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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*

e oblique shocks in 2D*

T shock reflection at solid walls*
g contact discontinuities

h Prandtl-Meyer expansion fans in 2D

I detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)

why do we get normal shocks in some cases and oblique shocks in other?



Roadmap - Oblique Shocks and Expansion Waves
[ Shock-expansion theory ’

( Oblique shocks ]—>O<—[ Expansion waves ]
t t
[ Shock intersection ] [ Prandtl-Meyer expansion ]
t
[ Detached shocks ]
t
Shock systems 4—[ Pressure-deflection diagram ]
t
Solid boundary reflection 4—[ Mach reflection ]
t
Oblique shock relations <—[ The 8 — 8 — M relation ]




Motivation

Come on, two-dimensional flow, really?! Why not three-dimensional?

the normal shocks studied in chapter 3 are a special casees of the more general
oblique shock waves that may be studied in two dimensions

in two dimensions, we can still analyze shock waves using a pen-and-paper
approach

many practical problems or subsets of problems may be analyzed in
two-dimensions

by going from one to two dimensions we will be able to introduce physical
processes important for compressible flows
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Obligue Shocks and Expansion Waves

Supersonic two-dimensional steady-state inviscid flow
(no wall friction)

In real flow, viscosity is non-zero = boundary layers

For high-Reynolds-number flows, boundary layers are thin = inviscid theory still
relevant!



Mach Waves

A Mach wave is an infinitely weak oblique shock

subsonic sonic supersonic
V<a V =a




Mach Wave

A Mach wave is an infinitely weak oblique shock

Mach wave

No substantial changes of flow properties over a single Mach wave
My > 1.0 and My ~ Ms
Isentropic



Oblique Shocks

M>1

compression corner

M>1
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Chapter 4.3
Obligue Shock Relations



Oblique Shocks

Two-dimensional steady-state flow
Stationary shock

Flow condition

M>1
Flow condition

B>




Oblique Shocks

Stationary oblique shock




Obligue Shock Relations

/ X

Two-dimensional steady-state flow
Control volume aligned with flow stream lines



Obligue Shock Relations

Velocity notations:

My,

M,

Uy
ai
Uz
as

= M sin(3)

= My sin(5 — 0)

My =

My =

Vi
a
Vo
as



Obligue Shock Relations

Conservation of mass:
(%ffjpd7/+ﬁpv~nd820
Q o9

Mass conservation for control volume :

0 — p1u1A + potA =0 =

p1ur = pals



Obligue Shock Relations

Conservation of momentum:
%jjj pvad? + ﬁ [p(v-n)v+pn|dS = jjj ofdV
& o0 J

Momentum in shock-normal direction:

0— (p1U% —I—Dl)A + (pgug +DQ)A =0=

[ p1U; + P1 = paU3 + P2 ]




Obligue Shock Relations

Momentum in shock-tangential direction:

0— [)1U1W1A + PQUQWQA =0=

W1 = Wy



Obligue Shock Relations
Conservation of energy:

c%fﬂ peod? + ( lphov - m]dS = |{ pf-var
¢ ox Q

Energy equation applied to the control volume €:

1 1
0—prurfhr + §(U% +WD)JA + pausfhy + 5(“5 +W3)A=0=

1 1
{h1+2u%:h2+2u§}




Obligue Shock Relations

We can use the same equations as for normal shocks if we replace M; with M,, and
My with M,

. M+ 12/ 1)
" 2y/(y - 1)ME, -1

Ratios such as p2/p1, p2/p1, and Ty /T can be calculated using the relations for
normal shocks with My replaced by M,



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?
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Po,, To,, etc are calculated using M; not M, (the tangential velocity is included)



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The answer is no, but why?
Po,, To,, etc are calculated using M; not M, (the tangential velocity is included)

OBS! Do not not use ratios involving total quantities, .9. Po,/Poys Tos/Toys
obtained from formulas or tables for normal shock



Deflection Angle (for the interested)
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Deflection Angle (for the interested)

0o U 1
o= 5~ — 5 =0=
ow  w2+us WwW24ug
Us(W? 4+ u?) —ur(W? 4 u2) B (Ug — uy)(W? — UyUs) 0
(W2 +u3)(W? +u7) (W2 +u3)(W? +u7)

Two solutions:

Us = Uy (no deflection)
w? = u1us (max deflection)



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

No deflection cases:
» normal shock

(reduced shock-normal velocity)
» Mach wave

(unchanged shock-normal velocity)




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

Solutions to the left of the sonic line
are subsonic




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

[t is not possible to deflect the flow
more than Omax




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle 6 < 6yax,
there are two solutions

» strong shock solution

» weak shock solution
Weak shocks give lower losses and
therefore the preferred solution




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to
calculate the shock angle g for a
given deflection angle ¢




Flow Deflection

M>1

weak shock family

sonic line

strong shock family

0 > Omax

strong shock family

sonic line
weak shock family

M>1
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The 0-3-M Relation

[t can be shown that

22
tan02cotﬂ< Misin"f — 1 >

M3 (v + cos 28) + 2

which is the 6-38-M relation

Does this give a complete specification of flow state 2 as function of flow state 17?



The 0-3-Mach Relation

A relation between:

» flow deflection angle ¢
» shock angle g
» upstream flow Mach number M,

M3 sin?(3) — 1

tan(f) = 2 cot(p) <M%(’Y + cos(20)) + 2

)

Note! in general there are two solutions
for a given My (or none)

50




The 0-3-Mach Relation

» There is a small region where we may find
weak shock solutions for which My < 1

» |In most cases weak shock solutions have
My > 1

» Strong shock solutions always have My < 1

» |n practical situations, weak shock solutions
are most common

» Strong shock solution may appear in special
situations due to high back pressure, which
forces My < 1

50




The 0-3-M Relation

/\/I% sin2 B -1
tan @ = 2cot B

M%(A/ + cos2B) + 2

Example: Wedge flow

Weak solution:

smaller 3, My > 1 (except in some cases)
Strong solution:

larger 8, My < 1



The 0-3-M Relation

Note! In Chapter 3 we learned that the mach number always reduces to subsonic
values behind a shock. This is true for normal shocks (shocks that are normal to the
flow direction). It is also true for oblique shocks if looking in the shock-normal

direction.



The 6-5-M Relation

/\/I% sin2 B -1
tan @ = 2cot B

M%(’y + cos2B) + 2

No solution case: Detached curved shock




The 6-5-M Relation - Wedge Flow

Wedge flow oblique shock analysis:

0-5-M relation = 3 for given My and ¢
B gives M, according to: M, = M sin(3)

normal shock formula with M, instead of M; =
M, (instead of M)

My given by My = M, / sin(5 — 6)

normal shock formula with M,, instead of M; =
p2/p1, P2/p1, etc

upstream conditions + pa/p1, P2/p1, €tc =
downstream conditions



Chapter 4.4
Supersonic Flow over Wedges and
Cones



Supersonic Flow over Wedges and Cones

What about cone flows?

M > 1
>

Similar to wedge flow, we do get a constant-strength shock wave, attached at
the cone tip (or else a detached curved shock)

The attached shock is also cone-shaped



Supersonic Flow over Wedges and Cones

What about cone flows?

M > 1
>

» The flow condition immediately downstream of the shock is uniform

» However, downstream of the shock the streamlines are curved and the flow
varies in a more complex manner (3D relieving effect - as R increases there is
more and more space around cone for the flow)

» (3 for cone shock is always smaller than that for wedge shock, if M is the same



Roadmap - Oblique Shocks and Expansion Waves
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Oblique W relations 4—[ The 6 — w relation ]




Chapter 4.6
Regular Reflection from a Solid
Boundary



Shock Reflection

Regular reflection of oblique shock at solid wall

(see example 4.10)

My > 1

L=

X

Assumptions:
steady-state inviscid flow
weak shocks



Shock Reflection

first shock:
upstream condition:
My > 1, flow in x-direction
downstream condition:

weak shock = Mz > 1
deflection angle 6
shock angle 1

second shock:
upstream condition:
same as downstream condition of first shock
downstream condition:

weak shock = M3 > 1
deflection angle 6
shock angle Sz



Shock Reflection

Solution:
first shock:

» (31 calculated from 6-3-M relation for specified 6 and M, (weak solution)
» flow condition 2 according to formulas for normal shocks (M,, = M sin(/3;) and
M, = Mz sin(B1 — 0))

second shock:

» (35 calculated from 6-3-M relation for specified 6 and My (weak solution)
» flow condition 3 according to formulas for normal shocks (M, = M5 sin(/3;) and
My, = Mssin(8; — 0))

= complete description of flow and shock waves
(angle between upper wall and second shock: ® = 35 — 6)
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Chapter 4.11
Mach Reflection



Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks are weak (see 6-5-M
relation)

My > 1




Mach Reflection

normal shock

/

slip line

reflected oblique shock
incident oblique shock

L fffffffffffffff

X

Mach reflection:
» appears when regular reflection is not possible
» more complex flow than for a regular reflection
» no analytic solution - numerical solution necessary



THE BERNOULLI-DOPALER- LEIDENFROST-PELTZMAN-
SAPIR-WHORF-DUNNING-KRUGER-STRDOP EFFELT STATES
THAT IF A SPEEDING FIRE TRUCK, LIFTS OFF AND HURTLES
TOLARD YoU ON A LAYER OF SUPERHEATED GRS,
YOULL DIVE QUT OF THE WRY FASTER IF THE DRIVER
SCRERMS RED!"IN A MON-TONAL LANGUPGE THAT 445 A
WORD FOR “FIREAGHTER" THAN IF THEY SCREAM GREEN”
IN A 7204 LANGUAGE WITH MO \WJORD FOR “FIREFIGHTER®
WHICH YOU 7K YOURE FLUENT IN BUT AREMT
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