ho



Normal Shocks

1 1 1
ha —h1 = 5 (P2 — p1) <p2 + p1>

Note! The Rankine-Hugoniot relation only includes thermodynamic properties and
gives a relation between the flow state upstream of the shock and the flow
downstream of the shock



Normal Shocks

Pressure ratio v 1.4

The Rankine-Hugoniot relation — - w
| | —isentropic

— Hugoniot
y+1 P2
P2 1+(7—1) (/01) 4+

nED 6
v-1 - p1 p g

t

The isentropic relation

P2 _ (f’?)m o2
P1 lol P1



Normal Shocks

The second law of thermodynamics

Entropy v 1.4

Ty P2
51 =Cpln=2 —RIn=2
So — 81 p N T1 np1

can be rewritten as

5
So — 81 = Cvln [IOQ <pl> :|
P1 \ p2

from the Rankine-Hugoniot relation _ i | | | !
(b2/p1 g ) 0706 08 1 12 14 16 18 2

P2
P1

Note! a reduction of entropy is a violation of the second law of thermodynamics



Normal Shocks

For a perfect gas, it is possible to obtain relations for normal shocks that only include
upstream variables

Momentum equation: p; + piU? = pa + pals

Us
P2 — P1 = p1Ui — paUs = {p1tr = pan} = prus(Us — U2) = 1t (1 - )

Uy
divide by py
P2, mut (1 - Uz)
P1 P1 Uy

U2 = M3a? = M2yRT, = 7/\//%’21 = % = 14+ M} (1 - “2>
1 1



Normal Shocks

P2 2< U2>
— =1+yWM7(1-—
P1 e Uy

Using the energy equation its possible obtain a relation for :2
1

us 24 (y - 1DM;

U (v + 1)M?

and thus




Normal Shocks

Pressure ratio v 1.4

20 T T T

P2
P1

Note! from before we know that p,/p1 must be greater than 1.0, which means that
My must be greater than 1.0



Normal Shocks

Momentum equation: py + piU; = pPs + palis
u
M = ring p1 + piMia; = pa + paM3as

a=/RT = 75 = p1 +p1M%£il =pz+pzM§7£2

P1 (1 + VM%) =ps (14 7/\//%)

p2 1+ M}

p1 1+yM3




Normal Shocks

Two ways to calculate the pressure ratio over the shock

P2 2y 2 P2 1+ ’)/M%
(M7 —1) =71
p1 1+~M3

7:14_7
P1 v+1

Setting the relations equal gives a relation for the downstream Mach number

o (Y=DMF+2
LM - (- 1)

Note! for v > 1 and M; > 1, the downstream Mach number must be less than 1.0,
i.e we will always have subsonic flow behind a normal shock



Normal Shocks

Supersonic flow upstream of normal shock
Subsonic flow downstream of normal shock

Entropy increases over the shock and consequently total pressure decreases
Sonic throat area increases

oAl SR A B

Very weak shock waves are nearly isentropic



Normal Shocks

Normal shock relations ~ 1.4

— a2/,
—Ts/Th
p2/pP1
_p02/p01
— M,
— A AT




Normal Shocks

-




Moving Normal Shocks

Change frame of reference
coordinate system moving with the shock

thermodynamic properties does not change
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Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

A

thr‘oat

[
throat

p* /Po
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p* /Po




Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po
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Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po
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Convergent-Diveregent Nozzle

M/Mehoked A
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Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po
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Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

[
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Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

throat

p*/Po




Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

thr‘oat

[
throat

p* /Po




Convergent-Diveregent Nozzle

-
m / mchoked A
1 ° thr‘oat
> [
< 0 1 > Pe/Po throat

p/Po ‘r ‘ ‘

p* /Po —




Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

thr‘oat

[
throat

p* /Po




Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

thr‘oat
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Convergent-Diveregent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

thr‘oat

[
throat

p* /Po




Convergent-Diveregent Nozzle

normal shock

w

oblique shock

J
pressure matched

_/\—>

expansion fan

Po/Pe = (Po/Pe)ne
normal shock at nozzle exit

(Po/Pelne < Po/Pe < (Po/Pe)sc
overexpanded nozzle flow

Po/Pe = (Po/Pe)sc
pressure matched nozzle flow

Po/Pe > (Po/Pe)sc
underexpanded nozzle flow



Convergent-Diveregent Nozzle
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Oblique Shocks




Oblique Shocks




Mach Wave




Mach Wave

A Mach wave is an infinitely weak oblique shock

Mach wave

No substantial changes of flow properties over a single Mach wave
My > 1.0 and My ~ Ms
Isentropic



Obligue Shocks and Mach Waves

Two-dimensional steady-state flow
Stationary shock

Flow condition

M>1
Flow condition

B>p

Significant changes of flow properties from 1 to 2
M1 > 1.0, ﬁ > [, and M1 #MQ
Not isentropic



Obligue Shocks and Mach Waves

When does an oblique shock appear in a flow?

M>1 _

M>1

i

K\

compression corner gradual compression



Mach Wave and Mach Waves




Oblique Shocks

Stationary oblique shock




Obligue Shock Relations

/ "X
Two-dimensional steady-state flow

Control volume aligned with flow stream lines



Obligue Shock Relations

Velocity notations:

u
My, = C‘Ti = M sin(B)
M, = 22 = My sin(8 — )



Obligue Shock Relations

Conservation of mass:

P1UIA + pou2A = 0 = p1uy = paUa



Obligue Shock Relations

Conservation of momentum (shock-normal direction):

(p1uF + P1)A + (pau3 + P2)A = 0 = p1U3 + P1 = paUi3 + P2



Obligue Shock Relations

/ X
Conservation of momentum (shock-tangential direction):

p1U1W1A + [)QUQWQA =0=w; =Wwsy



Obligue Shock Relations

Conservation of energy:

1 1 1 1
piur[hy + 5(“? + WA + patafhy + 5(”3 +W3)A=0=h; + §U% =hy + §u§



Obligue Shock Relations

We can use the same equations as for normal shocks if we replace M; with M,, and
My with M,

, M 412/ 1))
" 2y/(y =DM, -1

Ratios such as p2/p1, p2/p1, and Ty /T1 can be calculated using the relations for
normal shocks with My replaced by M,



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The answer is no, but why?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The answer is no, but why?

Po,, To,, etc are calculated using M; not M, (the tangential velocity is included)



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The answer is no, but why?
Po,, To,, etc are calculated using M; not M, (the tangential velocity is included)

OBS! Do not not use ratios involving total quantities, .9. Po,/Poys Tos/Toys
obtained from formulas or tables for normal shock



Deflection Angle (for the interested)

w w
0=ay—a; =tan ' () —tan~! ()
Us up

00 - Uo 5}
ow  w24ui w?+u?




Deflection Angle (for the interested)

0o U 1
o= 5~ — 5 =0=
ow  w2+us WwW24ug
Us(W? 4+ u?) —ur(W? 4 u2) B (Ug — uy)(W? — UyUs) 0
(W2 +u3)(W? +u7) (W2 +u3)(W? +u7)

Two solutions:

Us = Uy (no deflection)
w? = u1us (max deflection)



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

No deflection cases:
» normal shock

(reduced shock-normal velocity)
» Mach wave

(unchanged shock-normal velocity)




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

Solutions to the left of the sonic line
are subsonic




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

[t is not possible to deflect the flow
more than Omax




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle 6 < 6yax,
there are two solutions

» strong shock solution

» weak shock solution
Weak shocks give lower losses and
therefore the preferred solution




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to
calculate the shock angle g for a
given deflection angle ¢




Flow Deflection

M>1

weak shock family

sonic line

strong shock family

0 > Omax

strong shock family

sonic line
weak shock family

M>1



The 0-3-Mach Relation

A relation between:
» flow deflection angle ¢
» shock angle g8
» upstream flow Mach number M,

_ 2cot(B)(Misin?(8) — 1)
tan(f) = M%(7+clot(25)) ) }




The 6-5-Mach Relation - Wedge Flow

Wedge flow oblique shock analysis:

1. 6-B-M relation = 3 for given My and 6

2. [ gives My, according to: M, = M sin(p)

3. normal shock formula with M, instead of M; =
M, (instead of Ms)

4. My given by My = M,/ sin(5 — 0)

5. normal shock formula with My, instead of M; =
p2/p1, P2/P1, etc

6. upstream conditions + pa2/p1, p2/p1, €tc =
downstream conditions

M>1
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Expansion Waves

v

Gradual change of flow angle

v

Increasing flow area

v

Increasing Mach number

v

Accumulation of infinitesimal flow deflections - isentropic



Expansion Waves

What is an expansion wave or expansion region?

M>1

expansion corner gradual expansion



The Prandtl-Meyer Function

» The change of flow properties over an expansion region can be calculated using
the Prandtl-Meyer function

» The Prandl-Meyer function derivation is based on the fact that each expansion
wave gives an infinitesimal change in flow angle and flow properties



Prandtl-Meyer Function Derivation (for the interested)

For small deflection angles, linearization of the #-5-Mach relation gives

dp M2
—~ ————df
p (M?2-1)1/2

The momentum equation for inviscid flows gives

dp = —d(pV?) = —pVdV — Vd(pV) = —pVaV = —pv2$ = —pazMQ% =

Y &
P MV



Prandtl-Meyer Function Derivation (for the interested)

Now, setting the two expressions for dp/p equal

av M? av
DY VS — (M2 _1)V/2
M % (MQ_l)l/Qde;xde ( )
vV av  d
V:Ma:dV:adMJera:d—:i_Fﬁ
4 M a

do = —(M? —1)'/2 (dM + da)

M a



Prandtl-Meyer Function Derivation (for the interested)
dg = —(M? — 1)/ (

a 1 1/2
%o _ <1 + 7/w?>
a 2

N1 —1/2

oM da
M a

- ~1/2
(1 + 1= 5 1/\//2> ]

isentropic = da, =0

W {(1 + 721/\42)_1/1 (1 i) (= ma

a (1 &k %1/\%)—1/2 o (1 N ’%1/\42)_1/2



Prandtl-Meyer Function Derivation (for the interested)

dM  da
— 2 q\1/2 [ 7T e
do = —(M?—1) <M+a>
da  —3(y - 1)MaM g 2(M? — 1)!/% am
a 1+ M T2+ (y-MEM

Introducing w defined such that: dw = —df, w = 0 when M =1

v—1

w(M) = <7+1> . tan ! <( MQ/?;_ 1)>1/2 — tan" ' (M? — 1)/2

v+1)



The Prandtl-Meyer Function

v+ I\ M2—1 N\
s = (357) e (G ) e

Prandtl-Meyer function v 1.4
140 T T T T

120 |- -

w(M) = 130.45°

‘/\//—H)c
100

80
60
40

20




Prandtl-Meyer Expansion Waves

Example:

expansion fan (Mach waves)

01 =0, My > 1is given
05 is given
find My such that 3 = w(Ms) — w(My)



Prandtl-Meyer Expansion Waves

Since flow is isentropic, the usual isentropic relations apply:
(0o and T, are constant)

Calorically perfect gas:

Po _ [y Lo el
p—_1+2(7 1)M_
T, [. 1 T
= =[1+=(y—1)M?
+ _+2(7 )_




PL _ oyt
P2 p01 P2
h_To, T
Ty 1o, T2

since Po, = Po, and To, = To,

|
|

Po,
P2

To,
Ty

Prandtl-Meyer Expansion Waves

)/
)/

Poy
P1

Tou
T

>:
>:




Diamond-Wedge Airfoil

expansion fan
oblique shock oblique shock

symmetric airfoil
(both in x- and
y-planes

Note! symmetric airfoil at zero incidence = zero lift but what about drag?



Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle e and upstream
Mach number M,

2-3 Prandtl-Meyer expansion for flow deflection angle 2¢ and upstream Mach
number M,

3-4 standard oblique shock calculation for flow deflection angle € and upstream
Mach number Mg



Diamond-Wedge Airfoil - Wave Drag
Since conditions 2 and 3 are constant in their respective regions, we obtain:

D =2[psL sin(e) — psL sin(e)] = 2(p2 —/03)2 = (p2 —p3)t

For supersonic free stream (M > 1), with shocks and expansion fans according to
figure we will always find that po > p3

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)



Flat-Plate Airfoil

expansion fan

oblique shock

slip line

incidenceex: ~ \ @ T~ ——""_"4___

oblique shock

expansion fan



Flat-Plate Airfoll

[t seems that the angle of the flow downstream of the flat plate would be different
than the angle of the flow upstream of the plate. Can that really be correct?!



Flat-Plate Airfoil

[t seems that the angle of the flow downstream of the flat plate would be different
than the angle of the flow upstream of the plate. Can that really be correct?!

For the flow in the vicinity of the plate this is the correct picture. Further out from
the plate, shock and expansion waves will interact and eventually sort the
missmatch of flow angles out



Flat-Plate Airfoil

v

Flow states 4 and 5 must satisfy:

> P4 =Ps
» flow direction 4 equals flow direction 5 (®)

v

Shock between 2 and 4 as well as expansion fan between 3 and 5 will adjust
themselves to comply with the requirements

v

For calculation of lift and drag only states 2 and 3 are needed

v

States 2 and 3 can be obtained using standard oblique shock formulas and
Prandtl-Meyer expansion



Obligue Shocks and Expansion Waves

compression corner expansion corner

M decrease M increase
V' decrease V' increase
p increase p  decrease
p increase p  decrease
T increase T decrease
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Supersonic Stereo

What if you somehow managed to make a stereo travel at twice the speed of sound, would it sound backwards to someone
who was just casually sitting somewhere as it flies by?

—Tim Currie
Yes.
Technically, anyway. It would be pretty hard to hear.

‘The basic idea is pretty straightforward. The stereo is going faster than its own sound, so it will reach you first, followed by the sound it emitted one second ago,
followed by the sound it emitted two seconds ago, and so forth.

‘The problem s that the stereo is moving at Mach 2, which means that two seconds ago, it was over a kilometer away. It's hard to hear music from that distance,
particularly when your ears were just hit by (a) a sonic boom, and (b) pieces of a rapidly disintegrating stereo.

Wind speeds of Mach 2 would messily disassemble most consumer electronics. The force of the wind on the body of the stereo is roughly comparable to that of a
dozen people standing on it:
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