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Chapter 7 - Unsteady Wave Motion
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Learning Outcomes

3 Describe typical engineering flow situations in which compressibility effects are

more or less predominant (e.g. Mach number regimes for steady-state flows)

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

j unsteady waves and discontinuities in 1D

k basic acoustics

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

11 Explain how the equations for aero-acoustics and classical acoustics are derived

as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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Motivation

Most practical flows are unsteady

Traveling waves appears in many real-life situations and is an important topic

within compressible flows

We will study unsteady flows in one dimension in order to reduce complexity

and focus on the physical effects introduced by the unsteadiness

Throughout this section, we will study an application called the shock tube,

which is a rather rare application but it lets us study unsteady waves in one

dimension and it includes all physical principles introduced in chapter 7
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

observer moving with the bullet

I steady-state flow
I the detached shock wave is

stationary

observer at rest

I unsteady flow
I detached shock wave moves

through the air (to the left)

detached shock
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Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

oblique stationary shock

normal shock advancing

through stagnant air

shock system becomes stationary

only for observer moving with the

object

for stationary observer, both object

and shock system are moving
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Unsteady Wave Motion - Example #2

Shock wave from explosion

I For observer at rest with respect to the surrounding air:

I the flow is unsteady

I the shock wave moves through the air
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Unsteady Wave Motion - Example #2

Shock wave from explosion

t = 0.0002 s t = 0.0036 s t = 0.0117 s t = 0.0212 s

t = 0.0308 s t = 0.0404 s t = 0.0499 s t = 0.0594 s

I normal shock moving spherically outwards

I Shock strength decreases with radius

I Shock speed decreases with radius
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Unsteady Wave Motion

inertial frames!

Physical laws are the same for both frame of references

Shock characteristics are the same for both observers (shape, strength, etc)
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Unsteady Wave Motion

Is there a connection with stationary shock waves?

Answer: Yes!

Locally, in a moving frame of reference, the shock may be viewed as a stationary

normal shock

Niklas Andersson - Chalmers 13 / 124



Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel


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Chapter 7.2

Moving Normal Shock Waves
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Moving Normal Shock Waves

Chapter 3: stationary normal shock

2 1

u2 u1

x
stationary normal shock

u1 > a1 (supersonic flow)

u2 < a2 (subsonic flow)

p2 > p1 (sudden compression)

s2 > s1 (shock loss)
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Moving Normal Shock Waves

2 1

observer
W

u2 u1

x
stationary normal shock

I Introduce observer moving to the left with speed W

I if W is constant the observer is still in an inertial system
I all physical laws are unchanged

I The observer sees a normal shock moving to the right with speed W

I gas velocity ahead of shock: u′1 = W − u1
I gas velocity behind shock: u′2 = W − u2

Niklas Andersson - Chalmers 17 / 124



Moving Normal Shock Waves

Now, let W = u1 ⇒

u′1 = 0

u′2 = u1 − u2 > 0

The observer now sees the shock traveling to the right with speed W = u1 into a

stagnant gas, leaving a compressed gas (p2 > p1) with velocity u
′
2 > 0 behind it

Introducing up:

up = u′2 = u1 − u2

Niklas Andersson - Chalmers 18 / 124



Moving Normal Shock Waves

2 1

stationary observer

u
′
2 = up > 0 u

′
1 = 0

x

W

moving normal shock

Analogy:

Case 1

I stationary normal shock
I observer moving with velocity W

Case 2

I normal shock moving with velocity W
I stationary observer
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Moving Normal Shock Waves - Governing Equations

2 1

stationary observer

u
′
2 = up > 0 u

′
1 = 0

x

W

moving normal shock

For stationary normal shocks we have: With (u1 = W) and (u2 = W − up) we
get:

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

ρ1W = ρ2(W − up)

ρ1W
2 + p1 = ρ2(W − up)

2 + p2

h1 +
1

2
W2 = h2 +

1

2
(W − up)

2
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Moving Normal Shock Waves - Relations

Starting from the governing equations

ρ1W = ρ2(W − up)

ρ1W
2 + p1 = ρ2(W − up)

2 + p2

h1 +
1

2
W2 = h2 +

1

2
(W − up)

2

and using h = e+
p

ρ

it is possible to show that

e2 − e1 =
p1 + p2

2

(
1

ρ1
+

1

ρ2

)
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Moving Normal Shock Waves - Relations

e2 − e1 =
p1 + p2

2

(
1

ρ1
+

1

ρ2

)

same Hugoniot equation as for stationary normal shock

This means that we will have same shock strength, i.e. same jumps in density,

velocity, pressure, etc

Niklas Andersson - Chalmers 22 / 124



Moving Normal Shock Waves - Relations

Starting from the Hugoniot equation one can show that

ρ2
ρ1

=

1 +
γ + 1

γ − 1

(
p2

p1

)
γ + 1

γ − 1
+

p2

p1

and

T2

T1
=

p2

p1


γ + 1

γ − 1
+

p2

p1

1 +
γ + 1

γ − 1

(
p2

p1

)

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Moving Normal Shock Waves - Relations

For calorically perfect gas and stationary normal shock:

p2

p1
= 1 +

2γ

γ + 1
(M2

s − 1)

same as eq. (3.57) in Anderson with M1 = Ms

where

Ms =
W

a1

I Ms is simply the speed of the shock (W ), traveling into the stagnant gas,
normalized by the speed of sound in this stagnant gas (a1)

I Ms > 1, otherwise there is no shock!
I shocks always moves faster than sound - no warning before it hits you ,
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Moving Normal Shock Waves - Relations

5 10 15 20
1

2

3

4

5

p2/p1

Ms

Incident shock Mach number (γ = 1.4)
p2

p1
= 1 +

2γ

γ + 1
(M2

s − 1)

Re-arrange ⇒

Ms =

√
γ + 1

2γ

(
p2

p1
− 1

)
+ 1

shock speed directly linked to pressure ratio

Ms =
W

a1
⇒ W = a1Ms = a1

√
γ + 1

2γ

(
p2

p1
− 1

)
+ 1
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Moving Normal Shock Waves - Relations

From the continuity equation we get:

up = W

(
1− ρ1

ρ2

)
> 0

After some derivation we obtain:

up =
a1

γ

(
p2

p1
− 1

)
2γ

γ + 1
p2

p1
+

γ − 1

γ + 1


1/2
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Moving Normal Shock Waves - Relations

Induced Mach number:

Mp =
up

a2
=

up

a1

a1

a2
=

up

a1

√
T1

T2

inserting up/a1 and T1/T2 from relations on previous slides we get:

Mp =
1

γ

(
p2

p1
− 1

)
2γ

γ + 1
γ − 1

γ + 1
+

p2

p1


1/2


1 +

(
γ + 1

γ − 1

)(
p2

p1

)
(
γ + 1

γ − 1

)(
p2

p1

)
+

(
p2

p1

)2


1/2
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Moving Normal Shock Waves - Relations

Note!

lim
p2
p1

→∞
Mp →

√
2

γ(γ − 1)

for air (γ = 1.4)

lim
p2
p1

→∞
Mp → 1.89

5 10 15 20
0

0.5

1

1.5

2

Mp = 1.89

p2/p1

Mp

Induced Mach number (γ = 1.4)
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Moving Normal Shock Waves - Relations

Moving normal shock with p2/p1 = 10

(p1 = 1.0 bar, T1 = 300 K, γ = 1.4)

⇒ Ms = 2.95 and W = 1024.2 m/s

The shock is advancing with almost three times the speed of sound!

Behind the shock the induced velocity is up = 756.2 m/s ⇒ supersonic flow

(a2 = 562.1 m/s)

May be calculated by formulas 7.13, 7.16, 7.10, 7.11 or by using Table A.2 for stationary normal shock (u1 = W , u2 = W − up )
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Moving Normal Shock Waves - Relations

Note! ho1 6= ho2

constant total enthalpy is only valid for stationary shocks!

shock is uniquely defined by pressure ratio p2/p1

u1 = 0

ho1 = h1 +
1

2
u21 = h1

ho2 = h2 +
1

2
u22

h2 > h1 ⇒ ho2 > ho1 2 4 6 8 10

1.2

1.4

1.6

1.8

2

p2/p1

γ

h2/h1 = T2/T1 (constant Cp)

1

1.5

2

2.5

3

3.5

4
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Moving Normal Shock Waves - Relations

Gas/Vapor Ratio of specific heats Gas constant

(γ) R

Acetylene 1.23 319

Air (standard) 1.40 287

Ammonia 1.31 530

Argon 1.67 208

Benzene 1.12 100

Butane 1.09 143

Carbon Dioxide 1.29 189

Carbon Disulphide 1.21 120

Carbon Monoxide 1.40 297

Chlorine 1.34 120

Ethane 1.19 276

Ethylene 1.24 296

Helium 1.67 2080

Hydrogen 1.41 4120

Hydrogen chloride 1.41 230

Methane 1.30 518

Natural Gas (Methane) 1.27 500

Nitric oxide 1.39 277

Nitrogen 1.40 297

Nitrous oxide 1.27 180

Oxygen 1.40 260

Propane 1.13 189

Steam (water) 1.32 462

Sulphur dioxide 1.29 130
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel




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Chapter 7.3

Reflected Shock Wave
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One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?
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Shock Reflection

x

t

1

5

2

3

initial moving shock,
dx

dt
= W

reflected shock,
dx

dt
= −Wr

contact surface,
dx

dt
= up

contact surface,
dx

dt
= 0

solid wall
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Shock Reflection - Particle Path

A fluid particle located at x0 at time t0 (a location ahead of the shock) will be affected

by the moving shock and follow the blue path

time location velocity

t0 x0 0
t1 x0 up
t2 x1 up
t3 x1 0

x

t

x0 x1
t0

t1

t2

t3
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Shock Reflection Relations

I velocity ahead of reflected shock: Wr + up

I velocity behind reflected shock: Wr

Continuity:

ρ2(Wr + up) = ρ5Wr

Momentum:

p2 + ρ2(Wr + up)
2 = p5 + ρ5W

2
r

Energy:

h2 +
1

2
(Wr + up)

2 = h5 +
1

2
W2

r

Niklas Andersson - Chalmers 37 / 124



Shock Reflection Relations

Reflected shock is determined such that u5 = 0

Mr

M2
r − 1

=
Ms

M2
s − 1

√
1 +

2(γ − 1)

(γ + 1)2
(M2

s − 1)

(
γ +

1

M2
s

)

where

Mr =
Wr + up

a2

Niklas Andersson - Chalmers 38 / 124



Tailored v.s. Non-Tailored Shock Reflection

I The time duration of condition 5 is determined by what happens after interaction

between reflected shock and contact discontinuity

I For special choice of initial conditions (tailored case), this interaction is negligible,

thus prolonging the duration of condition 5

Niklas Andersson - Chalmers 39 / 124



Tailored v.s. Non-Tailored Shock Reflection

5

1

2

3

t

x

wall

under-tailored

5

1

2

3

t

x

wall

tailored

5

1

2

3

t

x

wall

over-tailored

shock wave

contact surface

expansion wave

Under-tailored conditions:

Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored conditions
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Shock Reflection - Example

Shock reflection in shock tube (γ = 1.4)
(Example 7.1 in Anderson)

Incident shock (given data)

p2/p1 10.0

Ms 2.95

T2/T1 2.623

p1 1.0 [bar]

T1 300.0 [K]

Calculated data

Mr 2.09

p5/p2 4.978

T5/T2 1.77

p5 =

(
p5

p2

)(
p2

p1

)
p1 = 49.78

T5 =

(
T5

T2

)(
T2

T1

)
T1 = 1393
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Shock Reflection - Shock Tube

I Very high pressure and temperature conditions in a specified location with very

high precision (p5,T5)

I measurements of thermodynamic properties of various gases at extreme

conditions, e.g. dissociation energies, molecular relaxation times, etc.

I measurements of chemical reaction properties of various gas mixtures at extreme

conditions
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel






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The Shock Tube

Niklas Andersson - Chalmers 44 / 124



Shock Tube

p

x

p4

p1

4 1

diaphragm

diaphragm location

tube with closed ends

diaphragm inside, separating two differ-

ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by

inducing a breakdown) the two states

come into contact and a flow develops

assume that p4 > p1:

state 4 is ”driver” section

state 1 is ”driven” section
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Shock Tube

t

x

dx

dt
= W

dx

dt
= up

4

3 2

1

4 3 2 1

Wup

expansion fan contact discontinuity moving normal shock

diaphragm location

flow at some time after diaphragm

breakdown
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Shock Tube

p

x

p4

p3 p2

p1

(p3 = p2)

4 3 2 1

Wup

expansion fan contact discontinuity moving normal shock

diaphragm location

flow at some time after diaphragm

breakdown
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Shock Tube

I By using light gases for the driver section (e.g. He) and heavier gases for the

driven section (e.g. air) the pressure p4 required for a specific p2/p1 ratio is
significantly reduced

I If T4/T1 is increased, the pressure p4 required for a specific p2/p1 is also
reduced
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel






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Chapter 7.5

Elements of Acoustic Theory
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Sound Waves

I Weakest audible sound wave (0 dB): ∆p ∼0.00002 Pa
I Loud sound wave (94 dB): ∆p ∼1 Pa

I Threshold of pain (120 dB): ∆p ∼20 Pa

I Harmful sound wave (130 dB): ∆p ∼60 Pa

Example:

∆p ∼ 1 Pa gives ∆ρ ∼0.000009 kg/m3 and ∆u ∼0.0025 m/s
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Sound Waves

Schlieren flow visualization of self-sustained

oscillation of an under-expanded free jet

A. Hirschberg

”Introduction to aero-acoustics of internal flows”,

Advances in Aeroacoustics, VKI, 12-16 March

2001
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Sound Waves

Screeching rectangular supersonic jet
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Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in Chapter 6:

conservation form non-conservation form

mass
∂ρ

∂t
+ ∇ · (ρv) = 0

Dρ

Dt
+ ρ(∇ · v) = 0

momentum
∂

∂t
(ρv) + ∇ · (ρvv + pI) = 0 ρ

Dv
Dt

+ ∇p = 0
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Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds

Dt
= 0

Assume one-dimensional flow

ρ = ρ(x, t)
v = u(x, t)ex
p = p(x, t)
...

 ⇒

continuity
∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

momentum ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0

s=constant

can
∂p

∂x
be expressed in terms of density?
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Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any tow

other state variables

p = p(ρ, s) ⇒ dp =

(
∂p

∂ρ

)
s

dρ+

(
∂p

∂s

)
ρ

ds

s=constant gives

dp =

(
∂p

∂ρ

)
s

dρ = a2dρ

⇒


∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

ρ
∂u

∂t
+ ρu

∂u

∂x
+ a2

∂ρ

∂x
= 0
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Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

ρ = ρ∞ + ∆ρ p = p∞ + ∆p T = T∞ + ∆T u = u∞ + ∆u = {u∞ = 0} = ∆u

where ρ∞, p∞, and T∞ are constant

Now, insert ρ = (ρ∞ +∆ρ) and u = ∆u in the continuity and momentum equations

(derivatives of ρ∞ are zero)

⇒


∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) + a

2 ∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable ⇒ a2 = a2(ρ, s). With entropy

constant ⇒ a2 = a2(ρ)

Taylor expansion around a∞ with (∆ρ = ρ− ρ∞) gives

a2 = a2∞ +

(
∂

∂ρ
(a2)

)
∞
∆ρ+

1

2

(
∂2

∂ρ2
(a2)

)
∞
(∆ρ)2 + ...

⇒



∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) +

[
a
2
∞ +

(
∂

∂ρ
(a

2
)

)
∞

∆ρ + ...

]
∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory - Acoustic Equations

Since ∆ρ and ∆u are assumed to be small (∆ρ � ρ∞, ∆u � a)

I products of perturbations can be neglected

I higher-order terms in the Taylor expansion can be neglected

⇒


∂

∂t
(∆ρ) + ρ∞

∂

∂x
(∆u) = 0

ρ∞
∂

∂t
(∆u) + a2∞

∂

∂x
(∆ρ) = 0

Note! Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear
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Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage of a sound wave ...”
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Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

∂2

∂t2
(∆ρ) = a2∞

∂2

∂x2
(∆ρ)

(combine the time derivative of the continuity eqn. and the divergence of the momentum eqn.)

General solution:

∆ρ(x, t) = F(x − a∞t) + G(x + a∞t)

wave traveling in

positive x-direction

with speed a∞

wave traveling in

negative x-direction

with speed a∞

F and G may be arbitrary functions

Wave shape is determined by functions F and G
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Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to


∂F

∂t
=

∂F

∂(x − a∞t)

∂(x − a∞t)

∂t
= −a∞F ′

∂F

∂x
=

∂F

∂(x − a∞t)

∂(x − a∞t)

∂x
= F ′

spatial and temporal derivatives of G can of course be obtained in the same way...
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Elements of Acoustic Theory - Wave Equation

with ∆ρ(x, t) = F(x − a∞t) + G(x + a∞t) and the derivatives of F and G we get

∂2

∂t2
(∆ρ) = a2∞F ′′ + a2∞G′′

and

∂2

∂x2
(∆ρ) = F ′′ +G′′

which gives

∂2

∂t2
(∆ρ)− a2∞

∂2

∂x2
(∆ρ) = 0

i.e., the proposed solution fulfils the wave equation
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Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

∆ρ(x, t) = F(x − a∞t)

If ∆ρ is constant (constant wave amplitude), (x − a∞t) must be a constant which
implies

x = a∞t + c

where c is a constant

dx

dt
= a∞
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Elements of Acoustic Theory - Wave Equation

We want a relation between ∆ρ and ∆u

∆ρ(x, t) = F(x − a∞t) (wave in positive x direction) gives:

∂

∂t
(∆ρ) = −a∞F ′

and

∂

∂x
(∆ρ) = F ′

∂

∂t
(∆ρ)︸ ︷︷ ︸

−a∞F ′

+a∞
∂

∂x
(∆ρ)︸ ︷︷ ︸
F ′

= 0

or

∂

∂x
(∆ρ) = − 1

a∞

∂

∂t
(∆ρ)
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Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

ρ∞
∂

∂t
(∆u) = −a2∞

∂

∂x
(∆ρ) ⇒

∂

∂t
(∆u) = −a2∞

ρ∞

∂

∂x
(∆ρ) =

{
∂

∂x
(∆ρ) = − 1

a∞

∂

∂t
(∆ρ)

}
=

a∞
ρ∞

∂

∂t
(∆ρ)

∂

∂t

(
∆u− a∞

ρ∞
∆ρ

)
= 0 ⇒ ∆u− a∞

ρ∞
∆ρ = const

In undisturbed gas ∆u = ∆ρ = 0 which implies that the constant must be zero and
thus

∆u =
a∞
ρ∞

∆ρ
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Elements of Acoustic Theory - Wave Equation

Similarly, for ∆ρ(x, t) = G(x + a∞t) (wave in negative x direction) we obtain:

∆u = −a∞
ρ∞

∆ρ

Also, since ∆p = a2∞∆ρ we get:

Right going wave (+x direction) ∆u =
a∞
ρ∞

∆ρ =
1

a∞ρ∞
∆p

Left going wave (-x direction) ∆u = −a∞
ρ∞

∆ρ = − 1

a∞ρ∞
∆p
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Elements of Acoustic Theory - Wave Equation

I ∆u denotes induced mass motion and is positive in the positive x-direction

∆u = ±a∞∆ρ

ρ∞
= ± ∆p

a∞ρ∞

I condensation (the part of the sound wave where ∆ρ > 0):
∆u is always in the same direction as the wave motion

I rarefaction (the part of the sound wave where ∆ρ < 0):
∆u is always in the opposite direction as the wave motion
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Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

∂2

∂t2
(∆ρ) = a2∞

∂2

∂x2
(∆ρ)

I Due to the assumptions made, the equation is not exact

I More and more accurate as the perturbations becomes smaller and smaller

I How should we describe waves with larger amplitudes?
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel










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Chapter 7.6

Finite (Non-Linear) Waves
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Finite (Non-Linear) Waves

When ∆ρ, ∆u, ∆p, ... Become large, the linearized acoustic equations become

poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0
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Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

∂ρ

∂t
=

(
∂ρ

∂p

)
s

∂p

∂t
=

1

a2
∂p

∂t

∂ρ

∂x
=

(
∂ρ

∂p

)
s

∂p

∂x
=

1

a2
∂p

∂x

Inserted in the continuity equation this gives:

∂p

∂t
+ u

∂p

∂x
+ ρa2

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0
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Finite (Non-Linear) Waves

Add 1/(ρa) times the continuity equation to the momentum equation:

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0

If we instead subtraction 1/(ρa) times the continuity equation from the momentum

equation, we get:

[
∂u

∂t
+ (u− a)

∂u

∂x

]
− 1

ρa

[
∂p

∂t
+ (u− a)

∂p

∂x

]
= 0
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Finite (Non-Linear) Waves

Since u = u(x, t), we have:

du =
∂u

∂t
dt +

∂u

∂x
dx =

∂u

∂t
dt +

∂u

∂x

dx

dt
dt

Let
dx

dt
= u+ a gives

du =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt

Interpretation: change of u in the direction of line
dx

dt
= u+ a
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Finite (Non-Linear) Waves

In the same way we get:

dp =
∂p

∂t
dt +

∂p

∂x

dx

dt
dt

and thus

dp =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt

Niklas Andersson - Chalmers 74 / 124



Finite (Non-Linear) Waves

Now, if we combine[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0

du =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt

dp =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt

we get

du

dt
+

1

ρa

dp

dt
= 0
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Characteristic Lines

Thus, along a line dx = (u+ a)dt we have

du+
dp

ρa
= 0

In the same way we get along a line where dx = (u− a)dt

du− dp

ρa
= 0
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Characteristic Lines

I We have found a path through a point (x1, t1) along which the governing partial
differential equations reduces to ordinary differential equations

I These paths or lines are called characteristic lines

I The C+ and C− characteristic lines are physically the paths of right- and

left-running sound waves in the xt-plane
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Characteristic Lines

x

t

x1

t1

C
−

characteristic line:
dx

dt
= u − a

compatibility equation: du −
dp

ρa
= 0

C
+

characteristic line:
dx

dt
= u + a

compatibility equation: du +
dp

ρa
= 0
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Characteristic Lines - Summary

du

dt
+

1

ρa

dp

dt
= 0 along C+ characteristic

du

dt
− 1

ρa

dp

dt
= 0 along C− characteristic

du+
dp

ρa
= 0 along C+ characteristic

du− dp

ρa
= 0 along C− characteristic
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Riemann Invariants

Integration gives:

J+ = u+

ˆ
dp

ρa
= constant along C+ characteristic

J− = u−
ˆ

dp

ρa
= constant along C− characteristic

We need to rewrite
dp

ρa
to be able to perform the integrations

Niklas Andersson - Chalmers 80 / 124



Riemann Invariants

Let’s consider an isentropic processes:

p = c1T
γ/(γ−1) = c2a

2γ/(γ−1)

where c1 and c2 are constants and thus

dp = c2

(
2γ

γ − 1

)
a[2γ/(γ−1)−1]da

Assume calorically perfect gas: a2 =
γp

ρ
⇒ ρ =

γp

a2

with p = c2a
2γ/(γ−1) we get ρ = c2γa

[2γ/(γ−1)−2]
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Riemann Invariants

J+ = u+

ˆ
dp

ρa
= u+

ˆ c2

(
2γ
γ−1

)
a[2γ/(γ−1)−1]

c2γa[2γ/(γ−1)−1]
da = u+

ˆ
2da

γ − 1

J+ = u+
2a

γ − 1

J− = u− 2a

γ − 1
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Riemann Invariants

If J+ and J− are known at some point (x, t), then


J+ + J− = 2u

J+ − J− =
4a

γ − 1

⇒


u =

1

2
(J+ + J−)

a =
γ − 1

4
(J+ − J−)

Flow state is uniquely defined!
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Method of Characteristics

t

x

tn

tn+1

flow state known

here

flow state may be

computed here

J
−

J
+

J
−

J
+

J
−

J
+

J
−

J
+

transfer J
+

along C
+

characteristics, and vice versa
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Summary

Acoustic waves

I ∆ρ, ∆u, etc - very small

I All parts of the wave propagate with

the same velocity a∞

I The wave shape stays the same

I The flow is governed by linear

relations

Finite (non-linear) waves

I ∆ρ, ∆u, etc - can be large

I Each local part of the wave

propagates at the local velocity

(u+ a)

I The wave shape changes with time

I The flow is governed by non-linear

relations
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One-Dimensional Flow with Friction

the method of characteristics is a central element in classic compressible flow theory
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel












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Chapter 7.7

Incident and Reflected Expansion

Waves
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Expansion Waves

reflected expansion fan

incident shock wave

reflected shock wave

contact surface

1

2

3

4

5

t

x

4 1

driver section driven section

diaphragm location wall
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Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C− characteristics

2. The wave head is propagating into region 4 (high pressure)

3. The wave tail defines the limit of region 3 (lower pressure)

4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

J+ = u+
2a

γ − 1
is constant along C+ lines

J− = u− 2a

γ − 1
is constant along C− lines
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Expansion Waves

x

t

C
−
C
−

C
−

C
−

4

3
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Expansion Waves

x

t

C
−
C
−

C
−

C
−

C
+

C
+

C
+

C
+

C
+

C
+

4

3
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Expansion Waves

β

β

β

x

t

a

c

e

b

d

fC
−
C
−

C
−

C
−

C
+

C
+

C
+

C
+

C
+

C
+

4

3

α α α

constant flow properties in region 4: J
+
a = J

+
b

J
+

invariants constant along C
+

characteristics:

J
+
a = J

+
c = J

+
e

J
+
b

= J
+
d

= J
+
f

since J
+
a = J

+
b

this also implies J
+
e = J

+
f

J
−

invariants constant along C
−

characteristics:

J
−
c = J

−
d

J
−
e = J

−
f
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Expansion Waves

β

β

β

x

t

a

c

e

b

d

fC
−
C
−

C
−

C
−

C
+

C
+

C
+

C
+

C
+

C
+

4

3

α α α

constant flow properties in region 4: J
+
a = J

+
b

J
+

invariants constant along C
+

characteristics:

J
+
a = J

+
c = J

+
e

J
+
b

= J
+
d

= J
+
f

since J
+
a = J

+
b

this also implies J
+
e = J

+
f

J
−

invariants constant along C
−

characteristics:

J
−
c = J

−
d

J
−
e = J

−
f

ue =
1

2
(J

+
e + J

−
e ), uf =

1

2
(J

+
f

+ J
−
f

), ⇒ ue = uf

ae =
γ − 1

4
(J

+
e − J

−
e ), af =

γ − 1

4
(J

+
f

− J
−
f

), ⇒ ae = af
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Expansion Waves

Along each C− line u and a are constants which means that

dx

dt
= u− a = const

C− characteristics are straight lines in xt-space
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Expansion Waves

The start and end conditions are the same for all C+ lines

J+ invariants have the same value for all C+ characteristics

C− characteristics are straight lines in xt-space

Simple expansion waves centered at (x, t) = (0, 0)
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Expansion Waves

In a left-running expansion fan:

I J+ is constant throughout expansion fan, which implies:

u+
2a

γ − 1
= u4 +

2a4
γ − 1

= u3 +
2a3
γ − 1

I J− is constant along C− lines, but varies from one line to the next, which means

that

u− 2a

γ − 1

is constant along each C− line
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Expansion Waves

Since u4 = 0 we obtain:

u+
2a

γ − 1
= u4 +

2a4
γ − 1

=
2a4
γ − 1

⇒

a

a4
= 1− 1

2
(γ − 1)

u

a4

with a =
√

γRT we get

T

T4
=

[
1− 1

2
(γ − 1)

u

a4

]2
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Expansion Wave Relations

Isentropic flow ⇒ we can use the isentropic relations

complete description in terms of u/a4

T

T4
=

[
1− 1

2
(γ − 1)

u

a4

]2

p

p4
=

[
1− 1

2
(γ − 1)

u

a4

] 2γ
γ−1

ρ

ρ4
=

[
1− 1

2
(γ − 1)

u

a4

] 2
γ−1
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Expansion Wave Relations

Since C− characteristics are straight lines, we have:

dx

dt
= u− a ⇒ x = (u− a)t

a

a4
= 1− 1

2
(γ − 1)

u

a4
⇒ a = a4 −

1

2
(γ − 1)u ⇒

x =

[
u− a4 +

1

2
(γ − 1)u

]
t =

[
1

2
(γ − 1)u− a4

]
t ⇒

u =
2

γ + 1

[
a4 +

x

t

]
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Expansion Wave Relations

u

x

u4 = 0

u3

expansion wave

p

x

p4

p3

expansion wave

I Expansion wave head is advancing to the left with

speed a4 into the stagnant gas

I Expansion wave tail is advancing with speed

u3 − a3, which may be positive or negative,

depending on the initial states
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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
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Chapter 7.8

Shock Tube Relations
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Shock Tube Relations

up = u2 =
a1

γ

(
p2

p1
− 1

)
2γ1

γ1 + 1
p2

p1
+

γ1 − 1

γ1 + 1


1/2

p3

p4
=

[
1− γ4 − 1

2

(
u3

a4

)]2γ4/(γ4−1)

solving for u3 gives

u3 =
2a4

γ4 − 1

[
1−

(
p3

p4

)(γ4−1)/(2γ4)
]
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Shock Tube Relations

But, p3 = p2 and u3 = u2 (no change in velocity and pressure over contact

discontinuity)

⇒ u2 =
2a4

γ4 − 1

[
1−

(
p2

p4

)(γ4−1)/(2γ4)
]

We have now two expressions for u2 which gives us

a1

γ

(
p2

p1
− 1

)
2γ1

γ1 + 1
p2

p1
+

γ1 − 1

γ1 + 1


1/2

=
2a4

γ4 − 1

[
1−

(
p2

p4

)(γ4−1)/(2γ4)
]

Niklas Andersson - Chalmers 102 / 124



Shock Tube Relations

Rearranging gives:

p4

p1
=

p2

p1

{
1− (γ4 − 1)(a1/a4)(p2/p1 − 1)√

2γ1 [2γ1 + (γ1 + 1)(p2/p1 − 1)]

}−2γ4/(γ4−1)

I p2/p1 as implicit function of p4/p1

I for a given p4/p1, p2/p1 will increase with decreased a1/a4

a =
√

γRT =
√
γ(Ru/M)T

I the speed of sound in a light gas is higher than in a heavy gas

I driver gas: low molecular weight, high temperature
I driven gas: high molecular weight, low temperature
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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Shock Tunnel

I Addition of a convergent-divergent nozzle to a shock tube configuration

I Capable of producing flow conditions which are close to those during the
reentry of a space vehicles into the earth’s atmosphere

I high-enthalpy, hypersonic flows (short time)
I real gas effects

I Example - Aachen TH2:

I velocities up to 4 km/s
I stagnation temperatures of several thousand degrees
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Shock Tunnel

driver section driven section

test section

dump tank

Wr

diaphragm 2diaphragm 1

reflected shock

test object

1. High pressure in region 4 (driver section)
I diaphragm 1 burst
I primary shock generated

2. Primary shock reaches end of shock tube
I shock reflection

3. High pressure in region 5
I diaphragm 2 burst
I nozzle flow initiated
I hypersonic flow in test section
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Shock Tunnel

reflected expansion fan

incident shock wave

reflected shock wave

contact surface

1

2

3

4

5

t

x

4 1

driver section driven section

diaphragm location wall
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Shock Tunnel

By adding a compression tube to the shock tube a very high p4 and T4 may be

achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

pressurized air
driver gas

p, T

driven gas

p1, T1

pressurized air
driver gas

p4, T4

driven gas

p1, T1
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The Aachen Shock Tunnel - TH2

Shock tunnel built 1975

nozzle

end of shock tube

inspection window
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The Aachen Shock Tunnel - TH2

Shock tube specifications:

diameter 140 mm

driver section 6.0 m

driven section 15.4 m

diaphragm 1 10 mm stainless steel

diaphragm 2 copper/brass sheet

max operating (steady) pressure 1500 bar
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The Aachen Shock Tunnel - TH2

I Driver gas (usually helium):

I 100 bar < p4 < 1500 bar
I electrical preheating (optional) to 600 K

I Driven gas:

I 0.1 bar < p1 < 10 bar

I Dump tank evacuated before test

Niklas Andersson - Chalmers 111 / 124



The Aachen Shock Tunnel - TH2

initial conditions shock reservoir free stream

p4 T4 p1 Ms p2 p5 T5 M∞ T∞ u∞ p∞
[bar] [K] [bar] [bar] [bar] [K] [K] [m/s] [mbar]

100 293 1.0 3.3 12 65 1500 7.7 125 1740 7.6

370 500 1.0 4.6 26 175 2500 7.4 250 2350 20.0

720 500 0.7 5.6 50 325 3650 6.8 460 3910 42.0

1200 500 0.6 6.8 50 560 4600 6.5 700 3400 73.0

100 293 0.9 3.4 12 65 1500 11.3 60 1780 0.6

450 500 1.2 4.9 29 225 2700 11.3 120 2480 1.5

1300 520 0.7 6.4 46 630 4600 12.1 220 3560 1.2

26 293 0.2 3.4 12 15 1500 11.4 60 1780 0.1

480 500 0.2 6.6 50 210 4600 11.0 270 3630 0.7

100 293 1.0 3.4 12 65 1500 7.7 130 1750 7.3

370 500 1.0 5.1 27 220 2700 7.3 280 2440 26.3
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The Caltech Shock Tunnel - T5

Free-piston shock tunnel
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The Caltech Shock Tunnel - T5

I Compression tube (CT):

I length 30 m, diameter 300 mm
I free piston (120 kg)
I max piston velocity: 300 m/s
I driven by compressed air (80 bar - 150 bar)

I Shock tube (ST):

I length 12 m, diameter 90 mm
I driver gas: helium + argon
I driven gas: air
I diaphragm 1: 7 mm stainless steel
I p4 max 1300 bar
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The Caltech Shock Tunnel - T5

I Reservoir conditions:

I p5 1000 bar
I T5 10000 K

I Freestream conditions (design conditions):

I M∞ 5.2
I T∞ 2000 K
I p∞ 0.3 bar
I typical test time 1 ms
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Other Examples of Shock Tunnels
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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
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Riemann Problem

The shock tube problem is a special case of the general Riemann Problem

”... A Riemann problem, named after Bernhard Riemann, consists of an

initial value problem composed by a conservation equation together with

piecewise constant data having a single discontinuity ...”

Wikipedia

Niklas Andersson - Chalmers 118 / 124



Riemann Problem

May show that solutions to the shock tube problem have the general form:

p = p(x/t)

ρ = ρ(x/t)

u = u(x/t)

T = T(x/t)

a = a(x/t)

where x = 0 denotes the position of the
initial jump between states 1 and 4
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Riemann Problem - Shock Tube

Shock tube simulation:

I left side conditions (state 4):
I ρ = 2.4 kg/m3

I u = 0.0 m/s
I p = 2.0 bar

I right side conditions (state 1):
I ρ = 1.2 kg/m3

I u = 0.0 m/s
I p = 1.0 bar

I Numerical method
I Finite-Volume Method (FVM) solver
I three-stage Runge-Kutta time stepping
I third-order characteristic upwinding scheme
I local artificial damping
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incident shock
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incident shock

contact discontinuity
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incident shock

contact discontinuity

expansion wave
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Riemann Problem - Shock Tube
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The solution can be made self similar by plotting the flow field variables as function of

x/t
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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