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Figur 1: Stationary normal shock

The starting point is to set up the governing equations for one-dimensional steady compressible
flow over a control volume enclosing the normal shock (Fig. 1).
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Divide the momentum equation by ρ1u1
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For a calorically perfect gas a =
√
γp/ρ, which if implemented in Eqn. 4 gives
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The energy equation (Eqn. 3) with h = CpT
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Eqn. 8 can be set up between any two points in the flow. Specifically, we can use the relation
to relate the flow velocity, u, and speed of sound, a, in any point to the corresponding flow
properties at sonic conditions (u = a = a∗).
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If Eqn. 9 is evaluated in locations 1 and 2, we get
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Since the change in flow conditions over the shock is adiabatic (no heat is added inside the
shock), critical properties will be constant over the shock. Especially a∗ will be constant.

Eqn. 10 inserted in 5 gives
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Eqn. 11 is sometimes referred to as the Prandtl relation. Divide the Prandtl relation by a∗2 on
both sides gives
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The relation between M∗ and M is given by
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from which is can be seen that M∗ will follow the Mach number M in the sense that

• M = 1⇒M∗ = 1

• M < 1⇒M∗ < 1

• M > 1⇒M∗ > 1

The Mach number ahead of the shock must be greater than one and thus Eqn. 12 shows that
the Mach number downstream of the shock must be less than one.

Eqn. 13 inserted in Eqn. 12 gives
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Normal Shock Relations

Rewriting the continuity equation (Eqn. 1)
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Eqn. 13 in Eqn. 15 gives
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To get a corresponding relation for the pressure ratio over the shock, we go back to the momen-
tum equation (Eqn. 2)
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The temperature ratio over the shock can be obtained using the already derived relations for
pressure ratio and density ratio together with the equation of state p = ρRT
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