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Learning Outcomes

3

4

Describe typical engineering flow situations in which compressibility effects are
more or less predominant (e.g. Mach number regimes for steady-state flows)
Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on
Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

| unsteady waves and discontinuities in 1D

k basic acoustics
Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)
Explain how the equations for aero-acoustics and classical acoustics are derived
as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!
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Motivation

Most practical flows are unsteady

Traveling waves appears in many real-life situations and is an important topic
within compressible flows

We will study unsteady flows in one dimension in order to reduce complexity
and focus on the physical effects introduced by the unsteadiness

Throughout this section, we will study an application called the shock tube,
which is a rather rare application but it lets us study unsteady waves in one
dimension and it includes all physical principles introduced in chapter 7
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Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

observer moving with the bullet
» steady-state flow
» the detached shock wave is
stationary

observer at rest
» unsteady flow
» detached shock wave moves
through the air (to the left)




Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air
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normal shock advancing and shock system are moving

through stagnant air



Unsteady Wave Motion - Example #2

Shock wave from explosion

Y1ib- Ale. TxmeSers G]ecmwo TR PCSIon

For observer at rest with respect to the surrounding air:

the flow is unsteady

the shock wave moves through the air



Unsteady Wave Motion - Example #2

Shock wave from explosion

t = 0.0002s t = 0.0036 s t=0.0212s

t =0.0594 s

normal shock moving spherically outwards
Shock strength decreases with radius
Shock speed decreases with radius



Unsteady Wave Motion

inertial frames!
Physical laws are the same for both frame of references

Shock characteristics are the same for both observers (shape, strength, etc)



Unsteady Wave Motion

Is there a connection with stationary shock waves?
Answer: Yes!

Locally, in a moving frame of reference, the shock may be viewed as a stationary
normal shock
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Chapter 7.2
Moving Normal Shock Waves



Moving Normal Shock Waves

Chapter 3: stationary normal shock
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Moving Normal Shock Waves

w
<+——@ observer

® 0]
usg uy
B e

T
stationary normal shock

Introduce observer moving to the left with speed W

if W is constant the observer is still in an inertial system
all physical laws are unchanged

The observer sees a normal shock moving to the right with speed W

gas velocity ahead of shock: Uy = W —uy
gas velocity behind shock: uy = W — uy



Moving Normal Shock Waves

Now, let W = u; =

UIZO
Uy =up — Uy >0

The observer now sees the shock traveling to the right with speed W = u; into a
stagnant gas, leaving a compressed gas (02 > p1) with velocity u5, > 0 behind it

Introducing up:

Up = Uy = Uy — Us



Moving Normal Shock Waves

@ stationary observer

w
©) O]
uh =up >0 Uy =0
Analogy:
moving normal shock
Case 1

stationary normal shock
observer moving with velocity W

Case 2

normal shock moving with velocity W
stationary observer



Moving Normal Shock Waves - Governing Equations

@ stationary observer

©) O,
uh =up >0 Uy =0
. .
moving normal shock X
For stationary normal shocks we have: With (uy = W) and (ug = W — up) we
get:
p1U1 = paus p1W = pa(W — Up)
p1UT + P1 = paU3 + P2 p1W? + py :p2<W_Up>2+p2
1 1 1 1
h1+§U%:h2+§u% h1+§W2:h2+§(W—UD)2



Moving Normal Shock Waves - Relations

Starting from the governing equations

piW = po(W —up)
p1W? +p1 = po(W — Up)? + pa
hi + %WQ =hy + %(W — Up)?

and usingh =e + P
P

it is possible to show that

+ 1 1
ezfelzpl P2 <+>
P P2



Moving Normal Shock Waves - Relations

p1+p2 (1 1
€ — €] = — + =
o 2 <p1+p2>

same Hugoniot equation as for stationary normal shock

This means that we will have same shock strength, i.e. same jumps in density,
velocity, pressure, etc



Moving Normal Shock Waves - Relations

Starting from the Hugoniot equation one can show that

1+7+1<P2>
P2 _ -1 \p1

,01_ LH_|_@
y—1 P

and




Moving Normal Shock Waves - Relations

For calorically perfect gas and stationary normal shock:

P2 2y 2
2o M-
P1 7+1( s

same as eq. (3.57) in Anderson with M1 = Mg

where

w
M. = —

S a,
Ms is simply the speed of the shock (W), traveling into the stagnant gas,
normalized by the speed of sound in this stagnant gas (a1)

Ms > 1, otherwise there is no shock!
shocks always moves faster than sound - no warning before it hits you ®



Moving Normal Shock Waves - Relations

2
P2 =1+ it (Mg -1) Incident shock Mach number (v = 1.4)
IOl ’y + 1 5 T T T
Re-arrange = 4l

M = 7+1<,02_1>+1 Ms 3
2y \p1

shock speed directly linked to pressure ratio

10 15
P2/p1

(S g




Moving Normal Shock Waves - Relations

From the continuity equation we get:

up=W<1—m>>0
P2

After some derivation we obtain:

2y

ap (p2 y+1
Un = — ——1 -
g ’7(@ > pz  v—1

p1 v+1



Moving Normal Shock Waves - Relations

Induced Mach number:

Up _ Up&r _Up |Tn

M: f— f— —
P as ay as ar\l T»

inserting up/a; and T, /T, from relations on previous slides we get:

1/2
| GG
1 (P2 v+ 1 vy—1) \p1
Mo=—\"--1) | 5= 0, 3
G [ @e)-e
y+HLop y—1) \pi P

1/2




Moving Normal Shock Waves - Relations

Induced Mach number (v = 1.4)
Note! 2 1 ‘ ‘

My = 1.89

lim My — 4| ———
22 yoo (v —1)

P1

for air (v = 1.4)

lim M, — 1.89

P2
22 500
P1

P2/P1



Moving Normal Shock Waves - Relations

Moving normal shock with ps/p1 = 10

(o1 =1.0bar, T =300 K, v = 1.4)

= Ms =2.95and W = 1024.2m/s

The shock is advancing with almost three times the speed of sound!

Behind the shock the induced velocity is up, = 756.2 m/s = supersonic flow
(@2 = 562.1 m/s)

May be calculated by formulas 7.13, 7.16, 7.10, 7.11 or by using Table A.2 for stationary normal shock (u; = W, ug = W — up)



Moving Normal Shock Waves - Relations

Note! h,, # ho,

constant total enthalpy is only valid for stationary shocks!

shock is uniquely defined by pressure ratio p2/p1

-

up =20

1.
hoi :hl+§U%:hl

1 .
ho, = ha + §u§

hy > hy = ho, > ho,

N

h2/h1 = T2/T1 (constant Cp)

2

1.8

1.6




Moving Normal Shock Waves - Relations

Gas/Vapor Ratio of specific heats Gas constant
() R

Acetylene 1.23 319
Air (standard) 1.40 287
Ammonia 1.31 530
Argon 1.67 208
Benzene 1.12 100
Butane 1.09 143
Carbon Dioxide 1.29 189
Carbon Disulphide 1.21 120
Carbon Monoxide 1.40 297
Chlorine 1.34 120
Ethane 1.19 276
Ethylene 1.24 296
Helium 1.67 2080
Hydrogen 1.41 4120
Hydrogen chloride 1.41 230
Methane 1.30 518
Natural Gas (Methane) 1.27 500
Nitric oxide 1.39 277
Nitrogen 1.40 297
Nitrous oxide 1.27 180
Oxygen 1.40 260
Propane 1.138 189
Steam (water) 1.32 462
Sulphur dioxide 1.29 130
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Chapter 7.3
Reflected Shock Wave



One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?



Shock Reflection

ax
contact surface, — = 0
dt

N\

ax
contact surface, — = up
dt

solid wall

ax
reflected shock, —
dt

/

S~

initial moving shock,

—W,



Shock Reflection - Particle Path

A fluid particle located at x( at time t; (a location ahead of the shock) will be affected
by the moving shock and follow the blue path

|
time location velocity ] dmmmmm g -
) X0 0 :
t1 Xo Up tof == === ‘ ————————— S
tQ X1 Up ! !
i3 X1 0 : \
! !
|

X0 X1 X



Shock Reflection Relations

velocity ahead of reflected shock: W, + up
velocity behind reflected shock: W,

Continuity:
p2(Wr +Up) = psWr
Momentum:
P2+ p2(Wr + Up)? = ps + psW?
Energy:

1 1
ho + §<Wr+Up)2 =hs + §Wr2



Shock Reflection Relations

Reflected shock is determined such that us = 0

M, Ms 2y — 1) 1
= 1 Mz —1 —
ME—1 M§—1¢ B CESIE AR v

where



Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what happens after interaction
between reflected shock and contact discontinuity

For special choice of initial conditions (tailored case), this interaction is negligible,
thus prolonging the duration of condition 5



Tailored v.s. Non-Tailored Shock Reflection

under-tailored tailored over-tailored
t t t
shock wave 1 wall 1 wall 1 wall
contact surface
expansion wave
® ® © ® ® ®
©) ©) ©)
©, ©, ©,
Under-tailored conditions:  * .

Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:
Mach number of incident wave higher than in tailored conditions



Shock Reflection - Example

Shock reflection in shock tube (v = 1.4)

(Example 7.1 in Anderson)

Incident shock (given data) Calculated data
p2/p1 10.0 M, 2.09
Ms  2.95 ps/p2  4.978
To/T1 2.623 Ts/Ty 177
P1 1.0 [bar]
T1 300.0 [K]



Shock Reflection - Shock Tube

» Very high pressure and temperature conditions in a specified location with very
high precision (05, T5)

» measurements of thermodynamic properties of various gases at extreme
conditions, e.g. dissociation energies, molecular relaxation times, etc.

» measurements of chemical reaction properties of various gas mixtures at extreme
conditions



Roadmap - Unsteady Wave Motion

[ Basiwepts ’

[ Moving r%l shocks ]4—0—»[ Elements of acoustic theory J

[ Shoc%ction ] [ Finite non-linear waves ]
[ Shock tube ]—»i%—[ Expansion waves ]

[ Shock tube relations ]—>[ Shock tunnel

.

( Riemann problem ]




The Shock Tube



Shock Tube

diaphragm

l

| ® | ®

P4

P1

T

diaphragm location

tube with closed ends

diaphragm inside, separating two differ-
ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by
inducing a breakdown) the two states
come into contact and a flow develops

assume that py > p1:
state 4 is "driver” section
state 1 is "driven” section



Shock Tube

expansion fan contact discontinuity moving normal shock

\ | |/|

(o ][[] & | @

Up w flow at some time after diaphragm
breakdown

T :

diaphragm location



Shock Tube

expansion fan contact discontinuity moving normal shock

\ I

(o[l ] o | @ |

—> o
Up w flow at some time after diaphragm
breakdown
P A
P4
N P3 P2 (p3 = p2)
P1

: :

diaphragm location



Shock Tube

» By using light gases for the driver section (e.g. He) and heavier gases for the
driven section (e.g. air) the pressure p4 required for a specific p2/p; ratio is
significantly reduced

» If T4/ T is increased, the pressure p4 required for a specific p2/p; is also
reduced
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Chapter 7.5
Elements of Acoustic Theory



Sound Waves

v

Weakest audible sound wave (0 dB): Ap ~0.00002 Pa
Loud sound wave (94 dB): Ap ~1 Pa

Threshold of pain (120 dB): Ap ~20 Pa

Harmful sound wave (130 dB): Ap ~60 Pa

v

v

v

Example:

Ap ~ 1 Pa gives Ap ~0.000009 kg/m?® and Au ~0.0025 m/s



Sound Waves

Schlieren flow visualization of self-sustained
oscillation of an under-expanded free jet




Sound Waves

Screeching rectangular supersonic jet

- Chalmers 51/12



Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in Chapter 6:

conservation form non-conservation form

% L v . (ov) =0 Do L p(vvy =0
mass — . V) = _ 0 Lv) =
ot r ot F

7] D
momentum o (pv) + V- (pvv +pI) =0 pH‘: +Vp =0
[,




Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds
i = 0
Assume one-dimensional flow
- ap ap ou
continuit u — =0
P =px.t) Yo o Yok TPax
v =u(x,t)ex N 5 5 3
p=px,t) momentum  p— + pl=— + -
s=constant
op )

can o be expressed in terms of density?



Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any tow
other state variables

) () 4 (P
b =p(p.s) = db = <ap)sd”+ <8s>pds

s=constant gives



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

pP=pPoo+tAp P=poct+Ap T=Tec+AT U=Uco +AU= {Usc =0} =AU
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p., are zero)

6] el o
—(Ap) + Au—(Ap) + + Ap)—(Au) =0
at( p) ax( p) + (P p) 6x< )

b5} a 5 0
(Poc + Ap) —(AU) + (poo + Ap)Au—(Au) +8° —(Ap) =0
ot Ix ox



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P=pPoot+ADp P=pPoc+Ap T=Toc+AT U=Uco + AU= {Usc =0} =Au
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p., are zero)

6] el o
—(Ap) + Au—(Ap) + + Ap)—(Au) =0
at( p) Bx( p) + (P p) 6x< )

=
15} o
(Poo + Ap) — (AU) + (poo + Ap)Au— (A
ot ox



Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable = a* = a*(p, s). With entropy
constant = a* = a*(p)

Taylor expansion around a., with (Ap = p — pso) gives

2= a2 + (;p(a?)))o Apt sy <§;(32))m ()’ + ...

{ ft( p) + USX( p) + (poo + Ap) X( u)
=

(o + A0) 2 (A0) + (poo + Ap) AU (AU) + |22 +(3<a2>) apt | Liap =0
L ot = ox o ap - ox



Elements of Acoustic Theory - Acoustic Equations

Since Ap and Au are assumed to be small (Ap < pso, AU K a)

products of perturbations can be neglected
higher-order terms in the Taylor expansion can be neglected

0 (Au) =0

0
Ap) + poo

82‘(

O (ap) =0

( ) E>()(9

"

Note! Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear



Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage of a sound wave ...”



Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

0?2 0?2
o (Ap) = 87 (AP)

(combine the time derivative of the continuity eqn. and the divergence of the momentum egn.)

General solution:

Ap(x,t) = F(x — asel) + G(x + asel)

wave traveling in wave traveling in
positive x-direction negative x-direction
with speed aoo with speed aoo

F and G may be arbitrary functions
Wave shape is determined by functions F and G



Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

oF oF O(X — anol)
ot (X — axt) ot

oF oF O(X —ast)
Ox  O(x —ast)  Ox

spatial and temporal derivatives of G can of course be obtained in the same way...



Elements of Acoustic Theory - Wave Equation

F(x —axt) + G(x + axt) and the derivatives of F and G we get

with Ap(x,t) =
02
8t2(Ap) aZOF” +a§OG”
and
82
@(Ap) — F// + G//
which gives
0? 0?2
22 (Ap) —as a 5 (Ap) =

i.e., the proposed solution fulfils the wave equation



Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

Ap(x,t) = F(X — anot)

If Ap is constant (constant wave amplitude), (x — at) must be a constant which
implies
X =asl+cC

where ¢ is a constant

*_,
a



Elements of Acoustic Theory - Wave Equation

We want a relation between Ap and Au

Ap(x,t) = F(x — axt) (wave in positive x direction) gives:

0 0
- (Ap) = —accF’ e (Ap) =F
ot and Ox
0 0
57 () +ace - (Ap) =0
—— ~—
—8ooF F
or
1 0
a*(A/)) —;&( P)



Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

0
Poo a (AU) =—a

9 az, o 0 1 0 Qoo O
(80 = =22 28 = { D) =~ (An | =22 D)

0
2 R

0 oo Qoo
—(Au——Ap | =0= Au— —Ap =const

In undisturbed gas Au = Ap = 0 which implies that the constant must be zero and
thus

a
Au=—"Ap
Poo




Elements of Acoustic Theory - Wave Equation

Similarly, for Ap(x,t) = G(x + ast) (wave in negative x direction) we obtain:

Au=—-2=n,
Also, since Ap = a2 Ap we get:
. . . . Ao 1
Right going wave (+x direction) Au= —Ap = e Ap
Poo oo Poo
, . . Ao 1
Left going wave (-x direction) Au=-——Ap=— Ap

Poo oo Poo



Elements of Acoustic Theory - Wave Equation

Au denotes induced mass motion and is positive in the positive x-direction

Qoo Ap _ 4 Ap
Poo AooPoo

Au =+

condensation (the part of the sound wave where Ap > 0):
Au is always in the same direction as the wave motion

rarefaction (the part of the sound wave where Ap < 0):
Au is always in the opposite direction as the wave motion



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

52 B
o 5 (Ap)

@ =at 2

Due to the assumptions made, the equation is not exact
More and more accurate as the perturbations becomes smaller and smaller
How should we describe waves with larger amplitudes?



Roadmap - Unsteady Wave Motion

[ BasiM;epts ’

[ Moving r%l shocks ]4—(%—»[ Elements Mstic theory J
'

[ Shoc%ction ] [ Finite non-linear waves ]
[ Sh ube ]—»?4—[ Expansion waves ]

[ Shock tube relations ]—>[ Shock tunnel

.

( Riemann problem ]




Chapter 7.6
Finite (Non-Linear) Waves



Finite (Non-Linear) Waves

When Ap, Au, Ap, ... Become large, the linearized acoustic equations become
poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

ap 6,0 ou
ot u ox e Pox =0
ou ou 10p

ot Yax Toax T




Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

Op _(9p) b _ 10p o _
ot \op/) 0t azot ox
Inserted in the continuity equation this gives:
op ap 50U
E + Ua + a =0
ou o 10p
ot ox  pox

(

dp
Ip

)

9 _ 19p
< Ox  a?ox



Finite (Non-Linear) Waves

Add 1/(pa) times the continuity equation to the momentum equation:

B +U+a)— +—

154 ot

ou ou 1 [op
ox

+ (u +a)ap} =0

If we instead subtraction 1/(pa) times the continuity equation from the momentum
equation, we get:

[gt‘lJr(u—a)gﬂ—l[gﬁ;Jr( )ap}:()



Finite (Non-Linear) Waves

Since u = u(x,t), we have:

8u au Bu ou dx

ax )
Let i = Uu+agives
ou ou
du = [81‘ + (u+a)ax} dt

. adx
Interpretation: change of u in the direction of line g u-+a



Finite (Non-Linear) Waves

In the same way we get:

_op Op dx
dp = Edt + aadt

and thus
op

_ Ip
ap = {at + (u+a)8X] dt



Finite (Non-Linear) Waves

Now, if we combine

ou ou 1 [op op|
ou ou
au = [81‘ + (U—‘ra)axi| at
~|op op
dp = {at (u +a)ax] dt

we get

au 1dop




Characteristic Lines

Thus, along a line dx = (u + a)dt we have

{o’u+d’oo}
pa

In the same way we get along a line where dx = (u — a)dt




Characteristic Lines

» We have found a path through a point (x1, t1) along which the governing partial
differential equations reduces to ordinary differential equations

» These paths or lines are called characteristic lines

» The C* and C~ characteristic lines are physically the paths of right- and
left-running sound waves in the xt-plane



Characteristic Lines

_ ax
C™ characteristic line: — =u—a
dt
. adp
t compatibility equation: au— — =0
pa

/

-+ ax
C™ characteristic line: e =u+a

compatibility equation: adu + £ =0
pa

Y

X1



Characteristic Lines - Summary

o 14
d—l;l + ,oaofz? =0 along C" characteristic
a 14 -
d—ttl — p?i?f =0 along C~ characteristic
dp n _—
au + P 0 along C" characteristic
P
aj -
au — pg =0 along C™~ characteristic




Riemann Invariants

Integration gives:

d .
Jt=u+ / —Z = constant along C* characteristic
p

a .
J =u-— —’2 = constant along C™~ characteristic
P

We need to rewrite do to be able to perform the integrations

pa



Riemann Invariants

Let’s consider an isentropic processes:

p =c TV = cyg27/(v=1)

where ¢, and ¢y are constants and thus

b = s < 2y ) S129/(—D—1] g
v—1

Assume calorically perfect gas: a? = P =p= g—g

with p = 282"/~ we get p = coyal2/ (=12



Riemann Invariants

27\ gl2v/(v=1)-1]
Co — a 20.
J+:u+/d§:u+/ (7 1) da:u+/ 2
2

coyal2y/(v=1)-1] ~v—1




Riemann Invariants

If J* and J~ are known at some point (x, t), then

It £ Jm = 2u u= Ut )

4&1:>

+— =
SrevT = .

Flow state is uniquely defined!



Method of Characteristics

t

Iﬂ+ 1
t”

transfer J™ along C™ characteristics, and vice versa

flow state may be
computed here

flow state known
here

X



Summary

Acoustic waves

Ap, Au, etc - very small

All parts of the wave propagate with
the same velocity a,,

The wave shape stays the same

The flow is governed by linear
relations

Finite (non-linear) waves

Ap, Au, etc - can be large

Each local part of the wave
propagates at the local velocity
u+a)

The wave shape changes with time
The flow is governed by non-linear
relations



One-Dimensional Flow with Friction

the method of characteristics is a central element in classic compressible flow theory



Roadmap - Unsteady Wave Motion

[ BasiM;epts ’

[ Moving r%l shocks ]4—(%—»[ Elements Mstic theory J
'

:
[ Shoc%action ] [ Finite no%ar waves ]
[ Sh ube ]—»?4—[ Expansion waves ]

[ Shock tube relations ]—>[ Shock tunnel

.

( Riemann problem ]




Chapter 7.7
Incident and Reflected Expansion
Waves



Expansion Waves

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

O]

incident shock wave

L ® | ®

driver section driven section

Y



Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C~ characteristics
2. The wave head is propagating into region 4 (high pressure)
3. The wave tail defines the limit of region 3 (lower pressure)

4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

is constant along C* lines

is constant along C™ lines




Expansion Waves




Expansion Waves
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Expansion Waves

ct

ct

ct

o
o=
o=
C~ f
d
b A a
ot ct

constant flow properties in region 4: J: = Jj

J7T invariants constant along C™t characteristics:
=0 =uF
g =ud =4t

since J;r = J;r this also implies J;r = J;r

J™ invariants constant along C™ characteristics:



Expansion Waves

constant flow properties in region 4: J: = Jj

J7T invariants constant along C™t characteristics:

o
o= B ot =0 =uF
(o f g =ud =4t
. . B N since J;m = J;r this also implies J;~ = J;r

J™ invariants constant along C™ characteristics:

Jo =,
ot of o X ¢ =Y
Jo =1f
1 1L
bo = LUF I = S I v =
y—1 4 — y—1 4 —
e = 1 (e —Je )iar = 1 (Jf —Jr ), = ae = a



Expansion Waves

Along each C™ line u and a are constants which means that

C]Ix—u a = const
dt N

C™ characteristics are straight lines in xt-space



Expansion Waves

The start and end conditions are the same for all C™ lines
JT invariants have the same value for all C* characteristics
C™ characteristics are straight lines in xt-space

Simple expansion waves centered at (x,t) = (0,0)




Expansion Waves
In a left-running expansion fan:

» JT is constant throughout expansion fan, which implies:

2a - 2ay N 2as
v—1 v—1

» J~ is constant along C™ lines, but varies from one line to the next, which means
that

is constant along each C™ line



Expansion Waves

Since u4 = 0 we obtain:

Ut a Ug & 2ay 2ay
y=1 a1 -1
a u
21— v —1)—=
a (v=1g;

with a = \/yRT we get



Expansion Wave Relations

Isentropic flow = we can use the isentropic relations

complete description in terms of u/ay = =

- 50-2
1— %(7 - 1);-
12 -n2]




Expansion Wave Relations

Since C~ characteristics are straight lines, we have:

ax

— —u—a=x=(Uu-at

o ( )
a 1 u 1
—=1l—-Z(v=1)—=a=a,—-(v—1u=
o 2(7 )E24 4 2(7 )

X = u—a4+;(7—1)u]t— [(V—l)u—a4}t:>



Expansion Wave Relations

- /‘

' expansion wave | «

expansion wave ' ¥

» Expansion wave head is advancing to the left with
speed a4 into the stagnant gas

» Expansion wave tail is advancing with speed
us — as, which may be positive or negative,
depending on the initial states
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Chapter 7.8
Shock Tube Relations



Shock Tube Relations

2m 1/2
ar (P2 v +1
Up=Upg = — [= 1) | —F——
oo V<D1 >,02 n—1
p1 m+1

p3 - [1_ -1 (L@))rm/(m—l)
P4 2 ay

solving for us gives

b 24, - (,Og) (ya=1)/(2v4)
va—1 P4



Shock Tube Relations

But, p3 = p2 and us = us (No change in velocity and pressure over contact
discontinuity)

(va—1)/(2v4)
= Ug = 284 1-— (,O2>
va— 1 Pa

We have now two expressions for us which gives us

2m 1/2

2 ([32 — 1> _m+l _ 2ay 1_ <pz>(74_1)/(2’¥4)
7 AP P2 + n-1 ya—1 D4

p1 m+1




Shock Tube Relations

Rearranging gives:

—274/(ya—1)
Pi _ P2 {1 _ (u—(@/a)(ea/pr — 1) }
p1 P1 V27 27 + (1 + 1) (p2/p1 — 1)]

» pa/p1 as implicit function of p4/p1
» for a given ps/pi1, p2/p1 will increase with decreased a; /a4

a = \/ART = /7 (Ru/M)T

» the speed of sound in a light gas is higher than in a heavy gas

» driver gas: low molecular weight, high temperature
» driven gas: high molecular weight, low temperature
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Shock Tunnel

» Addition of a convergent-divergent nozzle to a shock tube configuration

» Capable of producing flow conditions which are close to those during the
reentry of a space vehicles into the earth’s atmosphere

» high-enthalpy, hypersonic flows (short time)
» real gas effects

» Example - Aachen TH2:
» velocities up to 4 km/s
» stagnation temperatures of several thousand degrees



Shock Tunnel

test object

diaphragm 1 diaphragm 2

dump tank

test section
reflected shock

High pressure in region 4 (driver section)
diaphragm 1 burst
primary shock generated

Primary shock reaches end of shock tube
shock reflection

High pressure in region 5
diaphragm 2 burst
nozzle flow initiated
hypersonic flow in test section



Shock Tunnel

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

O]

incident shock wave

Y

L ® | ®

driver section driven section




Shock Tunnel

By adding a compression tube to the shock tube a very high p4 and T, may be
achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

pressurized air driver gas driven gas
p, T p1, T1

SressuEEd el driver gas driven gas
P4, Ta P1, T1




The Aachen Shock Tunnel - TH2

Shock tunnel built 1975

nozzle

end of shock tube wv

\
inspection window:
»
I

—

<
Z

o =
/‘-‘&"‘ - -




The Aachen Shock Tunnel - TH2

Shock tube specifications:

diameter

driver section

driven section

diaphragm 1

diaphragm 2

max operating (steady) pressure

140 mm

6.0m

154 m

10 mm stainless steel
copper/brass sheet
1500 bar



The Aachen Shock Tunnel - TH2

Driver gas (usually helium):

100 bar < p4 < 1500 bar
electrical preheating (optional) to 600 K

Driven gas:
0.1 bar < py < 10 bar

Dump tank evacuated before test



The Aachen Shock Tunnel - TH2

initial conditions shock reservoir free stream
Pa T4 P1 Ms P2 Ps Ts Moo Too Uso Poo
[bar] K] [bar] [bar] [bar] K] K] [m/s] [mbar]
100 293 1.0 3.3 12 65 1500 7.7 125 1740 7.6
370 500 1.0 4.6 26 175 2500 7.4 250 2350 20.0
720 500 0.7 5.6 50 325 3650 6.8 460 3910 42.0
1200 500 0.6 6.8 50 560 4600 6.5 700 3400 73.0
100 293 0.9 3.4 12 65 1500 1.3 60 1780 0.6
450 500 1.2 4.9 29 225 2700 1.3 120 2480 1.5
1300 520 0.7 6.4 46 630 4600 121 220 3560 1.2
26 293 0.2 3.4 12 15 1500 1.4 60 1780 0.1
480 500 0.2 6.6 50 210 4600 11.0 270 3630 0.7
100 293 1.0 3.4 12 65 1500 7.7 130 1750 7.3
370 500 1.0 5.1 27 220 2700 7.3 280 2440 26.3




The Caltech Shock Tunnel - T5

Free-piston shock tunnel

Secondary Diaphragm

Piston

Primary Diaphragm

- -
/ / CT-8T Junction

Test Section Shock tube (8T) Compression Tube (CT) Secondary Reservoir (2R)




The Caltech Shock Tunnel - T5

» Compression tube (CT):
» length 30 m, diameter 300 mm
» free piston (120 kg)
» max piston velocity: 300 m/s
» driven by compressed air (80 bar - 150 bar)

» Shock tube (ST):
» length 12 m, diameter 90 mm
» driver gas: helium + argon
» driven gas: air
» diaphragm 1: 7 mm stainless steel
» pyg mMax 1300 bar



The Caltech Shock Tunnel - T5

Reservoir conditions:

ps 1000 bar
T5 10000 K

Freestream conditions (design conditions):
My, 5.2
T 2000 K
Poso 0.3 bar
typical test time 1 ms



Other Examples of Shock Tunnels
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Riemann Problem

The shock tube problem is a special case of the general Riemann Problem

”... A Riemann problem, named after Bernhard Riemann, consists of an
initial value problem composed by a conservation equation together with
plecewise constant data having a single discontinuity ...”

Wikipedia



Riemann Problem

May show that solutions to the shock tube problem have the general form:

p =p(x/t) where x = 0 denotes the position of the
p = p(x/t) initial jump between states 1 and 4
u=u(x/t)

T=Tkx/1)

a=a(x/t)



Riemann Problem - Shock Tube

Shock tube simulation:

» left side conditions (state 4):
> p=24kg/m?
» u=00m/s
» p=2.0bar

» right side conditions (state 1):
> p=12kg/m?
» u=0.0m/s
» p = 1.0 bar

» Numerical method
» Finite-Volume Method (FVM) solver
» three-stage Runge-Kutta time stepping
» third-order characteristic upwinding scheme
» local artificial damping
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Riemann Problem - Shock Tube

1.5

-10°
: : 100 F : — ‘ : :
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(x/t) x 107% (x/t) x 107% (x/t) x 1073

The solution can be made self similar by plotting the flow field variables as function of
X/t
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e

“It's time we face reality, my friend. ... We're not
exactly rocket scientists,”
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