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Non-Linear One-Dimensional Flow

Starting point: the governing flow equations on partial differential form

Continuity equation:

Momentum equation:
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Any thermodynamic property can be expressed as a function of two other thermodynamic pro-
perties. This means that we can get density as a function of pressure and entropy: p = p(p, s)

and therefore
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Assuming isentropic flow ds = 0 gives



Now, insert [3] in [I] gives

8p Op 29 8u

Dividing {4 by pa gives
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A slightly modified form of the momentum equation is obtained by multiplying and dividing
the last term by a
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If the continuity equation on the form [f]is added to the momentum equation on the form [ we
get
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If, instead, the continuity equation on the form [5|is subtracted from the momentum equation
on the form [ we get
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Since u = u(x,t), we have from the definition of a differential
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Now, let dz/dt = u + a
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which is the change of u in the direction dz/dt = u + a

In the same way
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and thus, in the direction dz/dt = u+ a

_9p P 4y | 9P o
dp_@tdt+(u+a)8xdt_ [m%—(u—l—a)am] dt (12)

If we go back and examine Eqn.[7] we see that Eqns. [I0]and [I2] appear in the equation and thus
it can now be rewritten as follows
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Eqn. 13| applies along a Ct characteristic, i.e., a line in the direction dz/dt = u + a in xt-space
and is called the compatibility equation along the CT characteristic. If we instead chose a C~
characteristic, i.e., a line in the direction dz/dt = u — a in zt-space, we get
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which can be identified as subsets of Eqn. |8 and thus
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Eqn. {16 applies along a C'~ characteristic, i.e., a line in the direction dz/dt = u — a in xt-space
and is called the compatibility equation along the C'~ characteristic.



C™ characteristic line: ‘é—f =u—a
compatibility equation: du — % =0
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Figur 1: Characteristic lines through a point (z1,t1)

So, what we have done now is that we have have found paths through a point (z1,t;) along which
the governing partial differential equations Equs. [7] and [§] reduces to the ordinary differential
equations |13| and The CT and C~ characteristic lines are physically the paths of right- and
left-running sound waves in the xt-plane.

Riemann Invariants

If the compatibility equations are integrated along respective characteristic line, i.e., integrate
along the CT characteristic and [L6| along the C'~ characteristic, we get the Riemann invari-
ants J* and J~.
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The Riemann invariants are constants along the associated characteristic line.

We have assumed isentropic flow and thus we may use the isentropic relations
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where Cy and Cy are constants. Differentiating Eqn. [I9] gives
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Now, if we further assume the gas to be calorically perfect
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and thus
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Eqns. 23| and [24] are the Riemann invariants for a calorically perfect gas. The Riemann invariants
are constants along O and C~ characteristics and if the situation shown in Fig. [2| appears,
that fact can be used to calculate the flow velocity and speed of sound in the location (x1,t1).
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Expansion Wave

The expansion wave propagation into the driver section in a shock tube can be described using
characteristic lines.

Figur 2: Expansion fan centered at (z,t) = (0.0,0.0)

The expansion is propagating into stagnant fluid in region four (the driver section), which means
that the flow properties ahead of the expansion wave are constant.

Jf =

JT invariants constant along C" characteristics
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Since J = Jgr this also implies J© = J]T. In fact, since the flow properties ahead of the expan-
sion are constant, all CT lines will have the same JT value.
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Due to the fact the JT is constant in the entire expansion region, u and a will be constant along

each C~ line.

The constant J value can be used to obtain relations for the variation of flow properties
through the expansion region. Evaluation of the J' invariant at any position within the expan-

sion region should give the same value as in region 4.
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and thus

Eqn. |27 and a = /yRI gives

Using isentropic relations, we can get pressure ratio and density ratio
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Shock Tube
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Figur 3: traveling waves in a shock tube
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From the analysis of the incident shock, we have a relation for the induced flow behind the shock
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The velocity in region 3 can be obtained from the expansion relations

B nrl <ua>r“/ e
P4 2 ay

Solving for us gives
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There is no change in pressure or velocity over the contact surface, which means us = u3 and

b2 = p3.
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Now, we have two ways of calculating us. Setting Eqn. [31] equal to Eqn. [34] leads to the shock
tube relation
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