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Figur 1: Quasi-one-dimensional flow - control volume

In the following quasi-one-dimensional flow will be assumed. That means that the cross-section
is allowed to vary smoothly but flow quantities varies in one direction only. The equations that
are derived will thus describe one-dimensional flow in axisymmetric tubes. Let’s assume flow in
the x-direction, which means that all flow quantities and the cross-section area will vary with
the axial coordinate x.

A = A(x), ρ = ρ(x), u = u(x), p = p(x), ...

We will further assume steady-state flow, which means that unsteady terms will be zero.

The equations are derived with the starting point in the governing flow equations on integral
form
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Continuity Equation

Applying the integral form of the continuity equation on the quasi-one-dimensional flow control
volume (Fig. 1) gives

d

dt

˚
Ω
ρdV︸ ︷︷ ︸

=0

+

"
∂Ω
ρv · ndS = 0 (1)

"
∂Ω
ρv · ndS = −ρ1u1A1 + ρ2u2A2

ρ1u1A1 = ρ2u2A2 (2)

Momentum Equation

Applying the integral form of the momentum equation on the quasi-one-dimensional flow con-
trol volume (Fig. 1) gives

d

dt

˚
Ω
ρvdV︸ ︷︷ ︸

=0

+

"
∂Ω

[ρ(v · n)v + pn] dS = 0 (3)

"
∂Ω
ρ(v · n)vdS = −ρ1u

2
1A1 + ρ2u

2
2A2

"
∂Ω
pndS = −p1A1 + p2A2 −

ˆ A2

A1

pdA

collecting terms

(
ρ1u

2
1 + p1

)
A1 +

ˆ A2

A1

pdA =
(
ρ2u

2
2 + p2

)
A2 (4)
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Energy Equation

Applying the integral form of the energy equation on the quasi-one-dimensional flow control
volume (Fig. 1) gives

d

dt

˚
Ω
ρeodV︸ ︷︷ ︸

=0

+

"
∂Ω

[ρho(v · n)] dS = 0 (5)

"
∂Ω

[ρho(v · n)] dS = −ρ1u1ho1A1 + ρ2u2ho2A2

ρ1u1ho1A1 = ρ2u2ho2A2

Now, using the continuity equation ρ1u1A1 = ρ2u2A2 gives

ho1 = ho2 (6)

Differential Form

The integral term appearing the momentum equation is undesired and therefore the governing
equations are converted to differential form.

The continuity equation (Eqn. 2) is rewritten in differential form as

ρ1u1A1 = ρ2u2A2 = const

d(ρuA) = 0 (7)

The momentum equation (Eqn. 4) is rewritten in differential form as

(
ρ1u

2
1 + p1

)
A1 +

ˆ A2

A1

pdA =
(
ρ2u

2
2 + p2

)
A2 ⇒ d

[
(ρu2 + p)A

]
= pdA
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d(ρu2A) + d(pA) = pdA

ud(ρuA) + ρuAdu+Adp+�
��pdA = �

��pdA

From the continuity equation we have d(ρuA) and thus

ρu��Adu+��Adp = 0⇒

dp = −ρudu (8)

which is the momentum equation on differential form. Also referred to as Euler’s equation. Fi-
nally, the energy equation (Eqn. 2) is rewritten in differential form as

ho1 = ho2 = const⇒ dho = 0

ho = h+
1

2
u2 ⇒ dh+

1

2
d(u2) = 0

dh+ udu = 0 (9)
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Summary

Continuity:

d(ρuA) = 0

Momentum:

dp = −ρudu

Energy:

dh+ udu = 0

The equations are valid for:

• quasi-one-dimensional flow

• steady state

• all gas models (no gas model assumptions made)

• inviscid flow

It should be noted that equations are exact but they are applied to a physical model that
is approximate, i.e., the approximation that flow quantities varies in one dimension with a
varying cross-section area. In reality, a variation of cross-section area would imply flow in three
dimensions.
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