Compressible Flow - TME085 Lecture 5

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se

Chapter 4 Oblique Shocks and Expansion Waves

Overview

Learning Outcomes

- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 7 Explain why entropy is important for flow discontinuities
- 8 Derive (marked) and apply (all) of the presented mathematical formulae for classical gas dynamics
 - b normal shocks*
 - e oblique shocks in 2D*
 - shock reflection at solid walls*
 - g contact discontinuities
 - h Prandtl-Meyer expansion fans in 2D
 - detached blunt body shocks, nozzle flows
 - Solve engineering problems involving the above-mentioned phenomena (8a-8k)

why do we get normal shocks in some cases and oblique shocks in other?

Roadmap - Oblique Shocks and Expansion Waves

Motivation

Come on, two-dimensional flow, really?! Why not three-dimensional?

the normal shocks studied in chapter 3 are a special casees of the more general oblique shock waves that may be studied in two dimensions

in two dimensions, we can still analyze shock waves using a pen-and-paper approach

many practical problems or subsets of problems may be analyzed in two-dimensions

by going from one to two dimensions we will be able to introduce physical processes important for compressible flows

Oblique Shocks and Expansion Waves

Supersonic two-dimensional steady-state inviscid flow (no wall friction)

In real flow, viscosity is non-zero \Rightarrow boundary layers

For high-Reynolds-number flows, boundary layers are thin \Rightarrow inviscid theory still relevant!

Mach Waves

A Mach wave is an infinitely weak oblique shock

Mach Wave

A Mach wave is an infinitely weak oblique shock

No substantial changes of flow properties over a single Mach wave $M_1 > 1.0$ and $M_1 \approx M_2$ Isentropic

Oblique Shocks

Roadmap - Oblique Shocks and Expansion Waves

Chapter 4.3 Oblique Shock Relations

Oblique Shocks

Two-dimensional steady-state flow

Oblique Shocks

Two-dimensional steady-state flow Control volume aligned with flow stream lines

16/50

Conservation of mass:

$$\frac{d}{dt}\iiint \rho d\mathcal{V} + \oiint \rho \mathbf{v} \cdot \mathbf{n} dS = 0$$

Mass conservation for control volume Ω :

$$0 - \rho_1 U_1 A + \rho_2 U_2 A = 0 \Rightarrow$$

$$\left(\rho_1 U_1 = \rho_2 U_2 \right)$$

Niklas Andersson - Chalmers

Conservation of momentum:

$$\frac{d}{dt}\iiint \rho \mathbf{v} d\mathcal{V} + \oiint \rho \mathbf{n} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \iiint \rho \mathbf{f} d\mathcal{V}$$

Momentum in shock-normal direction:

$$0 - (\rho_1 u_1^2 + \rho_1)A + (\rho_2 u_2^2 + \rho_2)A = 0 \Rightarrow$$

$$\rho_1 u_1^2 + \rho_1 = \rho_2 u_2^2 + \rho_2$$

Momentum in shock-tangential direction:

$$0 - \rho_1 u_1 w_1 A + \rho_2 u_2 w_2 A = 0 \Rightarrow$$

$$\left(W_1 = W_2 \right)$$

Conservation of energy:

$$\frac{d}{dt}\iiint \rho \mathbf{e}_o d\mathcal{V} + \oiint [\rho h_o \mathbf{v} \cdot \mathbf{n}] dS = \iiint \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

Energy equation applied to the control volume Ω :

$$0 - \rho_1 u_1 [h_1 + \frac{1}{2} (u_1^2 + w_1^2)] A + \rho_2 u_2 [h_2 + \frac{1}{2} (u_2^2 + w_2^2)] A = 0 \Rightarrow$$

$$\left[h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2 \right]$$

We can use the same equations as for normal shocks if we replace M_1 with M_{n_1} and M_2 with M_{n_2}

$$M_{n_2}^2 = \frac{M_{n_1}^2 + [2/(\gamma - 1)]}{[2\gamma/(\gamma - 1)]M_{n_1}^2 - 1}$$

Ratios such as ρ_2/ρ_1 , p_2/p_1 , and T_2/T_1 can be calculated using the relations for normal shocks with M_1 replaced by M_{n_1}

The answer is no, but why?

The answer is no, but why?

The answer is no, but why?

 P_{o_1} , T_{o_1} , etc are calculated using M_1 not M_{n_1} (the tangential velocity is included) OBS! Do not not use ratios involving total quantities, *e.g.* p_{o_2}/p_{o_1} , T_{o_2}/T_{o_1} , obtained from formulas or tables for normal shock

Deflection Angle (for the interested)

Niklas Andersson - Chalmers

Deflection Angle (for the interested)

$$\frac{\partial \theta}{\partial w} = \frac{u_2}{w^2 + u_2^2} - \frac{u_1}{w^2 + u_1^2} = 0 \Rightarrow$$
$$\frac{u_2(w^2 + u_1^2) - u_1(w^2 + u_2^2)}{(w^2 + u_2^2)(w^2 + u_1^2)} = 0 \Rightarrow \frac{(u_2 - u_1)(w^2 - u_1u_2)}{(w^2 + u_2^2)(w^2 + u_1^2)} = 0$$

Two solutions:

*u*₂ = *u*₁ (no deflection)
*w*² = *u*₁*u*₂ (max deflection)

Graphical representation of all possible deflection angles for a specific Mach number

No deflection cases:

- normal shock
- (reduced shock-normal velocity)
- Mach wave

(unchanged shock-normal velocity)

Graphical representation of all possible deflection angles for a specific Mach number

Solutions to the left of the sonic line are subsonic

Graphical representation of all possible deflection angles for a specific Mach number

It is not possible to deflect the flow more than $\theta_{\rm max}$

Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle $\theta < \theta_{max}$, there are two solutions

- strong shock solution
- weak shock solution

Weak shocks give lower losses and therefore the preferred solution

Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to calculate the shock angle β for a given deflection angle θ

Flow Deflection

Roadmap - Oblique Shocks and Expansion Waves

It can be shown that

$$\tan \theta = 2 \cot \beta \left(\frac{M_1^2 \sin^2 \beta - 1}{M_1^2 (\gamma + \cos 2\beta) + 2} \right)$$

which is the θ - β -M relation

Does this give a complete specification of flow state 2 as function of flow state 1?

The θ - β -Mach Relation

A relation between:

- flow deflection angle θ
- \blacktriangleright shock angle β
- upstream flow Mach number M_1

$$\tan(\theta) = 2\cot(\beta) \left(\frac{M_1^2 \sin^2(\beta) - 1}{M_1^2(\gamma + \cos(2\beta)) + 2}\right)$$

Note! in general there are two solutions for a given M_1 (or none)

The θ - β -Mach Relation

- ► There is a small region where we may find weak shock solutions for which $M_2 < 1$
- ► In most cases weak shock solutions have M₂ > 1
- Strong shock solutions always have $M_2 < 1$
- In practical situations, weak shock solutions are most common
- Strong shock solution may appear in special situations due to high back pressure, which forces $M_2 < 1$

$$\tan\theta = 2\cot\beta\left(\frac{M_1^2\sin^2\beta - 1}{M_1^2(\gamma + \cos 2\beta) + 2}\right)$$

Example: Wedge flow

Weak solution: smaller β , $M_2 > 1$ (except in some cases) Strong solution: larger β , $M_2 < 1$ **Note!** In Chapter 3 we learned that the mach number always reduces to subsonic values behind a shock. This is true for normal shocks (shocks that are normal to the flow direction). It is also true for oblique shocks if looking in the shock-normal direction.

The θ - β -M Relation

$$\tan\theta = 2\cot\beta\left(\frac{M_1^2\sin^2\beta - 1}{M_1^2(\gamma + \cos 2\beta) + 2}\right)$$

No solution case: Detached curved shock

The θ - β -M Relation - Wedge Flow

Wedge flow oblique shock analysis:

- 1. θ - β -M relation $\Rightarrow \beta$ for given M_1 and θ
- 2. β gives M_{n_1} according to: $M_{n_1} = M_1 \sin(\beta)$
- 3. normal shock formula with M_{n_1} instead of $M_1 \Rightarrow M_{n_2}$ (instead of M_2)

4.
$$M_2$$
 given by $M_2 = M_{n_2} / \sin(\beta - \theta)$

5. normal shock formula with M_{n_1} instead of $M_1 \Rightarrow \rho_2/\rho_1, \rho_2/\rho_1$, etc

b. upstream conditions + ρ_2/ρ_1 , ρ_2/ρ_1 , etc \Rightarrow downstream conditions

Chapter 4.4 Supersonic Flow over Wedges and Cones

Supersonic Flow over Wedges and Cones

 Similar to wedge flow, we do get a constant-strength shock wave, attached at the cone tip (or else a detached curved shock)

The attached shock is also cone-shaped

Supersonic Flow over Wedges and Cones

- ▶ The flow condition immediately downstream of the shock is uniform
- However, downstream of the shock the streamlines are curved and the flow varies in a more complex manner (3D relieving effect - as R increases there is more and more space around cone for the flow)
 - β for cone shock is always smaller than that for wedge shock, if M_1 is the same

Roadmap - Oblique Shocks and Expansion Waves

Chapter 4.6 Regular Reflection from a Solid Boundary

Shock Reflection

Regular reflection of oblique shock at solid wall $_{(\text{see example 4.10})}$

Shock Reflection

first shock:

- upstream condition:
 - $M_1 > 1$, flow in *x*-direction
- downstream condition:
 - weak shock $\Rightarrow M_2 > 1$ deflection angle θ shock angle β_1

second shock:

- upstream condition:
 - same as downstream condition of first shock
- downstream condition:
 - weak shock $\Rightarrow M_3 > 1$ deflection angle θ shock angle β_2

Shock Reflection

Solution:

first shock:

- ▶ β_1 calculated from θ - β -M relation for specified θ and M_1 (weak solution)
- ▶ flow condition 2 according to formulas for normal shocks $(M_{n_1} = M_1 \sin(\beta_1) \text{ and } M_{n_2} = M_2 \sin(\beta_1 \theta))$

second shock:

 β_2 calculated from θ - β -M relation for specified θ and M_2 (weak solution) flow condition 3 according to formulas for normal shocks ($M_{n_2} = M_2 \sin(\beta_2)$ and $M_{n_3} = M_3 \sin(\beta_2 - \theta)$)

 \Rightarrow complete description of flow and shock waves (angle between upper wall and second shock: $\Phi = \beta_2 - \theta$)

Roadmap - Oblique Shocks and Expansion Waves

Chapter 4.11 Mach Reflection

Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks are weak (see θ - β -M relation)

Mach Reflection

Mach reflection:

- appears when regular reflection is not possible
- more complex flow than for a regular reflection
- no analytic solution numerical solution necessary