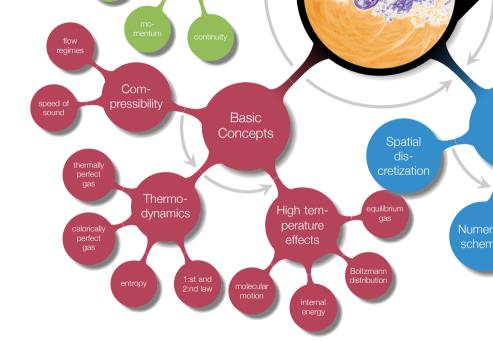


Overview

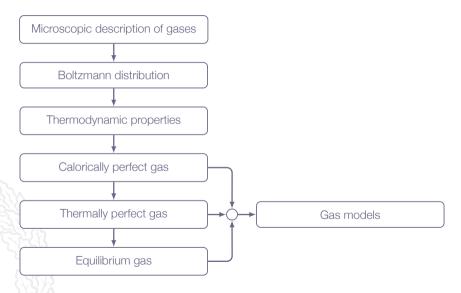


Learning Outcomes

Define the special cases of calorically perfect gas, thermally perfect gas and real gas and explain the implication of each of these special cases

A deep dive into the theory behind the definitions of calorically perfect gas, thermally perfect gas, and other models

Roadmap - High-Temperature Gases



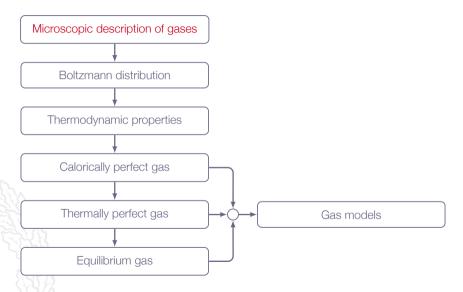
Motivation

Explosions and combustion are two examples of cases where high-temperature effects must be taken into account

The temperature does not have to be extremely high in order for temperature effects to appear, 600 K is enough

In this section you will learn what happens in a gas on a molecular level when the temperature increases and what implications that has on applicability of physical models

Roadmap - High-Temperature Gases

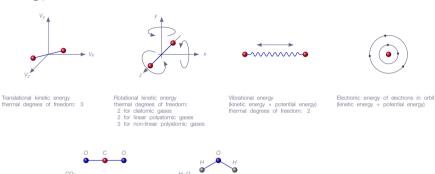


Chapter 16.2 Microscopic Description of Gases

Microscopic Description of Gases

- ► Hard to make measurements
- Accurate, reliable theoretical models needed
- Available models do work quite well

Molecular Energy



non-linear polyatomic molecule

- Translational energy
- Rotational energy (only for molecules not for mono-atomic gases)

linear polyatomic molecule

- Vibrational energy
- Electronic energy

Molecular Energy

The energy for one molecule can be described by

$$\varepsilon' = \varepsilon'_{trans} + \varepsilon'_{rot} + \varepsilon'_{vib} + \varepsilon'_{el}$$

Results of quantum mechanics have shown that each energy is quantized i.e. they can exist only at discrete values

Not continuous! Might seem unintuitive

Molecular Energy

The lowest quantum numbers defines the zero-point energy for each mode

- for rotational energy the zero-point energy is exactly zero
- ightharpoonup arepsilon' is very small but finite at absolute zero, molecules still moves but not much

$$arepsilon_{j_{trans}} = arepsilon_{j_{trans}}' - arepsilon_{O_{trans}}'$$

$$\varepsilon_{\mathit{I}_{\mathit{vib}}} = \varepsilon_{\mathit{I}_{\mathit{vib}}}' - \varepsilon_{\mathit{O}_{\mathit{vib}}}'$$

$$\varepsilon_{k_{rot}} = \varepsilon'_{k_{rot}}$$

$$\varepsilon_{m_{\mathrm{el}}} = \varepsilon_{m_{\mathrm{el}}}' - \varepsilon_{o_{\mathrm{el}}}'$$

Energy States

- three cases with the same rotational energy
- ▶ different direction of angular momentum
- ▶ quantum mechanics ⇒ different distinguishable states
- a finite number of possible states for each energy level

Macrostate:

- ▶ molecules collide and exchange energy \Rightarrow the N_j distribution (the macrostate) will change over time
- some macrostates are more probable than other
- ▶ most probable macrostates (distribution) ⇒ thermodynamic equilibrium

Microstate:

- same number of molecules in each energy level but different states
- ▶ the most probable macrostate is the one with the most possible microstates ⇒ possible to find the most probable macrostate by counting microstates

Macrostate I Microstate I

$$\varepsilon_o'$$
:

$$(N_0 = 2, g_0 = 5)$$

$$\varepsilon_1'$$
 :

•

$$(N_1 = 5, g_1 = 6)$$

$$\varepsilon_2'$$

$$(N_2 = 3, g_2 = 5)$$

1

$$\varepsilon'_i$$
 :

$$(N_j=2,g_j=3)$$

Macrostate I Microstate II

$$(N_0 = 2, g_0 = 5)$$

$$(N_1 = 5, g_1 = 6)$$

$$\varepsilon_2'$$

$$(N_2 = 3, g_2 = 5)$$

$$\varepsilon'_i$$
 :

$$(N_i = 2, g_i = 3)$$

Macrostate II Microstate I

$$(N_0 = 1, g_0 = 5)$$

$$(N_1 = 5, g_1 = 6)$$

$$\varepsilon_2'$$

$$(N_2 = 4, g_2 = 5)$$

1

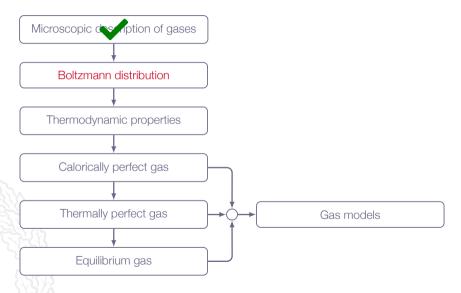
$$\varepsilon_i'$$
 :

$$(N_j=1,g_j=3)$$

$$N = \sum_{i} N_{i}$$

$$E = \sum_{i} \varepsilon'_{j} N_{j}$$

Roadmap - High-Temperature Gases



Chapter 16.5 The Limiting Case: Boltzmann Distribution

Boltzmann Distribution

The Boltzmann distribution:

$$N_j^* = N \frac{g_j e^{-\varepsilon_j/kT}}{Q}$$

where Q = f(T, V) is the state sum defined as

$$Q \equiv \sum_{j} g_{j} e^{-\varepsilon_{j}/kT}$$

 g_j is the number of degenerate states, ε_j is the energy above zero-level ($\varepsilon_j = \varepsilon_j' - \varepsilon_o$), and k is the Boltzmann constant

Boltzmann Distribution

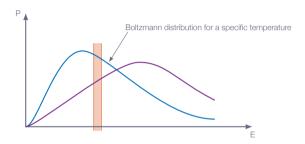
The Boltzmann distribution:

$$N_j^* = N \frac{g_j \mathrm{e}^{-\varepsilon_j/kT}}{Q}$$

For molecules or atoms of a given species, quantum mechanics says that a set of well-defined energy levels ε_i exists, over which the molecules or atoms can be distributed at any given instant, and that each energy level has a certain number of energy states, g_i .

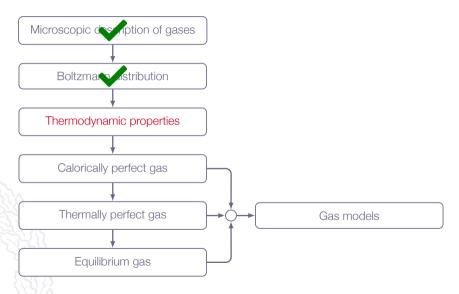
For a system of N molecules or atoms at a given T and V, N_j^* are the number of molecules or atoms in each energy level ε_j when the system is in thermodynamic equilibrium.

Boltzmann Distribution



- At temperatures above \sim 5K, molecules are distributed over many energy levels, and therefore the states are generally sparsely populated ($N_i \ll g_i$)
- Higher energy levels become more populated as temperature increases

Roadmap - High-Temperature Gases



Chapter 16.6 - 16.8 Evaluation of Gas Thermodynamic Properties

Internal Energy

The internal energy is calculated as

$$E = NkT^2 \left(\frac{\partial \ln Q}{\partial T}\right)_V$$

The internal energy per unit mass is obtained as

$$e = \frac{E}{M} = \frac{NkT^2}{Nm} \left(\frac{\partial \ln Q}{\partial T}\right)_V = \left\{\frac{k}{m} = R\right\} = RT^2 \left(\frac{\partial \ln Q}{\partial T}\right)_V$$

Internal Energy - Translation

$$\varepsilon'_{trans} = \frac{h^2}{8m} \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} + \frac{n_3^2}{a_3^2} \right)$$

quantum numbers (1.2.3....) $n_1 - n_3$

 $a_1 - a_3$ linear dimensions that describes the size of the system Planck's constant

 $\Rightarrow \cdots \Rightarrow$

mass of the individual molecule

$$Q_{trans} = \left(\frac{2\pi mkT}{h^2}\right)^{3/2} V$$

Internal Energy - Translation

$$Q_{trans} = \left(\frac{2\pi m k T}{h^2}\right)^{3/2} V$$

$$\ln Q_{trans} = \frac{3}{2} \ln T + \frac{3}{2} \ln \frac{2\pi mk}{h^2} + \ln V \Rightarrow$$

$$\left(\frac{\partial \ln Q_{trans}}{\partial T}\right)_{V} = \frac{3}{2} \frac{1}{T} \Rightarrow$$

$$e_{trans} = RT^2 \left(\frac{\partial \ln Q_{trans}}{\partial T} \right)_V = RT^2 \frac{3}{2T} = \frac{3}{2}RT$$

Internal Energy - Rotation

$$\varepsilon_{rot}' = \frac{h^2}{8\pi^2 I} J(J+1)$$

- J rotational quantum number (0,1,2,...)
- moment of inertia (tabulated for common molecules)
- h Planck's constant

$$\Rightarrow \cdots \Rightarrow$$

$$Q_{rot} = \frac{8\pi^2 IkT}{h^2}$$

Internal Energy - Rotation

$$Q_{rot} = \frac{8\pi^2 I k T}{h^2}$$

$$\ln Q_{rot} = \ln T + \ln \frac{8\pi^2 lk}{h^2} \Rightarrow$$

$$\left(\frac{\partial \ln Q_{rot}}{\partial T}\right)_{V} = \frac{1}{T} \Rightarrow$$

$$e_{rot} = RT^2 \left(\frac{\partial \ln Q_{rot}}{\partial T} \right)_V = RT^2 \frac{1}{T} = RT$$

Internal Energy - Vibration

$$\varepsilon'_{\mathit{vib}} = h\nu\left(n + \frac{1}{2}\right)$$

- vibrational quantum number (0,1,2,...)
- ν fundamental vibrational frequency (tabulated for common molecules)
- h Planck's constant

$$\Rightarrow \cdots \Rightarrow$$

$$Q_{vib} = \frac{1}{1 - e^{-h\nu/kT}}$$

Internal Energy - Vibration

$$Q_{vib} = \frac{1}{1 - e^{-h\nu/kT}}$$

$$\ln Q_{vib} = -\ln(1 - e^{-h\nu/kT}) \Rightarrow$$

$$\left(\frac{\partial \ln Q_{vib}}{\partial T}\right)_{V} = \frac{h\nu/kT^{2}}{e^{h\nu/kT} - 1} \Rightarrow$$

$$e_{vib} = RT^{2} \left(\frac{\partial \ln Q_{vib}}{\partial T}\right)_{V} = RT^{2} \frac{h\nu/kT^{2}}{e^{h\nu/kT} - 1} = \frac{h\nu/kT}{e^{h\nu/kT} - 1}RT$$

$$\lim_{T \to \infty} \frac{h\nu/kT}{e^{h\nu/kT} - 1} = 1 \Rightarrow e_{vib} \leq RT$$

Specific Heat

$$e = e_{trans} + e_{rot} + e_{vib} + e_{el}$$

$$e = \frac{3}{2}RT + RT + \frac{h\nu/kT}{e^{h\nu/kT - 1}}RT + e_{el}$$

$$C_{V} \equiv \left(\frac{\partial e}{\partial T}\right)_{V}$$

Specific Heat

Molecules with only translational and rotational energy

$$e = \frac{3}{2}RT + RT = \frac{5}{2}RT \Rightarrow C_{V} = \frac{5}{2}R$$

$$C_{p} = C_{V} + R = \frac{7}{2}R$$

$$\gamma = \frac{C_{p}}{C_{V}} = \frac{7}{5} = 1.4$$

Specific Heat

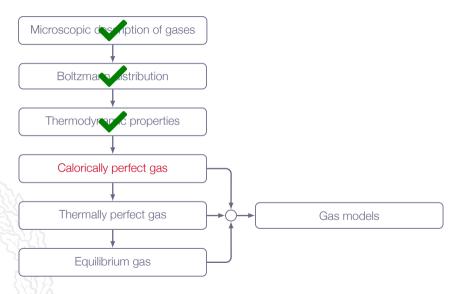
Mono-atomic gases with only translational and rotational energy

$$e = \frac{3}{2}RT \Rightarrow C_{V} = \frac{3}{2}R$$

$$C_{p} = C_{v} + R = \frac{5}{2}R$$

$$\gamma = \frac{C_p}{C_V} = \frac{5}{3} = 1\frac{2}{3} \simeq 1.67$$

Roadmap - High-Temperature Gases



Calorically Perfect Gas

- ▶ In general, only translational and rotational modes of molecular excitation
- ► Translational and rotational energy levels are sparsely populated, according to Boltzmann distribution (the Boltzmann limit)
- ► Vibrational energy levels are practically unpopulated (except for the zero level)
- Characteristic values of γ for each type of molecule, *e.g.* mono-atomic gas, di-atomic gas, tri-atomic gas, etc
 - ▶ He, Ar, Ne, ... mono-atomic gases ($\gamma = 5/3$)
 - \vdash H_2 , O_2 , N_2 , ... di-atomic gases ($\gamma = 7/5$)
 - $ightharpoonup H_2O$ (gaseous), CO_2 , ... tri-atomic gases ($\gamma < 7/5$)

Calorically Perfect Gas

$$\rho = \rho(R, T)$$
 $e = C_v T$ $h = C_p T$ $h = e + \rho/\rho$

$$h = e + p/\rho$$

$$a = \sqrt{\frac{\gamma \rho}{\rho}} = \sqrt{\gamma RT}$$

$$C_D - C_V = R$$

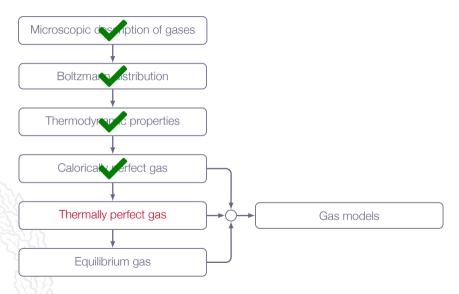
$$\gamma = C_p/C_v$$

$$C_{v} = \frac{R}{\gamma - 1}$$

$$C_p = \frac{\gamma R}{\gamma - 1}$$

 γ , R, C_v , and C_p are constants

Roadmap - High-Temperature Gases



Thermally Perfect Gas

- In general, only translational, rotational and vibrational modes of molecular excitation
- ► Translational and rotational energy levels are sparsely populated, according to Boltzmann distribution (the Boltzmann limit)
- ► The population of the vibrational energy levels approaches the Boltzmann limit as temperature increases
- Temperature dependent values of γ for all types of molecules except mono-atomic (no vibrational modes possible)

Thermally Perfect Gas

$$p = p(R,T)$$
 $e = e(T)$ $C_v = de/dT$ $C_p - C_v = R$ $h = h(T)$ $C_p = dh/dT$ $\gamma = C_p/C_v$ $C_v = \frac{R}{\gamma - 1}$

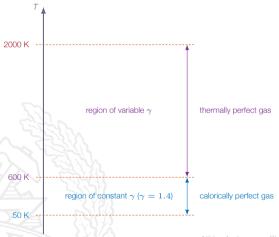
$$a = \sqrt{\frac{\gamma \rho}{\rho}} = \sqrt{\gamma RT}$$

 $C_p = \frac{\gamma R}{\gamma - 1}$

 γ , C_V , and C_P are variable (functions of T)

R is constant

Example: properties of air



Thermally perfect gas: *e* and *h* are non-linear functions of *T*

the temperatur range represents standard atmospheric pressure (lower pressure gives lower temperatures)

For cases where the vibrational energy is not negligible (high temperatures)

$$\lim_{T\to\infty}e_{\textit{vib}}=RT\Rightarrow C_{\textit{v}}=\frac{7}{2}R$$

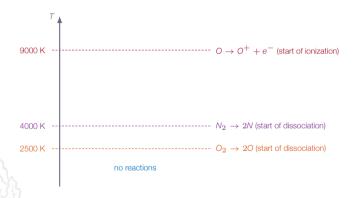
However, chemical reactions and ionization will take place long before that

- ▶ Translational and rotational energy fully excited above ~5 K
- ► Vibrational energy is non-negligible above 600 K
- ► Chemical reactions begin to occur above ~2000 K

As temperature increase further vibrational energy becomes less important

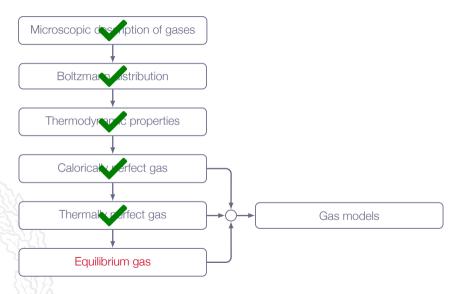
Why is that so?

Example: properties of air (continued)



With increasing temperature, the gas becomes more and more mono-atomic which means that vibrational modes becomes less important

Roadmap - High-Temperature Gases



Equilibrium Gas

For temperatures $T > \sim 2500 K$

- Air may be described as being in thermodynamic and chemical equilibrium (Equilibrium Gas)
 - reaction rates (time scales) low compared to flow time scales
 - reactions in both directions (example: $O_2 \rightleftharpoons 2O$)
- ► Tables must be used (Equilibrium Air Data) or special functions which have been made to fit the tabular data

Equilibrium Gas

How do we obtain a thermodynamic description?

$$p = p(R, T)$$

$$e = e(\nu, T)$$

$$h = h(p, T)$$

$$h = e + \frac{\rho}{\rho}$$

$$C_{V} = \left(\frac{\partial e}{\partial T}\right)_{\nu}$$

$$C_{p} = \left(\frac{\partial h}{\partial T}\right)_{p}$$

$$a_{\rm e}^2 = \gamma RT \frac{1 + \frac{1}{\rho} \left(\frac{\partial e}{\partial \nu}\right)_T}{1 - \rho \left(\frac{\partial h}{\partial \rho}\right)_T}$$

$$\gamma = \frac{C_p}{C_v} = \frac{\left(\frac{\partial h}{\partial T}\right)_p}{\left(\frac{\partial e}{\partial T}\right)}$$

Note! R is not a constant here *i.e.* this is not the ideal gas law

$$RT = \frac{p}{\rho}$$

Roadmap - High-Temperature Gases

