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Compressible Flow

"Compressible flow (gas dynamics) is a branch of fluid mechanics that
deals with flows having significant changes in fluid density”

Wikipedia



Gas Dynamics

”... the study of motion of gases and its effects on physical systems ...”
”... based on the principles of fluid mechanics and thermodynamics ...”

”... gases flowing around or within physical objects at speeds comparable
fo the speed of sound ...”

Wikipedia
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Learning Outcomes

1 Define the concept of compressibility for flows

2 Explain how to find out if a given flow is subject to significant compressibility
effects

3 Describe typical engineering flow situations in which compressibility effects are
more or less predominant (e.g. Mach number regimes for steady-state flows)

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases

in this lecture we will find out what compressibility means and do a brief review
of thermodynamics
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Applications - Classical

v

Treatment of calorically perfect gas

Exact solutions of inviscid flow in 1D

Shock-expansion theory for steady-state 2D flow

Approximate closed form solutions to linearized equations in 2D and 3D

Method of Characteristics (MOC) in 2D and axi-symmetric inviscid supersonic
flows

v

v

v

v



Applications - Modern

» Computational Fluid Dynamics (CFD)
» Complex geometries (including moving boundaries)

» Complex flow features (compression shocks, expansion waves, contact
discontinuities)

» Viscous effects

» Turbulence modeling

» High temperature effects (molecular vibration, dissociation, ionization)
» Chemically reacting flow (equilibrium & non-equilibrium reactions)



Applications - Examples

Turbo-machinery flows:
Gas turbines, steam turbines, compressors
Aero engines (turbojets, turbofans, turboprops)

Aeroacoustics:
Flow induced noise (jets, wakes, moving surfaces)
Sound propagation in high speed flows

External flows:
Aircraft (airplanes, helicopters)
Space launchers (rockets, re-entry vehicles)

Internall flows:
Nozzle flows
Inlet flows, diffusers
Gas pipelines (natural gas, bio gas)

Free-shear flows:
High speed jets

Combustion:
Internal combustion engines (valve flow, in-cylinder flow, exhaust pipe flow, mufflers)
Combustion induced noise (turbulent combustion)
Combustion instabilities



Applications - Stirling Engine
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Applications - Siemens GT750




Applications - Rolls-Royce Trent XWB




Applications - Airbus A380




Applications - Vulcain Nozzle
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Historical Milestones

1893 C.G.P. de Laval, first steam turbine with supersonic
nozzles (convergent-divergent). At this time, the
significance was not fully understood, but it worked!

1947 Charles Yeager, flew first supersonic aircraft (XS-1),
M 1.06




Historical Milestones - C.G.P. de Laval (1893)




Historical Milestones - Charles Yeager (1947)




Modern Compressible Flow

Screeching rectangular supersonic jet
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Chapter 1.2
Compressibility



Compressibility

owdp’ T p

Not really precisel!

Is T held constant during the compression or not”?




Compressibility

Two fundamental cases:

Constant temperature

Heat is cooled off to keep T constant inside the cylinder
The piston is moved slowly

Adiabatic process

Thermal insulation prevents heat exchange
The piston is moved fairly rapidly (gives negligible flow losses)



Compressibility

Isothermal process:

Adiabatic reversible (isentropic) process:
__L(ov
=T op /s

Air at normal conditions: 7~ 1.0x107°  [m?*/N]
Water at normal conditions: 77 ~ 5.0 x 1071%  [m?/N)|



Compressibility

- _lov where v = E and thus
v op P

o, 0 (YN __ (1) _lop
P \p) TP\ o




Compressibility

Definition of compressible flow:

If p changes with amount Ap over a characteristic length scale of the flow, such
that the corresponding change in density, given by Ap ~ pTA p, is too large to be
neglected, the flow is compressible (typically, if Ap/p > 0.05)

Note! Bernoulli's equation is restricted to incompressible flow, i.e. it is not valid for
compressible flow!
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Chapter 1.3
Flow Regimes



Flow Regimes

The freestream Mach number is defined as

Uso
oo

My =

where Uy, is the freestream flow speed and a. is the speed of sound at freestream
conditions



Flow Regimes

Assume incompressible flow and estimate the maximum pressure difference using

1 2

For air at normal conditions we have

1(8;)) 1
T = — —_— = — =
"Tp\ao); PRT

(ideal gas law for perfect gas p = pRT)

Tl



Flow Regimes

Using the relations on previous slide we get

1
2
Ap 11 5 §pOOUoo
p Pooc 2 PoofiT oo

for a calorically perfect gas we have a = \/yRT

A U?
which gives us 2P ee
p  2a%

now, using the definition of Mach number we get:

Ap T

—_—— N

2
p 2%




Flow Regimes

Incompressible Mo < 0.1

Subsonic Mo < 1 and M < 1 everywhere

Transonic case 1: My, < 1and M > 1 locally

case 2: My, > 1and M < 1 locally

Supersonic Mo > 1 and M > 1 everywhere

Local Mach number M is based on local flow speed, U = |U|, and local speed of sound, a

Compressible
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Chapter 1.5
Aerodynamic Forces



Aerodynamic Forces

Q) region occupied by body
0 surface of body
n  outward facing unit normal vector




Aerodynamic Forces

Overall forces on the body du to the flow

F = ﬁ(—pn—i-T -n)dS

where p is static pressure and 7 is a stress tensor



Aerodynamic Forces

Drag is the component of F' which is parallel with the freestream direction:

where Dy, is drag due to pressure and Dy is drag due to friction

Lift is the component of F which is normal to the free stream direction:

L=Lp+Ls
(L is usually negligible)



Aerodynamic Forces

Inviscid flow around slender body (attached flow)

subsonic flow: D =0
transonic or supersonic flow: D > 0

Explanation: Wave drag



Aerodynamic Forces

» Wave drag is an inviscid phenomena, connected to the formation of
compression shocks and entropy increase

» Viscous effects are present in all Mach regimes

» At transonic and supersonic conditions a particular phenomena named
"shock/boundary-layer interaction” may appear
» shocks trigger flow separation
» usually leads to unsteady flow
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Chapter 1.4
Review of Thermodynamics



Thermodynamic Review

Compressible flow:

i

¥ strong interaction between flow and thermodynamics ...



Perfect Gas

All intermolecular forces negligible

Only elastic collitions between molecules

pv=RTor? —RT
p

where R is the gas constant [R] = J/kgK

Also, R = Ryniv/M where M is the molecular weight of gas molecules (in
kg/kmol) and R, = 8314 J /kmol K



Internal Energy and Enthalpy

Internal energy e ([e] = J/kg)

Enthalpy h ([h] = J/k9)

h=e+pr=e+ P (valid for all gases)
p

For any gas in thermodynamic equilibrium, e and h are functions of only two
thermodynamic variables (any two variables may be selected) e.g.

e =e(T,p) orh = h(T,p)



Internal Energy and Enthalpy

Special cases:

Thermally perfect gas:

e=¢e(T)andh=nh(T)

OK assumption for air at near atmospheric conditions and 100K < T < 2500K
Calorically perfect gas:

e=C,T andh =C,T (Cy, and C, are constants)

OK assumption for air at near atmospheric pressure and 100K < T < 1000K



Specific Heat

For thermally perfect (and calorically perfect) gas

oh oe
%=(o7), o= (),

sinceh =e+p/p=e+ RT we obtain:

The ratio of specific heats, +, is defined as:

'YECV



Specific Heat

Important!

calorically perfect gas:

Cy, Cp, and y are constants

thermally perfect gas:

Cy, Cpy, and « will depend on temperature



Specific Heat

Cp_C\/:FI)




Specific Heat

divide by C, divide by Cp




Specific Heat

CP_CV:R

divide by C,

C,O_CV:R

divide by C,



Specific Heat

Cp_CV:R

divide by C,

Cp_CV:R

divide by C,,



Specific Heat

Cp—CV:R

divide by C,

Cp_CV:R

divide by Cp

valid for both thermally perfect and calorically perfect gas!
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First Law of Thermodynamics

A fixed mass of gas, separated from its surroundings by an imaginary flexible
boundary, is defined as a "system”. This system obeys the relation

de = 6q — ow
where

de is a change in internal energy of system
6q is heat added to the system
ow is work done by the system (on its surroundings)

Note! de only depends on starting point and end point of the process while ég and
ow depend on the actual process also



First Law of Thermodynamics

Examples:

Adiabatic process:
6qg = 0.

Reversible process:
no dissipative phenomena (no flow losses)

Isentropic process:
a process which is both adiabatic and reversible



First Law of Thermodynamics

Reversible process:

ow = pdv = pd(1/p)
de = 6q — pd(1/p)
Adiabatic & reversible process:

6q = 0.

de = —pd(1/p)



Entropy

Entropy s is a property of all gases, uniquely defined by any two thermodynamic
variables, e.g.

s=s(p,T)ors=s(p,T)ors=s(p,p)ors=s(eh)or...



Second Law of Thermodynamics

Concept of entropy s:

5 0
= 2rev _ %9 4 gs; where ds; > 0. and thus

@S=—F =7




Second Law of Thermodynamics

Concept of entropy s:

5 0
= 2rev _ %9 4 gs; where ds; > 0. and thus

@S=—F =7 ;

1 L,S+ds
{ o } 5o

(8Q)rev

14



Second Law of Thermodynamics

In general:

For adiabatic processes:

as > 0.



Second Law of Thermodynamics

“In this house, we obey the laws of
thermodynamics!”

Homer Simpson, after Lisa constructs a perpetual motion machine whose energy increases with time




Calculation of Entropy

For reversible processes (dw = pd(1/p) and dq = Tds):
1 1
de = Tds — pd <p> < Tds = de + pd <p>

from before we have h=e +p/p =

1
dh = de + pd <1> + (1>dp©dedh—,od <1> — <> dp
p p P P



Calculation of Entropy

For thermally perfect gases, p = pRT and dh = CpdT = ds = Cpﬂ — Rd—p

T p

Integration from starting point (1) to end point (2) gives:

2 .dT <D2>
Sy — 8] = Co— —RIn|=—=
o /1 T p1

and for calorically perfect gases

B To P2
So — 81 —Cp1n<7_1> —RIn (,Ol>




Calculation of Entropy

If we instead use de = C,dT we get

for thermally perfect gases

and for calorically perfect gases

SQ—Sl—CV1n<

2
Ty

)

)
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Isentropic Relations

For calorically perfect gases, we have

82—81Cp1n<7-2> —F?ln(
T

P2

)

For adiabatic reversible processes:

ds_O.éslsgéCpln<

7)o

p2\ _Co, (T2
" <,01) \UIR ln(71>

2
1

P1



Isentropic Relations

with &2 — __Cp v

R Co—-C, -1

p2
P1

I




Isentropic Relations

T
Alternatively, using s —s1 =0 =Cy In (2> — Rln <p2> =
T P1

P2

1
B <T2>wl
p1 \T1




Isentropic Relations - Summary

For an isentropic process and a calorically perfect gas we have

() -
P1 p1 Ty

A.K.A. the isentropic relations
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THE SECOND LA OF THERMODYWAMICS STATES
THAT A ROBOT MUST NOT INCREASE. ENTROPY,
UNLESS THIS (ONFUCTS WITH THE. FIRST LAW.

CLOSE ENOUGH.

T
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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations
7 Explain why entropy is important for flow discontinuities

equations, equations and more equations
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Motivation

We need to formulate the basic form of the governing equations for compressible
flow before we get to the applications
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Integral Forms of the Conservation Equations

Conservation principles:

conservation of mass
conservation of momentum (Newton'’s second law)

conservation of energy (first law of thermodynamics)



Integral Forms of the Conservation Equations

The control volume approach:

Notation:

Q. fixed control volume

0f): boundary of

n: outward facing unit normal vector
v: fluid velocity

v =|v|




Roadmap - Integral Relations

Conservation equations
on integral form

t

Conservation of energy

i

[ Conservation of momentum ]

]—»[ Control volume example ]

t

Conservation of mass ]4—[ ConMIume ]




Chapter 2.3
Continuity Equation



Continuity Equation

Conservation of mass:

%JIJipd”f/—k@pv-ndS:O
Q o0

rate of change of net mass flow out
total mass in 2 from €

Note! notation in the text book n - dS = dS



Conservation of Mass
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Chapter 2.4
Momentum Equation



Momentum Equation

Conservation of momentum:

% Hf pva¥ + @5 [p(v -n)v + pn]dS = Hf pfd ¥
Q o0 o

net momentum flow out from rate of momentum
Q plus surface force on 9Q2 generation due to
due to pressure forces inside

rate of change of total
momentum in

Note! friction forces due to viscosity are not included here. To account for these
forces, the term —(7 - n) must be added to the surface integral term.
The body force, f, is force per unit mass.



Newton

owWn

1. Explain Newtons First
Law of Motion in your

Nakke Foob MoG. GRuG
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Chapter 2.5
Energy Equation



Energy Equation
Conservation of energy:

%Hf peod ¥ + @S [0€0(v - 1) +pv - n]dS = ﬂf pl-vay
0 0 2

rate of change of total
internal energy in €

net flow of total internal energy
out from € plus work due to
surface pressure on 92

work due to forces
inside 2

where

1 1,
pPEo = p e+§V-V =p e+§v

is the total internal energy



Energy Equation

The surface integral term may be rewritten as follows:

Sﬁﬁ [p<e+;v2> (v-n)—i—pv-n] ds

o0

&
g [,0 <e+ '(; + ;VQ) (v n)} ds
&



Energy Equation

Introducing total enthalpy

1
hO:h+§V2

we get

% {[] peoa? + {J lohov -] aS = [[{ p-var
@ Ele! )



Energy Equation

Note 1: to include friction work on 052, the energy equation is extended as

i ffjpeod”f/%—@ [phov - n—(7-n) - v]|dS = ffjpf vad?

Note 2: to include heat transfer on 052, the energy equation is further extended

% fjf pEodV + ﬁg [phov -n—(7-n)-v+q-n]dS = jfj pf - vd ¥
Q oQ Q

where q is the heat flux vector



Energy Equation

Note 3: the force f inside 2 may be a distributed body force field

Examples:
» gravity
» Coriolis and centrifugal acceleration terms in a rotating frame of reference



Energy Equation

Note 4: there may be objects inside €2 which we choose to represent as sources of
momentum and energy.

For example, there may be a solid object inside €2 which acts on the fluid with a force
F and performs work W on the fluid

Momentum equation:

f/lt {[[ evar + {J lo(v - 0)v + pn]aS = [[[ pfc¥ +F
Q o0 Q

Energy equation:

E [ eccv + {f lohov -mlas = ([ pf-va +
Q o0 Q
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Integral Equations - Applications

How can we use control volume formulations of conservation laws?

» Let Q — 0: In the limit of vanishing volume the control volume formulations give
the Partial Differential Equations (PDE:s) for mass, momentum and energy
conservation (see Chapter 6)

» Apply in a "smart” way = Analysis tool for many practical problems involving
compressible flow (see Chapter 2, Section 2.8)



Integral Equations - Applications

Example: Steady-state adiabatic inviscid flow

control volume where the sur-
faces C1 and Co are normal to
the flow and C3 and C4 are par-
allel to the stream lines



Integral Equations - Applications

Conservation of mass:

% [f[pd“/%— ﬁpv-nds =0
“Q 20

=0 —p1ViA1L + pavaAs

Conservation of energy:

% JJ] peod” + @ [phov - n]dS =0
& 80

=0 —p1hoy V1AL + p2hoyvaA2



Integral Equations - Applications

Conservation of mass:
P1VIAL = paVoAs
Conservation of energy:

p1ho,ViAL = p2ho,VaA2

hol == h02

Total enthalpy h, is conserved along streamlines in steady-state adiabatic inviscid
flow
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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

¢ 1D flow with heat addition*
d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic
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Motivation

Why one-dimensional flow?

many practical problems can be analyzed using a one-dimensional flow approach

a one-dimensional approach addresses the physical principles without adding the
complexity of a full three-dimensional problem

the one-dimensional approach is a subset of the full three-dimensional counterpart
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Chapter 3.2
One-Dimensional Flow Equations



One-Dimensional Flow Equations

shock

R ——_— —_—
u1 uz
p1, P1T1 p2, P2 T2

Assumptions:
all flow variables only depend on x
velocity aligned with x-axis



One-Dimensional Flow Equations

"
©
@ —
H
surface area A

Y

>

Control volume approach:

Define a rectangular control volume around shock, with upstream conditions
denoted by 1 and downstream conditions by 2



One-Dimensional Flow Equations

Conservation of mass:

%Jj pd“/+@pv~nd3:0:>pw1 = paUsz
Q [2.9)

=0 ngzAfplulA

Conservation of momentum:

d
dt [[[ ovd? + { [o(v-)v + pn]dS = 0 = p1ud + p1 = potsf + p5
Q 90

=0 (p2u3+p2)A—(p1Ui+p1)A



One-Dimensional Flow Equations

Conservation of energy:

% jfj peodV + ﬁ [phov - 1] dS = 0 = py1u1he,
Q o0

=0 thOQUQAfplholulA

Using the continuity equation this reduces to

h01 = h02
or, if written out

1 1
hy + §U% =hy + iug

= pauz2ho,



One-Dimensional Flow Equations

Summary:

p1ur = paUs

p1U% +p01 = pzug + P2

1 1
hy + §U% =hy + §U%

Note! These equations are valid regardless of whether or not there is a shock
inside the control volume



One-Dimensional Flow Equations

Summary:

p1ur = paUs

p1U% +p01 = pgug + P2

1 1
hy + §U% =hy + §U%

Valid for all gases!
General gas = Numerical solution necessary
Calorically perfect gas = Can be solved analytically
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Chapter 3.3
Speed of Sound and Mach Number



Speed of Sound

Sound wave / acoustic perturbation

wave front

a a+ da
e —_—
P p+dp
P p+dp
T T+dT




Speed of Sound

Conservation of mass gives

pa = (p+dp)(a+da) = pa+ pda+ dpa + dpda
products of infinitesimal quantities are removed =

da

pda+dpa:0<:>a:—pd—p



Speed of Sound

The momentum equation evaluated over the wave front gives

p+pa’ = (p+dp) + (p+dp)(a+da)?

Again, removing products of infinitesimal quantities gives

dp = —2apda — a’dp

Solve for da =

_ dp+a*dp

da
—2ap



Speed of Sound

Now, inserting the expression for da in the continuity equation gives

2
b [dp/dﬁa} N
—2ap
2= P

=dp



Speed of Sound

Sound waves are small perturbations in p, v, p, T (with constant entropy s)
propagating through gas with speed a

8,0)
a’= (-
(30 s

(valid for all gases)



Speed of Sound

Compressibility and speed of sound:

()
Ts=—| =
T p\dp/,

insert in relation for speed of sound

1 1
o () 1 sany [T
ap s PTs PTs

from before we have

(valid for all gases)



Speed of Sound

Calorically perfect gas:

Isentropic process = p = Cp” (where C is a constant)

which implies



Speed of Sound

Sound wave / acoustic perturbation

a weak wave

propagating through gas at speed of sound

small perturbations in velocity and thermodynamic properties
isentropic process



Mach Number

The mach number, M, is a local variable
Vv
M= —
a
where

v =|v|

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is undisturbed and denoted
by subscript oo



Mach Number

For a fluid element moving along a streamline, the kinetic energy per unit mass and
internal energy per unit mass are /2 /2 and e, respectively

Vie Ve VA2 (/2 A=), e
e CT —E’T/(y—l)_aQ/(v—l)_ 2

i.e. the Mach number is a measure of the ratio of the fluid motion and the random
thermal motion of the molecules



Physical Consequences of Speed of Sound

» Sound waves is the way gas molecules convey information about what is
happening in the flow

» In subsonic flow, sound waves are able to travel upstream, since v < a
» In supersonic flow, sound waves are unable to travel upstream, since v > a




Physical Consequences of Speed of Sound

compression shock

/ compression shock

ANy
oblique
normal oblique shock
shock shock
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Chapter 3.4
Some Conveniently Defined Flow
Parameters



Stagnation Flow Properties

Assumption: Steady inviscid flow

If the flow is slowed down isentropically (without flow losses) to zero velocity we get
the so-called total conditions

(total pressure p,, total temperature T,, total density po)

Since the process is isentropic, we have (for calorically perfect gas)
5-(5) - ()"
p p T

Note! v, = 0 and M, = 0 by definition



Critical Conditions

If we accelerate the flow adiabatically to the sonic point, where v = a, we obtain the
so-called critical conditions, e.g. p*, T*, p*, a*

where, by definition, v* = a*

As for the total conditions, if the process is also reversible (entropy is preserved) we
obtain the relations (for calorically perfect gas)

(- ()"
p\p) \T



Total and Ciritical Conditions

For any given steady-state flow and location, we may think of an imaginary isentropic
stagnation process or an imaginary adiabatic sonic flow process
» We can compute total and critical conditions at any point

» They represent conditions realizable under an isentropic/adiabatic deceleration
or acceleration of the flow

» Some variables like po, and T, will be conserved along streamlines under certain
conditions

» T, is conserved along streamlines if the flow is adiabatic

» conservation of p, requires the flow to be isentropic (no viscous losses or shocks)



Total and Ciritical Conditions

Note! The actual flow does not have to be adiabatic or isentropic from point to point,
the total and critical conditions are results of an imaginary isentropic/adiabatic
process at one point in the flow.

If the flow is not isentropic:

TOA # TO,A37 IOOA 7&10057

However, with isentropic flow T,, po, po, €tc are constants
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Chapter 3.5
Alternative Forms of the Energy
Equation



Alternative Forms of the Energy Equation

For steady-state adiabatic flow, we have already shown that conservation of energy
gives that total enthalpy, h,, is constant along streamlines

For a calorically perfect gas we have h = C, T which implies
1 2

To v2
0 gy
T =TT

R
Inserting Cp, = 7—1 and a? = yYRT we get
/7 J—



Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

To 1 2 a*\? T*
—=14+=(v=—1)M <) = =
T +2(7 ) < >_ —

°|®
I
PR

Note! tabulated values for these relations can be found in Appendix A.1




Alternative Forms of the Energy Equation

%4
*
M:ai*

For a calorically perfect gas (1D/2D/3D flows)

, 2
(v +1)/M**] — (y = 1)

This relation between M and M* gives:
M =0&M=0

* _ 1
M =1eM=1 /\4*%1/W7Jr when M — oo
M <1eM<1 7-1

ME>1eM>1
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Chapter 3.6
Normal Shock Relations



One-Dimensional Flow Equations

p1Ur = palsz

p1U; +P1 = pal3 + P2

1 1
hlJriU% :thriU%




Normal Shock Relations

Calorically perfect gas

h=C,T, p=pRT

with constant C,

Assuming that state 1 is known and state 2 is unknown

5 unknown variables: ps, Us, P2, ha, T2
5 equations

= solution can be found



Normal Shock Relations

Divide the momentum equation by piu;

1
— (,01 + ﬂ1U%) = (,02 + PQU%)

p1us p1Uy

{p1U1 = P2U2} =

b oy L 2
P (,01 + /)1U1) = ool (,02 + qug)



Normal Shock Relations

PP
piur - palz
Recall thata = 4/ @, which gives
P
2 2
a a
il S B
w1 U2

Now, we will make use of the fact that the flow is adiabatic and thus a* is constant



Normal Shock Relations
Energy equation:

1 1

_ IR
{Cp_v—l}j

(-1 21T o1y Tt

{a:\/ﬁ}:

2 2
a a
1 2 2 2

1 1
—ut = —u
DR CE




Normal Shock Relations

In any position in the flow we can get a relation between the local speed of sound a,
the local velocity u, and the speed of sound at sonic conditions a* by inserting in the
equation on the previous slide. U1 = u,a; =a, Uy =as =a* =

32 N 1u2 B 8*2 N 1a*2
(v=1) 2 (v=1) 2
oY+l o0 y—1,
a’=-"—a"*-'—u
2 2

Evaluated in station 1 and 2, this gives

2 2

1 —1
a%:’)/—i— 8*2 Y 2

uq

aj=-——a* — U3

2 7+1$2 v—1 4
! 2 2



Normal Shock Relations

. . 1 -1 1 -1
Now, inserting {af = W;r a2’ 5 uf} and {af = %a” . 5 u%}

in aj +1u2— a +1u2 and solve for a* gives
-1 2T o 2 0

[ a*? = uyUs ]




Normal Shock Relations

8*2 = U1U2

A.K.A. the Prandtl relation. Divide by a*2 on both sides =

upu
1= —2 = MiM;
a*ar

Together with the relation between M and M*, this gives

1
1+ 5(7 — 1)M?
I

WM — (7 - 1)
2

M3 =



Normal Shock Relations

1
14+ =(y—1)M?

WM = S (v = 1)

M1 = 10:>M2 =1.0

My >1.0= My <1.0

M; —o0o= My —+/(y—1)/(2y) ={y=14} =0.378



Normal Shock Relations

Continuity equation and a*2 = u;us

p2 U uy — M2
— = =——=—5=WV

p1 Uy Uy a*?

which gives

p2 Ui (y+ 1M

pr Uz 2+ (y - DM}



Normal Shock Relations

Now, once again back to the momentum equation

P2 —pP1 = p1U% - /J2U§ = {p1U1 = pauz} = prur (U1 — U2)

2
1o 2) - o ) (-2
P1 P1 uy p Uy

with the expression for uy /u; derived previously, this gives

[’321+27(M§1)}

P1 v+1




Normal Shock Relations

Are the normal shock relations valid for M; < 1.07

Mathematically - yes!

Physically - ?



Normal Shock Relations

Let’s have a look at the 277 law of thermodynamics

T2 P2
-5 =Cpln—=—-RIn—=
Sy —81 =Cp 1r17_1 n X

We get the ratios (T2/T1) and (p2/p1) from the normal shock relations

S3—51=Cpln [(1 - ’ﬁjl(/\ﬂ% - 1)> (H(’Y—l)/\ﬁ)} +

(v + 1)M?
2y 2
Rln (1 M 1)>



Normal Shock Relations

Entropy generation (y = 1.4)

100

0
My =1 = As = 0 (Mach wave)

M; < 1= As < 0 (not physical)
My >1=As>0 —100

As

~9200 1 ! ! ! !
04 06 08 1 12 14 16 18 2

My




Normal Shock Relations
Normal shock = M; > 1
MiM5 =1
My >1=M;>1
* 1 *
MQ = Mif = M2 < 1
M; <1l=M;<1

After a normal shock the Mach number must be lower than 1.0



Normal Shock Relations

Pressure ratio (y = 1.4)
20 T T T

P2 2V 2
p1_1+7+1(l\41 1) o

P1

Note! from before we know that My must be greater than 1.0, which means that
p2/p1 must be greater than 1.0



Normal Shock Relations

My > 1.0 gives My < 1.0, po > p1, P2 > p1,and To > T

What about T, and py?

2 2
Energy equation: CpT1 + % =Cpla+ UQ—2 = Cplo, =CpTo,

calorically perfect gas = T, = To,

or more general (as long as the shock is stationary): hy, = ho,



Normal Shock Relations

2" law of thermodynamics and isentropic deceleration to zero velocity (As
unchanged since isentropic) gives

To Po Po
So—S1=Coln—=—-RIn—=2={T,, =Ty,} = —RIn—=
’ ! P Tol pOl { o 02} pOl

Pos _ o=(s2-s1)/R
pO1

i.e. the total pressure decreases over a normal shock



Normal Shock Relations

Normal shock relations for calorically perfect gas (summary):

= 1
for = e (- DM
M3 = —2—
8o, = Qo, ’y/\/l% — 5(’)/ — 1)
aj=as=a" p2 2

S Y
+1

uils = 8*2 (the Prandit! relation) . ! )

p2 U1 (y+ 1My

pr Uz 2+ (y - M]

M T2 _p2p

Tv  p1p2



Normal Shock Relations

As the flow passes a stationary normal shock, the following
changes will take place discontinuously across the shock:

p increases
p  increases
U decreases
M decreases (from M > 1to M < 1)
T increases

po decreases (due to shock loss)
S increases (due to shock loss)
T, unaffected




Normal Shock Relations

Normal shock relations (y = 1.4)

—p2/;m
—Ts/Th
p2/pP1
_DO‘Z/DO1
— M,
—AY/AL




Normal Shock Relations

The normal shock relations for calorically perfect gases are valid for My < 5
(approximately) for air at standard conditions

Calorically perfect gas = Shock depends on My only

Thermally perfect gas = Shock depends on My and Ty

General real gas (non-perfect) = Shock depends on My, py, and T,



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?

Answer: We did not (explicitly)



Normal Shock Relations

v

The derivation is based on the fact that there should be a change in flow
properties between 1 and 2

v

We are assuming steady state conditions

v

We have said that the flow is adiabatic (no added or removed heat)

v

There is no work done and no friction added

v

A normal shock is the solution provided by nature (and math) that fulfill these
requirements!



Normal Shocks

-




Chapter 3.7
Hugoniot Equation



Hugoniot Equation

Starting point: governing equations for normal shocks

p1ur = paUsz

p1UT +P1 = paU3 + P2

1 1

Eliminate u; and us gives:

— 1 1
/’)2—/’)1:'02 P1 <+>
2 p1 - P2



Hugoniot Equation

Now, insert h = e + p/p gives

1 1
e2_61:D2+D1 (_>D2+D1

V1 — V9
2 p1 - p2 2 ( )

which is the Hugoniot relation



Stationary Normal Shock in One-Dimensional Flow

Normal shock:

_P2+pP
2

€y —€1 = (vg — 1)

More effective than isentropic
process

Gives entropy increase

Isentropic process:

de = —pdv

More efficient than normal shock
process

see figure 3.11 p. 100



Stationary Normal Shock in One-Dimensional Flow

Pressure ratio (y = 1.4)

The Rankine-Hugoniot relation w w ‘ ‘

| | — isentropic
~+1 D2
P2 _ b (“f—l) (m)

— Hugoniot
"))
-1 T {py m sl

The isentropic relation

ot

o~
T

P2 _ (,Og)l/ﬁ” o
P1 P1 P1
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Chapter 3.8
One-Dimensional Flow with Heat
Addition



One-Dimensional Flow with Heat Addition

+Q
s === ======-====-=-=-=-=3 >
— 1 1 —
— @ ! control volume €2 ! @ —
— 1 1 —
—> Lo o e e e e e e — = 1 —>
q*

Pipe flow:
no friction
1D steady-state = all variables depend on x only
q is the amount of heat per unit mass added between 1 and 2
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Heat Addition

p1ur = paUs

p1U; +P1 = paus3 + P2

1 1
h1+§u%+q:h2+§ug

.

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = can be solved analytically



One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = CpT):

1 1
CoT1 + §u% +q=CpTa+ §u§

1 1
1 2
q = C/O(TOQ - TOI)

i.e. heat addition increases T, downstream



One-Dimensional Flow with Heat Addition

Momentum equation:
P2 —P1 = P1U% - qug
{pu2 — pa?M? = p%MQ _ WJMQ}
P2 —p1 = 1M} — paMs =

P2 _ 1+ yM?
p1 1+~M3




One-Dimensional Flow with Heat Addition

ldeal gas law:

T R
P _D_ppR_pp

PR Ti mRp1  pipe
Continuity equation:

P1 Uz
p1UL = pals = — = —

P2 Uy

up  Meay VARTa _ p1 My [T

— — = = —
u Mlay  ARTL " pa M\ Ty

T (1+M3\° (Mo’
7o \1+9Mj My




One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

T2
Ty

P2
P1

p2
P1

1M
B 1+ M3

(1 +yM?]
|1+ M3

1+ M3 ]
|1+ AMF |




One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

Po> _
pOl

7= [l ()
To, L+yM2 ] \ M,

0
[1+7Mq 1+ 3(y—1Mm3\ !
L+AME |\ 1+ (v — 1)M?

1+ 3(y—MZ\ 7"
L+ iy —1)Mm2




One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)

the Mach number, M, increases as more heat (per unit mass) is added to the gas
for some limiting heat addition g*, the flow will eventually become sonic M =1

Initially supersonic flow (M > 1)

the Mach number, M, decreases as more heat (per unit mass) is added to the gas
for some limiting heat addition g*, the flow will eventually become sonic M =1

Note! The (*) condition in this context is not the same as the “critical” condition
discussed for isentropic flow




One-Dimensional Flow with Heat Addition

P2 1—&—7/\4%
p1 1+ ~yM3

Calculate the ratio between the pressure at a specific location in the flow p and
the pressure at sonic conditions p*

plzp!MleaIOQ:p*,andMQZ]_

p* _1+’)/M2

p 147




One-Dimensional Flow with Heat Addition

T _[ 149 'QMQ Po [ 147 ](2+(—DM*\71
[ R U ps |1+ yM? (v+1)

p o [14+M*] ( 1 ) To  (v+1)M? )

= — o0 I (94 (y— 1M

pr | 14y | \M? TS (1+7M2)2( O =1V




One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

T*
o



One-Dimensional Flow with Heat Addition

My Mz
P1 P2
— q —
1 T2
P1 e — P2
My M*
p1 * p*
noo a o \
P1 P
identical values!
Mo Mm* /
P2 o i p*
s 2 T
P2 P
95 =4y — ¢

Note! for a given flow, the starred quantities are constant values



One-Dimensional Flow with Heat Addition

Note! it is theoretically possible to Rayleigh curve ('Y - 14)
heat an initially subsonic flow to reach 1.2
sonic conditions and then continue to : ! !
accelerate the flow by cooling —M<1

1H—M>1

e /M = 1 (sonic point)

Lord Rayleigh 1842-1919
Nobel prize in physics 1904

H 0.6
o 0.4
As vy+1 \
AS="—"=In |M?* [ L —
S G, n (1+7M2) 0.2
U - 05 0
H_Q_C/oT_l_ (v + )M]? . AS
Th TGl T |1+ AMP



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!

Answer: if the heat source or sink would have been included in the system
studied, the system entropy would increase both when adding and removing
heat.



One-Dimensional Flow with Heat Addition

M < 1: Adding heat will M > 1: Adding heat will
increase M decrease M
decrease p increase p
increase 7, increase 7,
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (g) and heat per unit surface area and

unit time (Cywa//)
L

Pipe with arbitrary cross section (constant in x):

mass flow through pipe m
axial length of pipe L
circumference of pipe b = 2xr

. quwa//



One-Dimensional Flow with Heat Addition - RM12
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Chapter 3.9
One-Dimensional Flow with Friction



One-Dimensional Flow with Friction

inviscid flow with friction?!



One-Dimensional Flow with Friction

Thermally insulated walls

Pipe flow:
adiabatic (g = 0)
cross section area A is constant
average all variables in each cross-section = only x-dependence
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

L
@ 7wdS = b / e s
0

o0

where L is the tube length and b is the circumference



One-Dimensional Flow with Friction

piuy = pauz
4 L
p1u% + P01 — D / TwdX = pzug + P2
Jo

1 1
hl + 5[,/% :h2+ iug




One-Dimensional Flow with Friction

Tw varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on differential form

4 d 4
d(pu® +p) = —pTwax & &(pUZ +P) =~ 5w



One-Dimensional Flow with Friction

From the continuity equation we get

d
Uy = paly = const = —(pu) =0
p1ruy = paUz O,X(/))

Writing out all terms in the momentum equation gives

d dp 4 du dp

g( U2 +p) = ud—u+u—( U)+— = —=Tw = pu— + —
ax P TR = U P T o T T T Y T ax
~—

=0

Common approximation for 7,:

Ol =

Tw



One-Dimensional Flow with Friction

Energy conservation:

hO] :h02 = CKho — 0



One-Dimensional Flow with Friction

Summary: r .
OT(PU) =
au dp 2
U& + d7 *5 u“f
d
&ho =0

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = Can be solved analytically (for constant f)



One-Dimensional Flow with Friction

Calorically perfect gas:

Ma

/‘X? 4f 1 y+1 M?
X

—1
1+ 1= me
2 M



One-Dimensional Flow with Friction

Calorically perfect gas:

Ty 24 (y—1M; p2
T1 24+ (’Y — 1)M% P1

p1 My

py My {2+(v—1)/w%]1/2 Poy




One-Dimensional Flow with Friction

Initially subsonic flow (M < 1)

M, will increase as L increases
for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Initially supersonic flow (M1 > 1)

M, will decrease as L increases
for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Note! The (*) condition in this context is not the same as the “critical” condition
discussed for isentropic flow




One-Dimensional Flow with Friction

T (a+D p 12+ (¢ —1m)?
T 24 (y—1)M? p* M v+1

p* M

p 1 v+1 1/2 Po 1 [24 (v— 1M CEsy
2+ M2 o5 M

(v—1 v+1

see Table A.4



One-Dimensional Flow with Friction

and

1

A (R S e Y

/L* Af 1 y+1 M?
o D YM? 2y 1+771M2
2

M
where L* is the tube length needed to change current state to sonic conditions

Let f be the average friction coefficient over the length L* =

4fL* 1M +7+11n (v + 1)M?
D M2 27y 2+ (y—1)M?

Turbulent pipe flow — f ~ 0.005 (Re > 10°, roughness ~ 0.001D)



One-Dimensional Flow with Friction

0.8 |-

0.6
H
0.4
0.2
h C,T T y—1 17"
Ho B Gl T [ 2Ly
ho ~ CoTo  To { Ty ] o
A 1 2\ 5
2 2~
AS= 25y < ) 7 (= g

Fanno curve (y = 1.4)

—M< 1
—M>1
e M = 1 (sonic point)




One-Dimensional Flow with Friction

M < 1: Friction will M > 1: Friction will
increase M decrease M
decrease p increase p
decrease T increase T
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



One-Dimensional Flow with Friction - Pipeline




Roadmap - One-dimensional Flow

Conservation equations
on integral form

[ Govemwuations ]
|

>

Normal shoggrelations
(station®¥ shocks)

!

1D flow th addition
(RayleiMline flow)

!

1D flow wiigp friction |

(Fann&Me flow)

AuxiliMations
f

Alternativegprms of
the ene™ equation

[ Total and owconditions ]




What if you somehow managed to make a stereo travel at twice the speed of sound, would it sound backwards to someone

who was just casually sitting somewhere as it flies by?

—Tim Currie

Yes.
Technically, anyway. It would be pretty hard to hear.

The basic idea is pretty straightforward. The stereo is going faster than its own sound, so it will reach you first, followed by the sound it emitted one second ago,
followed by the sound it emitted two seconds ago, and so forth.

&
2 k
557

‘The problem is that the stereo is moving at Mach 2, which means that two seconds ago, it was over a kilometer away. It’s hard to hear music from that distance,
particularly when your ears were just hit by (a) a sonic boom, and (b) pieces of a rapidly disintegrating stereo.

Wind speeds of Mach 2 would messily disassemble most consumer electronics. The force of the wind on the body of the stereo is roughly comparable to that of a
dozen people standing on it:
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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*

e oblique shocks in 2D*

T shock reflection at solid walls*
g contact discontinuities

h Prandtl-Meyer expansion fans in 2D

I detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)

why do we get normal shocks in some cases and oblique shocks in other?



Roadmap - Oblique Shocks and Expansion Waves
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( Oblique shocks ]—>O<—[ Expansion waves ]
t t
[ Shock intersection ] [ Prandtl-Meyer expansion ]
t
[ Detached shocks ]
t
Shock systems 4—[ Pressure-deflection diagram ]
t
Solid boundary reflection 4—[ Mach reflection ]
t
Oblique shock relations <—[ The 8 — 8 — M relation ]




Motivation

Come on, two-dimensional flow, really?! Why not three-dimensional?

the normal shocks studied in chapter 3 are a special casees of the more general
oblique shock waves that may be studied in two dimensions

in two dimensions, we can still analyze shock waves using a pen-and-paper
approach

many practical problems or subsets of problems may be analyzed in
two-dimensions

by going from one to two dimensions we will be able to introduce physical
processes important for compressible flows



Obligue Shocks and Expansion Waves




Obligue Shocks and Expansion Waves




Mach Waves

A Mach wave is an infinitely weak oblique shock

subsonic sonic supersonic
V<a V =a




Mach Wave

A Mach wave is an infinitely weak oblique shock

Mach wave

No substantial changes of flow properties over a single Mach wave
My > 1.0 and My ~ Ms
Isentropic



Oblique Shocks

M>1

compression corner

M>1

\
\
\
\
\
\

gradual compression



Expansion Waves

M>1

expansion corner gradual expansion



Obligue Shocks and Expansion Waves

Supersonic two-dimensional steady-state inviscid flow
(no wall friction)

In real flow, viscosity is non-zero = boundary layers

For high-Reynolds-number flows, boundary layers are thin = inviscid theory still
relevant!
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t t
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t
Solid boundary reflection 4—[ Mach reflection ]
t
Oblique shock relations <—[ The 8 — 8 — M relation ]




Chapter 4.3
Obligue Shock Relations



Oblique Shocks

Two-dimensional steady-state flow
Stationary shock

Flow condition

M>1
Flow condition

B>




Oblique Shocks

Stationary oblique shock




Obligue Shock Relations

/ X

Two-dimensional steady-state flow
Control volume aligned with flow stream lines



Obligue Shock Relations

Velocity notations:

My,

M,

Uy
ai
Uz
as

= M sin(3)

= My sin(5 — 0)

My =

My =

Vi
a
Vo
as



Obligue Shock Relations

Conservation of mass:
(%ffjpd7/+ﬁpv~nd820
Q o9

Mass conservation for control volume :

0 — p1u1A + potA =0 =

p1ur = pals



Obligue Shock Relations

Conservation of momentum:
%jjj pvad? + ﬁ [p(v-n)v+pn|dS = jjj ofdV
& o0 J

Momentum in shock-normal direction:

0— (p1U% —I—Dl)A + (pgug +DQ)A =0=

[ p1U; + P1 = paU3 + P2 ]




Obligue Shock Relations

Momentum in shock-tangential direction:

0— [)1U1W1A + PQUQWQA =0=

W1 = Wy



Obligue Shock Relations
Conservation of energy:

c%fﬂ peod? + ( lphov - m]dS = |{ pf-var
¢ ox Q

Energy equation applied to the control volume €:

1 1
0—prurfhr + §(U% +WD)JA + pausfhy + 5(“5 +W3)A=0=

1 1
{h1+2u%:h2+2u§}




Obligue Shock Relations

We can use the same equations as for normal shocks if we replace M; with M,, and
My with M,

. M+ 12/ 1)
" 2y/(y - 1)ME, -1

Ratios such as p2/p1, p2/p1, and Ty /T can be calculated using the relations for
normal shocks with My replaced by M,



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The answer is no, but why?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The answer is no, but why?

Po,, To,, etc are calculated using M; not M, (the tangential velocity is included)



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The answer is no, but why?
Po,, To,, etc are calculated using M; not M, (the tangential velocity is included)

OBS! Do not not use ratios involving total quantities, .9. Po,/Poys Tos/Toys
obtained from formulas or tables for normal shock



Deflection Angle (for the interested)

w w
0=ay—a; =tan ' () —tan~! ()
Us up

00 - Uo 5}
ow  w24ui w?+u?




Deflection Angle (for the interested)

0o U 1
o= 5~ — 5 =0=
ow  w2+us WwW24ug
Us(W? 4+ u?) —ur(W? 4 u2) B (Ug — uy)(W? — UyUs) 0
(W2 +u3)(W? +u7) (W2 +u3)(W? +u7)

Two solutions:

Us = Uy (no deflection)
w? = u1us (max deflection)



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

No deflection cases:
» normal shock

(reduced shock-normal velocity)
» Mach wave

(unchanged shock-normal velocity)




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

Solutions to the left of the sonic line
are subsonic




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

[t is not possible to deflect the flow
more than Omax




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle 6 < 6yax,
there are two solutions

» strong shock solution

» weak shock solution
Weak shocks give lower losses and
therefore the preferred solution




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to
calculate the shock angle g for a
given deflection angle ¢




Flow Deflection

M>1

weak shock family

sonic line

strong shock family

0 > Omax

strong shock family

sonic line
weak shock family

M>1



Roadmap - Oblique Shocks and Expansion Waves
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t
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t
Shock systems 4—[ Pressure-deflection diagram ]
t
Solid boundary reflection 4—[ Mach reflection ]
t
Oblique shock relations <—[ The 0 — 8 — M relation ]




The 0-3-M Relation

[t can be shown that

22
tan02cotﬂ< Misin"f — 1 >

M3 (v + cos 28) + 2

which is the 6-38-M relation

Does this give a complete specification of flow state 2 as function of flow state 17?



The 0-3-Mach Relation

A relation between:

» flow deflection angle ¢
» shock angle g
» upstream flow Mach number M,

M3 sin?(3) — 1

tan(f) = 2 cot(p) <M%(’Y + cos(20)) + 2

)

Note! in general there are two solutions
for a given My (or none)

50




The 0-3-Mach Relation

» There is a small region where we may find
weak shock solutions for which My < 1

» |In most cases weak shock solutions have
My > 1

» Strong shock solutions always have My < 1

» |n practical situations, weak shock solutions
are most common

» Strong shock solution may appear in special
situations due to high back pressure, which
forces My < 1

50




The 0-3-M Relation

/\/I% sin2 B -1
tan @ = 2cot B

M%(A/ + cos2B) + 2

Example: Wedge flow

Weak solution:

smaller 3, My > 1 (except in some cases)
Strong solution:

larger 8, My < 1



The 0-3-M Relation

Note! In Chapter 3 we learned that the mach number always reduces to subsonic
values behind a shock. This is true for normal shocks (shocks that are normal to the
flow direction). It is also true for oblique shocks if looking in the shock-normal

direction.



The 6-5-M Relation

/\/I% sin2 B -1
tan @ = 2cot B

M%(’y + cos2B) + 2

No solution case: Detached curved shock




The 6-5-M Relation - Wedge Flow

Wedge flow oblique shock analysis:

0-5-M relation = 3 for given My and ¢
B gives M, according to: M, = M sin(3)

normal shock formula with M, instead of M; =
M, (instead of M)

My given by My = M, / sin(5 — 6)

normal shock formula with M,, instead of M; =
p2/p1, P2/p1, etc

upstream conditions + pa/p1, P2/p1, €tc =
downstream conditions



Chapter 4.4
Supersonic Flow over Wedges and
Cones



Supersonic Flow over Wedges and Cones

What about cone flows?

M > 1
>

Similar to wedge flow, we do get a constant-strength shock wave, attached at
the cone tip (or else a detached curved shock)

The attached shock is also cone-shaped



Supersonic Flow over Wedges and Cones

What about cone flows?

M > 1
>

» The flow condition immediately downstream of the shock is uniform

» However, downstream of the shock the streamlines are curved and the flow
varies in a more complex manner (3D relieving effect - as R increases there is
more and more space around cone for the flow)

» (3 for cone shock is always smaller than that for wedge shock, if M is the same
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Chapter 4.6
Regular Reflection from a Solid
Boundary



Shock Reflection

Regular reflection of oblique shock at solid wall

(see example 4.10)

My > 1

L=

X

Assumptions:
steady-state inviscid flow
weak shocks



Shock Reflection

first shock:
upstream condition:
My > 1, flow in x-direction
downstream condition:

weak shock = Mz > 1
deflection angle 6
shock angle 1

second shock:
upstream condition:
same as downstream condition of first shock
downstream condition:

weak shock = M3 > 1
deflection angle 6
shock angle Sz



Shock Reflection

Solution:
first shock:

» (31 calculated from 6-3-M relation for specified 6 and M, (weak solution)
» flow condition 2 according to formulas for normal shocks (M,, = M sin(/3;) and
M, = Mz sin(B1 — 0))

second shock:

» (35 calculated from 6-3-M relation for specified 6 and My (weak solution)
» flow condition 3 according to formulas for normal shocks (M, = M5 sin(/3;) and
My, = Mssin(8; — 0))

= complete description of flow and shock waves
(angle between upper wall and second shock: ® = 35 — 6)
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Chapter 4.11
Mach Reflection



Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks are weak (see 6-5-M
relation)

My > 1




Mach Reflection

normal shock

/

slip line

reflected oblique shock
incident oblique shock

L fffffffffffffff

X

Mach reflection:
» appears when regular reflection is not possible
» more complex flow than for a regular reflection
» no analytic solution - numerical solution necessary
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Chapter 4.7
Comments on Flow Through Multiple
Shock Systems



Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:

Mi, s1

Ms, s3

Mz, 52
My, s1




Flow Through Multiple Shock Systems

We may find 6; and 6, (for same M;) which gives the same final Mach number
In such cases, the multiple shock flow has smaller losses
Explanation: entropy generation at a shock is a very non-linear function of shock

strength

Note! 6; might very well be less than 26,
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Chapter 4.8
Pressure Deflection Diagrams



Pressure Deflection Diagrams

normal shock p2

solution strong  shock

solution

= relation between p, and 0
weak shock

infinitely weak
solution

shock solution ————

0




Pressure Deflection Diagrams - Shock Reflection




Pressure Deflection Diagrams - Shock Intersection

slip line

A slip line is a contact discontinuity
discontinuity in p, T, s, v, and M !
continuous in p and flow angle @@

Y
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Chapter 4.12
Detached Shock Wave in Front of a
Blunt Body



Detached Shocks

M>1 M<1

strong shock between c1
and co, weak shock out-
side



Detached Shocks

As we move along the detached shock form the centerline, the shock will
change in nature as
» right in front of the body we will have a normal shock
strong oblique shock

»
» weak oblique shock
» far away from the body it will approach a Mach wave, i.e. an infinitely weak oblique

shock



Detached Shocks
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Chapter 4.10
Intersection of Shocks of the Same
Family



Mach Waves

Oblique shock, angle g, flow deflection #:

g, = Mh TR/ 1)

" [27/( — DMz, -
where

Mm - Ml Sin(ﬁ)

and

Mp, = My sin(5 — 0)

Now, let M, — 1 and M, — 1 = infinitely weak shock!

Such very weak shocks are called Mach waves



Mach Waves

Mp, =1 = Mysin(f) =1 = p = arcsin(1/M)

Mach wave

M2 ~ Ml

0~0

p = arcsin(1/My)




Mach Waves

Oblique shock (weak)

Mach wave
M2
Mach wave
My




Mach Waves

v

Mach wave at A: sin(p1) = 1/My

v

Mach wave at C: sin(uz) = 1/Mo

v

Oblique shock at B: My, = M sin(B) = sin(8) = My, /My
» Existence of shock requires M, > 1= 5 > 1y
» Mach wave intercepts shock!

v

Also, M, = My sin(f — 6) = sin(5 — 0) = My, /Ms
» For finite shock strength M, < 1= (8 —0) < ps
» Again, Mach wave intercepts shock



Shock Intersection - Same Family

shock

i
- slip line
/ @

-

reflected shock
. (or expansion fan)




Shock Intersection - Same Family

Case 1: Streamline going through regions 1, 2, 3, and 4
(through two oblique (weak) shocks)

Case 2: Streamline going through regions 1 and 5
(through one oblique (weak) shock)

Problem: Find conditions 4 and 5 such that

a. Pg=pPs
b. flow angle in 4 equals flow angle in 5

Solution may give either reflected shock or expansion fan, depending on actual
conditions

A slip line usually appears, across which there is a discontinuity in all variables
except p and flow angle
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Chapter 4.14
Prandtl-Meyer Expansion Waves



Prandtl-Meyer Expansion Waves

An expansion fan is a centered simple wave (also called Prandl-Meyer expansion)

expansion fan (Mach waves)

My > My (the flow accelerates through the expansion fan)
P2 < pP1,p2 < p1, T2 < T



Prandtl-Meyer Expansion Waves

Continuous expansion region

Infinite number of weak Mach waves

Streamlines through the expansion wave are smooth curved lines

ds = 0 for each Mach wave = the expansion process is ISENTROPIC!



Prandtl-Meyer Expansion Waves

upstream of expansion My > 1, sin(p1) = 1/M;

flow accelerates as it curves through the expansion fan

downstream of expansion My > My, sin(ug) = 1/Ms

flow is isentropic = s, po, To, po, ao, -.. are constant along streamlines
flow deflection: 6



Prandtl-Meyer Expansion Waves

d
It can be shown that df = \/M? — 17‘/, where v = |v]|
(valid for all gases)

Integration gives

05 Mo
do = M
01 M 4

el

av .
the term e needs to be expressed in terms of Mach number

v=Ma=Inv=InM+1lna =

av  dM da
+



Prandtl-Meyer Expansion Waves

Calorically perfect gas and adiabatic flow gives

fa= VAT, a0 = viAT) = T o (2

a

L]

8V il oM eaza |t
=l+(y-IM sa=a |1+



Prandtl-Meyer Expansion Waves

Differentiation gives:

1 32
da = ao {1 + 5(7 — I)MQ} (—2> (v — 1)MdM
or

da=a [1 - %(7 - 1)/\//2} - <—;> (y — 1)MdM

which gives

dv dM da dM  —5(y-1Mdm 1 dM

oM T a T M I oM Ir L OME M




Prandtl-Meyer Expansion Waves

Thus,
Caomm—o= [ LM
A w1+ 1M M
where
v(M) = B

i+ -y M

is the so-called Prandtl-Meyer function



Prandtl-Meyer Expansion Waves

Performing the integration gives:

,/L—_Fltr ﬁ(/\ﬁ_ ) —tan~! /M

We can now calculate the deflection angle Af as:

Af = I/(Mg) - V(Ml)



Prandtl-Meyer Expansion Waves

1
/v+ Lo

v (M)|yy_sae = 130.45°

7+1

(M2 —1) —tan"' /M2 —

140
120

100

40

Prandtl-Meyer function (y = 1.4)




Prandtl-Meyer Expansion Waves

Example:

expansion fan (Mach waves)

0y =0, My > 1is given

0 is given

problem: find My such that 0y = v(Ms) — v(M;)
v(M) for v = 1.4 can be found in Table A.5



Prandtl-Meyer Expansion Waves

Since flow is isentropic, the usual isentropic relations apply:
(0o and T, are constant)

Calorically perfect gas:

Po _ [y Lo el
p—_1+2(7 1)M_
T, [. 1 T
= =[1+=(y—1)M?
+ _+2(7 )_




PL _ oyt
P2 p01 P2
h_To, T
Ty 1o, T2

since Po, = Po, and To, = To,

|
|

Po,
P2

To,
Ty

Prandtl-Meyer Expansion Waves

)/
)/

Poy
P1

Tou
T

>:
>:




Prandtl-Meyer Expansion Waves

Alternative solution:
determine My from 0 = v(My) — v(My)
compute po, and T,, from py, T1, and M; (or use Table A.1)
set Po, = Po, and To, = To,
compute py and Tz from po,, To,, and My (or use Table A.1)
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Chapter 4.15
Shock Expansion Theory



Diamond-Wedge Airfoil

expansion fan
oblique shock oblique shock

symmetric airfoil
(both in x- and
y-planes



Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle e and upstream
Mach number M,

2-3 Prandtl-Meyer expansion for flow deflection angle 2¢ and upstream Mach
number M,

3-4 standard oblique shock calculation for flow deflection angle € and upstream
Mach number Mg



Diamond-Wedge Airfoil

symmetric airfoil
zero incidence flow (freestream aligned with flow axis)

gives:

symmetric flow field
zero lift force on airfoil



Diamond-Wedge Airfoil

Drag force:

D=— @Sp(n . €,)dS
o)

0Q)  airfoil surface

o) surface pressure

n  outward facing unit normal vector
e, unit vector in x-direction




Diamond-Wedge Airfoil

Since conditions 2 and 3 are constant in their respective regions, we obtain:

D = 2 [psL sin(e) — psLsin(e)] = 2(p2 — pg)% = (p2 — p3)t

For supersonic free stream (M > 1), with shocks and expansion fans according to
figure we will always find that po > ps

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)



Flat-Plate Airfoil

expansion fan

oblique shock

slip line

incidenceex: ~ \ @ T~ ——=—""_"_ 4___

oblique shock

expansion fan



Flat-Plate Airfoll

[t seems that the angle of the flow downstream of the flat plate would be different
than the angle of the flow upstream of the plate. Can that really be correct?!



Flat-Plate Airfoil

[t seems that the angle of the flow downstream of the flat plate would be different
than the angle of the flow upstream of the plate. Can that really be correct?!

For the flow in the vicinity of the plate this is the correct picture. Further out from
the plate, shock and expansion waves will interact and eventually sort the
missmatch of flow angles out



Flat-Plate Airfoil

v

Flow states 4 and 5 must satisfy:

> P4 =Ps
» flow direction 4 equals flow direction 5 (®)

v

Shock between 2 and 4 as well as expansion fan between 3 and 5 will adjust
themselves to comply with the requirements

v

For calculation of lift and drag only states 2 and 3 are needed

v

States 2 and 3 can be obtained using standard oblique shock formulas and
Prandtl-Meyer expansion



Obligue Shocks and Expansion Waves

compression corner expansion corner

M decrease M increase
V' decrease V' increase
p increase p  decrease
p increase p  decrease
T increase T decrease




Obligue Shocks and Expansion Waves
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THE BERNOULLI-DOPALER- LEIDENFROST-PELTZMAN-
SAPIR-WHORF-DUNNING-KRUGER-STRDOP EFFELT STATES
THAT IF A SPEEDING FIRE TRUCK, LIFTS OFF AND HURTLES
TOLARD YoU ON A LAYER OF SUPERHEATED GRS,
YOULL DIVE QUT OF THE WRY FASTER IF THE DRIVER
SCRERMS RED!"IN A MON-TONAL LANGUPGE THAT 445 A
WORD FOR “FIREAGHTER" THAN IF THEY SCREAM GREEN”
IN A 7204 LANGUAGE WITH MO \WJORD FOR “FIREFIGHTER®
WHICH YOU 7K YOURE FLUENT IN BUT AREMT







Overview

expansion
shock fans
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2D Flow
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addition Quasi
1D Flow

1D Flow

diffusers
Conservation
normal
shocks laws
integral form

isentropic /\
flow

noncon- subst
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form

conser-
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governing
equations

\

\



Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases
7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*
b normal shocks*
i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)

what does quasi-1D mean? either the flow is 1D or not, or?



Roadmap - Quasi-One-Dimensional Flow
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Motivation

By extending the one-dimensional theory to quasi-one-dimensional, we can
study important applications such as nozzles and diffusers

Even though the flow in nozzles and diffusers are in essence three dimensional
we will be able to establish important relations using the quasi-one-dimensional
approach



Roadmap - Quasi-One-Dimensional Flow

[ Basic concepts

!

‘ Governing equations

.

Area-velocity relation

'

Nozzles ]<—[ Free boundary reflection ]

Diffusers [ Nozzle pressure ratio

' i

Numerical simulation ] [ Nozzle relations

o N e N s N G




Quasi-One-Dimensional Flow

Chapter 3 - One-dimensional steady-state flow
overall assumption:
one-dimensional flow
constant cross section area
applications:
normal shock
one-dimensional flow with heat addition
one-dimensional flow with friction

Chapter 4 - Two-dimensional steady-state flow
overall assumption:
two-dimensional flow
uniform supersonic freestream
applications:
oblique shock
expansion fan
shock-expansion theory



Quasi-One-Dimensional Flow

Extension of one-dimensional flow to allow variations in streamtube area
Steady-state flow assumption still applied

streamtube area A(x)



Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

cross-section area A(x)



Quasi-One-Dimensional Flow - Nozzle Flow




Quasi-One-Dimensional Flow - Stirling Engine

feed tube

manifold

regenerator

foed tube gas cooler P
S e,
) SRR,
compression passﬁ%@l:ﬁzéﬁ‘mﬂ;@@m
it T
STTim S S

R
Pty
o S i b D
e o o L
S G e,
st ol 1,
o

expansion cylinder
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Chapter 5.2
Governing Equations



Governing Equations

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

Q  control volume

S left boundary (area A,)
S, right boundary (area As)
I'  perimeter boundary

0N =S, UI'USy



Governing Equations - Assumptions

inviscid
steady-state
no flow through I"



Governing Equations - Mass Conservation

(%jfjpd’7/+ @pv.nc/s =0
Q

o0

=0 —p1U1A1+p2u2As

[P1U1A1 = P2U2A2]




Governing Equations - Momentum Conservation

% Uf pvav fﬁﬁ [p(v-n)v +pn]dS =0
= 09

—_————
=0
@p(v -n)vdS = —plu%Al + pQU%AQ
0
Ao

@',Onds = —P1A1 + P2A2 — pPdA
50 JA

Ao

[(plu% +p1)A1 + . PAA = (paU3 + P2)As
JAL




Governing Equations - Energy Conservation

c% ”f pEod” + Cﬁﬁ [pho(v - 1)]dS = 0
° 50

—_———
=0

which gives

p1U1A1ho, = patisAsho,

from continuity we have that piU1A1 = palicAs =



Governing Equations - Summary

p1UIAL = palaAa

Ao

(p1Uf + p1)Ar +/A PdA = (paU3 + pP2)As
1

hol == ho2




Governing Equations - Differential Form

Continuity equation:

p1U1A1 = pQUQAQ or pUA =C

where ¢ is a constant =

d(puA) =0



Governing Equations - Differential Form
Momentum equation:

Ao
(p1U7 + P1)A; +/ PAdA = (paU3 + p2)As =

Al
d [(pu® + p)A] = pdA =
d(pu*A) + d(pA) = pdA =
ud(puA) +puAdu + Adp + pdA = pdA =
AW

pUAdU + Adp =0 =

Euler’s equation

dp = —pudu



Governing Equations - Differential Form

Energy equation:
hO] — h02 = dho — 0

1.
ho:h+§u2;s



Governing Equations - Differential Form

Summary (valid for all gases):

Assumptions:
quasi-one-dimensional flow
inviscid flow
steady-state flow

d(puA) =0

dp = —pudu

dh+udu =10

J
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Chapter 5.3
Area-Velocity Relation



Area-Velocity Relation

d(puA) = 0 = UAdp + pAdu + pudA =0

divide by puA gives

d a dA

S AN

p u A
Euler’'s equation:

d
ap = —pudu = d—p = d—’o—p = —uadu
pdpp

Assuming adiabatic, reversible (isentropic) process and the definition of speed of

sound gives

40 _ <8p> 2= a?? i 9
dp op) s P p u



Area-Velocity Relation

Now, inserting the expression for 2P in the rewritten continuity equation gives
P

VAt i
1-m ) Ay

or

which is the area-velocity relation



The Area-Velocity Relation

Subsonic M < 1 Supersonic M > 1

supersonic nozzle
du >0
dp < 0

subsonic diffuser
du <0
dp >0

supersonic diffuser
du <0
dp >0

subsonic nozzle
du >0
dp < 0



The Area-Velocity Relation

What happens when M = 17



The Area-Velocity Relation

What happens when M = 17

M =1whendA =0



The Area-Velocity Relation

What happens when M = 17
M =1whendA =0

maximum or minimum area



The Area-Velocity Relation

M<1 M=1 M>1 /—'—\
|
|

subsonic | supersonic subsonic ! subsonic
—_— —_— —_— | —_—
! supersonic | supersonic
|



The Area-Velocity Relation

» A converging-diverging nozzle is the only possibility to obtain supersonic flow!

» A supersonic flow entering a convergent-divergent nozzle will slow down and, if
the conditions are right, become sonic at the throat - hard to obtain a shock-free
flow in this case



Area-Velocity Relation

M%O:%:—%
A u
AL
A u

1
A [UdA + Adu] = 0 =

duA)=0=Au=c

where ¢ is a constant



Area-Velocity Relation

Note 1 The area-velocity relation is only valid for isentropic flow
not valid across a compression shock (due to entropy increase)

Note 2 The area-velocity relation is valid for all gases



Area-Velocity Relation Examples - Rocket Engine

combustion —

chamber M>1 — high-velocity gas
M<1

A
/b\”; e
i§
o)

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical figures for a LH?/LOx rocket
engine: po ~ 120 [bar], To ~ 3600 [K], exit velocity ~ 4000 [m/s]



Area-Velocity Relation Examples - Wind Tunnel

nozzle test section diffuser
—_—
e
_—
M<1 i M>1 —_
> i > > M>1 M=1 M<1
—_—

accelerating flow constant velocity decelerating flow
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Chapter 5.4
Nozzles



Nozzle Flow with Varying Pressure Ratio

time for rocket science!



Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:




Nozzle Flow - Relations

Critical conditions:




Nozzle Flow - Relations

> ur ura? uta?a;

a”®  a?a*”®  a?aia*

=

1+ 3(y — 1)M?




Nozzle Flow - Relations
For nozzle flow we have

PUA =C
where ¢ is a constant and therefore
P UTA" = pUA
or, since at critical conditions u* = a*

pratA* = puA
which gives

A p*

A" pu popou



Nozzle Flow - Relations




Nozzle Flow - Relations

* 2
A [%(,y + 1)] y—1 M*Z
M*Q 2 %(ﬁy + 1)

Ax

which is the area-Mach-number relation



The Area-Mach-Number Relation

A\ 2 1 [2+ (v —1)M? (y+1)/(v=1)
(&) = [
supersonic
L e
M subsonic
) 3 4 5 6 7 8 910

-1
100123



The Area-Mach-Number Relation

A 2 1 2+ ('7 o 1)M2 (v+1)/(v—1)
(&) = [ 55

supersonic

(O
% al
N t ! e subsonic
ote A ,OV M b
; 4 6 ‘7 8 E; 10

~1
100123



Area-Mach-Number Relation

Note 1 Critical conditions used here are those corresponding to isentropic flow. Do
not confuse these with the conditions in the cases of one-dimensional flow
with heat addition and friction

Note 2 For quasi-one-dimensional flow, assuming inviscid steady-state flow, both
total and critical conditions are constant along streamlines unless shocks
are present (then the flow is no longer isentropic)

Note 3 The derived area-Mach-number relation is only valid for calorically perfect
gas and for isentropic flow. It is not valid across a compression shock



Nozzle Flow

Assumptions:
inviscid
steady-state
quasi-one-dimensional
calorically perfect gas




The Area-Mach-Number Relation

Sub-critical (non-choked) nozzle flow

M < 1 at nozzle throat
Ar > A*
M1 <1
My < 1

1071

supersonic




The Area-Mach-Number Relation

Critical (choked) nozzle flow

M = 1 at nozzle throat
A = A*
M1 <1
My > 1

1071

supersonic

throat




Nozzle Flow

Choked nozzle flow (no shocks):

» A* is constant throughout the nozzle
> At — /4>k

M given by the subsonic solution of

AN (AN 1T 2 L e -
A) T \A) T M ly+1 2 !
M given by the supersonic solution of
~y+1
y—1

() = (&) =g [0 30 -]

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream of throat and supersonic flow downstream of throat



Nozzle Mass Flow

pVA = p*"A*V* =

From the area-Mach-number relation

L B
A <1

if
if
if

AT pV

A

p* \/*

M<1
M=1
M>1

2%
p* V*

0.8

0.6

0.4

The maximum possible massflow through a duct is achieved when its throat reaches

sonic conditions



Nozzle Mass Flow

For a choked nozzle:




Nozzle Mass Flow

rh:pOAt 7<2>7
VIo VR\vy+1

The maximum mass flow that can be sustained through the nozzle

Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically
perfect gas

Note! The massflow formula is valid even if there are shocks present
downstream of throat!



Nozzle Mass Flow

How can we increase mass flow through nozzle”?

increase pPo
decrease T,
increase A;
decrease R

(increase molecular weight, without changing )
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Nozzle Flow with Varying Pressure Ratio

A(x) areafunction
A min{A(x)}
Po inlet total pressure
Pe outlet static pressure
(ambient pressure)

Po/Pe pPressure ratio




Nozzle Flow with Varying Pressure Ratio

critical po /Pe

/

increasing po /pe

subsonic branch

throat

For critical po/pe, @ jump to supersonic solution will occur



Nozzle Flow with Varying Pressure Ratio

subsonic branch

Pt ( 2 >w31, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, increasing po/pe
Po y+1 i ~.

critical po /Pe “~... supersonic branch

throat X

As the flow jumps to the supersonic branch downstream of the throat, a normal
shock will appear in order to match the ambient pressure at the nozzle exit



Nozzle Flow with Varying Pressure Ratio

MA

M/Mehoked A

0 > Pe/Po
1

throat

p/Po A

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

A

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

p*/Po

Ml

p/pPo

throat




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

_———

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

[
throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio

M/Mehoked A

A

> Pe/Po

Ml

p/pPo

throat

p*/Po




Nozzle Flow with Varying Pressure Ratio (Summary)

(Po/Pe) < (Po/Pe)cr
the flow remains entirely subsonic
the mass flow depends on pe, i.e. the flow is not choked
no shock is formed, therefore the flow is isentropic throughout the nozzle

(Po/Pe) = (Po/Pe)cr
the flow just achieves M = 1 at the throat
the flow will then suddenly flip to the supersonic solution downstream of the throat,
for an infinitesimally small increase in (po/pe)

(Po/Pe) > (Po/Pe)cr
the flow is choked (fixed mass flow), i.e. it does not depend on pe
a normal shock will appear downstream of the throat, with strength and position

depending on (p,/pPe)



Nozzle Flow with Varying Pressure Ratio

critical po /pe

o
| S
,,,,, <
H ke)
@©

e supercritical po /Pe

shock strength

throat nozzle exit X




Nozzle Flow with Varying Pressure Ratio

Effects of changing the pressure ratio (0, /pe) (Where pe is the back pressure and po
is the total pressure at the nozzle inlet)

» critical value: po/Pe = (Do/Pe)c
» nozzle flow reaches M = 1 at throat, flow becomes choked

» supercritical value: po/pe = (Po/Pe)sc
» nozzle flow is supersonic from throat to exit, without any interior normal shock -
isentropic flow

» normal shock at exit: (0o/Pe) = (Po/Pe)ne < (Po/Pe)sc
» normal shock is still present but is located just at exit - isentropic flow inside nozzle



Nozzle Flow with Varying Pressure Ratio

Normal shock at exit

\/—> et e— (Po /Pee

- (Po/Pe)ne
" (Po /Pe

)sc

throat nozzle exit X



Nozzle Flow with Varying Pressure Ratio

normal shock

w

oblique shock

J
pressure matched

_/\—>

expansion fan

Po/Pe = (Po/Pe)ne
normal shock at nozzle exit

(Po/Pelne < Po/Pe < (Po/Pe)sc
overexpanded nozzle flow

Po/Pe = (Po/Pe)sc
pressure matched nozzle flow

Po/Pe > (Po/Pe)sc
underexpanded nozzle flow



Nozzle Flow with Varying Pressure Ratio

Quasi-one-dimensional theory

When the interior normal shock is "pushed out” through the exit (by increasing
(Po/Pe), i.e. lowering the back pressure), it disappears completely.

The flow through the nozzle is then shock free (and thus also isentropic since we
neglect viscosity).

Three-dimensional nozzle flow

When the interior normal shock is "pushed out” through the exit (by increasing
(Po/Pe)), an oblique shock is formed outside of the nozzle exit.
For the exact supercritical value of (p,/pe) this oblique shock disappears.

For (po/pe) above the supercritical value an expansion fan is formed at the nozzle
exit.
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Chapter 5.6
Wave Reflection From a Free
Boundary



Free-Boundary Reflection

Free boundary - shear layer, interface between different fluids, etc



Free-Boundary Reflection - Shock Reflection

reflected expansion

incident shock

No jump in pressure at the free boundary possible
Incident shock reflects as expansion waves at the free boundary
Reflection results in net turning of the flow



Free-Boundary Reflection - Expansion Wave Reflection

free boundary (Poo )

incident expansion wave reflected shock

No jump in pressure at the free boundary possible

Incident expansion waves reflects as compression waves at the free boundary
Finite compression waves coalesces into a shock

Reflection results in net turning of the flow



Free-Boundary Reflection - System of Reflections

overexpanded nozzle flow




Free-Boundary Reflection - System of Reflections

shock reflection at jet centerline




Free-Boundary Reflection - System of Reflections

shock reflection at free boundary




Free-Boundary Reflection - System of Reflections

expansion wave reflection at jet centerline

—_— fr‘ee;bOUndary




Free-Boundary Reflection - System of Reflections

expansion wave reflection at free boundary




Free-Boundary Reflection - System of Reflections

repeated shock/expansion system




Free-Boundary Reflection - System of Reflections

shock diamonds




Free-Boundary Reflection - System of Reflections

overexpanded jet




Free-Boundary Reflection - Summary

Solid-wall reflection

Compression waves reflects as compression waves
Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves
Expansion waves reflects as compression waves
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Chapter 5.5
Diffusers



Supersonic Wind Tunnel

wind tunnel with supersonic test section

open test section

M>1
\/ =
- Po/Pe = (Po/Pe)sc
Po —% Pe = Pamp
M = 3.0 in test section = po /pe = 36.7 Il!

—>
—>
—/\—»

test section
(open)



Supersonic Wind Tunnel

wind tunnel with supersonic test section

enclosed test section, normal shock at exit

normal shock

wsif

\/}:— M< 1 Po/Pamb = (Po/Pe)(Pe/Pamb) < (Po/Pe)sc

Pamb M = 3.0 in test section =

— n -~
M Do /Pamp = 36.7/10.33 = 3.55

test section

(closed)



Supersonic Wind Tunnel

wind tunnel with supersonic test section

add subsonic diffuser after normal shock

normal shock

wo ]
M <1

— P2 (P02 = pamb)
M

test section
(closed)

Po/Pamb = (Po/Pe)(Pe/P2)(P2/Poy)

M = 3.0 in test section =~
Po/Pamp = 36.7/10.33/1.17 = 3.04

Note! this corresponds exactly to total pressure
loss across normal shock




Supersonic Wind Tunnel

wind tunnel with supersonic test section

add supersonic diffuser before normal shock

oblique shocks
normal shock

well-designed supersonic + subsonic diffuser =-

M>1 /

Po 1. decreased total pressure loss

(DOQ = Damb)
2. decreased py and power to drive wind tunnel
test section

(closed)




Supersonic Wind Tunnel

Main problems:

1. Design is extremely difficult due to complex 3D flow in diffuser

» viscous effects
» oblique shocks
» separations

2. Starting requirements: second throat must be significantly larger than first throat
solution:

» variable geometry diffuser
» second throat larger during startup procedure
» decreased second throat to optimum value after flow is established



Supersonic Wind Tunnel

start conditions

pressure loss

throat area (second th\'oat)
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Quasi-One-Dimensional Euler
Equations



Quasi-One-Dimensional Euler Equations

Example: choked flow through a convergent-divergent nozzle

Assumptions: inviscid, Q = Q(x, t)



Quasi-One-Dimensional Euler Equations

where A(x) is the cross section area and

p pu
Q= ||, E@=|pt+p|, HQ)
PEo phou




Numerical Approach

Finite-Volume Method
Method of lines, three-stage Runge-Kutta time stepping
39-order characteristic upwinding scheme
Subsonic inflow boundary condition at min(x)
» To, Po given
Subsonic outflow boundary condition at max(x)
> p given

v

v

v

v

v



Finite-Volume Spatial Discretization

Integration over cellj gives:



Finite-Volume Spatial Discretization



Nozzle Simulation - Back Pressure Sweep

Nozzle geometry

0.2

0.4 .




Nozzle Simulation - Back Pressure Sweep

4 N\
Po 1.20 [bar]
Pe 1.18 [bar]
Po/Pe 1.02
m 81.61 [kg/s]
Mmax 0.35
. J
s ————
0.8 | g
0.6 g
ploo [T NT 1T
0.4 - |
0.2 | |
Il ; Il Il Il
0 0.5 1 1.5 2 2.5

140 -

120 -

100 {

1 1 1 1 1
1.6 1.8 2 22 24
Po/Pe




Nozzle Simulation - Back Pressure Sweep

% h 140 F 1
Po 1.20 [bar]
1.16 [bar]
Pe [oar] 120 |- i
Po/Pe 1.03 "
i 106.27 [kg/s] 100 1
Mmax ~ 0.49
~ d 80 ® 1
Il Il

I I I I I
1 12 14 16 18 2 22 24

Po/Pe
1 W o ‘ ‘
0.8+ | E 2+ | H
0.6 g L5} |
ploo [T NT 1T M 3
0.4 ! | T 25 SR N PR Y
Il ; Il Il Il 0 Il ; Il Il Il
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Nozzle Simulation - Back Pressure Sweep

4 N\
Po 1.20 [bar]
De 1.14 [bar]
Po/Pe 1.05
m 131.45 [kg/s]
Mmax 0.69
(. J

0.6 -
P/Po
0.4 -

140 -

120 H

100

Il Il Il Il Il
1.6 1.8 2 22 24
Po/Pe




Nozzle Simulation - Back Pressure Sweep

P/Po

4 N\
Po 1.20 [bar]
Pe 1.13 [bar]
Po/Pe 1.06
m 144.88 [kg/s]
Mmax 0.93
(. J

0.4

140

120

100




Nozzle Simulation - Back Pressure Sweep

P/Po

-

Po
Pe

Po/Pe

Mmax

1.20 [bar]
1.10 [bar]
1.09

145.62 [kg/s]

1.31

~

140

120

100




Nozzle Simulation - Back Pressure Sweep

P/Po

-

Po
Pe

Po/Pe

Mmax

1.20 [bar]
1.00 [bar]
1.20

145.6 [kg/s]

1.68

~

140

120

100




Nozzle Simulation - Back Pressure Sweep

P/Po

-

Po
Pe

Po/Pe

Mmax

1.20 [bar]
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1.33

145.6 [kg/s]

1.77

~
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Nozzle Simulation - Back Pressure Sweep

P/Po

-

Po
Pe

Po/Pe

Mmax

1.20 [bar]
0.80 [bar]
1.50

145.6 [kg/s]

1.94

~

140 -
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100




Nozzle Simulation - Back Pressure Sweep

P/Po

-

Po
Pe

Po/Pe

Mmax

1.20 [bar]
0.70 [bar]
1.71

145.6 [kg/s]

2.10

~

140

120 H

100




Nozzle Simulation - Back Pressure Sweep

P/Po

-

Po
Pe

Po/Pe

Mmax

1.20 [bar]
0.60 [bar]
2.00

145.6 [kg/s]

2.24

~

140

120

100




Nozzle Simulation - Back Pressure Sweep

P/Po

-

Po
Pe

Po/Pe

Mmax

1.20 [bar]
0.50 [bar]
11.8

145.6 [kg/s]

2.26

~

140

120

100




Nozzle Simulation - Back Pressure Sweep

Po
Pe

Po /Pe

Mmax

1.20 [par]
1.10 [bar]
1.09

145.62 [kg/s]

1.31

1.18

-10°




Nozzle Simulation - Back Pressure Sweep

10°
3.02 F
p N 3.01 -
Po 1.20 [par]
Do 110 [barl 3
ho
Po/Pe 1.09 2.99 |-
m 145.62 [kg/s]
Mmax 1.31 2.98 -
(. J
2.97 -
| | | | |




Modern Compressible Flow

)

Pee v <
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ROCKET PACKS ARE EASY.

O

THE HARD PART 15 INVENTING
THE CALF SHELDS.







Overview

expansion
fans

shock
expansion

iy governing

equations

2D Flow

nozzles

Quasi
1D Flow

diffusers
Conservation
laws
integral form

conser-
vation
form

substantial
derivative

noncon-
servation
form

entropy
equation

governing

equations
Crocco’s
equation

moving
shocks

traveling
WEVCH

shock
reflection




Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

the governing equations for compressible flows on differential form - finally ...



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on conservation form ]
conservation of momentum
conservation of energy

The substantial derivative: v
D P —>[ PDE:s on non-conservation form ]
Dt~ ot +v-V l
- ] The entropy equation ’

!

[ Crocco’s theorem ]




Motivation

The differential form of the conservation equations is needed when analyzing
unsteady problems

The differential form of the conservation equations forms the basis for
multi-dimensional analysis and CFD
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Chapter 6.2
Differential Equations in Conservation
Form



Differential Equations in Conservation Form

Basic principle to derive PDE:s in conservation form:

Start with control volume formulation
Convert to volume integral via Gauss Theorem
Arbitrary control volume implies that integrand equals to zero everywhere



Continuity Equation - Conservation of Mass

Control volume formulation

%fffpd”/+§fﬁpv-nd8:0
Q o0

where 2 is a fixed control volume and thus — fjf pdV = fjf apd“l/

Applying Gauss’ Theorem on the surface integral gives

926 pv-ndS = Jff V- (pv)d¥
09 Q



Continuity Equation

Therefore

jgﬂ [g’; 4V (pv)} dv =0

Q) is an arbitrary control volume, can be made infinitesimally small and thus

dp
[m—l-v-(pv)—()}

which is the continuity equation




Momentum Equation - Conservation of Momentum

Control volume formulation

% [[[ evar + {J lo(v - n)v + pu] oS = [[[ pfc7
Q o9 e

where 2 is a fixed control volume and thus % fif pvad¥ = fgf gt(pv)d"//

Applying Gauss’ Theorem on the surface integrals gives

@p(v -n)vdS = fff V- (pvv)d? ; g,onds = fff VpdyV
of) Q o0 Q



Momentum Equation

Therefore

I [;(PV) + V- (pvv) + Vp — pf} ¥ =0
Q

Q) is an arbitrary control volume, can be made infinitesimally small and thus

{§t<pv>+v~<pvv>+w>—pf}

which is the momentum equation



Momentum Equation

In cartesian form (v = uey + ve, + we;):

ot

ot

ot

O (o) +V - (puv) + P
O )+ - () + 2

O () + 7 (o) +

ox

oy

0z

f— pr

= Pfy

ptz




Momentum Equation

or expanded:

2(puu) +

X (puv) +

= (pu) + ay 9z

) )
~—(pW) + ==

2( vu) +
r By oz

—(pv) + X

0

9 (w) + o (pwu) +

g( WV) + 2
ox P

oy 0z

SIS
|

Q’\c




Momentum Equation

o
= (pv) + V- (pvv) + Vp = pf

ot
(puu + p) puv pUW
pvu (pvv +p) pyYw = pvv +pl
pwu pwv  (pww +p)

SIS

|

(pv) + V- (pvv +pI) = pf }




Energy Equation - Conservation of Energy

Control volume formulation

[ pescts + [ sty - wys = [[] pf- vy
& o0 o

. d d
where 2 is a fixed control volume and thus i fif peod¥ = fif &(,oeo)d"//

Applying Gauss’ Theorem on the surface integral gives

@pho(v -n)dS = fff V - (phov)d¥
of) Q



Energy Equation

Therefore

fjj [gt(ﬂeo) + V- (phov) — p(£f- v)} dv =0
Q

Q) is an arbitrary control volume, can be made infinitesimally small and thus

[ %(peo) + V- (phov) = p(f-v) }

which is the energy equation



Partial Differential Equations in Conservation Form

op B
& +V. (pV) =0
0
7 (PV) + V- (pvv) + Vp = pf
0
57 (PEo) + V- (phov) = p(f-v)

(. J

These equations are referred to as PDE:s on conservation form since they stem
directly from the integral conservation equations applied to a fixed control volume
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The Substantial Derivative

Introducing the substantial derivative operator

”... the time rate of change of any quantity associated with a particular moving fluid element is given by the substantial derivative ...”

”... the properties of the fluid element are changing as it moves past a point in a flow because the flowfield itself may be fluctuating with
time (the local derivative) and because the fluid element is simply on its way to another point in the flowfield where the properties are
different (the convective derivative) ...”
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Chapter 6.4
Differential Equations in
Non-Conservation Form



Non-Conservation Form of the Continuity Equation

Applying the substantial derivative operator to density gives

Dp 0p
E*&‘FV'V{)

Continuity equation:

ap _Op B
E+V~(pv)—E+V~Vp+p(v-v)—0:>




Non-Conservation Form of the Continuity Equation

Dp B
Dt+[)(V'V)—O}

”... the mass of a fluid element made up of a fixed set of particles (molecules
or atoms) is constant as the fluid element moves through space ...”



Non-Conservation Form of the Momentum Equation

0
al‘(pv) + V- (pvv+pl) = pf =

ov dp
E+VE +pv-Vv+v(V-pv)+Vp=pf=

ov op
{dt—%v VV] +v{at+v pv} +Vp = pf

_Dv =0
Dt

Dv




Non-Conservation Form of the Energy Equation

9 (peo) + V- (phov) = p(E-v) + &

ot
ho:eo‘f’B =
p
0 .
&(peo)JrV-(peov)JrV-(,Ov) =p(f-v)+pq =
oe 0 :
pa—; +eoa—¢+pv-Veo+eoV-(pv)+V-(pv):p(f'v)+pq:>

ot ot

_ Deo =0
B

o 52 v Voo s |22V ()| 47 (ov) = i)+




Non-Conservation Form of the Energy Equation

De .
pop TV (ptv)=pf-v+pd

1

De Dv

i e . — of - :
Por TPV o TV (Pv) =pf-v4pg

D 1
Using the momentum equation, <D‘t’ + -Vp = f), gives
P

e .
pE—V-Vp+/)f-v+v-Vp+p(V-v):pf-v—i—pq:>

De p .
m*‘p(V'V)Q}




Non-Conservation Form of the Energy Equation

De p )
or T ;(V v)=q
From the continuity equation we get
Dp B ~ 1Dp
E+ (V v)—0:>V vV = th
De pDp De 1y
Dt~ 2Dt Dt+th<> q
De . ,Dv
Dt Dt

where v =1/p



Non-Conservation Form of the Energy Equation

Compare with first law of thermodynamics: de = dg — oW




Non-Conservation Form of the Energy Equation

If we instead express the energy equation in terms of enthalpy:

De . D (1y_ De D(1)\_,
ot~ 97 Po P bt Phr p =4

N p Dt Dt pDt Poi P

%_'Jr}Di’o
bt~ 97 5D




Non-Conservation Form of the Energy Equation

and total enthalpy ...

h—h+1 é%—%ﬁ- v
o=V E o T ot TV Dt

From the momentum equation we get

Dv Dv 1
th+Vp pE= 5 prJr =
Dh, Dh 1 . 1 |Dp
— v f.v= 1=y,
i Dt pv Vp+f-v qup[Dz‘ v-Vp
~—~

. 1Dp
Q+/J Dt

}+f-v



Non-Conservation Form of the Energy Equation

Dho . 1 [Dp
Now, expanding the substantial derivative % = 88—’? + v - Vp gives

Let’s examine the above relation ...



Non-Conservation Form of the Energy Equation

{Dhowp

= L4t
ot —pot 97 V}

The total enthalpy of a moving fluid element in an inviscid flow can change due to
unsteady flow: dp/dt # 0
heat transfer: g # 0
body forces: f-v #£ 0



Non-Conservation Form of the Energy Equation

Adiabatic flow without body forces =

Dho _ 10p
Dt pot

Steady-state adiabatic flow without body forces =

Dh,

ot

he is constant along streamlines!



Additional Form of the Energy Equation
Start from
De . D /1
o ~4°oi ;)

Calorically perfect gas:

R
e:CVT;Cvzﬁ;p:pF?T;'y,F?:COﬂSl‘



Additional Form of the Energy Equation



Additional Form of the Energy Equation

Continuity:



Additional Form of the Energy Equation

D, .
Hﬂ; +0(V-v) = (v—1)pq

Adiabatic flow (no added heat):

{%;Jr’yp(v-v):()}

Non-conservation form (calorically perfect gas)



Conservation Form

0Q , OE  OF L 9G _
o ox oy 0z
where Q(x,y,z,t), E(x,y,z,t), ... may be scalar or vector fields

Example: the continuity equation

op 0 B B
a &(Pu) + @(PW + &(PW) =0

If an equation cannot be written in this form, it is said to be in non-conservation form



Euler Equations - Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no added heat)

-

op 0 B
a a(ﬂu) + @(PV) +

0

) ) )
&(pU) + a(puu +p) + afy(pUV) + ;(pUW) =0

(P4) 4 W) + (g +0) + (o) =0

ot 15)4

) B
8t(pW) + a(pWU) + 7(pWV) +

ot

(080) + > (phot) +




Euler Equations - Non-Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no added heat), calorically perfect gas

s

ap ap op ap
at Tlax TVay "oz
@ + u@ + v@ + W@ +
ot Ox oy 0z
L.
ot Ox oy 0z
o, ow L ow
ot O0x oy 0z
oo Op  Op o
ot TYax TVay T35

T AL
Plaox Tay Tz ) T

190 _

)
p OX

10p

2 _y

p Oy
10p
2 _0
p 0z

ou ov  ow
Tt o T o, T ) =0

ox oy 0z

~N




Conservation and Non-Conservation Form

The governing equations on non-conservation form are not, although the name might
give that impression, less physically accurate than the equations on conservation
form. The nomenclature comes from CFD where the equations on conservation form
are preferred.



Conservation and Non-Conservation Form

Conservation forms are useful for:
Numerical methods for compressible flow
Theoretical understanding of non-linear waves (shocks etc)
Provide link between integral forms (control volume formulations) and PDE:s

Non-conservation forms are useful for:
Theoretical understanding of behavior of numerical methods
Theoretical understanding of boundary conditions
Analysis of linear waves (aero-acoustics)
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Chapter 6.5
The Entropy Equation



The Entropy Equation

From the first and second law of thermodynamics we have

De . Ds D1
ot~ 't o\

which is called the entropy equation



The Entropy Equation

Compare the entropy equation
e Ds_ D (1
ot~ ot Poi\p
with the energy equation (inviscid flow):
e . D1
bt~ 9P p

we see that



The Entropy Equation

If § = 0 (adiabatic flow) then

Ds

— =0
Dt

i.e., entropy is constant for moving fluid element

Furthermore, if the flow is steady we have

Ds 0s
E—§+(V'V)S—(V'V)S—O

i.e., entropy is constant along streamlines
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Chapter 6.6
Crocco’s Theorem



Crocco’s Theorem

”... a relation between gradients of total enthalpy, gradients of entropy, and
flow rotation ...”



Crocco’s Theorem

Momentum equation (no body forces)

Dv
Ppr = —Vp
Writing out the substantial derivative gives
+ v-Vv=-YV :>a—+v Vv = _,v
Pat TF P= 5t =P

First and second law of thermodynamics (energy equation)
1
dh =Tds + —dp
P
Replace differentials with a gradient operator

1 1
Vh=TVs+ ;Vp = TVs=Vh-— ;Vp



Crocco’s Theorem

With pressure derivative from the momentum equation inserted in the energy
equation we get

TVS:VfH—g—‘;—I-V-Vv

h:ho—%v-v:Vh:Vho—V(%v~v)

V(%V'V):VX(VXV)—FV'vv

V(A-B)=(A-V) B+ (B:-V)A+A X (VXxB)+BxXx (VXxXA)

A=B=v=V(v-v)=2v-Vv+vx(Vxv)]




Crocco’s Theorem

TVS:VhO—VX(va)—v-Vv—l—%—‘t,—i—v-Vv

TVS:VhoJr%—VX(VXV)

Note! V x v is the vorticity of the fluid

1
the rotational motion of the fluid is described by the angular velocity w = 5 (V xv)



Crocco’s Theorem

TVSZVhOjL%*VX(VXV)

”... when a steady flow field has gradients of total enthalpy and/or entropy
Crocco’s theorem dramatically shows that it is rotational ...”



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo  constant shock

ho constant
s constant

v

S is constant upstream of shock

v

jump in s across shock depends on local shock angle

v

s will vary from streamline to streamline downstream of shock

v

Vs # 0 downstream of shock



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo  constant shock

ho constant
s constant

Total enthalpy upstream of shock

ho is constant along streamlines
heo is uniform

Total enthalpy downstream of shock
ho is uniform

Vhozo



Crocco’s Theorem - Example

Crocco’s equation for steady-state flow:

TVs =Vhy —v x (V xv)

v x (V x v) # 0 downstream of a curved shock
the rotation V x v # 0 downstream of a curved shock

Explains why it is difficult to solve such problems by analytic means!
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Learning Outcomes

3

4

Describe typical engineering flow situations in which compressibility effects are
more or less predominant (e.g. Mach number regimes for steady-state flows)
Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on
Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

| unsteady waves and discontinuities in 1D

k basic acoustics
Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)
Explain how the equations for aero-acoustics and classical acoustics are derived
as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!
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[ Riemann problem ]




Motivation

Most practical flows are unsteady

Traveling waves appears in many real-life situations and is an important topic
within compressible flows

We will study unsteady flows in one dimension in order to reduce complexity
and focus on the physical effects introduced by the unsteadiness

Throughout this section, we will study an application called the shock tube,
which is a rather rare application but it lets us study unsteady waves in one
dimension and it includes all physical principles introduced in chapter 7
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Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

observer moving with the bullet
» steady-state flow
» the detached shock wave is
stationary

observer at rest
» unsteady flow
» detached shock wave moves
through the air (to the left)




Unsteady Wave Motion - Example #1

Object moving with supersonic speed through the air

ksl

2,

8 oblique stationary shock shock system becomes stationary
= only for observer moving with the
B object
jo))

c

B3

o

1S

9]

c

Q

@

Q

[e)

9]

2

Q

@

Q

[}

ral

©

c

k]

©

17}

for stationary observer, both object

normal shock advancing and shock system are moving

through stagnant air



Unsteady Wave Motion - Example #2

Shock wave from explosion

Y1ib- Ale. TxmeSers G]ecmwo TR PCSIon

For observer at rest with respect to the surrounding air:

the flow is unsteady

the shock wave moves through the air



Unsteady Wave Motion - Example #2

Shock wave from explosion

t = 0.0002s t = 0.0036 s t=0.0212s

t =0.0594 s

normal shock moving spherically outwards
Shock strength decreases with radius
Shock speed decreases with radius



Unsteady Wave Motion

inertial frames!
Physical laws are the same for both frame of references

Shock characteristics are the same for both observers (shape, strength, etc)



Unsteady Wave Motion

Is there a connection with stationary shock waves?
Answer: Yes!

Locally, in a moving frame of reference, the shock may be viewed as a stationary
normal shock
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Chapter 7.2
Moving Normal Shock Waves



Moving Normal Shock Waves

Chapter 3: stationary normal shock

® 0]
usg uy
B B

T
stationary normal shock

up > ap
Ug < @
P2 > P1
So > S1

supersonic flow)
subsonic flow)
sudden compression)
shock 10ss)

e —




Moving Normal Shock Waves

w
<+——@ observer

® 0]
usg uy
B e

T
stationary normal shock

Introduce observer moving to the left with speed W

if W is constant the observer is still in an inertial system
all physical laws are unchanged

The observer sees a normal shock moving to the right with speed W

gas velocity ahead of shock: Uy = W —uy
gas velocity behind shock: uy = W — uy



Moving Normal Shock Waves

Now, let W = u; =

UIZO
Uy =up — Uy >0

The observer now sees the shock traveling to the right with speed W = u; into a
stagnant gas, leaving a compressed gas (02 > p1) with velocity u5, > 0 behind it

Introducing up:

Up = Uy = Uy — Us



Moving Normal Shock Waves

@ stationary observer

w
©) O]
uh =up >0 Uy =0
Analogy:
moving normal shock
Case 1

stationary normal shock
observer moving with velocity W

Case 2

normal shock moving with velocity W
stationary observer



Moving Normal Shock Waves - Governing Equations

@ stationary observer

©) O,
uh =up >0 Uy =0
. .
moving normal shock X
For stationary normal shocks we have: With (uy = W) and (ug = W — up) we
get:
p1U1 = paus p1W = pa(W — Up)
p1UT + P1 = paU3 + P2 p1W? + py :p2<W_Up>2+p2
1 1 1 1
h1+§U%:h2+§u% h1+§W2:h2+§(W—UD)2



Moving Normal Shock Waves - Relations

Starting from the governing equations

piW = po(W —up)
p1W? +p1 = po(W — Up)? + pa
hi + %WQ =hy + %(W — Up)?

and usingh =e + P
P

it is possible to show that

+ 1 1
ezfelzpl P2 <+>
P P2



Moving Normal Shock Waves - Relations

p1+p2 (1 1
€ — €] = — + =
o 2 <p1+p2>

same Hugoniot equation as for stationary normal shock

This means that we will have same shock strength, i.e. same jumps in density,
velocity, pressure, etc



Moving Normal Shock Waves - Relations

Starting from the Hugoniot equation one can show that

1+7+1<P2>
P2 _ -1 \p1

,01_ LH_|_@
y—1 P

and




Moving Normal Shock Waves - Relations

For calorically perfect gas and stationary normal shock:

P2 2y 2
2o M-
P1 7+1( s

same as eq. (3.57) in Anderson with M1 = Mg

where

w
M. = —

S a,
Ms is simply the speed of the shock (W), traveling into the stagnant gas,
normalized by the speed of sound in this stagnant gas (a1)

Ms > 1, otherwise there is no shock!
shocks always moves faster than sound - no warning before it hits you ®



Moving Normal Shock Waves - Relations

2
P2 =1+ it (Mg -1) Incident shock Mach number (v = 1.4)
IOl ’y + 1 5 T T T
Re-arrange = 4l

M = 7+1<,02_1>+1 Ms 3
2y \p1

shock speed directly linked to pressure ratio

10 15
P2/p1

(S g




Moving Normal Shock Waves - Relations

From the continuity equation we get:

up=W<1—m>>0
P2

After some derivation we obtain:

2y

ap (p2 y+1
Un = — ——1 -
g ’7(@ > pz  v—1

p1 v+1



Moving Normal Shock Waves - Relations

Induced Mach number:

Up _ Up&r _Up |Tn

M: f— f— —
P as ay as ar\l T»

inserting up/a; and T, /T, from relations on previous slides we get:

1/2
| GG
1 (P2 v+ 1 vy—1) \p1
Mo=—\"--1) | 5= 0, 3
G [ @e)-e
y+HLop y—1) \pi P

1/2




Moving Normal Shock Waves - Relations

Induced Mach number (v = 1.4)
Note! 2 1 ‘ ‘

My = 1.89

lim My — 4| ———
22 yoo (v —1)

P1

for air (v = 1.4)

lim M, — 1.89

P2
22 500
P1

P2/P1



Moving Normal Shock Waves - Relations

Moving normal shock with ps/p1 = 10

(o1 =1.0bar, T =300 K, v = 1.4)

= Ms =2.95and W = 1024.2m/s

The shock is advancing with almost three times the speed of sound!

Behind the shock the induced velocity is up, = 756.2 m/s = supersonic flow
(@2 = 562.1 m/s)

May be calculated by formulas 7.13, 7.16, 7.10, 7.11 or by using Table A.2 for stationary normal shock (u; = W, ug = W — up)



Moving Normal Shock Waves - Relations

Note! h,, # ho,

constant total enthalpy is only valid for stationary shocks!

shock is uniquely defined by pressure ratio p2/p1

-

up =20

1.
hoi :hl+§U%:hl

1 .
ho, = ha + §u§

hy > hy = ho, > ho,

N

h2/h1 = T2/T1 (constant Cp)

2

1.8

1.6




Moving Normal Shock Waves - Relations

Gas/Vapor Ratio of specific heats Gas constant
() R

Acetylene 1.23 319
Air (standard) 1.40 287
Ammonia 1.31 530
Argon 1.67 208
Benzene 1.12 100
Butane 1.09 143
Carbon Dioxide 1.29 189
Carbon Disulphide 1.21 120
Carbon Monoxide 1.40 297
Chlorine 1.34 120
Ethane 1.19 276
Ethylene 1.24 296
Helium 1.67 2080
Hydrogen 1.41 4120
Hydrogen chloride 1.41 230
Methane 1.30 518
Natural Gas (Methane) 1.27 500
Nitric oxide 1.39 277
Nitrogen 1.40 297
Nitrous oxide 1.27 180
Oxygen 1.40 260
Propane 1.138 189
Steam (water) 1.32 462
Sulphur dioxide 1.29 130
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Chapter 7.3
Reflected Shock Wave



One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?



Shock Reflection

ax
contact surface, — = 0
dt

N\

ax
contact surface, — = up
dt

solid wall

ax
reflected shock, —
dt

/

S~

initial moving shock,

—W,



Shock Reflection - Particle Path

A fluid particle located at x( at time t; (a location ahead of the shock) will be affected
by the moving shock and follow the blue path

|
time location velocity ] dmmmmm g -
) X0 0 :
t1 Xo Up tof == === ‘ ————————— S
tQ X1 Up ! !
i3 X1 0 : \
! !
|

X0 X1 X



Shock Reflection Relations

velocity ahead of reflected shock: W, + up
velocity behind reflected shock: W,

Continuity:
p2(Wr +Up) = psWr
Momentum:
P2+ p2(Wr + Up)? = ps + psW?
Energy:

1 1
ho + §<Wr+Up)2 =hs + §Wr2



Shock Reflection Relations

Reflected shock is determined such that us = 0

M, Ms 2y — 1) 1
= 1 Mz —1 —
ME—1 M§—1¢ B CESIE AR v

where



Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what happens after interaction
between reflected shock and contact discontinuity

For special choice of initial conditions (tailored case), this interaction is negligible,
thus prolonging the duration of condition 5



Tailored v.s. Non-Tailored Shock Reflection

under-tailored tailored over-tailored
t t t
shock wave 1 wall 1 wall 1 wall
contact surface
expansion wave
® ® © ® ® ®
©) ©) ©)
©, ©, ©,
Under-tailored conditions:  * .

Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:
Mach number of incident wave higher than in tailored conditions



Shock Reflection - Example

Shock reflection in shock tube (v = 1.4)

(Example 7.1 in Anderson)

Incident shock (given data) Calculated data
p2/p1 10.0 M, 2.09
Ms  2.95 ps/p2  4.978
To/T1 2.623 Ts/Ty 177
P1 1.0 [bar]
T1 300.0 [K]



Shock Reflection - Shock Tube

» Very high pressure and temperature conditions in a specified location with very
high precision (05, T5)

» measurements of thermodynamic properties of various gases at extreme
conditions, e.g. dissociation energies, molecular relaxation times, etc.

» measurements of chemical reaction properties of various gas mixtures at extreme
conditions
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The Shock Tube



Shock Tube

diaphragm

l

| ® | ®

P4

P1

T

diaphragm location

tube with closed ends

diaphragm inside, separating two differ-
ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by
inducing a breakdown) the two states
come into contact and a flow develops

assume that py > p1:
state 4 is "driver” section
state 1 is "driven” section



Shock Tube

expansion fan contact discontinuity moving normal shock

\ | |/|

(o ][[] & | @

Up w flow at some time after diaphragm
breakdown

T :

diaphragm location



Shock Tube

expansion fan contact discontinuity moving normal shock

\ I

(o[l ] o | @ |

—> o
Up w flow at some time after diaphragm
breakdown
P A
P4
N P3 P2 (p3 = p2)
P1

: :

diaphragm location



Shock Tube

» By using light gases for the driver section (e.g. He) and heavier gases for the
driven section (e.g. air) the pressure p4 required for a specific p2/p; ratio is
significantly reduced

» If T4/ T is increased, the pressure p4 required for a specific p2/p; is also
reduced
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Chapter 7.5
Elements of Acoustic Theory



Sound Waves

v

Weakest audible sound wave (0 dB): Ap ~0.00002 Pa
Loud sound wave (94 dB): Ap ~1 Pa

Threshold of pain (120 dB): Ap ~20 Pa

Harmful sound wave (130 dB): Ap ~60 Pa

v

v

v

Example:

Ap ~ 1 Pa gives Ap ~0.000009 kg/m?® and Au ~0.0025 m/s



Sound Waves

Schlieren flow visualization of self-sustained
oscillation of an under-expanded free jet




Sound Waves

Screeching rectangular supersonic jet

NN A

Niklas Andersson - Chalmers 23



Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in Chapter 6:

conservation form non-conservation form

% L v . (ov) =0 Do L p(vvy =0
mass — . V) = _ 0 Lv) =
ot r ot F

7] D
momentum o (pv) + V- (pvv +pI) =0 pH‘: +Vp =0
[,




Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds
i = 0
Assume one-dimensional flow
- ap ap ou
continuit u — =0
P =px.t) Yo o Yok TPax
v =u(x,t)ex N 5 5 3
p=px,t) momentum  p— + pl=— + -
s=constant
op )

can o be expressed in terms of density?



Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any tow
other state variables

) () 4 (P
b =p(p.s) = db = <ap)sd”+ <8s>pds

s=constant gives



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

pP=pPoo+tAp P=poct+Ap T=Tec+AT U=Uco +AU= {Usc =0} =AU
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p., are zero)

6] el o
—(Ap) + Au—(Ap) + + Ap)—(Au) =0
at( p) ax( p) + (P p) 6x< )

b5} a 5 0
(Poc + Ap) —(AU) + (poo + Ap)Au—(Au) +8° —(Ap) =0
ot Ix ox



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P=pPoot+ADp P=pPoc+Ap T=Toc+AT U=Uco + AU= {Usc =0} =Au
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p., are zero)

6] el o
—(Ap) + Au—(Ap) + + Ap)—(Au) =0
at( p) Bx( p) + (P p) 6x< )

=
15} o
(Poo + Ap) — (AU) + (poo + Ap)Au— (A
ot ox



Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable = a* = a*(p, s). With entropy
constant = a* = a*(p)

Taylor expansion around a., with (Ap = p — pso) gives

2= a2 + (;p(a?)))o Apt sy <§;(32))m ()’ + ...

{ ft( p) + USX( p) + (poo + Ap) X( u)
=

(o + A0) 2 (A0) + (poo + Ap) AU (AU) + |22 +(3<a2>) apt | Liap =0
L ot = ox o ap - ox



Elements of Acoustic Theory - Acoustic Equations

Since Ap and Au are assumed to be small (Ap < pso, AU K a)

products of perturbations can be neglected
higher-order terms in the Taylor expansion can be neglected

0 (Au) =0

0
Ap) + poo

82‘(

O (ap) =0

( ) E>()(9

"

Note! Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear



Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage of a sound wave ...”



Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

0?2 0?2
o (Ap) = 87 (AP)

(combine the time derivative of the continuity eqn. and the divergence of the momentum egn.)

General solution:

Ap(x,t) = F(x — asel) + G(x + asel)

wave traveling in wave traveling in
positive x-direction negative x-direction
with speed aoo with speed aoo

F and G may be arbitrary functions
Wave shape is determined by functions F and G



Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

oF oF O(X — anol)
ot (X — axt) ot

oF oF O(X —ast)
Ox  O(x —ast)  Ox

spatial and temporal derivatives of G can of course be obtained in the same way...



Elements of Acoustic Theory - Wave Equation

F(x —axt) + G(x + axt) and the derivatives of F and G we get

with Ap(x,t) =
02
8t2(Ap) aZOF” +a§OG”
and
82
@(Ap) — F// + G//
which gives
0? 0?2
22 (Ap) —as a 5 (Ap) =

i.e., the proposed solution fulfils the wave equation



Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

Ap(x,t) = F(X — anot)

If Ap is constant (constant wave amplitude), (x — at) must be a constant which
implies
X =asl+cC

where ¢ is a constant

*_,
a



Elements of Acoustic Theory - Wave Equation

We want a relation between Ap and Au

Ap(x,t) = F(x — axt) (wave in positive x direction) gives:

0 0
- (Ap) = —accF’ e (Ap) =F
ot and Ox
0 0
57 () +ace - (Ap) =0
—— ~—
—8ooF F
or
1 0
a*(A/)) —;&( P)



Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

0
Poo a (AU) =—a

9 az, o 0 1 0 Qoo O
(80 = =22 28 = { D) =~ (An | =22 D)

0
2 R

0 oo Qoo
—(Au——Ap | =0= Au— —Ap =const

In undisturbed gas Au = Ap = 0 which implies that the constant must be zero and
thus

a
Au=—"Ap
Poo




Elements of Acoustic Theory - Wave Equation

Similarly, for Ap(x,t) = G(x + ast) (wave in negative x direction) we obtain:

Au=—-2=n,
Also, since Ap = a2 Ap we get:
. . . . Ao 1
Right going wave (+x direction) Au= —Ap = e Ap
Poo oo Poo
, . . Ao 1
Left going wave (-x direction) Au=-——Ap=— Ap

Poo oo Poo



Elements of Acoustic Theory - Wave Equation

Au denotes induced mass motion and is positive in the positive x-direction

Qoo Ap _ 4 Ap
Poo AooPoo

Au =+

condensation (the part of the sound wave where Ap > 0):
Au is always in the same direction as the wave motion

rarefaction (the part of the sound wave where Ap < 0):
Au is always in the opposite direction as the wave motion



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

52 B
o 5 (Ap)

@ =at 2

Due to the assumptions made, the equation is not exact
More and more accurate as the perturbations becomes smaller and smaller
How should we describe waves with larger amplitudes?
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Chapter 7.6
Finite (Non-Linear) Waves



Finite (Non-Linear) Waves

When Ap, Au, Ap, ... Become large, the linearized acoustic equations become
poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

ap 6,0 ou
ot u ox e Pox =0
ou ou 10p

ot Yax Toax T




Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

Op _(9p) b _ 10p o _
ot \op/) 0t azot ox
Inserted in the continuity equation this gives:
op ap 50U
E + Ua + a =0
ou o 10p
ot ox  pox

(

dp
Ip

)

9 _ 19p
< Ox  a?ox



Finite (Non-Linear) Waves

Add 1/(pa) times the continuity equation to the momentum equation:

B +U+a)— +—

154 ot

ou ou 1 [op
ox

+ (u +a)ap} =0

If we instead subtraction 1/(pa) times the continuity equation from the momentum
equation, we get:

[gt‘lJr(u—a)gﬂ—l[gﬁ;Jr( )ap}:()



Finite (Non-Linear) Waves

Since u = u(x,t), we have:

8u au Bu ou dx

ax )
Let i = Uu+agives
ou ou
du = [81‘ + (u+a)ax} dt

. adx
Interpretation: change of u in the direction of line g u-+a



Finite (Non-Linear) Waves

In the same way we get:

_op Op dx
dp = Edt + aadt

and thus
op

_ Ip
ap = {at + (u+a)8X] dt



Finite (Non-Linear) Waves

Now, if we combine

ou ou 1 [op op|
ou ou
au = [81‘ + (U—‘ra)axi| at
~|op op
dp = {at (u +a)ax] dt

we get

au 1dop




Characteristic Lines

Thus, along a line dx = (u + a)dt we have

{o’u+d’oo}
pa

In the same way we get along a line where dx = (u — a)dt




Characteristic Lines

» We have found a path through a point (x1, t1) along which the governing partial
differential equations reduces to ordinary differential equations

» These paths or lines are called characteristic lines

» The C* and C~ characteristic lines are physically the paths of right- and
left-running sound waves in the xt-plane



Characteristic Lines

_ ax
C™ characteristic line: — =u—a
dt
. adp
t compatibility equation: au— — =0
pa

/

-+ ax
C™ characteristic line: e =u+a

compatibility equation: adu + £ =0
pa

Y

X1



Characteristic Lines - Summary

o 14
d—l;l + ,oaofz? =0 along C" characteristic
a 14 -
d—ttl — p?i?f =0 along C~ characteristic
dp n _—
au + P 0 along C" characteristic
P
aj -
au — pg =0 along C™~ characteristic




Riemann Invariants

Integration gives:

d .
Jt=u+ / —Z = constant along C* characteristic
p

a .
J =u-— —’2 = constant along C™~ characteristic
P

We need to rewrite do to be able to perform the integrations

pa



Riemann Invariants

Let’s consider an isentropic processes:

p =c TV = cyg27/(v=1)

where ¢, and ¢y are constants and thus

b = s < 2y ) S129/(—D—1] g
v—1

Assume calorically perfect gas: a? = P =p= g—g

with p = 282"/~ we get p = coyal2/ (=12



Riemann Invariants

27\ gl2v/(v=1)-1]
Co — a 20.
J+:u+/d§:u+/ (7 1) da:u+/ 2
2

coyal2y/(v=1)-1] ~v—1




Riemann Invariants

If J* and J~ are known at some point (x, t), then

It £ Jm = 2u u= Ut )

4&1:>

+— =
SrevT = .

Flow state is uniquely defined!



Method of Characteristics

t

Iﬂ+ 1
t”

transfer J™ along C™ characteristics, and vice versa

flow state may be
computed here

flow state known
here

X



Summary

Acoustic waves

Ap, Au, etc - very small

All parts of the wave propagate with
the same velocity a,,

The wave shape stays the same

The flow is governed by linear
relations

Finite (non-linear) waves

Ap, Au, etc - can be large

Each local part of the wave
propagates at the local velocity
u+a)

The wave shape changes with time
The flow is governed by non-linear
relations



One-Dimensional Flow with Friction

the method of characteristics is a central element in classic compressible flow theory
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Chapter 7.7
Incident and Reflected Expansion
Waves



Expansion Waves

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

O]

incident shock wave

L ® | ®

driver section driven section

Y



Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C~ characteristics
2. The wave head is propagating into region 4 (high pressure)
3. The wave tail defines the limit of region 3 (lower pressure)

4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

is constant along C* lines

is constant along C™ lines




Expansion Waves




Expansion Waves

(ON @ ct
o=
c= ct
o
o+
@
ct ct ct




Expansion Waves

ct

ct

ct

o
o=
o=
C~ f
d
b A a
ot ct

constant flow properties in region 4: J: = Jj

J7T invariants constant along C™t characteristics:
=0 =uF
g =ud =4t

since J;r = J;r this also implies J;r = J;r

J™ invariants constant along C™ characteristics:



Expansion Waves

constant flow properties in region 4: J: = Jj

J7T invariants constant along C™t characteristics:

o
o= B ot =0 =uF
(o f g =ud =4t
. . B N since J;m = J;r this also implies J;~ = J;r

J™ invariants constant along C™ characteristics:

Jo =,
ot of o X ¢ =Y
Jo =1f
1 1L
bo = LUF I = S I v =
y—1 4 — y—1 4 —
e = 1 (e —Je )iar = 1 (Jf —Jr ), = ae = a



Expansion Waves

Along each C™ line u and a are constants which means that

C]Ix—u a = const
dt N

C™ characteristics are straight lines in xt-space



Expansion Waves

The start and end conditions are the same for all C™ lines
JT invariants have the same value for all C* characteristics
C™ characteristics are straight lines in xt-space

Simple expansion waves centered at (x,t) = (0,0)




Expansion Waves
In a left-running expansion fan:

» JT is constant throughout expansion fan, which implies:

2a - 2ay N 2as
v—1 v—1

» J~ is constant along C™ lines, but varies from one line to the next, which means
that

is constant along each C™ line



Expansion Waves

Since u4 = 0 we obtain:

Ut a Ug & 2ay 2ay
y=1 a1 -1
a u
21— v —1)—=
a (v=1g;

with a = \/yRT we get



Expansion Wave Relations

Isentropic flow = we can use the isentropic relations

complete description in terms of u/ay = =

- 50-2
1— %(7 - 1);-
12 -n2]




Expansion Wave Relations

Since C~ characteristics are straight lines, we have:

ax

— —u—a=x=(Uu-at

o ( )
a 1 u 1
—=1l—-Z(v=1)—=a=a,—-(v—1u=
o 2(7 )E24 4 2(7 )

X = u—a4+;(7—1)u]t— [(V—l)u—a4}t:>



Expansion Wave Relations

- /‘

' expansion wave | «

expansion wave ' ¥

» Expansion wave head is advancing to the left with
speed a4 into the stagnant gas

» Expansion wave tail is advancing with speed
us — as, which may be positive or negative,
depending on the initial states
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Chapter 7.8
Shock Tube Relations



Shock Tube Relations

2m 1/2
ar (P2 v +1
Up=Upg = — [= 1) | —F——
oo V<D1 >,02 n—1
p1 m+1

p3 - [1_ -1 (L@))rm/(m—l)
P4 2 ay

solving for us gives

b 24, - (,Og) (ya=1)/(2v4)
va—1 P4



Shock Tube Relations

But, p3 = p2 and us = us (No change in velocity and pressure over contact
discontinuity)

(va—1)/(2v4)
= Ug = 284 1-— (,O2>
va— 1 Pa

We have now two expressions for us which gives us

2m 1/2

2 ([32 — 1> _m+l _ 2ay 1_ <pz>(74_1)/(2’¥4)
7 AP P2 + n-1 ya—1 D4

p1 m+1




Shock Tube Relations

Rearranging gives:

—274/(ya—1)
Pi _ P2 {1 _ (u—(@/a)(ea/pr — 1) }
p1 P1 V27 27 + (1 + 1) (p2/p1 — 1)]

» pa/p1 as implicit function of p4/p1
» for a given ps/pi1, p2/p1 will increase with decreased a; /a4

a = \/ART = /7 (Ru/M)T

» the speed of sound in a light gas is higher than in a heavy gas

» driver gas: low molecular weight, high temperature
» driven gas: high molecular weight, low temperature
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Shock Tunnel

» Addition of a convergent-divergent nozzle to a shock tube configuration

» Capable of producing flow conditions which are close to those during the
reentry of a space vehicles into the earth’s atmosphere

» high-enthalpy, hypersonic flows (short time)
» real gas effects

» Example - Aachen TH2:
» velocities up to 4 km/s
» stagnation temperatures of several thousand degrees



Shock Tunnel

test object

diaphragm 1 diaphragm 2

dump tank

test section
reflected shock

High pressure in region 4 (driver section)
diaphragm 1 burst
primary shock generated

Primary shock reaches end of shock tube
shock reflection

High pressure in region 5
diaphragm 2 burst
nozzle flow initiated
hypersonic flow in test section



Shock Tunnel

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

O]

incident shock wave

Y

L ® | ®

driver section driven section




Shock Tunnel

By adding a compression tube to the shock tube a very high p4 and T, may be
achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

pressurized air driver gas driven gas
p, T p1, T1

SressuEEd el driver gas driven gas
P4, Ta P1, T1




The Aachen Shock Tunnel - TH2

Shock tunnel built 1975

nozzle

end of shock tube wv

\
inspection window:
»
I

—

<
Z

o =
/‘-‘&"‘ - -




The Aachen Shock Tunnel - TH2

Shock tube specifications:

diameter

driver section

driven section

diaphragm 1

diaphragm 2

max operating (steady) pressure

140 mm

6.0m

154 m

10 mm stainless steel
copper/brass sheet
1500 bar



The Aachen Shock Tunnel - TH2

Driver gas (usually helium):

100 bar < p4 < 1500 bar
electrical preheating (optional) to 600 K

Driven gas:
0.1 bar < py < 10 bar

Dump tank evacuated before test



The Aachen Shock Tunnel - TH2

initial conditions shock reservoir free stream
Pa T4 P1 Ms P2 Ps Ts Moo Too Uso Poo
[bar] K] [bar] [bar] [bar] K] K] [m/s] [mbar]
100 293 1.0 3.3 12 65 1500 7.7 125 1740 7.6
370 500 1.0 4.6 26 175 2500 7.4 250 2350 20.0
720 500 0.7 5.6 50 325 3650 6.8 460 3910 42.0
1200 500 0.6 6.8 50 560 4600 6.5 700 3400 73.0
100 293 0.9 3.4 12 65 1500 1.3 60 1780 0.6
450 500 1.2 4.9 29 225 2700 1.3 120 2480 1.5
1300 520 0.7 6.4 46 630 4600 121 220 3560 1.2
26 293 0.2 3.4 12 15 1500 1.4 60 1780 0.1
480 500 0.2 6.6 50 210 4600 11.0 270 3630 0.7
100 293 1.0 3.4 12 65 1500 7.7 130 1750 7.3
370 500 1.0 5.1 27 220 2700 7.3 280 2440 26.3




The Caltech Shock Tunnel - T5

Free-piston shock tunnel

Secondary Diaphragm

Piston

Primary Diaphragm

- -
/ / CT-8T Junction

Test Section Shock tube (8T) Compression Tube (CT) Secondary Reservoir (2R)




The Caltech Shock Tunnel - T5

» Compression tube (CT):
» length 30 m, diameter 300 mm
» free piston (120 kg)
» max piston velocity: 300 m/s
» driven by compressed air (80 bar - 150 bar)

» Shock tube (ST):
» length 12 m, diameter 90 mm
» driver gas: helium + argon
» driven gas: air
» diaphragm 1: 7 mm stainless steel
» pyg mMax 1300 bar



The Caltech Shock Tunnel - T5

Reservoir conditions:

ps 1000 bar
T5 10000 K

Freestream conditions (design conditions):
My, 5.2
T 2000 K
Poso 0.3 bar
typical test time 1 ms



Other Examples of Shock Tunnels
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Riemann Problem

The shock tube problem is a special case of the general Riemann Problem

”... A Riemann problem, named after Bernhard Riemann, consists of an
initial value problem composed by a conservation equation together with
plecewise constant data having a single discontinuity ...”

Wikipedia



Riemann Problem

May show that solutions to the shock tube problem have the general form:

p =p(x/t) where x = 0 denotes the position of the
p = p(x/t) initial jump between states 1 and 4
u=u(x/t)

T=Tkx/1)

a=a(x/t)



Riemann Problem - Shock Tube

Shock tube simulation:

» left side conditions (state 4):
> p=24kg/m?
» u=00m/s
» p=2.0bar

» right side conditions (state 1):
> p=12kg/m?
» u=0.0m/s
» p = 1.0 bar

» Numerical method
» Finite-Volume Method (FVM) solver
» three-stage Runge-Kutta time stepping
» third-order characteristic upwinding scheme
» local artificial damping
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velocity

—0.5

pressure
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Riemann Problem - Shock Tube

1.5

-10°
: : 100 F : — ‘ : :
—0.0010's —0.0010's 9l —0.0010s ||
—0.0025 s 8ol p —0.0025 s —0.0025 s
1.8
| 6o r | 1.6 F
u | P
40 14t
) 20F 1 1.2+
0 1 1L —
1 Il Il Ik Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
-15 -1 -05 0 05 1 15 -15 -1 —05 0 05 1 15 -15 -1 —05 0 05 1 15
(x/t) x 107% (x/t) x 107% (x/t) x 1073

The solution can be made self similar by plotting the flow field variables as function of
X/t
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“It's time we face reality, my friend. ... We're not
exactly rocket scientists,”



O, WNROOVONO U &
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__FUNCT__
__FUNCT__ "RungeKutta:: fwd"
PetscErrorCode RungeKutta::fwd(Domain *dom){
PetscErrorCode ierr=9; a

ierr=G3DCopy (dom->cons, cons@) ; CHKERRQ(ierr);

dom—>update() ;|
dcons—>evaluate(dom);

ierr=G3DWAXPY (dom—>cons, 1.0, dcons, cons@) ; CHKERRQ(ierr);
ierr=G3DAXPBY(cons@,0.5,0.5,dom->cons) ; CHKERRQ(ierr);

dom—>update();
dcons—>evaluate(dom);

ierr=G3DWAXPY (dom->cons, @.5,dcons, cons@) ; CHKERRQ(ierr);

FAr




method finite
of char- non-linear

acteristics WEMES

Boundary
conditions

Shock
handling

Spatial
dis-
cretization

Time

High tem- S integration

perature Numerical
effects schemes




Learning Outcomes

12 Explain the main principles behind a modern Finite Volume CFD code and such
concepts as explicit/implicit time stepping, CFL number, conservation, handling
of compression shocks, and boundary conditions

14 Analyze and verify the quality of the numerical solution
15 Explain the limitations in fluid flow simulation software

time for CFD!
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Motivation

Computational Fluid Dynamics (CFD) is the backbone of all practical engineering
compressible flow analysis

As an engineer doing numerical compressible flow analyzes it is extremely
important to have knowledge about the fundamental numerical principles and
their limitations

Going through the material covered in this section will not make you understand
all the details but you will get a feeling, which is a good start
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The Time-Marching Technique

Note!

Anderson’s text is here rather out-of-date, it was written during the 70’s and has not
really been updated since then.
The additional material covered in this lecture is an attempt to amend this.



The Time-Marching Technique

The problems that we like to investigate numerically within the field of compressible
flows can be categorized as

steady-state unsteady
compressible flows compressible flows

The Time-marching method is a solver framework that addresses both problem
categories



The Time-Marching Technique

The time-marching approach is a good alternative for simulating flows where there
are both supersonic and subsonic regions

supersonic/hyperbolic:
perturbations propagate in preferred directions
zone of influence/zone of dependence
PDEs can be transformed into ODEs

subsonic/elliptic:
perturbations propagate in all directions



Zone of Influence and Zone of Dependence

Moo > 1.0

v

A, B and C at the same axial position in the flow

v

D and E are located upstream of A, B and C

Mach waves generated at D will affect the flow in B but not in A and C
Mach waves generated at E will affect the flow in C but notin A and B
The flow in A is unaffected by the both D and E

v

v

v



Zone of Influence and Zone of Dependence

O
i

80UBNUI JO BUOZ

Moo > 1.0

zone of dependence
9

The zone of dependence for point A and the zone of influence of point A are
defined by C™ and C~ characteristic lines



The Time-Marching Technique

Steady-state problems:
define simple initial solution
apply specified boundary conditions
march in time until steady-state solution is reached

Unsteady problems:
apply specified initial solution
apply specified boundary conditions
march in time for specified total time to reach a desired unsteady solution

establish fully developed flow before initiating data sampling



Characterization of CFD Methods - Discretization

Discretization in space and time:
most common approach: Method of Lines
discretize in space =
system of ordinary differential equations (ODEs)
discretize in time =
time-stepping scheme for system of ODEs

Spatial discretization techniques:
Finite-Difference Method (FDM)
Finite-Volume Method (FVM)
Finite-Element Method (FEM)



Characterization of CFD Methods - Time Stepping

Temporal discretization techniques:

Explicit
mostly for transonic/supersonic steady-state and unsteady flows
short time steps
usually very stable

Implicit
mostly for subsonic/transonic steady-state flows
longer time steps possible

for high-supersonic flows, explicit solvers may very well outperform implicit
solvers



Characterization of CFD Methods - Equations

Equations solved:

Density-based

solve for density in the continuity equation
mostly for transonic/supersonic steady-state and unsteady flows

Pressure-based
the continuity and momentum equations are combined to form a pressure
correction equation
mostly for subsonic/transonic steady-state flows



Characterization of CFD Methods - Solver Approach

Solution procedure:

Fully coupled

all equations (continuity, momentum, energy, ...) are solved simultaneously
mostly for transonic/supersonic steady-state and unsteady flows

Segregated

solve the equations in sequence
mostly for subsonic steady-state flows
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Governing Equations



Quasi-One-Dimensional Flow - Conceptual |dea

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

Q  control volume

S left boundary (area A,)
S, right boundary (area As)
I'  perimeter boundary

0N =S, UI'USy



Quasi-One-Dimensional Flow - Governing Equations

Governing equations (general form):

c%.[”f’dyﬁﬁpv-nds: 0
” 80
% jfj pud? + (ﬁﬁ [p(v-n)u+p(n-ey)]dS =0
@ 59

% JJJ peod” + ﬁ/ pho(v - n)dS = 0
« 99



Example: Nozzle Simulation

P/Po

-

Po
Pe

Po/Pe

Mmax

1.20 [bar]
0.50 [bar]
11.8

145.6 [kg/s]

2.26

140

120

100

1.2

I I I
14 16 1.8

Po/Pe

I I I
2 22 24
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Spatial Discretization



Quasi-One-Dimensional Flow - Spatial Discretization

Let’s look at a small tube segment with length Ax

Streamtube with area A(x)

\ A/fg :A(X/;%)
A/’—i-l - A(XH-%)
o > AX; —XH_% X; 1
A ™
I*% i+l
2
€}; - control volume enclosed by A,
%i- % e Nipd A/Jr%, and I

= gpatial discretization

=



Quasi-One-Dimensional Flow - Spatial Discretization

e
e

mlil / /JrlM'T\
Q;

Integer indices (i, i + 1, ...):

control volumes or cells

. L 1.3
Fractional indices (i + 3 i+ 3 L)

interfaces between control volumes or cell faces

Apply control volume formulations for mass, momentum, energy to control
volume €



Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity

Conservation of mass:

= ﬂj pdV + ﬂ pv - ndS +

fj pv - ndS—&—jf pv-ndS =0

%,_/ ,+1 ‘,_/
VOL,; & i 0
dt 7([)(,/)/.7%/4’.7% (pu)H,%AH,%
where
VOL; = ﬂ dv (pu); 1 =
Q; QX 1
1 .
) - u),, 1 = udS
= vor, JJJ e (P ,+;XH ’
! +§



Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity
source term

Conservation of momentum: S e

[ o + [ [plv-mu+ ptn- o)) oS+
Q X 1

i— 3
S ——
g —
VoL (o) ~(PH0),_ 1Ay
2

2

+ jj [p(v-n)u+p(n-e)]dS+ fj [p(v-n)u+p(n-e)]dS=0
T

X

/+% /

— [~ pdA
(PU2+D);+%A,‘+l ,Ur/ p

|



Quasi-One-Dimensional Flow

cell-averaged quantity
face-averaged quantity

Conservation of energy:

i ij peodV + jj pho(v - n)dS +

—,_/

VOL; & (peo); *M,-,;A,-, |
2 2

+” pho (v - nds+ﬂphov n)dS = 0

/+2

0

(puiho);, 14,

;
D=



Quasi-One-Dimensional Flow

Lower order term due to varying stream tube area:

JJpoa=pi (A -A)

Ly

where p; is calculated from cell-averaged quantities (DOFs) { o, (pu), (peo)}/ as

pi= (- 1) (o) - o) &y = 2



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity
source term

-

d7 .
VOLI&PI— 11

+ (puho);4

1
2 +3 i+

N[

Application of these equations to all cells i € {1, 2,

domain results in a system of ODEs

......

N} of the computational



Spatial Discretization - Summary

Steps to achieve spatial discretization:

Choose primary variables (Degrees of Freedom or DOFs)
Approximate all other quantities in terms of DOFs

= System of ordinary differential equations (ODEs)

Degrees of freedom:

Choose {p, (pu), (peo)}. in all control volumes ;, i € {1,2,...,N} as degrees of
/

freedom, or primary variables

Note that these are cell-averaged quantities

What about the face values?
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Numerical Schemes



Flux Term Approximation

(pu)
(pu? +p)
(puho) +1
cell face values
Simple example:
(pu);y

P P
(pu) ¢ 54 (pu)
(p€o) (peo) i+1




Flux Term Approximation

More complex approximations usually needed

High-order schemes:

increased accuracy
more cell values involved (wider flux molecule)
boundary conditions more difficult to implement

Optimized numerical dissipation:
upwind type of flux scheme

Shock handling:

non-linear treatment needed (e.g. TVD schemes)
artificial damping



Flux Term Approximation

Q(x) = A+ Bx + Cx?* + Dx?

Assume constant area: A(x) = 1.0



Flux Term Approximation

_ 1 -1
Q) = VOL, /_2 Q(x)dx

VOL; = A1Ax; = {A1 = 1.0, Ax; = 1.0} = 1.0

—1
= Qi :/ Q(x)adx
—2



Flux Term Approximation

1 -1
Q= / Q(x)dx = |Ax + e low g 1D)(“]
. 2 3 Tl

~ 0 1 1 1.,1°
Q= / Q(x)dx = |Ax + =Bx* + —Cx3 + Dx4]
. 2 3 1,

X ! 1 1, 10
Qs = / Q(x)dx = |Ax + =Bx? + Cx3 + Dx‘ﬂ
g 2 3 1,

_ 2 1 1 147
Qs = / Q(x)dx = |Ax + =Bx? + -Cx3 + Dxﬂ
! 2 3 Tt B



Flux Term Approximation

— 3 7 15
—A-°B+-C-—D
@) > +3C 1
— 1 1 1
=L 1 1 1

15

— 3 7
—A+2B+icy 2D
Q4 +2 +3C+4



Flux Term Approximation

A= 112 [ Qi+ 7Qs + 705 — 64}

B— % [61 ~15Qs + 1503 — 64}

[01 Qy— Q3+ 64}

.-lk\»—'

D= [ Ql+3QQ—3Q;+Q4}

cm}—n



Flux Term Approximation

Qo = Q(0) + Q" (0) = Qo = A + 656D

6 = 0 = fourth-order central scheme
d = 1/12 = third-order upwind scheme

d = 1/96 = third-order low-dissipation upwind scheme



Flux Term Approximation

1~ d= 1~
Qo =A+65D = {5 =1/12} = — Q1 + 202 + 305

1~ D= 1=
QO/eft - _601 + EQQ + §Q3

1~ D= 1<
Qoright — 76@4 + 6@3 + §QZ

method of characteristics used in order to decide whether left- or
right-upwinded flow quantities should be used



Flux Term Approximation

High-order numerical schemes:

low numerical dissipation (smearing due to amplitudes errors)

low dispersion errors (wiggles due to phase errors)



Conservative Scheme

T e
OO TTTTT

e
Wl
o

mass conservation:

. d — —
cell (i): VOL,; &p, + (pu)f+%A/+% = (pu); _ %Ap% =0

. d _ [ J—
cell (i 4+ 1): VOLjy1 &p,+1 + (/)U)H’gAH’% — (pu)’,+%/\i+% =0

(similarly for momentum and energy conservation)



Conservative Scheme

T e
OO TTTTT

i3 i+ Xiy 3
mass conservation:
d N
cell (i): voL; < 5 —(0), 1A 1 =0
dt =3 =3
I(+1): VOL, g A
cell (f 4 1): i+1 5 i1 +(/)U),+% i+ 3 =0

(similarly for momentum and energy conservation)



Conservative Scheme

Conservative scheme

"The flux leaving one control volume equals the flux entering neighbouring
control volume”

Conservation property for mass, momentum and energy is crucial for the correct
prediction of shocks*

*correct prediction of shocks:
strength

position
velocity
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Time Stepping



Time Stepping
The system of ODEs obtained from the spatial discretization in vector notation
d
—Q=F
#Q=FQ

» Q is a vector containing all DOFs in all cells

» F(Q) is the time derivative of Q resulting from above mentioned flux
approximations
non-linear vector-valued function



Time Stepping

Three-stage Runge-Kutta - one example of many:
Explicit time-marching scheme

Second-order accurate



Time Stepping - Three-stage Runge-Kutta
d
aQ - F(Q)

Let Q" = Q(t)) and Q""" = Q(tr41)
t, is the current time level and t,,1 is the next time level
At = th41 — t, is the solver time step
Algorithm:
L. Q° =Q"+AFQ")
, 1 1
2. Q7 =Q"+ JAF(Q") + FAF(Q)
1 1
3. QT = Q7+ JAIF(Q) + SAF(QT)

DOFs in all cells updated from time level t, to time level ¢y 1, repeat procedure for th 1 2, th4-3, -



Time Stepping - Explicit Schemes

Properties of explicit time-stepping schemes:

Easy to implement in computer codes
Efficient execution on most computers

Easy to adapt for parallel execution on distributed memory systems (e.g. Linux
clusters)

Time step limitation (CFL number)
Convergence to steady-state often slow (there are, however, some remedies for
this)



Time Stepping - Explicit Schemes

Courant-Friedrich-Levy (CFL) number - one-dimensional case:

Interpretation: The fastest characteristic (C* or C~) must not travel longer than Ax
during one time step



Time Stepping - Explicit Schemes

— =u-—a — =u-+a
at at max(|u — al, [u+a|)At = (ju| +a)At < Ax =
Qui+aat o
- Ax -
q c™ cHl
> VX

AX AX



Time Stepping - Explicit Schemes

Steady-state problems:

» local time stepping

» each cell has an individual time step

» At maximum allowed value based on CFL criteria
Unsteady problems:

» time accurate

» all cells have the same time step

> At, = min {Atl, vy AtN}
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Boundary Conditions



Boundary Conditions

Boundary conditions are very important for numerical simulation of compressible
flows

Main reason: both flow and acoustics involved!

Example 1:
Finite-volume CFD code for Quasi-1D compressible flow (Time-marching procedure)

What boundary conditions should be applied at the left and right ends”?

left boundary right boundary

X172 X3/2 X5/2 XN—1/2

computational domain



Boundary Conditions

three characteristics:
C+
o
advection

ax ax ax ax ax ax

— =u-—a — =u — =u+a — =u-—a — =u — =Uu+a
dt dt dt dt dt dt

% ct c~ ct

i
right boundary

1
left boundary
- computational domain



Boundary Conditions

v

C™ and C~ characteristics describe the transport of isentropic pressure waves
(often referred to as acoustics)

v

The advection characteristic simply describes the transport of certain quantities
with the fluid itself (for example entropy)

v

In one space dimension and time, these three characteristics, together with the
quantities that are known to be constant along them, give a complete
description of the time evolution of the flow

v

We can use the characteristics as a guide to tell us what information that should
be specify at the boundaries



Left Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

Subsonic inflow: 0 <u < a
u—a<ao
u>0
u+a>a0
one outgoing characteristic
two ingoing characteristics

Two variables should be specified at the boundary
The third variable must be left free



Left Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns

Subsonic outflow: —a < u < 0
u—a<ao
u<o
u+a>ao
two outgoing characteristics
one ingoing characteristic

One variable should be specified at the boundary
The second and third variables must be left free



Left Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

Supersonic inflow: u > a
u—a>ao
u>0
u+a>ao
no outgoing characteristics
three ingoing characteristics

All three variables should be specified at the boundary
No variables must be left free



Left Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

Supersonic outflow: u < —a
u—a<ao
u<o
u+a<o0
three outgoing characteristics
no ingoing characteristics

No variables should be specified at the boundary
All variables must be left free



Right Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns

Subsonic outflow: 0 < u < a
u—a<ao
u>0
u+a>ao
one ingoing characteristic
two outgoing characteristics

One variable should be specified at the boundary
The second and third variables must be left free



Right Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

Subsonic inflow: —a < u < 0
u—a<ao
u<o
u+a>a0
two ingoing characteristics
one outgoing characteristic

Two variables should be specified at the boundary
The third variables must be left free



Right Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

Supersonic outflow: v > a
u—a>>»0
u>0
u+a>a0
no ingoing characteristics
three outgoing characteristics

No variables should be specified at the boundary
All three variables must be left free



Right Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

Supersonic inflow: v < —a
u—a<ao
u<o
u+a<ao
three ingoing characteristics
no outgoing characteristics

All three variables should be specified at the boundary
No variables must be left free



Subsonic Inflow (Left Boundary) - Example

Subsonic inflow: we should specify two variables

Alt  specified  specified well-posed non-reflective
variable 1 variable 2

1 Po To X
2 pu To X
3 S JT X X

well posed:
the problem has a solution
the solution is unique
the solution’s behaviour changes continuously with initial conditions



Subsonic Outflow (Left Boundary) - Example

Subsonic outflow: we should specify one variable

Alt  specified well-posed non-reflective

variable
1 D X
2 pu X
3 Jt X X




Subsonic Inflow 2D/3D

exterior

interior

[

n
v

unit normal vector
fluid velocity at boundary

]

Subsonic inflow
Assumption:
—a<v-n<0

Four ingoing characteristics

One outgoing characteristic
Specify four variables at the boundary:
example: po, To, flow direction (two angles)



Subsonic Outflow 2D/3D

exterior

interior

[

n
v

unit normal vector
fluid velocity at boundary

Subsonic outflow
Assumption:
0<v-n<a

One ingoing characteristics
Four outgoing characteristic

Specify one variables at the boundary:
example: p



Supersonic Inflow 2D/3D

exterior

interior

[

n
v

unit normal vector
fluid velocity at boundary

]

Supersonic inflow
Assumption:
v-n< —a

Five ingoing characteristics

No outgoing characteristics
Specify five variables at the boundary:
all solver variables specified



Supersonic Outflow 2D/3D

exterior

Supersonic outflow

Assumption:
v v-n>a
interior
[ , ] No ingoing characteristics
n Uh‘lt normg\ vector
v ety atbounday Five outgoing characteristics

No variables specified at the boundary:
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Explicit Finite-Volume Method - Summary

The described numerical scheme is an example of a
density-based, fully coupled scheme




Explicit Finite-Volume Method - Summary

density-based schemes

solve for density in the continuity equation

in general preferred for high-Mach-number flows and for unsteady compressible
flows

pressure-based schemes
the continuity and momentum equations are combined to form a pressure
correction equation

were first used for incompressible flows but have been adapted for compressible
flows also

quite popular for steady-state subsonic/transonic flows



Explicit Finite-Volume Method - Summary

fully-copuled schemes
all equations (continuity, momentum, energy) are solved for simultaneously

segregated schemes

alternate between the solution of the velocity field and the pressure field
(pressure-based solver)



Explicit Finite-Volume Method - Summary

Spatial discretization:

Control volume formulations of conservation equations are applied to the cells of
the discretized domain
Cell-averaged flow quantities (g, pU, pé,) are chosen as degrees of freedom
(DOFs)
Flux terms are approximated in terms of the chosen DOFs

high-order, upwind type of flux approximation is used for optimum results
A fully conservative scheme is obtained

the flux leaving one cell is identical to the flux entering the neighboring cell

The result of the spatial discretization is a system of ODEs



Explicit Finite-Volume Method - Summary

Time marching:

Three-stage, second-order accurate Runge-Kutta scheme
Explicit time-stepping
Time step length limited by the CFL condition (CFL < 1)

Classification of numerical scheme:

density-based
includes the continuity equation
fully coupled
all equations are solved simultaneously
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Practical Examples:
Grid Resolution and Numerical
Schemes



Numerical Approach

Code: G3D::Flow (Chalmers in-house CFD code)

Finite-Volume Method

Method of lines

Three-stage, second-order accurate Runge-Kutta time stepping
First-order, second-order, and third-order characteristic upwinding scheme



Grid Resolution: Compression Ramp

coarse mesh medium mesh fine mesh
71x21 141 x 41 281 x81

density density density

Mach number Mach number Mach number




fine mesh

medium mesh

161 x41

Space Shuttle

coarse mesh
s

81x21

Grid Resolution
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Grid Resolution: Axi-symmetric Slender Body

coarse mesh medium mesh fine mesh
31x21 61x41 121x81

density density density

Mach number Mach number Mach number




Numerical Scheme: Compression Ramp

first-order upwind second-order upwind third-order upwind
density density density
Mach number Mach number Mach number



Artificial Numerical Damping: Compression Ramp
Low artificial numerical damping

y1——®ﬁ

0
0 1 2 3 4 5 6
X
Mach number along line 1 Mach number along line 2 Mach number along line 3

24 2 25
22

2 1.8] —
18 16

M M M5

1.6 1.4
1.4 1.2] 4
12 1

1!] 2 4 6 8 0 0 2 4 6 8 0 0 2 4 6

X X X

second-order upwind scheme

first-order upwind scheme
third-order upwind scheme




Artificial Numerical Damping: Compression Ramp
High artificial numerical damping

y1

Mach number along line 1

Mach number along line 2

Mach number along line 3

2.4, 2. 25
22) 2
2 18 2 -~
18| 1.6]
M M M 1.5]
1.6 1.4
1.4 12 4
1.2 1
1!] 2 4 6 8 o 0 2 4 6 8 0. 0 2 4 6
X X

second-order upwind scheme

first-order upwind scheme
third-order upwind scheme
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Available CFD Codes



CFD Codes

List of free and commercial CFD codes:

http://www.cfd-online.com/Wiki/Codes

Free codes are in general unsupported and poorly documented

Commercial codes are often claimed to be suitable for all types of flows
The reality is that the user must make sure of this!

Industry/institute/university in-house codes not listed

non-commercial but proprietary
part of design/analysis system


http://www.cfd-online.com/Wiki/Codes

CFD Codes - General Guidlines

Simulation of high-speed and/or unsteady compressible flows:

Use correct solver options
otherwise you may obtain completely wrong solution!

Use a high-quality grid
a poor grid will either not give you any solution at all (no convergence) or at best
a very inaccurate solution!



ANSYS-FLUENT® - Typical Experiences

Very robust solver - will almost always give you a solution
Accuracy of solution depends a lot on grid quality

Shocks are generally smeared more than in specialized codes
Solver is generally very efficient for steady-state problems

Solver is less efficient for truly unsteady problems, where both flow and
acoustics must be resolved accurately



ANSYS-FLUENT® - Solver Options

Coupled or Density-based depends on version

the continuity, momentum, energy equations are solved for simultaneously
just like in the Quasi-1D code discussed previously

Density = Ideal gas law

the calorically perfect gas assumption is activated
the energy equation is activated

Explicit or Implicit time stepping
Explicit recommended for unsteady compressible flows
CFL js set to 1 as default, but may be changed

Implicit more efficient for steady-state compressible flows
CFL is set to 5 as default, but may be changed



ANSYS-FLUENT® - Solver Features

Spatial discretization:
Finite-Volume Method (FVM)
Unstructured grids
Fully conservative, density-based scheme

Flux approximations:
first-order, second-order, upwind, ...

Fully coupled solver approach

Explicit time stepping:
Runge-Kutta time stepping

Implicit time stepping:
lterative solver based on Algebraic Multi-Grid (AGM)
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THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GET BACK
TO WORK!
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Learning Outcomes

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases

A deep dive into the theory behind the definitions of calorically perfect gas,
thermally perfect gas, and other models
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Motivation

Explosions and combustion are two examples of cases where high-temperature
effects must be taken into account

The temperature does not have to be extremely high in order for temperature
effects to appear, 600 K is enough

In this section you will learn what happens in a gas on a molecular level when
the temperature increases and what implications that has on applicability of
physical models
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Chapter 16.2
Microscopic Description of Gases



Microscopic Description of Gases

Hard to make measurements
Accurate, reliable theoretical models needed

Available models do work quite well



Molecular Energy

Yy

Vx
vz

Translational kinetic energy
thermal degrees of freedom: 3

o

*—o—0

€O,

linear polyatomic molecule

y

Rotational kinetic energy

thermal degrees of freedom:

2 for diatomic gases

2 for linear polyatomic gases

3 for non-linear polyatomic gases

C o

H20

Vibrational energy
(kinetic energy + potential energy)
thermal degrees of freedom: 2

o

A

non-linear polyatomic molecule

(only for molecules - not for mono-atomic gases)

» Translational energy
» Rotational energy
» Vibrational energy
» Electronic energy

©

Electronic energy of electrons in orbit
(kinetic energy + potential energy)



Molecular Energy

The energy for one molecule can be described by

r / / /
€ = Etrans T Erot T Eyip T gl

Results of quantum mechanics have shown that each energy is quantized i.e.
they can exist only at discrete values

Not continuous! Might seem unintuitive



Molecular Energy

The lowest quantum numbers defines the zero-point energy for each mode

» for rotational energy the zero-point energy is exactly zero

> &, I8 very small but finite - at absolute zero, molecules still moves but not much

o o
[ Ejians = 6/'trams 6Otrams ] [ Elip = glv/b 8O\//b ]
_ ! _ o
8krot - Ekm[ Eme/ - gme/ egoel




Energy States

RN

three cases with the same rotational energy
different direction of angular momentum
quantum mechanics = different distinguishable states

a finite number of possible states for each energy level



Macrostates and Microstates

Macrostate:

» molecules collide and exchange energy = the N, distribution (the macrostate) will
change over time

» some macrostates are more probable than other

» most probable macrostates (distribution) = thermodynamic equilibrium

Microstate:
» same number of molecules in each energy level but different states

» the most probable macrostate is the one with the most possible microstates =
possible to find the most probable macrostate by counting microstates



Macrostates and Microstates

Macrostate | Microstate |

€0t [ ] [ ] O (@] O (No = 2,90 = 5)
e ° ° ° o ° ° (N1 =5,91 =6)
5 ° ° ° o o (N2 = 3,92 = 5)

e : o ° ° (N = 2,9, = 3)



Macrostates and Microstates

Macrostate | Microstate |l

€0t (@] [ ] O (@] [ ] (No = 2,90 = 5)
e ° o ° (] ° ° (N1 =5,91 =6)
5 o o ° ° ° (N2 = 3,92 = 5)

e : o ° ° (N = 2,9, = 3)



Macrostates and Microstates

Macrostate II Microstate |

€0t (@] [ ] O (@] O (No = 1,90 = 5)
e ° o ° ° ° ° (N1 =5,91 = 6)
€h ¢ ° o ° ° ° (N2 = 4,92 =5)

e : o o ° (N, = 1,9/ = 3)



Macrostates and Microstates
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Chapter 16.5
The Limiting Case: Boltzmann
Distribution



Boltzmann Distribution

The Boltzmann distribution:

. e
N/' =N Q

where Q = f(T, V) is the state sum defined as

Q= Z gje_ef/kT
J

g; is the number of degenerate states, ¢; is the energy above zero-level (¢; = 5; —€0),
and k is the Boltzmann constant



Boltzmann Distribution

The Boltzmann distribution:

. gje—sj/kT

N =N —

For molecules or atoms of a given species, quantum mechanics says that a
set of well-defined energy levels ¢; exists, over which the molecules or
atoms can be distributed at any given instant, and that each energy level
has a certain number of energy states, g;.

For a system of N molecules or atoms at a given T and V, M* are the
number of molecules or atoms in each energy level €; when the system is in
thermodynamic equilibrium.



Boltzmann Distribution

Boltzmann distribution for a specific temperature

Y

» At temperatures above ~ 5K, molecules are distributed over many energy levels,
and therefore the states are generally sparsely populated (V; < g;)

» Higher energy levels become more populated as temperature increases
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Chapter 16.6 - 16.8
Evaluation of Gas Thermodynamic
Properties



Internal Energy

The internal energy is calculated as

E = NKT? <8IHQ>
Vv

or

The internal energy per unit mass is obtained as

E NKkT? /0InQ K 5 (0InQ
o= =1 (a7 >V‘{m‘R}‘RT (% >V




Internal Energy - Translation

, h? (n? n% n3
Etrans = g ?+32+;§

ny —ns quantum numbers (1,2,3,...)
a; — as linear dimensions that describes the size of the system
Planck’s constant
m mass of the individual molecule

2rmkT \ >/
Qtrans - <f72> %



Internal Energy - Translation

2rmkT \ */?
Qtrans - < P2 > v

2mmk
h2

3 3
antranS:§lnT+§ln —l—an:>

<3antrans> _ §l N
V

oT 2T
0 1n Qy 3 3
—RTZ (/=S _RT2 _ “RT
e[’fans RT ( aT >V RT 2 2



Internal Energy - Rotation

2

Efot = mJ(J +1)

J rotational quantum number (0,1,2,...)
/ moment of inertia (tabulated for common molecules)
h Planck’s constant




Internal Energy - Rotation

8m2IkT
Quot =~

8m2lk
h2

aanrot _1
(%or™), "7~

0In Qo
aT v

InQeot=InT +1n

= F?TQ% =RT

€rot = RT? <



Internal Energy - Vibration

1
E\I/I'b = hV (I’) + 2>

BN

vibrational quantum number (0,1,2,...)
fundamental vibrational frequency (tabulated for common molecules)
Planck’s constant

Quo = T— it



Internal Energy - Vibration

1

Qo = 1wy

InQyp = —In(1 — efhy/kT) =

<aln Qv,b> hv /KT?

ar ), @k —1 7

910 Quis hv/KT2  hu/KT
2 Vi _ 2 _
evb = RT < oT >V =RT v/KT _ 1 = ohw/kT _ IRT
_ hv /KT
TIH}I;O eh’//k/T—l =1= €vib < RT



Specific Heat

€ = €trans + €rot + Eyip + E¢/

hv /KT
ohv/kT—1

[ oe
o= (5),

e:gRT+RT+ RT + 6y



Specific Heat

Molecules with only translational and rotational energy

3 ) )
e= §RT+E’T— §RT:>CV— 5/?



Specific Heat

Mono-atomic gases with only translational and rotational energy

3 3
e_iRT:CV_QR
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Calorically Perfect Gas

v

In general, only translational and rotational modes of molecular excitation

v

Translational and rotational energy levels are sparsely populated, according to
Boltzmann distribution (the Boltzmann limit)

v

Vibrational energy levels are practically unpopulated (except for the zero level)

v

Characteristic values of ~ for each type of molecule, e.9. mono-atomic gas,
di-atomic gas, tri-atomic gas, etc

» He, Ar, Ne, ... - mono-atomic gases (y = 5/3)

» Ha, Oy, No, ... - di-atomic gases (y = 7/5)

» H-0 (gaseous), COs, ... - tri-atomic gases (y < 7/5)



Calorically Perfect Gas

p :,O(F\), T) e:CVT
h=e+p/p
_ P _

v, R, Cy, and C,, are constants
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Thermally Perfect Gas

In general, only translational, rotational and vibrational modes of molecular
excitation

Translational and rotational energy levels are sparsely populated, according to
Boltzmann distribution (the Boltzmann limit)

The population of the vibrational energy levels approaches the Boltzmann limit
as temperature increases

Temperature dependent values of ~ for all types of molecules except
mono-atomic (no vibrational modes possible)



Thermally Perfect Gas

p=pRT)  e=e(l)

7, Cy, and Cp, are variable (functions of T)

R is constant

C, = de/dT



High-Temperature Effects

Example: properties of air

2000K -

600K --

50K --

region of variable

thermally perfect gas

calorically perfect gas

Thermally perfect gas:
e and h are non-linear functions of T

the temperatur range represents standard atmospheric
pressure (lower pressure gives lower temperatures)



High-Temperature Effects

For cases where the vibrational energy is not negligible (high temperatures)
. 7
lim ey, = RT = C, = =R
T—o0 2
However, chemical reactions and ionization will take place long before that
» Translational and rotational energy fully excited above ~5 K

» Vibrational energy is non-negligible above 600 K
» Chemical reactions begin to occur above ~2000 K



High-Temperature Effects

As temperature increase further vibrational energy becomes less important

Why is that so?



High-Temperature Effects

Example: properties of air (continued)

TA
9000 K 0 — 0T + e~ (start of ionization)
4000 K No — 2N (start of dissociation)
2500 K --f-mmmmmmmmmmmm oo Oz — 20 (start of dissociation)
no reactions

With increasing temperature, the gas becomes more and more mono-atomic which
means that vibrational modes becomes less important
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Equilibrium Gas

For temperatures T >~ 2500K

» Air may be described as being in thermodynamic and chemical equilibrium
(Equilibrium Gas)
» reaction rates (time scales) low compared to flow time scales
» reactions in both directions (example: Oy = 20)

» Tables must be used (Equilibrium Air Data) or special functions which have been
made to fit the tabular data



Equilibrium Gas

How do we obtain a thermodynamic description?

,OZ,O(R,T) e:e(V7T> C, = @
v \oar/,
h=h(p,T)
h=e+ P C, = oh
p P\aT ),
[l s e,
5 (5) o, (o) ;
a2 = yAT— P VT S o
1

RT =P
p
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Learning Outcomes

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*
I detached blunt body shocks, nozzle flows

How does increased temperature affect a compressible flow?
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Motivation

High-temperature effects can be rather dramatic

We will examine a couple of flow situations where the temperature is high
enough to effect the flow properties significantly in order to get e feeling for
high-temperature flows



Properties of High-Temperature Gases

Applications:
Rocket nozzle flows
Reentry vehicles
Shock tubes / Shock tunnels
Internal combustion engines

Gasturbines



Properties of High-Temperature Gases

Example: Reentry vehicle

Mach 32.5

Air

Calorically perfect gas

Too =283

Table A2 = T /T, =206

Too =283 = Ts =58 300 K



Properties of High-Temperature Gases

Example: Reentry vehicle

Mach 32.5

Air

Calorically perfect gas

Too =283

Table A2 = T /T, =206
Too =283 = T3 =58 300 K

A more correct value is T = 11 600 K

Something is fishy herel



Roadmap - High Temperature Effects

Gas models:
Calorically perfect gas Thermodynamic and
Thermally perfect gas chemical equilibrium

Equilibrium gas

.

[ Equilibrium-air flows

)

!

[ Normal shock ]<—O—>[

Nozzle flow




Chapter 17.1
Thermodynamic and Chemical
Equilibrium



Thermodynamic Equilibrium

Molecules are distributed among their possible energy states according to the
Boltzmann distribution (which is a statistical equilibrium) for the given
temperature of the gas

» extremely fast process (time and length scales of the molecular processes)

» much faster than flow time scales in general (not true inside shocks)



Thermodynamic Equilibrium

Global thermodynamic equilibrium:

there are no gradients of p, T, p, v, species concentrations

"true thermodynamic equilibrium”

Local thermodynamic equilibrium:

gradients can be neglected locally

this requirement is fulfilled in most cases (hard not to get)



Chemical Equilibrium

Composition of gas (species concentrations) is fixed in time
» forward and backward rates of all chemical reactions are equal
» zero net reaction rates

» chemical reactions may be either slow or fast in comparison to flow time scale
depending on the case studied



Chemical Equilibrium

Global chemical equilibrium:

there are no gradients of species concentrations

together with global thermodynamic equilibrium =
all gradients are zero

Local chemical equilibrium

gradients of species concentrations can be neglected locally

not always true - depends on reaction rates and flow time scales



Thermodynamic and Chemical Equilibrium

Most common cases:

Thermodynamic Equilibrium

Chemical Equilibrium

Gas Model

local thermodynamic equilibrium
local thermodynamic equilibrium
local thermodynamic equilibrium
thermodynamic non-equilibrium

SN =

local chemical equilibrium

chemical non-equilibrium
frozen composition
frozen composition

equilibrium gas
finite rate chemistry
frozen flow
vibrationally frozen flow

» length and time scales of flow decreases from 1 to 4

» Frozen composition = no (or slow) reactions

» vibrationally frozen flow gives the same gas relations as calorically perfect gas!
» no chemical reactions and unchanged vibrational energy
» example: small nozzles with high-speed flow
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Chapter 17.2
Equilibrium Normal Shock Wave
Flows



Equilibrium Normal Shock Wave Flows

Question: Is the equilibrium gas assumption OK?

Answer:

for hypersonic flows with very little ionization in the shock region, it is a fair
approximation

not perfect, since the assumption of local thermodynamic and chemical equilibrium
is not really true around the shock

however, it gives a significant improvement compared to the calorically perfect gas
assumption



Equilibrium Normal Shock Wave Flows
Basic relations (for all gases), stationary normal shock:
piUL = p2uz

p1UT + P1 = paU3 + P2

1 1
hlﬁu% — h2 + 5[1%
For equilibrium gas we have:
p=p(p,h)
T =T(p,h)

(we are free to choose any two states as independent variables)



Equilibrium Normal Shock Wave Flows
Assume that p1, U1, p1, T1, and hy are known
p1U1 P1 ’
Uy = — = p1U} +P1 = pa <U1> +P2 =
P2 P2

P2 = p1+ prUi (1 - '01)
P2

Also

1 1/p \?
h —u h =
1+21 2+2<p2 1)

hs = by + ~0? 1_<p1>2
2 1 2 1 2



Equilibrium Normal Shock Wave Flows

@ when converged:
initial guess —
P2

O p2 = p(p2,h2)
=
Ty = T(p2,h2)

calculate
p2 and ho

P1
[ update } [ p2 = p(p2,hz2)
P2

llp2 = p2yyll < e

P2, Uz, P2, Ta, ha known

-/




Equilibrium Air - Normal Shock

Tables of thermodynamic properties for different conditions are available

For a very strong shock case (M; = 32), the table below (Table 17.1) shows some
typical results for equilibrium air

calorically perfect gas | equilibrium air

(y=14)
p2/p1 1233 1387
p2/p1 5.97 15.19
ha/hy 206.35 212.80

Ta/Th 206.35 41.64




Equilibrium Air - Normal Shock

Analysis:

» Pressure ratio is comparable
» Density ratio differs by factor of 2.5
» Temperature ratio differs by factor of 5

Explanation:

» Using equilibrium gas means that vibration, dissociation and chemical reactions

are accounted for
» The chemical reactions taking place in the shock region lead to an "absorption”
of energy into chemical energy
» drastically reducing the temperature downstream of the shock
» this also explains the difference in density after the shock



Equilibrium Air - Normal Shock

Additional notes:

For a normal shock in an equilibrium gas, the pressure ratio, density ratio,
enthalpy ratio, temperature ratio, etc all depend on three upstream variables,

e.g. ui, P1, T1

For a normal shock in a thermally perfect gas, the pressure ratio, density ratio,
enthalpy ratio, temperature ratio, etc all depend on two upstream variables, e.g.
My, Ty

For a normal shock in a calorically perfect gas, the pressure ratio, density ratio,
enthalpy ratio, temperature ratio, etc all depend on one upstream variable, e.g.
M;



Equilibrium Gas - Detached Shock

calorically perfect gas equilibrium gas
M = 20 M =20
—_— e

shock moves closer to body

What's the reason for the difference in predicted shock position?



Equilibrium Gas - Detached Shock

Calorically perfect gas:
all energy ends up in translation and rotation = increased temperature
Equilibrium gas:

energy is absorbed by reactions = does not contribute to the increase of gas
temperature
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Chapter 17.3
Equilibrium Quasi-One-Dimensional
Nozzle Flows



Equilibrium Quasi-1D Nozzle Flows

First question: Is chemically reacting gas also isentropic
(for inviscid and adiabatic case)?

entropy equation: Tds = dh — vdp
Quasi-1D equations in differential form (all gases):
momentum equation: dp = —pudu

energy equation: dh+udu=0



Equilibrium Quasi-1D Nozzle Flows

udu = _%p = —vdp
p

Tds = —udu — vdp = —udu + udu = 0 =

ads=0

Isentropic flow!



Equilibrium Quasi-1D Nozzle Flows

Second question: Does the area-velocity relation also hold for a chemically reacting
gas?

Isentropic process gives

M = 1 at nozzle throat still holds



Equilibrium Quasi-1D Nozzle Flows

For general gas mixture in thermodynamic and chemical equilibrium, we may find
tables or graphs describing relations between state variables.

Example: Mollier diagram

hA

p = constant

T = constant

\

for any point (h, s), we may findp, T, p, a, ...




Equilibrium Quasi-1D Nozzle Flows

h

ho

A

assume ho is known

2

<—— isentropic process

For steady-state inviscid adiabatic
nozzle flow we have:

1 1
h1+§u§:h2+§u§:ho

where h, is the reservoir enthalpy



Equilibrium Quasi-1D Nozzle Flows

At point 1 in Mollier diagram we have:

1
§U%:ho—h1 = U = 2(/70—/71)

Assume that u; = ay (sonic conditions) gives

p1U]A1 = p*a*A*

At any point along isentropic line, we have u = /2(h, — h) and p, p, T, a etc are all
given which means that pu is given

A pra’

A pu

may be computed for any point along isentropic line



Equilibrium Quasi-1D Nozzle Flows

Equilibrium gas gives higher T and more thrust

During the expansion chemical energy is released due to shifts in the equilibrium
composition

TA

equilibrium gas

calorically perfect gas

] AJA*



Equilibrium Quasi-1D Nozzle Flows

» Equilibrium gas gives higher T and more thrust

» During the expansion chemical energy is released due to shifts in the equilibrium
composition

TA

equilibrium gas

calorically perfect gas

] AJA*

» Chemical and vibrational energy transfered to translation and rotation =
increased temperature



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

equilibrium gas
real case
calorically perfect gas

] AJA*



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

equilibrium gas
real case
calorically perfect gas

] AJA*

Space nozzle applications: ug &~ 4000 m/s
Required prediction accuracy 5 m/s



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Equilibrium gas:
very fast chemical reactions
local thermodynamic and chemical equilibrium

Vibrationally frozen gas:
very slow chemical reactions
(no chemical reactions = frozen gas)
vibrational energy of molecules have no time to change
calorically perfect gas!



Large Nozzles

High T,, high po, high reactivity
Real case is close to equilibrium gas results

Example: Ariane 5 launcher, main engine (Vulcain 2)

» Hs + Oy — H5O in principle, but many different radicals and reactions involved
(at least ~10 species, ~20 reactions)

» To ~ 3600 K, po ~ 120 bar
» Length scale ~ a few meters

» (Gas mixture is quite close to equilibrium conditions all the way through the
expansion



Ariane 5

Ariane 5 space launcher

extreme high temperature and high
speed flow regime




Vulcain Engine

Vulcain engine:

first stage of the Ariane 5 launcher




Space Shuttle Launcher - SSME




Space Shuttle Launcher - SSME




Small Nozzles

Low Ty, low po, lower reactivity
Real case is close to frozen flow results
Example:

Small rockets on satellites (for maneuvering, orbital adjustments, etc)




Small Nozzles




Roadmap - High Temperature Effects

Gas models:
Calorically perfect gas ., Thermoijynic and
Thermally perfect gas chemic2NEquilibrium

Equilibrium gas

.

[ Equilibr%ir flows

e o]

ow
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