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Non-Linear One-Dimensional Flow

Starting point: the governing flow equations on partial differential form

Continuity equation:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (1)

Momentum equation:

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0 (2)

Any thermodynamic property can be expressed as a function of two other thermodynamic pro-
perties. This means that we can get density as a function of pressure and entropy: ρ = ρ(p, s)
and therefore

dρ =

(
∂ρ

∂p

)
s

dp+

(
∂ρ

∂s

)
p

ds

Assuming isentropic flow ds = 0 gives

dρ =

(
∂ρ

∂p

)
s

dp

∂ρ

∂t
=

(
∂ρ

∂p

)
s

∂p

∂t
=

1

a2
∂p

∂t

∂ρ

∂x
=

(
∂ρ

∂p

)
s

∂p

∂x
=

1

a2
∂p

∂x

(3)
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Now, insert 3 in 1 gives

∂p

∂t
+ u

∂p

∂x
+ ρa2

∂u

∂x
= 0 (4)

Dividing 4 by ρa gives

1

ρa

(
∂p

∂t
+ u

∂p

∂x

)
+ a

∂u

∂x
= 0 (5)

A slightly modified form of the momentum equation is obtained by multiplying and dividing
the last term by a

∂u

∂t
+ u

∂u

∂x
+

1

ρa

(
a
∂p

∂x

)
= 0 (6)

If the continuity equation on the form 5 is added to the momentum equation on the form 6, we
get

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0 (7)

If, instead, the continuity equation on the form 5 is subtracted from the momentum equation
on the form 6, we get

[
∂u

∂t
+ (u− a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u− a)

∂p

∂x

]
= 0 (8)

Since u = u(x, t), we have from the definition of a differential

du =
∂u

∂t
dt+

∂u

∂x
dx =

∂u

∂t
dt+

∂u

∂x

dx

dt
dt (9)

Now, let dx/dt = u+ a

du =
∂u

∂t
dt+ (u+ a)

∂u

∂x
dt =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt (10)
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which is the change of u in the direction dx/dt = u+ a

In the same way

dp =
∂p

∂t
dt+

∂p

∂x
dx =

∂p

∂t
dt+

∂p

∂x

dx

dt
dt (11)

and thus, in the direction dx/dt = u+ a

dp =
∂p

∂t
dt+ (u+ a)

∂p

∂x
dt =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt (12)

If we go back and examine Eqn. 7, we see that Eqns. 10 and 12 appear in the equation and thus
it can now be rewritten as follows

du

dt
+

1

ρa

dp

dt
= 0⇒ du+

dp

ρa
= 0 (13)

Eqn. 13 applies along a C+ characteristic, i.e., a line in the direction dx/dt = u+ a in xt-space
and is called the compatibility equation along the C+ characteristic. If we instead chose a C−

characteristic, i.e., a line in the direction dx/dt = u− a in xt-space, we get

du =

[
∂u

∂t
+ (u− a)

∂u

∂x

]
dt (14)

dp =

[
∂p

∂t
+ (u− a)

∂p

∂x

]
dt (15)

which can be identified as subsets of Eqn. 8 and thus

du

dt
− 1

ρa

dp

dt
= 0⇒ du− dp

ρa
= 0 (16)

Eqn. 16 applies along a C− characteristic, i.e., a line in the direction dx/dt = u− a in xt-space
and is called the compatibility equation along the C− characteristic.
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C− characteristic line: dx
dt

= u− a

compatibility equation: du− dp
ρa

= 0

C+ characteristic line: dx
dt

= u + a

compatibility equation: du + dp
ρa

= 0

Figur 1: Characteristic lines through a point (x1,t1)

So, what we have done now is that we have have found paths through a point (x1,t1) along which
the governing partial differential equations Eqns. 7 and 8 reduces to the ordinary differential
equations 13 and 16. The C+ and C− characteristic lines are physically the paths of right- and
left-running sound waves in the xt-plane.

Riemann Invariants

If the compatibility equations are integrated along respective characteristic line, i.e., integrate
13 along the C+ characteristic and 16 along the C− characteristic, we get the Riemann invari-
ants J+ and J−.

J+ = u+

ˆ
dp

ρa
= const (17)

J− = u−
ˆ
dp

ρa
= const (18)

The Riemann invariants are constants along the associated characteristic line.

We have assumed isentropic flow and thus we may use the isentropic relations

p = C1T
γ/(γ−1) = C2a

2γ/(γ−1) (19)
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where C1 and C2 are constants. Differentiating Eqn. 19 gives

dp = C2

(
2γ

γ − 1

)
a[2γ/(γ−1)−1]da (20)

Now, if we further assume the gas to be calorically perfect

a2 = γRT =
γp

ρ
⇒ ρ =

γp

a2
(21)

Eqn. 19 in 21 gives

ρ = C2γa
[2γ/(γ−1)−2] (22)

and thus

J+ = u+

ˆ C2

(
2γ
γ−1

)
a[2γ/(γ−1)−1]

C2γa[2γ/(γ−1)−2]a
da = u+

(
2

γ − 1

)ˆ
da

J+ = u+
2a

γ − 1
(23)

J− = u− 2a

γ − 1
(24)

Eqns. 23 and 24 are the Riemann invariants for a calorically perfect gas. The Riemann invariants
are constants along C+ and C− characteristics and if the situation shown in Fig. 2 appears,
that fact can be used to calculate the flow velocity and speed of sound in the location (x1,t1).

J+ + J− = u+
2a

γ − 1
+ u− 2a

γ − 1
= 2u⇒ u =

1

2
(J+ + J−) (25)

J+ = u+
2a

γ − 1
=

1

2
(J+ + J−) +

2a

γ − 1
⇒ a =

γ − 1

4
(J+ − J−) (26)
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Expansion Wave

The expansion wave propagation into the driver section in a shock tube can be described using
characteristic lines.
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Figur 2: Expansion fan centered at (x, t) = (0.0, 0.0)

The expansion is propagating into stagnant fluid in region four (the driver section), which means
that the flow properties ahead of the expansion wave are constant.

J+
a = J+

b

J+ invariants constant along C+ characteristics

J+
a = J+

c = J+
e

J+
b = J+

d = J+
f

Since J+
a = J+

b this also implies J+
e = J+

f . In fact, since the flow properties ahead of the expan-

sion are constant, all C+ lines will have the same J+ value.

J− invariants constant along C− characteristics

J−
c = J−

d

6



J−
e = J−

f

ue =
1

2
(J+
e + J−

e )

uf =
1

2
(J+
f + J−

f )

J−
e = J−

f

J+
e = J+

f


⇒ ue = uf ⇒ ae = af

Due to the fact the J+ is constant in the entire expansion region, u and a will be constant along
each C− line.

The constant J+ value can be used to obtain relations for the variation of flow properties
through the expansion region. Evaluation of the J+ invariant at any position within the expan-
sion region should give the same value as in region 4.

u+
2a

γ − 1
= u4 +

2a4
γ − 1

= 0 +
2a4
γ − 1

and thus

a

a4
= 1− γ − 1

2

(
u

a4

)
(27)

Eqn. 27 and a =
√
γRT gives

T

T4
=

[
1− γ − 1

2

(
u

a4

)]2
(28)

Using isentropic relations, we can get pressure ratio and density ratio

p

p4
=

[
1− γ − 1

2

(
u

a4

)]2γ/(γ−1)

(29)

ρ

ρ4
=

[
1− γ − 1

2

(
u

a4

)]2/(γ−1)

(30)
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Shock Tube
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Figur 3: traveling waves in a shock tube

From the analysis of the incident shock, we have a relation for the induced flow behind the shock

u2 = up =
a1
γ1

(
p2
p1
− 1

)
(

2γ1
γ1 + 1

)
(
γ1 − 1

γ1 + 1

)
+

(
p2
p1

)


1/2

(31)

The velocity in region 3 can be obtained from the expansion relations

p3
p4

=

[
1− γ4 − 1

2

(
u3
a4

)]2γ4/(γ4−1)

(32)

Solving for u3 gives

u3 =
2a4
γ4 − 1

[
1−

(
p3
p4

)(γ4−1)/(2γ4)
]

(33)

There is no change in pressure or velocity over the contact surface, which means u2 = u3 and
p2 = p3.
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u2 =
2a4
γ4 − 1

[
1−

(
p2
p4

)(γ4−1)/(2γ4)
]

(34)

Now, we have two ways of calculating u2. Setting Eqn. 31 equal to Eqn. 34 leads to the shock
tube relation

p4
p1

=
p2
p1

{
1− (γ4 − 1)(a1/a4)(p2/p1 − 1)√

2γ1 [2γ1 + (γ1 + 1)(p2/p1 − 1)]

}−2γ4/(γ4−1)

(35)
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