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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases
7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*
b normal shocks*
i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)

what does quasi-1D mean? either the flow is 1D or not, or?
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Motivation

By extending the one-dimensional theory to quasi-one-dimensional, we can
study important applications such as nozzles and diffusers

Even though the flow in nozzles and diffusers are in essence three dimensional
we will be able to establish important relations using the quasi-one-dimensional
approach
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Quasi-One-Dimensional Flow

Chapter 3 - One-dimensional steady-state flow
overall assumption:
one-dimensional flow
constant cross section area
applications:
normal shock
one-dimensional flow with heat addition
one-dimensional flow with friction

Chapter 4 - Two-dimensional steady-state flow
overall assumption:
two-dimensional flow
uniform supersonic freestream
applications:
oblique shock
expansion fan
shock-expansion theory



Quasi-One-Dimensional Flow

Extension of one-dimensional flow to allow variations in streamtube area
Steady-state flow assumption still applied

streamtube area A(x)



Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

cross-section area A(x)



Quasi-One-Dimensional Flow - Nozzle Flow




Quasi-One-Dimensional Flow - Stirling Engine
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Chapter 5.2
Governing Equations



Governing Equations

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

Q  control volume

S left boundary (area A,)
S, right boundary (area As)
I'  perimeter boundary

0N =S, UI'USy



Governing Equations - Assumptions

inviscid
steady-state
no flow through I"



Governing Equations - Mass Conservation

(%jfjpd’7/+ @pv.nc/s =0
Q

o0

=0 —p1U1A1+p2u2As

[P1U1A1 = P2U2A2]




Governing Equations - Momentum Conservation

% Uf pvav fﬁﬁ [p(v-n)v +pn]dS =0
= 09
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Governing Equations - Energy Conservation

c% ”f pEod” + Cﬁﬁ [pho(v - 1)]dS = 0
° 50

—_———
=0

which gives

p1U1A1ho, = patisAsho,

from continuity we have that piU1A1 = palicAs =



Governing Equations - Summary

p1UIAL = palaAa

Ao

(p1Uf + p1)Ar +/A PdA = (paU3 + pP2)As
1

hol == ho2




Governing Equations - Differential Form

Continuity equation:

p1U1A1 = pQUQAQ or pUA =C

where ¢ is a constant =

d(puA) =0



Governing Equations - Differential Form
Momentum equation:

Ao
(p1U7 + P1)A; +/ PAdA = (paU3 + p2)As =

Al
d [(pu® + p)A] = pdA =
d(pu*A) + d(pA) = pdA =
ud(puA) +puAdu + Adp + pdA = pdA =
AW

pUAdU + Adp =0 =

Euler’s equation

dp = —pudu



Governing Equations - Differential Form

Energy equation:
hO] — h02 = dho — 0

1.
ho:h+§u2;s



Governing Equations - Differential Form

Summary (valid for all gases):

Assumptions:
quasi-one-dimensional flow
inviscid flow
steady-state flow

d(puA) =0

dp = —pudu

dh+udu =10

J




Roadmap - Quasi-One-Dimensional Flow

[ Basic%cepts

‘ Governwuations

Area-velocity relation

'

Nozzles ]<—[ Free boundary reflection ]

Diffusers [ Nozzle pressure ratio

' f

Numerical simulation ] [ Nozzle relations

o N e N s N G




Chapter 5.3
Area-Velocity Relation



Area-Velocity Relation

d(puA) = 0 = UAdp + pAdu + pudA =0

divide by puA gives

d a dA

S AN

p u A
Euler’'s equation:

d
ap = —pudu = d—p = d—’o—p = —uadu
pdpp

Assuming adiabatic, reversible (isentropic) process and the definition of speed of

sound gives

40 _ <8p> 2= a?? i 9
dp op) s P p u



Area-Velocity Relation

Now, inserting the expression for 2P in the rewritten continuity equation gives
P

VAt i
1-m ) Ay

or

which is the area-velocity relation



The Area-Velocity Relation

Subsonic M < 1 Supersonic M > 1

supersonic nozzle
du >0
dp < 0

subsonic diffuser
du <0
dp >0

supersonic diffuser
du <0
dp >0

subsonic nozzle
du >0
dp < 0



The Area-Velocity Relation

What happens when M = 17



The Area-Velocity Relation

What happens when M = 17

M =1whendA =0



The Area-Velocity Relation

What happens when M = 17
M =1whendA =0

maximum or minimum area



The Area-Velocity Relation

M<1 M=1 M>1 /—'—\
|
|

subsonic | supersonic subsonic ! subsonic
—_— —_— —_— | —_—
! supersonic | supersonic
|



The Area-Velocity Relation

» A converging-diverging nozzle is the only possibility to obtain supersonic flow!

» A supersonic flow entering a convergent-divergent nozzle will slow down and, if
the conditions are right, become sonic at the throat - hard to obtain a shock-free
flow in this case



Area-Velocity Relation

M%O:%:—%
A u
AL
A u

1
A [UdA + Adu] = 0 =

duA)=0=Au=c

where ¢ is a constant



Area-Velocity Relation

Note 1 The area-velocity relation is only valid for isentropic flow
not valid across a compression shock (due to entropy increase)

Note 2 The area-velocity relation is valid for all gases



Area-Velocity Relation Examples - Rocket Engine

combustion —

chamber M>1 — high-velocity gas
M<1

A
/b\”; e
i§
o)

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical figures for a LH?/LOx rocket
engine: po ~ 120 [bar], To ~ 3600 [K], exit velocity ~ 4000 [m/s]



Area-Velocity Relation Examples - Wind Tunnel

nozzle test section diffuser
—_—
e
_—
M<1 i M>1 —_
> i > > M>1 M=1 M<1
—_—

accelerating flow constant velocity decelerating flow
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Chapter 5.4
Nozzles



Nozzle Flow with Varying Pressure Ratio

time for rocket science!



Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:




Nozzle Flow - Relations

Critical conditions:




Nozzle Flow - Relations

> ur ura? uta?a;

a”®  a?a*”®  a?aia*

=

1+ 3(y — 1)M?




Nozzle Flow - Relations
For nozzle flow we have

PUA =C
where ¢ is a constant and therefore
P UTA" = pUA
or, since at critical conditions u* = a*

pratA* = puA
which gives

A p*

A" pu popou



Nozzle Flow - Relations




Nozzle Flow - Relations

* 2
A [%(,y + 1)] y—1 M*Z
M*Q 2 %(ﬁy + 1)

Ax

which is the area-Mach-number relation



The Area-Mach-Number Relation

A\ 2 1 [2+ (v —1)M? (y+1)/(v=1)
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The Area-Mach-Number Relation

A 2 1 2+ ('7 o 1)M2 (v+1)/(v—1)
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Area-Mach-Number Relation

Note 1 Critical conditions used here are those corresponding to isentropic flow. Do
not confuse these with the conditions in the cases of one-dimensional flow
with heat addition and friction

Note 2 For quasi-one-dimensional flow, assuming inviscid steady-state flow, both
total and critical conditions are constant along streamlines unless shocks
are present (then the flow is no longer isentropic)

Note 3 The derived area-Mach-number relation is only valid for calorically perfect
gas and for isentropic flow. It is not valid across a compression shock



Nozzle Flow

Assumptions:
inviscid
steady-state
quasi-one-dimensional
calorically perfect gas




The Area-Mach-Number Relation

Sub-critical (non-choked) nozzle flow

M < 1 at nozzle throat
Ar > A*
M1 <1
My < 1

1071

supersonic




The Area-Mach-Number Relation

Critical (choked) nozzle flow

M = 1 at nozzle throat
A = A*
M1 <1
My > 1

1071

supersonic

throat




Nozzle Flow

Choked nozzle flow (no shocks):

» A* is constant throughout the nozzle
> At — /4>k

M given by the subsonic solution of

AN (AN 1T 2 L e -
A) T \A) T M ly+1 2 !
M given by the supersonic solution of
~y+1
y—1

() = (&) =g [0 30 -]

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream of throat and supersonic flow downstream of throat



Nozzle Mass Flow

pVA = p*"A*V* =

From the area-Mach-number relation

L B
A <1

if
if
if

AT pV

A

p* \/*

M<1
M=1
M>1

2%
p* V*

0.8

0.6

0.4

The maximum possible massflow through a duct is achieved when its throat reaches

sonic conditions



Nozzle Mass Flow

For a choked nozzle:




Nozzle Mass Flow

rh:pOAt 7<2>7
VIo VR\vy+1

The maximum mass flow that can be sustained through the nozzle

Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically
perfect gas

Note! The massflow formula is valid even if there are shocks present
downstream of throat!



Nozzle Mass Flow

How can we increase mass flow through nozzle”?

increase pPo
decrease T,
increase A;
decrease R

(increase molecular weight, without changing )



ROCKET PACKS ARE EASY.

O

THE HARD PART 15 INVENTING
THE CALF SHELDS.
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