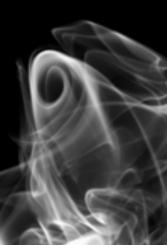
#### Compressible Flow - TME085

Lecture 1

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

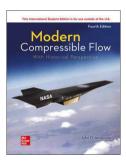
niklas.andersson@chalmers.se



#### Course Details - Literature

#### Course Literature:

John D. Anderson Modern Compressible Flow; With Historical Perspective Fourth Edition (International Edition 2021) McGraw-Hill, ISBN 978-1-260-57082-3



#### Course Details - Literature

#### Content:

- ▶ Chapter 1-7: All
- Chapter 8-11: Excluded
- Chapter 12: Included, supplemented by lecture notes
- Chapter 13-15: Excluded
- ▶ Chapter 16-17: Some parts included (see lecture notes)

With the exception of the lecture notes supplementing chapter 12, all lecture notes are based on the book.

#### Written online examination (fail, 3, 4, 5):

- In total six problems consisting of a mixture of theory questions and problem-solving parts
- All aids allowed (except help from friends (G))
  - Course literature
  - Matlab and other programming languages
  - Internet

#### Course Details - Assessment

#### Assignemnts (fail/pass):

three computer assignments (report)

#### Compressible Flow Project (fail/pass):

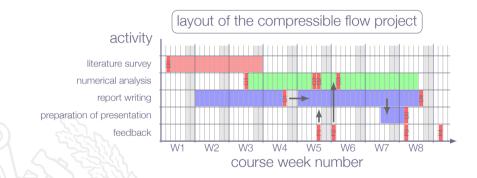
- literature survey (report)
- numerical analysis (technical report)
- oral presentation (attendance + presentation)
- bonus points for the written exam awarded for high-quality work (see assessment criteria in project description)

#### N.B. important dates in Course PM



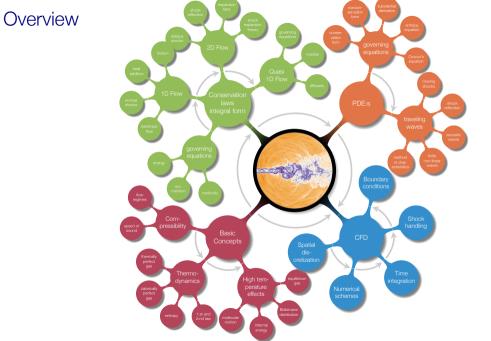


#### Course Details - The Compressible Flow Project



# Course Details - Learning Outcomes

- 1 Define the concept of compressibility for flows
- 2 Explain how to find out if a given flow is subject to significant compressibility effects
- 3 Describe typical engineering flow situations in which compressibility effects are more or less predominant (e.g. Mach number regimes for steady-state flows)
- 4 Present at least two different formulations of the governing equations for compressible flows and explain what basic conservation principles they are based on
- 5 Explain how thermodynamic relations enter into the flow equations
- 6 Define the special cases of calorically perfect gas, thermally perfect gas and real gas and explain the implication of each of these special cases
- 7 Explain why entropy is important for flow discontinuities
- 8 Derive (marked) and apply (all) of the presented mathematical formulae for classical gas dynamics
  - a 1D isentropic flow\*
  - b normal shocks\*
  - c 1D flow with heat addition\*
  - d 1D flow with friction\*
  - e oblique shocks in 2D\*
  - f shock reflection at solid walls\*
  - g contact discontinuities
  - h Prandtl-Meyer expansion fans in 2D
  - detached blunt body shocks, nozzle flows
  - j unsteady waves and discontinuities in 1D
  - k basic acoustics
- 9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)
- 10 Explain how the incompressible flow equations are derived as a limiting case of the compressible flow equations
- 11 Explain how the equations for aero-acoustics and classical acoustics are derived as limiting cases of the compressible flow equations
- 12 Explain the main principles behind a modern Finite Volume CFD code and such concepts as explicit/implicit time stepping, CFL number, conservation, handling of compression shocks, and boundary conditions
- 13 Apply a given CFD code to a particular compressible flow problem
- 14 Analyze and verify the quality of the numerical solution
- 15 Explain the limitations in fluid flow simulation software
- 16 Report numerical analysis work in form of a technical report
  - a Describe a numerical analysis with details such that it is possible to redo the work based on the provided information
  - b Write a technical report (structure, language)
- 17 Search for literature relevant for a specific physical problem and summarize the main ideas and concepts found
- 18 Present engineering work in the form of oral presentations



# "Compressible flow (gas dynamics) is a branch of fluid mechanics that deals with flows having significant changes in fluid density"

Wikipedia



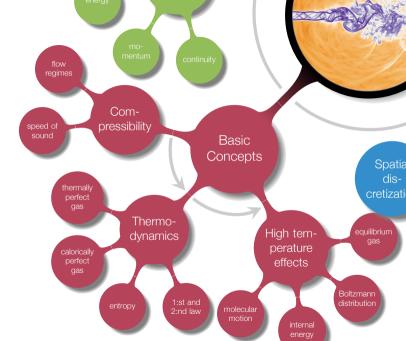
- "... the study of motion of gases and its effects on physical systems ..."
- "... based on the principles of fluid mechanics and thermodynamics ..."
- "... gases flowing around or within physical objects at speeds comparable to the speed of sound ..."

Wikipedia



# Chapter 1 - Introduction

#### Overview

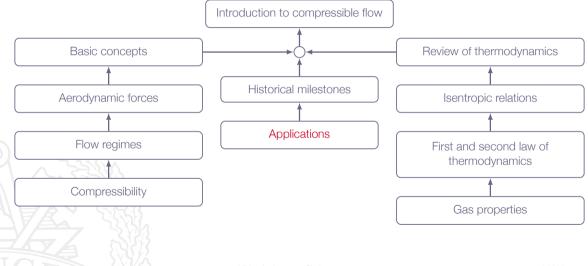


#### Learning Outcomes

- 1 Define the concept of compressibility for flows
- 2 Explain how to find out if a given flow is subject to significant compressibility effects
- 3 Describe typical engineering flow situations in which compressibility effects are more or less predominant (e.g. Mach number regimes for steady-state flows)
- 6 **Define** the special cases of calorically perfect gas, thermally perfect gas and real gas and **explain** the implication of each of these special cases

*in this lecture we will find out what compressibility means and do a brief review of thermodynamics* 

### Roadmap - Introduction to Compressible Flow



- Treatment of calorically perfect gas
- Exact solutions of inviscid flow in 1D
- Shock-expansion theory for steady-state 2D flow
- Approximate closed form solutions to linearized equations in 2D and 3D
- Method of Characteristics (MOC) in 2D and axi-symmetric inviscid supersonic flows

# Applications - Modern

- Computational Fluid Dynamics (CFD)
- Complex geometries (including moving boundaries)
- Complex flow features (compression shocks, expansion waves, contact discontinuities)
- Viscous effects
- Turbulence modeling
- High temperature effects (molecular vibration, dissociation, ionization)
- Chemically reacting flow (equilibrium & non-equilibrium reactions)

# **Applications - Examples**

#### Turbo-machinery flows:

- Gas turbines, steam turbines, compressors
- Aero engines (turbojets, turbofans, turboprops)

#### Aeroacoustics:

- Flow induced noise (jets, wakes, moving surfaces)
- Sound propagation in high speed flows

#### External flows:

- Aircraft (airplanes, helicopters)
- Space launchers (rockets, re-entry vehicles)

#### Internall flows:

- Nozzle flows
- Inlet flows, diffusers
- Gas pipelines (natural gas, bio gas)

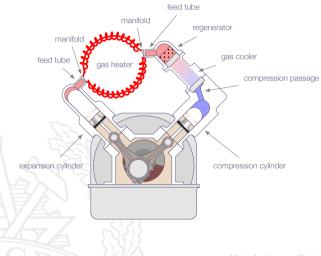
#### Free-shear flows:

High speed jets

#### Combustion:

- Internal combustion engines (valve flow, in-cylinder flow, exhaust pipe flow, mufflers)
- Combustion induced noise (turbulent combustion)
- Combustion instabilities

# Applications - Stirling Engine

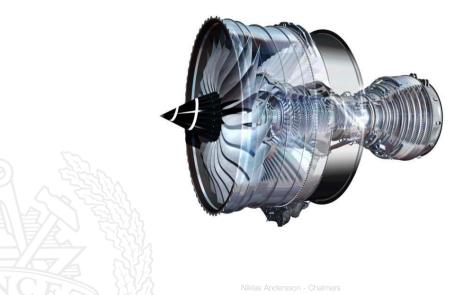




# Applications - Siemens GT750



# Applications - Rolls-Royce Trent XWB



# Applications - Airbus A380

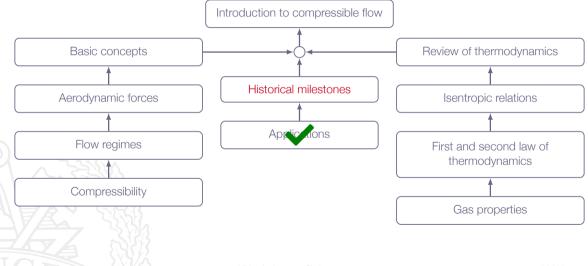


# Applications - Vulcain Nozzle

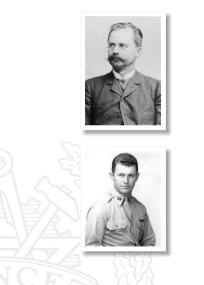




### Roadmap - Introduction to Compressible Flow



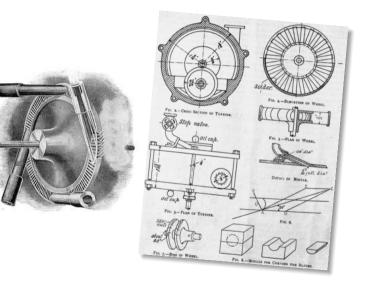
#### **Historical Milestones**



1893 C.G.P. de Laval, first steam turbine with supersonic nozzles (convergent-divergent). At this time, the significance was not fully understood, but it worked!

1947 Charles Yeager, flew first supersonic aircraft (XS-1), \$M\$ 1.06

#### Historical Milestones - C.G.P. de Laval (1893)





#### Historical Milestones - Charles Yeager (1947)

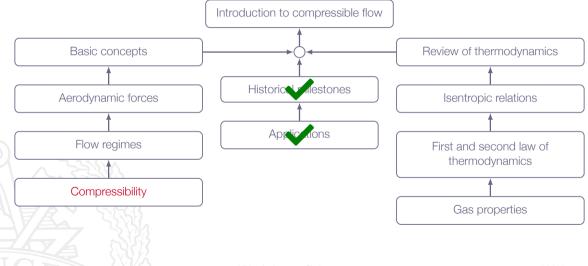


#### Modern Compressible Flow

Screeching rectangular supersonic jet



### Roadmap - Introduction to Compressible Flow



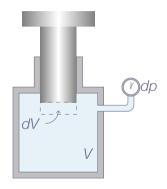
# Chapter 1.2 Compressibility



$$\tau = -\frac{1}{\nu}\frac{\partial\nu}{\partial\rho}, \ (\nu = \frac{1}{\rho})$$

Not really precise!

Is 7 held constant during the compression or not?



Two fundamental cases:

#### Constant temperature

- ▶ Heat is cooled off to keep *T* constant inside the cylinder
- The piston is moved slowly

#### Adiabatic process

Thermal insulation prevents heat exchange The piston is moved fairly rapidly (*gives negligible flow losses*)

Isothermal process:

$$\tau_{T} = -\frac{1}{\nu} \left( \frac{\partial \nu}{\partial \rho} \right)_{T}$$

Adiabatic reversible (*isentropic*) process:

$$\tau_{\rm S} = -\frac{1}{\nu} \left( \frac{\partial \nu}{\partial \rho} \right)_{\rm S}$$

Air at normal conditions:  $\tau_T \approx 1.0 \times 10^{-5}$   $[m^2/N]$ Water at normal conditions:  $\tau_T \approx 5.0 \times 10^{-10}$   $[m^2/N]$ 

7

$$\tau = -\frac{1}{\nu} \frac{\partial \nu}{\partial \rho}$$
 where  $\nu = \frac{1}{\rho}$  and thus

$$F = -\rho \frac{\partial}{\partial p} \left(\frac{1}{\rho}\right) = -\rho \left(-\frac{1}{\rho^2}\right) \frac{\partial \rho}{\partial p} = \frac{1}{\rho} \frac{\partial \rho}{\partial p}$$

$$\tau_{T} = \frac{1}{\rho} \left( \frac{\partial \rho}{\partial \rho} \right)_{T}$$

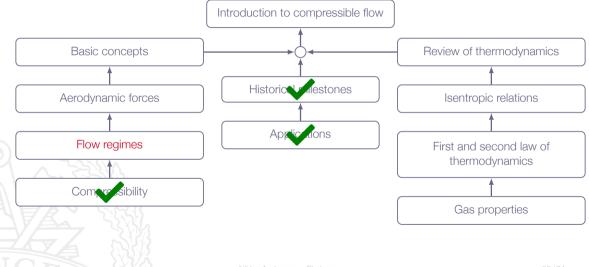
$$\tau_{\rm S} = \frac{1}{\rho} \left( \frac{\partial \rho}{\partial \rho} \right)_{\rm S}$$

#### Definition of compressible flow:

If  $\rho$  changes with amount  $\Delta \rho$  over a characteristic length scale of the flow, such that the corresponding change in density, given by  $\Delta \rho \sim \rho \tau \Delta$  p, is too large to be neglected, the flow is compressible (*typically, if*  $\Delta \rho / \rho > 0.05$ )

**Note!** Bernoulli's equation is restricted to incompressible flow, *i.e.* it is **not valid** for compressible flow!

### Roadmap - Introduction to Compressible Flow



# Chapter 1.3 Flow Regimes



The freestream Mach number is defined as

$$M_{\infty} = rac{U_{\infty}}{a_{\infty}}$$

where  $U_{\infty}$  is the freestream flow speed and  $a_{\infty}$  is the speed of sound at freestream conditions

## Flow Regimes

Assume incompressible flow and estimate the maximum pressure difference using

$$\Delta \rho \approx \frac{1}{2} \rho_{\infty} U_{\infty}^2$$

For air at normal conditions we have

$$\tau_T = \frac{1}{\rho} \left( \frac{\partial \rho}{\partial \rho} \right)_T = \frac{1}{\rho RT} = \frac{1}{\rho}$$

(ideal gas law for perfect gas  $p = \rho RT$ )

## Flow Regimes

Using the relations on previous slide we get

$$\frac{\Delta\rho}{\rho} \approx \tau_T \Delta\rho \approx \frac{1}{\rho_\infty} \frac{1}{2} \rho_\infty U_\infty^2 = \frac{\frac{1}{2} \rho_\infty U_\infty^2}{\rho_\infty R T_\infty}$$

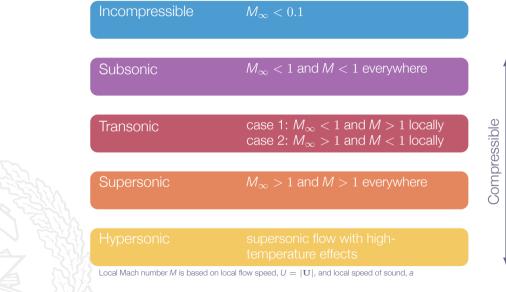
for a calorically perfect gas we have  $a = \sqrt{\gamma RT}$ 

which gives us 
$$rac{\Delta 
ho}{
ho} pprox rac{\gamma U_{\infty}^2}{2a_{\infty}^2}$$

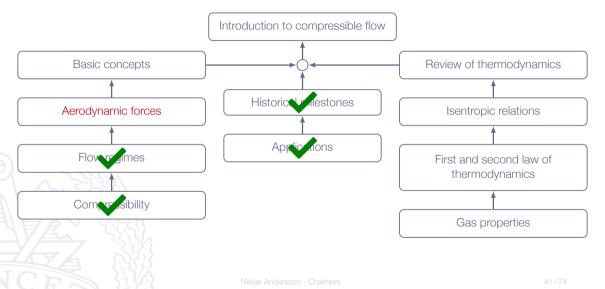
now, using the definition of Mach number we get:

$$\frac{\Delta\rho}{\rho}\approx\frac{\gamma}{2}M_{\infty}^{2}$$

# Flow Regimes

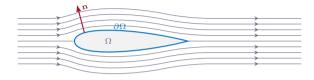


# Roadmap - Introduction to Compressible Flow



# Chapter 1.5 Aerodynamic Forces

## Aerodynamic Forces





- $\Omega \qquad \text{region occupied by body} \qquad$
- $\partial \Omega$  surface of body
- **n** outward facing unit normal vector

Overall forces on the body du to the flow

$$\mathbf{F} = \oint (-\rho \mathbf{n} + \tau \cdot \mathbf{n}) d\mathsf{S}$$

where p is static pressure and  $\tau$  is a stress tensor

## Aerodynamic Forces

Drag is the component of  $\mathbf{F}$  which is parallel with the freestream direction:

 $D = D_p + D_f$ 

where  $D_p$  is drag due to pressure and  $D_f$  is drag due to friction

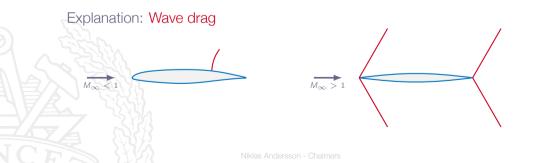
Lift is the component of  ${f F}$  which is normal to the free stream direction:

 $L = L_p + L_f$ 

 $(L_f$  is usually negligible)

#### Inviscid flow around slender body (attached flow)

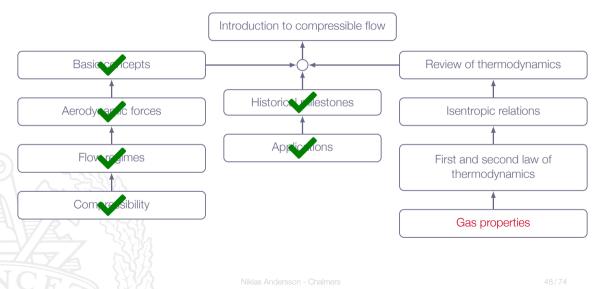
- ▶ subsonic flow: D = 0
- ▶ transonic or supersonic flow: D > 0



## Aerodynamic Forces

- Wave drag is an inviscid phenomena, connected to the formation of compression shocks and entropy increase
- Viscous effects are present in all Mach regimes
- At transonic and supersonic conditions a particular phenomena named "shock/boundary-layer interaction" may appear
  - shocks trigger flow separation
  - usually leads to unsteady flow

# Roadmap - Introduction to Compressible Flow



# Chapter 1.4 Review of Thermodynamics



# Thermodynamic Review

#### Compressible flow:

" strong interaction between flow and thermodynamics ... "

### Perfect Gas

All intermolecular forces negligible

Only elastic collitions between molecules

$$p\nu = RT$$
 or  $\frac{p}{\rho} = RT$ 

where R is the gas constant [R] = J/kgK

Also,  $R = R_{univ}/M$  where M is the molecular weight of gas molecules (in kg/kmol) and  $R_{univ} = 8314 J/kmol K$ 

# Internal Energy and Enthalpy

Internal energy e([e] = J/kg)

Enthalpy h([h] = J/kg)

$$h = e + p\nu = e + \frac{p}{\rho}$$
 (valid for all gases)

For any gas in thermodynamic equilibrium, e and h are functions of only two thermodynamic variables (*any two variables may be selected*) *e.g.* 

 $e = e(T, \rho)$  or  $h = h(T, \rho)$ 

# Internal Energy and Enthalpy

Special cases:

Thermally perfect gas:

e = e(T) and h = h(T)

OK assumption for air at near atmospheric conditions and 100K < T < 2500K

Calorically perfect gas:

 $e = C_v T$  and  $h = C_p T$  ( $C_v$  and  $C_p$  are constants)

OK assumption for air at near atmospheric pressure and 100K < T < 1000K

For thermally perfect (and calorically perfect) gas

$$C_{p} = \left(\frac{\partial h}{\partial T}\right)_{p}, \quad C_{v} = \left(\frac{\partial e}{\partial T}\right)_{v}$$

since  $h = e + p/\rho = e + RT$  we obtain:

$$C_{p} = C_{v} + R$$

The ratio of specific heats,  $\gamma$ , is defined as:

$$\gamma \equiv \frac{C_{p}}{C_{v}}$$

#### Important!

#### calorically perfect gas:

 $C_{v}$ ,  $C_{p}$ , and  $\gamma$  are constants

thermally perfect gas:

 $C_{\nu}, C_{\rho}, \text{ and } \gamma \text{ will depend on temperature}$ 

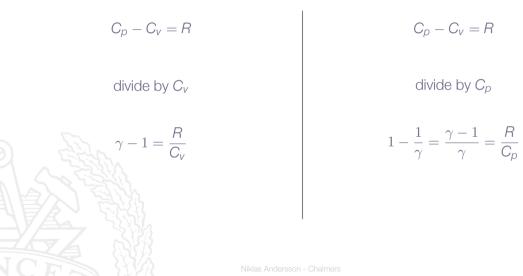
$$C_p - C_v = R$$

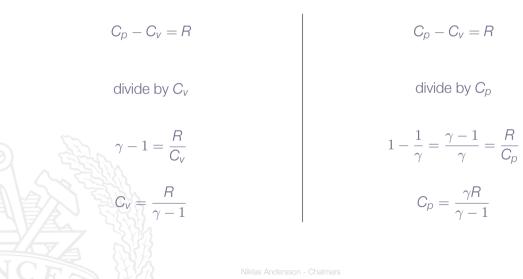
$$C_p - C_v = R$$

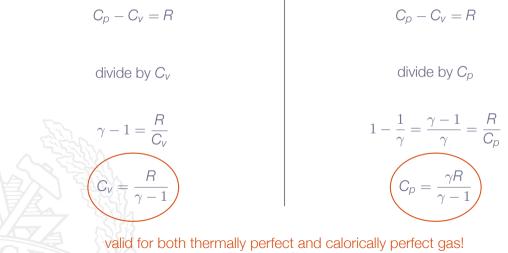


$$C_p - C_v = R$$

#### divide by $C_p$

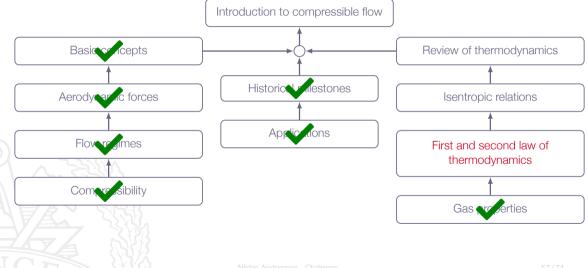






iklas Andersson - Chalmers

# Roadmap - Introduction to Compressible Flow



# First Law of Thermodynamics

A fixed mass of gas, separated from its surroundings by an imaginary flexible boundary, is defined as a "system". This system obeys the relation

$$de = \delta q - \delta w$$

where

de is a change in internal energy of system  $\delta q$  is heat added to the system  $\delta w$  is work done by the system (on its surroundings)

**Note!** *de* only depends on starting point and end point of the process while  $\delta q$  and  $\delta w$  depend on the actual process also

# First Law of Thermodynamics

#### Examples:

# Adiabatic process:

 $\delta q = 0.$ 

#### Reversible process:

no dissipative phenomena (no flow losses)

#### Isentropic process:

a process which is both adiabatic and reversible

# First Law of Thermodynamics

Reversible process:

 $\delta w = pd\nu = pd(1/\rho)$  $de = \delta q - pd(1/\rho)$ 

Adiabatic & reversible process:

$$\delta q = 0.$$
  
 $de = -pd(1/\rho)$ 

# Entropy *s* is a property of all gases, uniquely defined by any two thermodynamic variables, *e.g.*

$$s = s(\rho, T)$$
 or  $s = s(\rho, T)$  or  $s = s(\rho, \rho)$  or  $s = s(e, h)$  or ...

#### Concept of entropy s:

$$ds = rac{\delta q_{rev}}{T} = rac{\delta q}{T} + ds_{ir}$$
 where  $ds_{ir} > 0$ . and thus

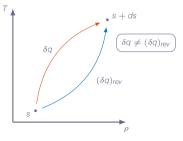
$$ds \ge rac{\delta q}{T}$$

Niklas Andersson - Chalmers

#### Concept of entropy s:

$$ds=rac{\delta q_{
m rev}}{T}=rac{\delta q}{T}+ds_{
m ir}$$
 where  $ds_{
m ir}>0.$  and thus

$$ds \ge \frac{\delta q}{T}$$



Niklas Andersson - Chalmers

In general:

$$ds \ge \frac{\delta Q}{T}$$

#### For adiabatic processes:



 $ds \ge 0.$ 



# "In this house, we obey the laws of thermodynamics!"

Homer Simpson, after Lisa constructs a perpetual motion machine whose energy increases with time

## Calculation of Entropy

For reversible processes ( $\delta w = pd(1/\rho)$  and  $\delta q = Tds$ ):

$$de = Tds - pd\left(\frac{1}{\rho}\right) \Leftrightarrow Tds = de + pd\left(\frac{1}{\rho}\right)$$

from before we have  $h = e + p/\rho \Rightarrow$ 

$$dh = de + pd\left(\frac{1}{\rho}\right) + \left(\frac{1}{\rho}\right)dp \Leftrightarrow de = dh - pd\left(\frac{1}{\rho}\right) - \left(\frac{1}{\rho}\right)dp$$

## Calculation of Entropy

For thermally perfect gases,  $p = \rho RT$  and  $dh = C_{\rho}dT \Rightarrow ds = C_{\rho}\frac{dT}{T} - R\frac{d\rho}{\rho}$ 

Integration from starting point (1) to end point (2) gives:

$$S_2 - S_1 = \int_1^2 C_{\rho} \frac{dT}{T} - R \ln\left(\frac{\rho_2}{\rho_1}\right)$$

and for calorically perfect gases

$$s_2 - s_1 = C_{\rho} \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{\rho_2}{\rho_1}\right)$$

# Calculation of Entropy

If we instead use  $de = C_v dT$  we get

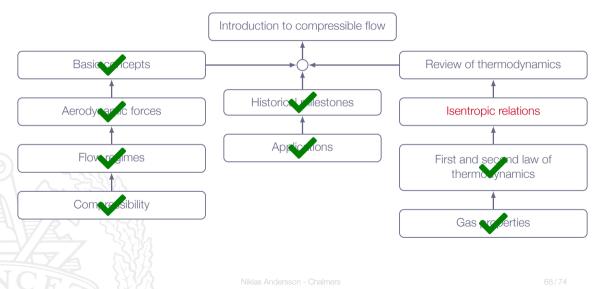
for thermally perfect gases

$$S_2 - S_1 = \int_1^2 C_v \frac{dT}{T} - R \ln\left(\frac{\rho_2}{\rho_1}\right)$$

and for calorically perfect gases

$$S_2 - S_1 = C_v \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{\rho_2}{\rho_1}\right)$$

# Roadmap - Introduction to Compressible Flow



#### **Isentropic Relations**

For calorically perfect gases, we have

$$s_2 - s_1 = C_{\rho} \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{\rho_2}{\rho_1}\right)$$

For adiabatic reversible processes:

$$ds = 0. \Rightarrow S_1 = S_2 \Rightarrow C_p \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{p_2}{p_1}\right) = 0 \Rightarrow$$
$$\ln\left(\frac{p_2}{p_1}\right) = \frac{C_p}{R} \ln\left(\frac{T_2}{T_1}\right)$$

# Isentropic Relations

with 
$$\frac{C_{\rho}}{R} = \frac{C_{\rho}}{C_{\rho} - C_{\nu}} = \frac{\gamma}{\gamma - 1} \Rightarrow$$

$$\boxed{\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}}$$

# Isentropic Relations

Alternatively, using 
$$s_2 - s_1 = 0 = C_v \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{\rho_2}{\rho_1}\right) \Rightarrow$$

$$\left[ \begin{array}{c} \frac{\rho_2}{\rho_1} = \left( \frac{T_2}{T_1} \right)^{\frac{1}{\gamma - 1}} \end{array} \right]$$



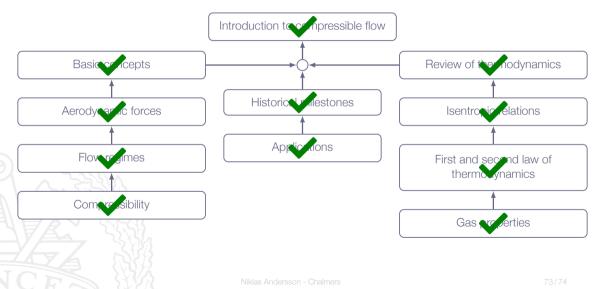
# Isentropic Relations - Summary

For an isentropic process and a calorically perfect gas we have

$$\boxed{\frac{p_2}{p_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}}$$

A.K.A. the isentropic relations

# Roadmap - Introduction to Compressible Flow



THE SECOND LAW OF THERMODWAMICS STATES THAT A ROBOT MUST NOT INCREASE ENTROPY, UNLESS THIS CONFLICTS WITH THE FIRST LAW.

CLOSE ENOUGH.