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Governing Equations on Integral Form

Eqns. 1 - 3 are the integral form of the continuity, momentum and energy equations, respecti-
vely. These equations may be rewritten with the corresponding equations on differential form
as a result.

d

dt

˚
Ω
ρdV +

‹
∂Ω
ρv · ndS = 0 (1)

d

dt

˚
Ω
ρvdV +

‹
∂Ω

[(ρv · n)v + pn] dS =

˚
Ω
ρfdV (2)

d

dt

˚
Ω
ρeodV +

‹
∂Ω
ρho(v · n)dS =

˚
Ω
ρf · vdV +

˚
Ω
q̇ρdV (3)

Governing Equations on Differential Form

Conservation of Mass

Apply Gauss’s divergence theorem on the surface integral in Eqn. 1 gives

‹
∂Ω
ρv · ndS =

˚
Ω
∇ · (ρv)dV

Also, if Ω is a fixed control volume

d

dt

˚
Ω
ρdV =

˚
Ω

∂ρ

∂t
dV
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The continuity equation can now be written as a single volume integral.

˚
Ω

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0

Ω is an arbitrary control volume and thus

∂ρ

∂t
+∇ · (ρv) = 0 (4)

which is the continuity equation on partial differential form.

Conservation of Momentum

As for the continuity equation, the surface integral terms are rewritten as volume integrals using
Gauss’s divergence theorem.

‹
∂Ω

(ρv · n)vdS =

˚
Ω
∇ · (ρvv)dV

‹
∂Ω
pndS =

˚
Ω
∇pdV

Also, if Ω is a fixed control volume

d

dt

˚
Ω
ρvdV =

˚
Ω

∂

∂t
(ρv)dV

The momentum equation can now be written as one single volume integral

˚
Ω

[
∂

∂t
(ρv) +∇ · (ρvv) +∇p− ρf

]
dV = 0

Ω is an arbitrary control volume and thus

∂

∂t
(ρv) +∇ · (ρvv) +∇p = ρf (5)
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which is the momentum equation on partial differential form

Conservation of Energy

Gauss’s divergence theorem applied to the surface integral term in the energy equation (Eqn.
3) gives

‹
∂Ω
ρho(v · n)dS =

˚
Ω
∇ · (ρhov)dV

Fixed control volume

d

dt

˚
Ω
ρeodV =

˚
Ω

∂

∂t
(ρeo)dV

The energy equation can now be written as

˚
Ω

[
∂

∂t
(ρeo) +∇ · (ρhov)− ρf · v − q̇ρ

]
dV = 0

Ω is an arbitrary control volume and thus

∂

∂t
(ρeo) +∇ · (ρhov) = ρf · v + q̇ρ (6)

which is the energy equation on partial differential form

Summary

The governing equations for compressible inviscid flow on partial differential form:

∂ρ

∂t
+∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) +∇p = ρf

∂

∂t
(ρeo) +∇ · (ρhov) = ρf · v + q̇ρ
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The Differential Equations on Non-Conservation Form

The Substantial Derivative

The substantial derivative operator is defined as

D

Dt
=

∂

∂t
+ v · ∇ (7)

where the first term of the right hand side is the local derivative and the second term is the
convective derivative.

Conservation of Mass

If we apply the substantial derivative operator to density we get

Dρ

Dt
=
∂ρ

∂t
+ v · ∇ρ

From before we have the continuity equation on differential form as

∂ρ

∂t
+∇ · (ρv) = 0

which can be rewritten as

∂ρ

∂t
+ ρ(∇ · v) + v · ∇ρ = 0

and thus

Dρ

Dt
+ ρ(∇ · v) = 0 (8)

Eqn. 8 says that the mass of a fluid element with a fixed set of fluid particles is constant as the
element moves in space.
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Conservation of Momentum

We start from the momentum equation on differential form derived above

∂

∂t
(ρv) +∇ · (ρvv) +∇p = ρf

Expanding the first and the second terms gives

ρ
∂v

∂t
+ v

∂ρ

∂t
+ ρv · ∇v + v(∇ · ρv) +∇p = ρf

Collecting terms, we can identify the substantial derivative operator applied to the velocity
vector and the continuity equation.

ρ

[
∂v

∂t
+ v · ∇v

]
︸ ︷︷ ︸

=Dv
Dt

+v

[
∂ρ

∂t
+∇ · ρv

]
︸ ︷︷ ︸

=0

+∇p = ρf

which gives us the non-conservation form of the momentum equation

Dv

Dt
+

1

ρ
∇p = f (9)

Conservation of Energy

The last equation on non-conservation differential form is the energy equation. We start by
rewriting the energy equation on differential form (Eqn. 6), repeated here for convenience

∂

∂t
(ρeo) +∇ · (ρhov) = ρf · v + q̇ρ

Total enthalpy, ho, is replaced with total energy, eo

ho = eo +
p

ρ

which gives
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∂

∂t
(ρeo) +∇ · (ρeov) +∇ · (pv) = ρf · v + q̇ρ

Expanding the two first terms as

ρ
∂eo
∂t

+ eo
∂ρ

∂t
+ ρv · ∇eo + eo∇ · (ρv) +∇ · (pv) = ρf · v + q̇ρ

Collecting terms, we can identify the substantial derivative operator applied on total energy,
Deo/Dt and the continuity equation

ρ

[
∂eo
∂t

v · ∇eo
]

︸ ︷︷ ︸
=Deo

Dt

+eo

[
∂ρ

∂t
+∇ · (ρv)

]
︸ ︷︷ ︸

=0

+∇ · (pv) = ρf · v + q̇ρ

and thus we end up with the energy equation on non-conservation differential form

ρ
Deo
Dt

+∇ · (pv) = ρf · v + q̇ρ (10)
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