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Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*

e oblique shocks in 2D*

f shock reflection at solid walls*

g contact discontinuities

h Prandtl-Meyer expansion fans in 2D

i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

why do we get normal shocks in some cases and oblique shocks in other?
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Motivation

Come on, two-dimensional flow, really?! Why not three-dimensional?

the normal shocks studied in chapter 3 are a special casees of the more general

oblique shock waves that may be studied in two dimensions

in two dimensions, we can still analyze shock waves using a pen-and-paper

approach

many practical problems or subsets of problems may be analyzed in

two-dimensions

by going from one to two dimensions we will be able to introduce physical

processes important for compressible flows
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Oblique Shocks and Expansion Waves

Supersonic two-dimensional steady-state inviscid flow

(no wall friction)

In real flow, viscosity is non-zero ⇒ boundary layers

For high-Reynolds-number flows, boundary layers are thin ⇒ inviscid theory still

relevant!
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Mach Waves

A Mach wave is an infinitely weak oblique shock
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Mach Wave

A Mach wave is an infinitely weak oblique shock

M1 M2

µ

Mach wave

No substantial changes of flow properties over a single Mach wave

M1 > 1.0 and M1 ≈ M2

Isentropic
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Oblique Shocks

compression corner

M > 1

gradual compression

M > 1
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Chapter 4.3

Oblique Shock Relations
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Oblique Shocks

Two-dimensional steady-state flow

β > µ

Flow condition

1

Flow condition

2

Stationary shock
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Oblique Shocks

Stationary oblique shock
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Oblique Shock Relations

Two-dimensional steady-state flow

Control volume aligned with flow stream lines
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Oblique Shock Relations

Velocity notations:

Mn1 =
u1

a1
= M1 sin(β)

Mn2 =
u2

a2
= M2 sin(β − θ)

M1 =
v1

a1

M2 =
v2

a2

A

A
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x
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Oblique Shock Relations

Conservation of mass:

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

Mass conservation for control volume Ω:

0− ρ1u1A+ ρ2u2A = 0 ⇒

ρ1u1 = ρ2u2
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Oblique Shock Relations

Conservation of momentum:

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn]dS =
y

Ω

ρfdV

Momentum in shock-normal direction:

0− (ρ1u
2
1 + p1)A+ (ρ2u

2
2 + p2)A = 0 ⇒

ρ1u
2
1 + p1 = ρ2u

2
2 + p2
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Oblique Shock Relations

Momentum in shock-tangential direction:

0− ρ1u1w1A+ ρ2u2w2A = 0 ⇒

w1 = w2
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Oblique Shock Relations

Conservation of energy:

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n]dS =
y

Ω

ρf · vdV

Energy equation applied to the control volume Ω:

0− ρ1u1[h1 +
1

2
(u21 +w2

1)]A+ ρ2u2[h2 +
1

2
(u22 +w2

2)]A = 0 ⇒

h1 +
1

2
u21 = h2 +

1

2
u22
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Oblique Shock Relations

We can use the same equations as for normal shocks if we replace M1 with Mn1 and

M2 with Mn2

M2
n2

=
M2

n1
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1 − 1

Ratios such as ρ2/ρ1, p2/p1, and T2/T1 can be calculated using the relations for

normal shocks with M1 replaced by Mn1
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Oblique Shock Relations

What about ratios involving stagnation flow properties, can we use the ones

previously derived for normal shocks?

The answer is no, but why?

Po1 , To1 , etc are calculated using M1 not Mn1 (the tangential velocity is included)

OBS! Do not not use ratios involving total quantities, e.g. po2/po1 , To2/To1 ,
obtained from formulas or tables for normal shock
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Oblique Shock Relations
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Deflection Angle (for the interested)
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Deflection Angle (for the interested)

∂θ

∂w
=

u2

w2 + u22
− u1

w2 + u21
= 0 ⇒

u2(w
2 + u21)− u1(w

2 + u22)

(w2 + u22)(w
2 + u21)

= 0 ⇒ (u2 − u1)(w
2 − u1u2)

(w2 + u22)(w
2 + u21)

= 0

Two solutions:

I u2 = u1 (no deflection)

I w2 = u1u2 (max deflection)
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

No deflection cases:

I normal shock

(reduced shock-normal velocity)
I Mach wave

(unchanged shock-normal velocity)
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

Solutions to the left of the sonic line

are subsonic
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

It is not possible to deflect the flow

more than θmax
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle θ < θmax,
there are two solutions

I strong shock solution
I weak shock solution

Weak shocks give lower losses and

therefore the preferred solution
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to

calculate the shock angle β for a

given deflection angle θ
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Flow Deflection

θ < θmax

M1 > 1
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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The θ-β-M Relation

It can be shown that

tan θ = 2 cotβ
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)

which is the θ-β-M relation

Does this give a complete specification of flow state 2 as function of flow state 1?
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The θ-β-Mach Relation
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A relation between:

I flow deflection angle θ
I shock angle β
I upstream flow Mach number M1

tan(θ) = 2 cot(β)
(

M2
1 sin2(β)− 1

M2
1(γ + cos(2β)) + 2

)

Note! in general there are two solutions

for a given M1 (or none)
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The θ-β-Mach Relation
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I There is a small region where we may find

weak shock solutions for which M2 < 1

I In most cases weak shock solutions have

M2 > 1

I Strong shock solutions always have M2 < 1

I In practical situations, weak shock solutions

are most common

I Strong shock solution may appear in special

situations due to high back pressure, which

forces M2 < 1
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The θ-β-M Relation

Example: Wedge flow

θ

β
M1 > 1

Weak solution:

smaller β, M2 > 1 (except in some cases)

Strong solution:

larger β, M2 < 1

tan θ = 2 cot β
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)
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The θ-β-M Relation

Note! In Chapter 3 we learned that the mach number always reduces to subsonic

values behind a shock. This is true for normal shocks (shocks that are normal to the

flow direction). It is also true for oblique shocks if looking in the shock-normal

direction.
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The θ-β-M Relation

No solution case: Detached curved shock

θM1 > 1

tan θ = 2 cot β
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)
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The θ-β-M Relation - Wedge Flow

Wedge flow oblique shock analysis:

1. θ-β-M relation ⇒ β for given M1 and θ

2. β gives Mn1 according to: Mn1 = M1 sin(β)

3. normal shock formula with Mn1 instead of M1 ⇒
Mn2 (instead of M2)

4. M2 given by M2 = Mn2/ sin(β − θ)

5. normal shock formula with Mn1 instead of M1 ⇒
ρ2/ρ1, p2/p1, etc

6. upstream conditions + ρ2/ρ1, p2/p1, etc ⇒
downstream conditions

Niklas Andersson - Chalmers 38 / 50



Chapter 4.4

Supersonic Flow over Wedges and

Cones
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Supersonic Flow over Wedges and Cones

I Similar to wedge flow, we do get a constant-strength shock wave, attached at

the cone tip (or else a detached curved shock)

I The attached shock is also cone-shaped

What about cone flows?

M > 1

Niklas Andersson - Chalmers 40 / 50



Supersonic Flow over Wedges and Cones

I The flow condition immediately downstream of the shock is uniform

I However, downstream of the shock the streamlines are curved and the flow

varies in a more complex manner (3D relieving effect - as R increases there is

more and more space around cone for the flow)

I β for cone shock is always smaller than that for wedge shock, if M1 is the same

What about cone flows?

M > 1
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Chapter 4.6

Regular Reflection from a Solid

Boundary
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Shock Reflection

Regular reflection of oblique shock at solid wall
(see example 4.10)

β1

θ

β2

θ

θ

M1 > 1 M2 > 1

M3 > 1

x

y

Assumptions:

I steady-state inviscid flow

I weak shocks
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Shock Reflection

first shock:
I upstream condition:

M1 > 1, flow in x-direction

I downstream condition:

weak shock ⇒ M2 > 1
deflection angle θ
shock angle β1

second shock:
I upstream condition:

same as downstream condition of first shock

I downstream condition:

weak shock ⇒ M3 > 1
deflection angle θ
shock angle β2
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Shock Reflection

Solution:

first shock:

I β1 calculated from θ-β-M relation for specified θ and M1 (weak solution)
I flow condition 2 according to formulas for normal shocks (Mn1 = M1 sin(β1) and

Mn2 = M2 sin(β1 − θ))

second shock:

I β2 calculated from θ-β-M relation for specified θ and M2 (weak solution)
I flow condition 3 according to formulas for normal shocks (Mn2 = M2 sin(β2) and

Mn3 = M3 sin(β2 − θ))

⇒ complete description of flow and shock waves

(angle between upper wall and second shock: Φ = β2 − θ)
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Chapter 4.11

Mach Reflection
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Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks are weak (see θ-β-M
relation)
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θ

θ
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x

y
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Mach Reflection

θ

x

y

normal shock

slip line

incident oblique shock

reflected oblique shock

Mach reflection:

I appears when regular reflection is not possible
I more complex flow than for a regular reflection
I no analytic solution - numerical solution necessary
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