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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

¢ 1D flow with heat addition*
d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic



Roadmap - One-dimensional Flow
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Chapter 3.8
One-Dimensional Flow with Heat
Addition



One-Dimensional Flow with Heat Addition
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Pipe flow:
no friction
1D steady-state = all variables depend on x only
q is the amount of heat per unit mass added between 1 and 2
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Heat Addition

p1ur = paUs

p1U; +P1 = paus3 + P2

1 1
h1+§u%+q:h2+§ug

.

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = can be solved analytically



One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = CpT):

1 1
CoT1 + §u% +q=CpTa+ §u§

1 1
1 2
q = C/O(TOQ - TOI)

i.e. heat addition increases T, downstream



One-Dimensional Flow with Heat Addition

Momentum equation:
P2 —P1 = P1U% - qug
{pu2 — pa?M? = p%MQ _ WJMQ}
P2 —p1 = 1M} — paMs =

P2 _ 1+ yM?
p1 1+~M3




One-Dimensional Flow with Heat Addition

ldeal gas law:
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

Po> _
pOl

7= [l ()
To, L+yM2 ] \ M,

0
[1+7Mq 1+ 3(y—1Mm3\ !
L+AME |\ 1+ (v — 1)M?

1+ 3(y—MZ\ 7"
L+ iy —1)Mm2




One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)

the Mach number, M, increases as more heat (per unit mass) is added to the gas
for some limiting heat addition g*, the flow will eventually become sonic M =1

Initially supersonic flow (M > 1)

the Mach number, M, decreases as more heat (per unit mass) is added to the gas
for some limiting heat addition g*, the flow will eventually become sonic M =1

Note! The (*) condition in this context is not the same as the “critical” condition
discussed for isentropic flow




One-Dimensional Flow with Heat Addition

P2 1—&—7/\4%
p1 1+ ~yM3

Calculate the ratio between the pressure at a specific location in the flow p and
the pressure at sonic conditions p*

plzp!MleaIOQ:p*,andMQZ]_

p* _1+’)/M2

p 147




One-Dimensional Flow with Heat Addition
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One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

T*
o



One-Dimensional Flow with Heat Addition

My Mz
P1 P2
— q —
1 T2
P1 e — P2
My M*
p1 * p*
noo a o \
P1 P
identical values!
Mo Mm* /
P2 o i p*
s 2 T
P2 P
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Note! for a given flow, the starred quantities are constant values



One-Dimensional Flow with Heat Addition

Note! it is theoretically possible to Rayleigh curve ('Y - 14)
heat an initially subsonic flow to reach 1.2
sonic conditions and then continue to : ! !
accelerate the flow by cooling —M<1

1H—M>1

e /M = 1 (sonic point)

Lord Rayleigh 1842-1919
Nobel prize in physics 1904
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One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!

Answer: if the heat source or sink would have been included in the system
studied, the system entropy would increase both when adding and removing
heat.



One-Dimensional Flow with Heat Addition

M < 1: Adding heat will M > 1: Adding heat will
increase M decrease M
decrease p increase p
increase 7, increase 7,
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (g) and heat per unit surface area and

unit time (Cywa//)
L

Pipe with arbitrary cross section (constant in x):

mass flow through pipe m
axial length of pipe L
circumference of pipe b = 2xr

. quwa//



One-Dimensional Flow with Heat Addition - RM12




Roadmap - One-dimensional Flow
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Chapter 3.9
One-Dimensional Flow with Friction



One-Dimensional Flow with Friction

inviscid flow with friction?!



One-Dimensional Flow with Friction

Thermally insulated walls

Pipe flow:
adiabatic (g = 0)
cross section area A is constant
average all variables in each cross-section = only x-dependence
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

L
@ 7wdS = b / e s
0

o0

where L is the tube length and b is the circumference



One-Dimensional Flow with Friction

piuy = pauz
4 L
p1u% + P01 — D / TwdX = pzug + P2
Jo

1 1
hl + 5[,/% :h2+ iug




One-Dimensional Flow with Friction

Tw varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on differential form

4 d 4
d(pu® +p) = —pTwax & &(pUZ +P) =~ 5w



One-Dimensional Flow with Friction

From the continuity equation we get

d
Uy = paly = const = —(pu) =0
p1ruy = paUz O,X(/))

Writing out all terms in the momentum equation gives

d dp 4 du dp

g( U2 +p) = ud—u+u—( U)+— = —=Tw = pu— + —
ax P TR = U P T o T T T Y T ax
~—

=0

Common approximation for 7,:

Ol =

Tw



One-Dimensional Flow with Friction

Energy conservation:

hO] :h02 = CKho — 0



One-Dimensional Flow with Friction

Summary: r .
OT(PU) =
au dp 2
U& + d7 *5 u“f
d
&ho =0

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = Can be solved analytically (for constant f)



One-Dimensional Flow with Friction

Calorically perfect gas:

Ma

/‘X? 4f 1 y+1 M?
X

—1
1+ 1= me
2 M



One-Dimensional Flow with Friction

Calorically perfect gas:

Ty 24 (y—1M; p2
T1 24+ (’Y — 1)M% P1

p1 My
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One-Dimensional Flow with Friction

Initially subsonic flow (M < 1)

M, will increase as L increases
for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Initially supersonic flow (M1 > 1)

M, will decrease as L increases
for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Note! The (*) condition in this context is not the same as the “critical” condition
discussed for isentropic flow




One-Dimensional Flow with Friction

T (a+D p 12+ (¢ —1m)?
T 24 (y—1)M? p* M v+1

p* M

p 1 v+1 1/2 Po 1 [24 (v— 1M CEsy
2+ M2 o5 M

(v—1 v+1

see Table A.4



One-Dimensional Flow with Friction

and

1

A (R S e Y

/L* Af 1 y+1 M?
o D YM? 2y 1+771M2
2

M
where L* is the tube length needed to change current state to sonic conditions

Let f be the average friction coefficient over the length L* =

4fL* 1M +7+11n (v + 1)M?
D M2 27y 2+ (y—1)M?

Turbulent pipe flow — f ~ 0.005 (Re > 10°, roughness ~ 0.001D)



One-Dimensional Flow with Friction
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Fanno curve (y = 1.4)

—M< 1
—M>1
e M = 1 (sonic point)




One-Dimensional Flow with Friction

M < 1: Friction will M > 1: Friction will
increase M decrease M
decrease p increase p
decrease T increase T
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



One-Dimensional Flow with Friction - Pipeline
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What if you somehow managed to make a stereo travel at twice the speed of sound, would it sound backwards to someone

who was just casually sitting somewhere as it flies by?

—Tim Currie

Yes.
Technically, anyway. It would be pretty hard to hear.

The basic idea is pretty straightforward. The stereo is going faster than its own sound, so it will reach you first, followed by the sound it emitted one second ago,
followed by the sound it emitted two seconds ago, and so forth.

&
2 k
557

‘The problem is that the stereo is moving at Mach 2, which means that two seconds ago, it was over a kilometer away. It’s hard to hear music from that distance,
particularly when your ears were just hit by (a) a sonic boom, and (b) pieces of a rapidly disintegrating stereo.

Wind speeds of Mach 2 would messily disassemble most consumer electronics. The force of the wind on the body of the stereo is roughly comparable to that of a
dozen people standing on it:
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