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From chapter 3.9 we have the following expression for the momentum equation for one-dimensional
flow with friction (equation (3.95))

dp+ ρudu = −1

2
ρu2

4fdx

D
(3.95)

For cases dealing with calorically perfect gas, (3.95) can be recast completely in terms of Mach
number using the following relations

speed of sound: a2 = γp/ρ

the definition of Mach number: M2 = u2/a2

the ideal gas law for thermally perfect gas: p = ρRT

the continuity equation: ρu = const

energy equation: cpT + u2/2 = const

1 Continuity equation

We start with the continuity equation which for one-dimensional steady flows reads

ρu = const (1)

Differentiating (1) gives

d(ρu) = 0.⇔ ρdu+ udρ = 0. (2)
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If u 6= 0. we can divide by ρu which gives us

du

u
+
dρ

ρ
= 0. (3)

Now, if we divide and multiply the first term in (3) by 2u and use the chain rule for derivatives
we get

d(u2)

2u2
+
dρ

ρ
= 0. (4)

2 Energy equation

For an adiabatic one-dimensional flow we have that

cpT +
u2

2
= const (5)

If we differentiate (5) we get

cpdT +
1

2
d(u2) = 0. (6)

We replace cp with γR/(γ − 1) and multiply and divide the first term with T which gives us

γRT

(γ − 1)

dT

T
+

1

2
d(u2) = 0. (7)

Now, divide by γRT/(γ − 1) and multiply and divide the second term by u2 gives

dT

T
+

(γ − 1)

2
M2d(u2)

u2
= 0. (8)

We want to remove the dT/T -term in (8). From the definition of Mach number we have that

a2M2 = u2 (9)
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which we can rewrite using the expression for speed of sound (a2 = γRT ) according to

γRTM2 = u2 (10)

Differentiating (10) gives us

γRM2dT + γRTd(M2) = d(u2) (11)

Now, if we divide (11) by γRTM2 and use a2 = γRT and a2M2 = u2 we get

dT

T
+
d(M2)

M2
=
d(u2)

u2
(12)

Equation (12) may now be used to replace the dT/T -term in equation (8)

−d(M2)

M2
+
d(u2)

u2
+

(γ − 1)

2
M2d(u2)

u2
= 0. (13)

which can be rewritten according to

d(u2)

u2
=

[
1 +

(γ − 1)

2
M2

]−1 d(M2)

M2
(14)

Using the chain rule for derivatives, the last term may be rewritten according to

d(M2)

M2
= 2M

dM

M2
= 2

dM

M

which gives

d(u2)

u2
= 2

[
1 +

(γ − 1)

2
M2

]−1 dM

M
(15)

3



3 The ideal gas law

For a perfect gas the ideal gas law reads

p = ρRT (16)

Differentiating (16) gives:

dp = ρRdT +RTdρ (17)

If p 6= 0., we can divide (20) by p which gives

dp

p
=
dT

T
+
dρ

ρ
(18)

which can be rearranged according to

[
dp

p
− dρ

ρ

]
=
dT

T
(19)

Now, inserting dT/T from equation (8) gives

[
dp

p
− dρ

ρ

]
+

(γ − 1)

2
M2d(u2)

u2
= 0. (20)

The dρ/ρ-term can be replaced using equation (4)

dp

p
+
d(u2)

2u2
+

(γ − 1)

2
M2d(u2)

u2
= 0. (21)

Collect terms and rewrite gives

dp

p
+

[
1 + (γ − 1)M2

2

]
d(u2)

u2
= 0. (22)

4



4 Momentum equation

By combining the above derived relations and the momentum equation on the form given by
(3.95), we can get an expression where the friction force is a function of Mach number only

For convenience equation (3.95) is written again here

dp+ ρudu = −1

2
ρu2

4fdx

D
(3.95)

if u 6= 0., we can divide by 0.5ρu2 which gives

2
dp

ρu2
+ 2

ρudu

ρu2
= −4fdx

D
(23)

using M2 = u2/a2, a2 = γp/ρ and the chain rule in (23) gives

2

γM2

dp

p
+
d(u2)

u2
= −4fdx

D
(24)

From equation (22) we can get a relation that expresses the pressure derivative term, dp/p, in
terms of Mach number and d(u2)/u2. Inserting this in (24) gives

2

γM2

{
−
[

1 + (γ − 1)M2

2

]
d(u2)

u2

}
+
d(u2)

u2
= −4fdx

D
(25)

collecting terms and rearranging gives

M2 − 1

γM2

d(u2)

u2
=

4fdx

D
(26)

if we now use equation (15) to get rid of the d(u2)/u2-term we end up with an expression cor-
responding to equation (3.96)

4fdx

D
=

2

γM2
(1−M2)

[
1 +

(γ − 1)

2
M2

]−1 dM

M
(3.96)
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